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Abstract

The main theme of this paper is to develop a novel eigenvalue optimization framework for
learning a Mahalanobis metric. Within this context, we introduce a novel metric learn-
ing approach called DML-eig which is shown to be equivalent to a well-known eigenvalue
optimization problem called minimizing the maximal eigenvalue of a symmetric matrix
(Overton, 1988; Lewis and Overton, 1996). Moreover, we formulate LMNN (Weinberger
et al., 2005), one of the state-of-the-art metric learning methods, as a similar eigenvalue
optimization problem. This novel framework not only provides new insights into metric
learning but also opens new avenues to the design of efficient metric learning algorithms.
Indeed, first-order algorithms are developed for DML-eig and LMNN which only need the
computation of the largest eigenvector of a matrix per iteration. Their convergence char-
acteristics are rigorously established. Various experiments on benchmark data sets show
the competitive performance of our new approaches. In addition, we report an encouraging
result on a difficult and challenging face verification data set called Labeled Faces in the
Wild (LFW).

Keywords: metric learning, convex optimization, semi-definite programming, first-order
methods, eigenvalue optimization, matrix factorization, face verification

1. Introduction

Distance metrics are fundamental concepts in machine learning since a proper choice of a
metric has crucial effects on the performance of both supervised and unsupervised learning
algorithms. For example, the k-nearest neighbor (k-NN) classifier depends on a distance
function to identify the nearest neighbors for classification. The k-means algorithm depends
on the pairwise distance measurements between examples for clustering, and most informa-
tion retrieval methods rely on a distance metric to identify the data points that are most
similar to a given query. Recently, learning a distance metric from data has been actively
studied in machine learning (Bar-Hillel et al., 2005; Davis et al., 2007; Goldberger et al.,
2004; Rosales and Fung, 2006; Shen et al., 2009; Torresani and Lee, 2007; Weinberger et al.,
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2005; Weinberger and Saul, 2008; Xing et al., 2002; Ying et al., 2009). These methods have
been successfully applied to many real-world application domains including information re-
trieval, face verification, image recognition (Chopra et al., 2005; Guillaumin et al., 2009;
Hoi et al., 2006) and bioinformatics (Kato and Nagano, 2010; Vert et al., 2007).

Most metric learning methods attempt to learn a distance metric from side information
which is often available in the form of pairwise constraints, that is, pairs of similar data
points and pairs of dissimilar data points. The information of similarity or dissimilarity
between a pair of examples can easily be collected from the label information in supervised
classification. For example, we can reasonably let two samples in the same class be a similar
pair and samples in the distinct classes be a dissimilar pair. In semi-supervised clustering,
a small amount of knowledge is available concerning pairwise (must-link or cannot-link)
constraints between data items. This side information delivers the message that a must-
link pair of samples is a similar pair and a cannot-link one is a dissimilar pair. A common
theme in metric learning is to learn a distance metric such that the distance between similar
examples should be relatively smaller than that between dissimilar examples. Although the
distance metric can be a general function, the most prevalent one is the Mahalanobis metric
defined by dM (xi, xj) =

√
(xi − xj)⊤M(xi − xj) where M is a positive semi-definite (p.s.d.)

matrix.

In this work we restrict our attention to learning a Mahalanobis metric for k-nearest
neighbor (k-NN) classification. However, the proposed methods below can easily be adapted
to metric learning for semi-supervised k-means clustering. Our main contribution is sum-
marized as follows. Firstly, we introduce a novel approach called DML-eig mainly inspired
by the original work of Xing et al. (2002). Although our ultimate target is similar to theirs,
our methods are essentially different. In particular, we can show our approach is equivalent
to a well-known eigenvalue optimization problem called minimizing the maximal eigenvalue
of a symmetric matrix (Lewis and Overton, 1996; Overton, 1988). We further show that the
above novel optimization formulation can also be extended to LMNN (Weinberger et al.,
2005) and low-rank matrix factorization for collaborative filtering (Srebro et al., 2004). Sec-
ondly, in contrast to the full eigen-decomposition used in many existing approaches to metric
learning, we will develop novel approximate semi-definite programming (SDP) algorithms
for DML-eig and LMNN which only need the computation of the largest eigenvector of a ma-
trix per iteration. The algorithms combine and develop the Frank-Wolfe algorithm (Frank
and Wolfe, 1956; Hazan, 2008) and Nesterov’s smoothing techniques (Nesterov, 2005). Fi-
nally, its rigorous convergence characteristics will also be established, and experiments on
various UCI data sets and benchmark face data sets show the competitiveness of our new
approaches. In addition, we report an encouraging result on a challenging face verification
data set called Labeled Faces in the Wild (Huang et al., 2007).

The paper is organized as follows. In Section 2, we propose our new approach (DML-
eig) for distance metric learning and show its equivalence to the well-known eigenvalue
optimization problem. In addition, a generalized eigenvalue-optimization formulation will
be established for LMNN and low-rank matrix factorization for collaborative filtering (Sre-
bro et al., 2004). In Section 3, based on eigenvalue optimization formulations of DML-eig
and LMNN, we develop novel first-order algorithms. Their convergence rates are success-
fully established. Section 4 discusses the related work. In Section 5, our proposed methods
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are compared with the state-of-the-art methods through extensive experiments. The last
section concludes the paper.

2. Metric Learning Model and Equivalent Formulation

We begin by introducing useful notations. Let Nn = {1, 2, . . . , n} for any n ∈ N. The space
of symmetric d times d matrices will be denoted by Sd and the cone of p.s.d. matrices is
denoted by Sd+. For any X,Y ∈ Rd×n, we denote the inner product in Sd by ⟨X,Y ⟩ :=
Tr(X⊤Y ) where Tr(·) denotes the trace of a matrix. The standard norm in Euclidean
space is denoted by ∥ · ∥.

Throughout the paper, the training data is given by z := {(xi, yi) : i ∈ Nn} with input
xi = (x1i , x

2
i , . . . , x

d
i ) ∈ Rd, class label yi (not necessary binary) and later on we use the

convention Xij = (xi − xj)(xi − xj)
⊤. Then, for any M ∈ Sd+, the associated Mahalanobis

distance between xi and xj can be written as d2M (xi, xj) = (xi−xj)⊤M(xi−xj) = ⟨Xij ,M⟩.
Let S index the similar pairs and D index the dissimilar pairs. For instance, if (xi, xj) is a
similar pair we denote it by τ = (i, j) ∈ S, and write Xij as Xτ for simplicity.

Given a set of pairwise distance constraints, the target of metric learning is to find a
distance matrix M such that the distance between the dissimilar pairs is large and the
distance between the similar pairs is small. There are many possible criteria to realize this
intuition. Our model is mainly inspired by Xing et al. (2002) where the authors proposed to
maximize the sum of distances between dissimilar pairs, while maintaining an upper bound
on the sum of squared distances between similar pairs. Specifically, the following criterion
was used in Xing et al. (2002):

maxM∈Sd+

∑
(i,j)∈D dM (xi, xj)

s.t.
∑

(i,j)∈S d2M (xi, xj) ≤ 1.
(1)

An iterative projection method was proposed to solve the above problem. However, it
usually takes a long time to converge and the algorithm needs the computation of the full
eigen-decomposition of a matrix in each iteration.

In this paper, we propose to maximize the minimal squared distances between dissimilar
pairs while maintaining an upper bound for the sum of squared distances between similar
pairs, that is,

maxM∈Sd+
min(i,j)∈D d2M (xi, xj)

s.t.
∑

(i,j)∈S d2M (xi, xj) ≤ 1.
(2)

Now, let XS =
∑

(i,j)∈S Xij we can rewrite problem (2) as follows:

maxM∈Sd+
minτ∈D⟨Xτ ,M⟩

s.t. ⟨XS ,M⟩ ≤ 1.
(3)

This problem is obviously a semi-definite programming (SDP) since it is equivalent to

maxM∈Sd+
t

s.t. ⟨Xτ ,M⟩ ≥ t, ∀τ = (i, j) ∈ D,
⟨XS ,M⟩ ≤ 1.
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In contrast to problem (1), the objective function and the constraints in (3) are linear with
respect to (w.r.t.) M . As shown in the next subsection, this simple but important property1

plays a critical role in formulating problem (2) as an eigenvalue optimization problem. This
equivalent formulation is key to the design of efficient algorithms in Section 3.

The generation of the pairwise constraints plays an important role in learning a metric.
If labels are known then the learning setting is often referred to as supervised metric learning
which can further be divided into two categories: the global metric learning and the local
metric learning. The global approach learns the distance metric in a global sense, that is,
to satisfy all the pairwise constraints simultaneously. The original model in Xing et al.
(2002) is a global method which used all the similar pairs (same labels) and dissimilar pairs
(distinct labels). The local approach is to learn a distance metric only using local pairwise
constraints which usually outperforms the global methods as observed in many previous
studies. This is reasonable in the case of learning a metric for the k-NN classifiers since
k-NN classifiers are influenced most by the data items that are close to the test/query
examples. Since we are mainly concerned with learning a metric for k-NN classifier, the
pairwise constraints for DML-eig are generated locally, that is, the similar/dissimilar pairs
are k-nearest neighbors. The details can be found in the experimental section.

2.1 Equivalent Formulation as Eigenvalue Optimization

In this section we establish a min-max formulation of problem (3), which is finally shown
to be equivalent to an eigenvalue optimization problem called minimizing the maximal
eigenvalue of symmetric matrices (Lewis and Overton, 1996; Overton, 1988).

For simplicity of notation, for any X ∈ Sd, we denote its maximum eigenvalue of X ∈ Sd
by λmax(X). Let D be the number of dissimilar pairs and the simplex is denoted by

△ = {u ∈ RD : uτ ≥ 0,
∑
τ∈D

uτ = 1}.

We also denote the spectrahedron by

P = {M ∈ Sd+ : Tr(M) = 1}.

Now we can show problem (3) is indeed an eigenvalue optimization problem.

Theorem 1 Assume that XS is invertible and, for any τ ∈ D, let X̃τ = X
−1/2
S XτX

−1/2
S .

Then, problem (3) is equivalent to the following problem

max
S∈P

min
u∈△

∑
τ∈D

uτ ⟨X̃τ , S⟩, (4)

which can further be written as an eigenvalue optimization problem:

min
u∈△

max
S∈P
⟨
∑
τ∈D

uτ X̃τ , S⟩ = min
u∈△

λmax

(∑
τ∈D

uτ X̃τ

)
. (5)

1. One might consider replacing the objective
∑

(i,j)∈D dM (xi, xj) in problem (1) by
∑

(i,j)∈D d2M (xi, xj).
This would also lead to a simple linear constraint and linear objective function. However, as mentioned
in Xing et al. (2002), it would result in M always being rank 1 (i.e., the data are always projected onto
a line).
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Proof Let M∗ be an optimal solution of problem (3) and M̃∗ = M∗

⟨XS ,M∗⟩ . Then, we have

⟨XS , M̃
∗⟩ = 1 and

min
τ∈D
⟨Xτ , M̃

∗⟩ = min
τ∈D
⟨Xτ ,M

∗⟩/⟨XS ,M
∗⟩ ≥ min

τ∈D
⟨Xτ ,M

∗⟩,

since ⟨XS ,M
∗⟩ ≤ 1. This implies that M̃∗ is also an optimal solution. Consequently,

problem (3) is equivalent to, up to a scaling constant,

arg max
M∈Sd+

{min
τ∈D
⟨Xτ ,M⟩ : ⟨XS ,M⟩ = 1}. (6)

Noting that minτ∈D⟨Xτ ,M⟩ = minu∈△
∑

τ∈D uτ ⟨Xτ ,M⟩, the desired equivalence between

(4) and (3) follows by changing variable S = X
1/2
S MX

1/2
S in formulation (6).

Also, note from Overton (1988) that maxM∈P⟨X,M⟩ = λmax(X). By the min-max
theorem, problem (4) can further be written by a well-known eigenvalue optimization prob-
lem:

min
u∈△

max
M∈P
⟨
∑
τ∈D

uτ X̃τ ,M⟩ = min
u∈△

λmax

(∑
τ∈D

uτ X̃τ

)
.

This completes the proof of the theorem.

The problem of minimizing the maximal eigenvalue of a symmetric matrix is well-known
which has important applications in engineering design, see Overton (1988); Lewis and
Overton (1996). Hereafter, we refer to metric learning formulation (3) (equivalently (4) or
(5)) as DML-eig.

We end this subsection with two remarks. Firstly, Theorem 1 assumes that XS is
invertible. In practice, this can be achieved by enforcing a small ridge to the diagonal of
the matrix XS , that is, XS ←− XS + δ Id where Id is the identity matrix and δ > 0 is
a very small ridge constant. Without loss of generality, we assume that XS is positive
definite throughout the paper. Secondly, when the dimension d of the input space is very

large, the computation of X
−1/2
S could be time-consuming. Instead of directly inverting the

matrix, one can use the Cholesky decomposition which is faster and numerically more stable.
Indeed, the Cholesky decomposition tells us that XS = LL⊤ where L is a lower triangular
matrix with strictly positive diagonal entries. Hence, in (6) we can let S = L⊤ML (i.e.,
M = (L−1)⊤SL−1) and Theorem 1 still holds true if we redefine, for any τ = (i, j) ∈ D, that
X̃τ = (L−1(xi − xj))(L

−1(xi − xj))
⊤. Therefore, it suffices to compute {L−1xi : i ∈ Nn}

which can efficiently be obtained by solving linear system of equations (e.g., using the
operation L \ xi in MATLAB).

2.2 Eigenvalue Optimization for LMNN

Weinberger et al. (2005) proposed the large margin nearest neighbor classification (LMNN)
which is one of the state-of-the-art metric learning methods. In analogy to the above argu-
ment for DML-eig, we can also formulate LMNN as a generalized eigenvalue optimization
problem.

Formulation (3) used the pairwise constraints in the form of similar/dissimilar pairs.
In contrast, LMNN aims to learn a metric using the relative distance constraints which
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are presented in the form of triplets. With a little abuse of notation, we denote a triplet
by τ = (i, j, k) which means that xi is similar to xj and xj is dissimilar to xk. Then,
denote the set of triplets by T which can be specified based on label information (e.g., see
Section 5). Given a set S of similar pairs and a set T of triplets, the target of LMNN is
to learn a distance metric such that k-nearest neighbors always belong to the same class
while examples from different classes are separated by a large margin. In particular, let
XS =

∑
(i,j)∈S(xi − xj)(xi − xj)

⊤ and Cτ = Xjk −Xij , then LMNN can be rewritten as

minM,ξ (1− γ)
∑

τ∈T ξτ + γTr(XSM)
s.t. 1− ⟨Cτ ,M⟩ ≤ ξτ ,

M ∈ Sd+, ξτ ≥ 0, ∀τ = (i, j, k) ∈ T ,
(7)

where γ ∈ [0, 1] is a trade-off parameter.
Let T be the number of triplets, that is, the cardinality of the triplet set T . We can

establish the following equivalent min-max formulation of LMNN. A similar result with a
quite different proof has also been given in Baes and Bürgisser (2009) for a certain class of
SDP problems.

Lemma 2 LMNN formulation (7) is equivalent to

max
M∈Sd+,ξ≥0

{
min
τ

(ξτ + ⟨Cτ ,M⟩) : γTr(XSM) + (1− γ)
∑
τ

ξτ = 1
}
. (8)

Proof Write the LMNN formulation (7) as

minM,ξ (1− γ)
∑

τ∈T ξτ + γTr(XSM)
s.t. ⟨Cτ ,M⟩+ ξτ ≥ 1,

M ∈ Sd+, ξτ ≥ 0, ∀τ = (i, j, k) ∈ T .
(9)

The condition that ⟨Cτ ,M⟩+ ξτ ≥ 1 for any τ ∈ T is identical to minτ∈T ⟨Cτ ,M⟩+ ξτ ≥ 1.
Hence, problem (7) is further equivalent to

minM,ξ (1− γ)
∑

τ∈T ξτ + γTr(XSM)
s.t. minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ ≥ 1,

M ∈ Sd+, ξ ≥ 0.
(10)

Since the objective function and the constraints are linear w.r.t. variable (M, ξ), the op-
timal solution for (10) must be attained on the boundary of the feasible domain, that is,
minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ = 1. Consequently, problem (10) is identical to

minM,ξ (1− γ)
∑

τ∈T ξτ + γTr(XSM)
s.t. minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ = 1,

M ∈ Sd+, ξ ≥ 0.
(11)

Let Ω =
{
(M, ξ) : minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ ≥ 0,M ∈ Sd+, ξ ≥ 0

}
. We first claim that (11)

is equivalent to

min
M,ξ

{
(1− γ)

∑
τ∈T ξτ + γTr(XSM)

minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ
: (M, ξ) ∈ Ω

}
. (12)
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To see this equivalence, let ϕ1 be the optimal value of problem (11) and ϕ2 be the optimal
value of problem (12). Suppose that (M∗, ξ∗) be an optimal solution of problem (12). Let
δ∗ =
minτ=(i,j,k)∈T ⟨Cτ ,M

∗⟩+ ξ∗τ and denote (M̃∗, ξ̃∗) = (M∗/δ∗, ξ∗/δ∗). Then, for any M ∈ Sd+
and ξ ≥ 0 satisfying minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ = 1,

(1− γ)
∑

τ∈T ξτ + γTr(XSM) =
(1−γ)

∑
τ∈T ξτ+γTr(XSM)

minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ξτ
≥ ϕ2 =

(1−γ)
∑

τ∈T ξ∗τ+γTr(XSM
∗)

minτ=(i,j,k)∈T ⟨Cτ ,M∗⟩+ξ∗τ

= (1− γ)
∑

τ∈T ξ̃∗τ + γTr(XSM̃
∗) ≥ ϕ1,

where the last inequality follows from the fact that minτ=(i,j,k)∈T ⟨Cτ , M̃
∗⟩+ξ̃∗τ = 1. Since the

above inequality holds true for anyM ∈ Sd+ and ξ ≥ 0 satisfying minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ξτ =

1, we finally get that ϕ1 ≥ ϕ2 ≥ ϕ1, that is, ϕ1 = ϕ2 and, moreover (M̃∗, ξ̃∗) is an optimal
solution of problem (11). This completes the equivalence between (11) and (12).

Now, rewrite problem (12) as

min
M,ξ

{( minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ

(1− γ)
∑

τ∈T ξτ + γTr(XSM)

)−1
: (M, ξ) ∈ Ω

}
,

which is further equivalent to

max
M,ξ

{
minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ

(1− γ)
∑

τ∈T ξτ + γTr(XSM)
: (M, ξ) ∈ Ω

}
. (13)

Using exactly the same argument of proving the equivalence between (11) and (12), one can
show that the above problem (13) is equivalent to

max
M,ξ

{
min

τ=(i,j,k)∈T
⟨Cτ ,M⟩+ ξτ : (1− γ)

∑
τ∈T

ξτ + γTr(XSM) = 1, (M, ξ) ∈ Ω
}
. (14)

Now consider problem (14) without the restriction (M, ξ) ∈ Ω, that is,

max
M,ξ

{
min

τ=(i,j,k)∈T
⟨Cτ ,M⟩+ ξτ : (1− γ)

∑
τ∈T

ξτ + γTr(XSM) = 1,M ∈ Sd+, ξ ≥ 0
}
. (15)

Let M̃ = 0 and ξ̃τ = 1
(1−γ)T for any τ which obviously satisfies the restriction condition of

problem (15), that is, (1− γ)
∑

τ∈T ξ̃τ + γTr(XSM̃) = 1. Then,

maxM,ξ

{
minτ=(i,j,k)∈T ⟨Cτ ,M⟩+ ξτ : (1− γ)

∑
τ∈T ξτ + γTr(XSM) = 1,M ∈ Sd+, ξ ≥ 0

}
≥ minτ=(i,j,k)∈T ⟨Cτ , M̃⟩+ ξ̃τ = 1

(1−γ)T > 0,

which means that any optimal solution for problem (15) automatically satisfies (M, ξ) ∈ Ω.
Consequently, problem (15) is equivalent to (14). Combining this with the equivalence be-
tween (11), (12), (13) and (14) finally yields the equivalence between problem (15) and the
primal formulation (7) of LMNN. This completes the proof of the lemma.

Using the above min-max representation for LMNN, it is now easy to reformulate LMNN
as a generalized eigenvalue optimization as we will do below. With a little abuse of notation,
denote the simplex by △ = {u ∈ RT :

∑
τ∈T uτ = 1, uτ ≥ 0}.
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Theorem 3 Assume that XS is invertible and, for any τ ∈ T , let C̃τ = X
−1/2
S CτX

−1/2
S .

Then, LMNN is equivalent to the following problem

max
S,ξ

{
min
u∈△

∑
τ∈T

uτ
(
ξτ + ⟨C̃τ , S⟩

)
: (1− γ)ξ⊤1+ γTr(S) = 1, S ∈ Sd+, ξ ≥ 0

}
, (16)

where 1 is a column vector with all entries one. Moreover, it can further be written as a
generalized eigenvalue optimization problem:

min
u∈△

max
( 1

1− γ
umax,

1

γ
λmax

(∑
τ∈T

uτ C̃τ

))
, (17)

where umax is the maximum element of the vector (uτ : τ ∈ T ).

Proof Note that minτ=(i,j,k)∈T
(
⟨Cτ ,M⟩+ ξτ

)
= minu∈△ uτ

(
⟨Cτ ,M⟩+ ξτ

)
. Combing this

with Lemma 2 implies that LMNN is equivalent to

max
M,ξ

{
min
u∈△

∑
τ∈D

uτ
(
ξτ + ⟨Cτ ,M⟩

)
: (1− γ)ξ⊤1+ γTr(XSM) = 1,M ∈ Sd+, ξ ≥ 0

}
.

Letting S = X
1/2
S MX

1/2
S yields the equivalence between (8) and (16).

By the min-max theorem, problem (16) is equivalent to

min
u∈△

{
max
S,ξ

∑
τ∈D

uτ
(
ξτ + ⟨C̃τ , S⟩

)
: (1− γ)ξ⊤1+ γTr(S) = 1, S ∈ Sd+, ξ ≥ 0

}
. (18)

To see the equivalence between (18) and (17), observe that

max
{∑

τ∈D uτ
(
ξτ + ⟨C̃τ , S⟩

)
: (1− γ)ξ⊤1+ γTr(S) = 1, S ∈ Sd+, ξ ≥ 0

}
= max

{
1

1−γ

∑
τ∈D

uτξτ +
1
γ ⟨

∑
τ∈D

uτ C̃τ , S⟩ : ξ⊤1+Tr(S) = 1, S ∈ Sd+, ξ ≥ 0
}

= max
(

1
1−γumax,

1
γλmax

(∑
τ∈D

uτ C̃τ

))
,

where the last equality follows from the fact that the above maximization problem is a
linear programming w.r.t. (S, ξ) and, for any A ∈ Sd, max{⟨A,B⟩ : B ∈ Sd+, Tr(B) ≤ 1} =
λmax(A). This completes the proof of the theorem.

Since we have formulated LMNN as an eigenvalue optimization problem in the above
theorem, hereafter we refer to formulation (16) (equivalently (17)) as LMNN-eig. The
above eigenvalue optimization formulation is not restricted to metric learning problems.
It can be extended to other machine learning tasks if their SDP formulation is similar to
that of LMNN. Maximum-margin matrix factorization (Srebro et al., 2004) is one of such
examples. Its eigenvalue optimization formulation can be found in Appendix A.
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3. Eigenvalue Optimization Algorithms

In this section we develop efficient algorithms for solving DML-eig and LMNN-eig. We
can directly employ the entropy smoothing techniques (Nesterov, 2007; Baes and Bürgisser,
2009) for eigenvalue optimization which, however, needs the computation of the full eigen-
decomposition per iteration. Instead, we propose a new first-order method by develop-
ing and combining the smoothing techniques (Nesterov, 2005) and Frank-Wolfe algorithm
(Frank and Wolfe, 1956; Hazan, 2008), which will only involve the computation of the largest
eigenvector of a matrix.

3.1 Approximate Frank-Wolfe Algorithm for DML-eig

By Theorem 1, DML-eig is identical to problem:

max
S∈P

f(S) = max
S∈P

min
u∈△

∑
τ∈D

uτ ⟨X̃τ , S⟩. (19)

To this end, for a smoothing parameter µ > 0, define

fµ(S) = min
u∈△

∑
τ∈D

uτ ⟨X̃τ , S⟩+ µ
∑
τ∈D

uτ lnuτ .

We use the smoothed problem maxS∈P fµ(S) to approximate problem (19).

It is easy to see that

fµ(S) = −µ ln
(∑
τ∈D

e−⟨X̃τ ,S⟩/µ),
and

∇fµ(S) =
∑

τ∈D e−⟨X̃τ ,S⟩/µX̃τ∑
τ∈D e−⟨X̃τ ,S⟩/µ

.

Since fµ is a smooth function, we can prove that its gradient is Lipschitz continuous.

Lemma 4 For any S1, S2 ∈ P, then

∥∇fµ(S1)−∇fµ(S2)∥ ≤ Cµ∥S1 − S2∥,

where Cµ = 2maxτ∈D ∥X̃τ∥2/µ.

Proof It suffices to see ∥∇2fµ(S)∥ ≤ 2maxτ∈D ∥X̃τ∥2/µ. To this end,

∇2fµ(S) =
(
∑

τ∈D e−⟨X̃τ ,S⟩/µX̃τ )
⊗

(
∑

τ∈D e−⟨X̃τ ,S⟩/µX̃τ )

µ
(∑

τ∈D e−⟨X̃τ ,S⟩/µ
)2 −

∑
τ∈D e−⟨X̃τ ,S⟩/µX̃τ

⊗
X̃τ

µ
∑

τ∈D e−⟨X̃τ ,S⟩/µ := I + II,

where X
⊗

S denotes the tensor product of matrices X and S. We can estimate the term
I as follows:

∥I∥ ≤
(∑

τ∈D e−⟨X̃τ ,S⟩/µ∥X̃τ∥
)(∑

τ∈D e−⟨X̃τ ,S⟩/µ∥X̃τ∥
)

µ
(∑

τ∈D e−⟨X̃τ ,S⟩/µ
)2 ≤ 1

µ
max
τ∈D
∥X̃τ∥2,

9



Ying and Li

Input:
· smoothing parameter µ > 0 (e.g., 10−5)
· tolerance value tol (e.g., 10−5)
· step sizes {αt ∈ (0, 1) : t ∈ N}

Initialization: Sµ
1 ∈ Sd+ with Tr(Sµ

1 ) = 1
for t = 1, 2, 3, . . . do
· Zµ

t = argmax
{
fµ(St) + ⟨Z,∇fµ(Sµ

t )⟩ : Z ∈ Sd+, Tr(Z) = 1
}
, that is, Zµ

t = vv⊤

where v is the maximal eigenvector of matrix ∇fµ(Sµ
t )

· Sµ
t+1 = (1− αt)S

µ
t + αtZ

µ
t

· if |fµ(Sµ
t+1)− fµ(S

µ
t )| < tol then break

Output: d× d matrix Sµ
t ∈ Sd+

Table 1: Approximate Frank-Wolfe Algorithm for DML-eig

where, in the above inequality, we used the fact that ∥S
⊗

X∥ ≤ ∥X∥∥S∥ for any X,S ∈ Sd.
The second term II can be similarly estimated:

∥II∥ ≤ max
τ∈D
∥X̃τ∥2/µ.

Putting them together yields the desired result.

The pseudo-code to solve DML-eig is described in Table 1 which is a generalization
of Frank-wolfe algorithm (Frank and Wolfe, 1956) which originally applies to the context
of minimizing a convex function over a feasible polytope. Hazan (2008) first extended
the original Frank-Wolfe algorithm to solve SDP over the spectrahedron P = {M : M ∈
Sd+,Tr(M) = 1}. Recall that D is the cardinality of D, that is, the number of dissimilar
pairs. Then, we have the following convergence result.

Lemma 5 For any 0 < µ ≤ 1, let {Sµ
t : t ∈ N} be generated by the algorithm in Table 1

and Cµ be defined in Lemma 4. Then we have that

max
S∈P

fµ(S)− fµ(S
µ
t+1) ≤ Cµα

2
t + (1− αt)

(
max
S∈P

fµ(S)− f(Sµ
t )
)
.

Proof By the definition of Cµ in Lemma 4, we have

fµ(S
µ
t+1) ≥ fµ(S

µ
t ) + αt⟨∇fµ(Sµ

t ), Zt − Sµ
t ⟩ − Cµα

2
t . (20)

Since f is concave, for any S ∈ P there holds

⟨∇fµ(Sµ
t ), Zt − Sµ

t ⟩ ≥ ⟨∇fµ(S
µ
t ), S − Sµ

t ⟩ ≥ fµ(S)− f(Sµ
t ),

which implies that

⟨∇fµ(Sµ
t ), Zt − Sµ

t ⟩ ≥ max
S∈P

fµ(S)− fµ(S
µ
t ).

Substituting the above inequality into (20) yields the desired result.

10
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For simplicity, let Rt = maxS∈P fµ(S)− fµ(S
µ
t ). If αt ∈ (0, 1] for any t ≥ t0 with some

t0 ∈ N, then by Lemma 5 and a simple induction, for any t ≥ t0 there holds

Rt+1 ≤ Cµ

t∑
j=t0

t∏
k=j+1

(1− αk)α
2
j +

t∏
j=t0

(1− αj)Rt0 . (21)

Combining this inequality and some ideas in Ying and Zhou (2006), one can establish
sufficient conditions on the stepsizes {αt : t ∈ N} such that limt→∞ fµ(S

µ
t ) = minS∈P fµ(S).

Theorem 6 For any fixed µ > 0, let {Sµ
t : t ∈ N} be generated by the algorithm in Table

1. If the step sizes satisfy that∑
t∈N

αt =∞, lim
t→∞

αt = 0, (22)

then

lim
t→∞

fµ(S
µ
t ) = max

S∈P
fµ(S).

The detailed proof of the above theorem is given in Appendix B. Typical examples of
step sizes satisfying condition (22) are {αt = t−θ : t ∈ N} with 0 < θ ≤ 1. For the particular
case θ = 1, by Lemma 5 we can prove the following result.

Theorem 7 For any 0 < µ ≤ 1, let {Sµ
t : t ∈ N} be generated by Table 1 with step sizes

given by {αt = 2/(t+ 1) : t ∈ N}. Then, for any t ∈ N we have that

max
S∈P

fµ(S)− fµ(S
µ
t ) ≤

8maxτ∈D ∥X̃τ∥2

µt
+

4 lnD

t
. (23)

Furthermore,

max
S∈P

f(S)− f(Sµ
t ) ≤ 2µ lnD +

8maxτ∈D ∥X̃τ∥2

µt
+

8 lnD

t
.

Proof It is easy to see, for any S ∈ P that

|f(S)− fµ(S)| ≤ µmax
u∈△

∑
τ∈D

(−uτ lnuτ ) ≤ µ lnD.

Let S∗ = argmaxS∈P f(S) and Sµ
∗ = argmaxS∈P fµ(S). Then, for any t ∈ N,

maxS∈P f(S)− f(Sµ
t ) = [f(S∗)− fµ(S∗)] + [fµ(S∗)−maxS∈P fµ(S)]

+[fµ(S
µ
∗ )− fµ(S

µ
t )] + [fµ(S

µ
t )− f(Sµ

t )]
≤ [f(S∗)− fµ(S∗)] + [fµ(S

µ
∗ )− fµ(S

µ
t )] + [fµ(S

µ
t )− f(Sµ

t )]
≤ 2µ lnD + [fµ(S

µ
∗ )− fµ(S

µ
t )]

= 2µ lnD + [maxS∈P fµ(S)− fµ(S
µ
t )].

11
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Hence, it suffices to prove (23) by induction. Indeed, for t = 1, we have that

maxS∈P fµ(S)− fµ(S
µ
1 ) ≤ fµ(S

µ
∗ ) + µ supu∈△(

∑
τ∈D(−uτ lnuτ ))

≤ maxS∈P minu∈△
∑

τ∈D uτ ⟨X̃τ , S⟩+ µ lnD

≤ maxS∈P minu∈△
∑

τ∈D uτ∥X̃τ∥∥S∥+ µ lnD

≤ minu∈△
∑

τ∈D uτ∥X̃τ∥+ µ lnD

≤ minu∈△
[∑

τ∈D uτ +
∑

τ∈D uτ∥X̃τ∥2
]
+ µ lnD

≤ 1 + maxτ∈D ∥X̃τ∥2 + µ lnD,

which obviously satisfies (23) with t = 1. Suppose the inequality (23) holds true for some
t > 1. Now by Lemma 5,

Rt+1 ≤ Cµα
2
t + (1− αt)Rt

≤ 4Cµ

(t+1)2
+ t−1

t+1

(4Cµ

t + 4 lnD
t

)
≤ 4(Cµ + lnD)

(
1

(t+1)2
+ t−1

(t+1)t

)
≤ 4(Cµ+lnD)

t+1 ,

where the second inequality follows from the induction assumption. This proves the in-
equality (23) for all t ∈ N which completes the proof of the theorem.

By the above theorem, for any ε > 0, then µ = ε
4 lnD and the iteration number t ≥

64(1 + maxτ∈D ∥X̃τ∥2) lnD/ε2 yields that maxS∈P f(S)− f(Sµ
t ) ≤ ε. The time complexity

of the approximate first-order method for DML-eig is of O
(
d2/ε2

)
.

3.2 Approximate Frank-Wolfe Algorithm for LMNN-eig

We can easily extend the above approximate Frank-Wolfe algorithm to solve the eigenvalue
optimization formulation of LMNN-eig (formulation (16) or (17)). To this end, let

f(S, ξ) = min
u∈△

∑
τ∈D

uτ
(
ξτ + ⟨C̃τ , S⟩

)
.

Then, problem (16) is identical to

max
{
f(S, ξ) : (1− γ)

∑
τ

ξτ + γTr(S) = 1, S ∈ Sd+, ξ ≥ 0
}
.

In analogy to the smooth techniques applied to DML-eig, we approximate f(S, ξ) by the
following smooth function:

fµ(S, ξ) = min
u∈△

∑
τ∈D

uτ (ξτ + ⟨C̃τ , S⟩) + µ
∑
τ∈D

uτ lnuτ .

One can easily see that

fµ(S, ξ) = −µ ln
(∑
τ∈T

e−(⟨C̃τ ,S⟩+ξτ )/µ
)
.

12
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Input:
· smoothing parameter µ > 0 (e.g., 10−5)
· tolerance value tol (e.g., 10−5)
· step sizes {αt ∈ (0, 1) : t ∈ N}

Initialization: Sµ
1 ∈ Sd+ with Tr(Sµ

1 ) = 1 and ξµ1 ≥ 0
for t = 1, 2, 3, . . . do
· (Zµ

t , β
µ
t ) = argmax

{
⟨Z, ∂Sfµ(Sµ

t , ξ
µ
t )⟩+ ξ⊤∂ξfµ(S

µ
t , ξ

µ
t ) : Z ∈ Sd+, ξ ≥ 0

(1− γ)ξ⊤1+ γTr(Z) = 1
}

· (Sµ
t+1, ξ

µ
t+1) = (1− αt)(S

µ
t , ξ

µ
t ) + αt(Z

µ
t , β

µ
t )

· if |fµ(Sµ
t+1, ξ

µ
t+1)− fµ(S

µ
t , ξ

µ
t )| < tol then break

Output: d× d matrix Sµ
t ∈ Sd+ and slack variables ξµt

Table 2: Approximate Frank-Wolfe Algorithm for LMNN-eig

and its gradient function is given by

∇Sfµ(S, ξ) =

∑
τ∈T e−(⟨C̃τ ,S⟩+ξτ )/µC̃τ∑
τ∈T e−(⟨C̃τ ,S⟩+ξτ )/µ

,

and
∂fµ(S, ξ)

∂ξτ
=

e−(⟨C̃τ ,S⟩+ξτ )/µ∑
τ∈T e−(⟨C̃τ ,S⟩+ξτ )/µ

.

The approximate Frank-Wolfe algorithm for LMNN-eig is exactly the same as DML-eig
in Table 1. The pseudo-code is listed in Table 2. The key step of the algorithm is to compute
the following problem:

(Zµ
t , β

µ
t ) = argmax

{
⟨Z, ∂Sfµ(Sµ

t , ξ
µ
t )⟩+ ξ⊤∂ξfµ(S

µ
t , ξ

µ
t ) : Z ∈ Sd+, ξ ≥ 0

(1− γ)ξ⊤1+ γTr(Z) = 1
}
.

Equivalently, one needs to solve, for any A ∈ Sd and β ∈ RT , the following problem:

(Z∗, ξ∗) = argmax
{
⟨Z,A⟩+ ξ⊤β : Z ∈ Sd+, ξ ≥ 0, (1− γ)ξ⊤1+ γTr(Z) = 1

}
. (24)

Let βmax = βτ∗ with τ∗ ∈ T and v∗ is the largest eigenvector of A. Then, problem (24) is
a linear programming and its optimal value is either

max
{
ξ⊤β : (1− γ)ξ⊤1 = 1, ξ ≥ 0

}
=

βmax
1− γ

,

or

max
{
⟨Z,A⟩ : γTr(Z) = 1, Z ∈ Sd+

}
=

λmax(A)

γ
.

The optimal solution of problem (24) is given as follows. If λmax(A)
γ >= βmax

1−γ , then

Z∗ = v∗(v∗)⊤

γ where v∗ is the largest eigenvector of matrix A and ξ∗ = 0. Otherwise, Z∗ = 0

and the τ∗-th element of ξ∗ equals 1
1−γ , that is, (ξ

∗)τ∗ = 1
1−γ and the other entries of ξ∗ all

zeros. In analogy to the arguments for Theorem 7, for step sizes {αt =
2

t+1 : t ∈ N} one can
exactly prove the time complexity of LMNN-eig is O(d2/ε2).
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4. Related Work and Discussion

There is a large amount of work on metric learning including distance metric learning for
k-means clustering (Xing et al., 2002), relevant component analysis (RCA) (Bar-Hillel et al.,
2005), maximally collapsing metric learning (MCML) (Goldberger et al., 2004), neighbor-
hood component analysis (NCA) (Goldberger et al., 2004) and an information-theoretic
approach to metric learning (ITML) (Davis et al., 2007) etc. We refer the readers to Yang
and Jin (2007) for a nice survey on metric learning. Below we discuss some specific metric
learning models which are closely related to our work.

Xing et al. (2002) developed the metric learning model (2) to learn a Mahalanobis metric
for k-means clustering. The main idea is to maximize the distance between points in the
dissimilarity set under the constraint that the distance between points in the similarity
set is upper-bounded. A projection gradient method is employed to obtain the optimal
solution. Specifically, at each iteration the algorithm takes a gradient ascent step of the
objective function and then projects it back to the set of constraints and the cone of the
p.s.d. matrices. The projection to the p.s.d. cone needs the computation of the full eigen-
decomposition with time complexity O(d3). The projection gradient method usually takes
a large number of iterations to become convergent. It is worth mentioning that the metric
learning model proposed in Xing et al. (2002) is a global method in the sense that the
model aggregates all similarity constraints together as well as all dissimilarity constraints.
In contrast to Xing et al. (2002), DML-eig aims to maximize the minimal distance between
dissimilar pairs instead of maximizing the summation of their distances. Consequently,
DML-eig would intuitively force the dissimilar samples to be far more separated from similar
samples. This intuition may account for the superior performance of DML-eig which will
be shown soon in the experimental section.

Weinberger et al. (2005) developed a large margin framework to learn a Mahalanobis
distance metric for k-nearest neighbor (k-NN) classification (LMNN). The main intuition
behind LMNN is that k-nearest neighbors always belong to the same class while examples
from different classes are separated by a large margin. In contrast to the global method
(Xing et al., 2002), LMNN is a local method in the sense that only triplets from the k-
nearest neighbors are used. Our method DML-eig is a local method which only uses the
similar pairs and dissimilar pairs from k-nearest neighbors.

Since every M ∈ Sd+ can be factored as M = AA⊤ for some A ∈ Rd×d, LMNN becomes
an unconstrained optimization problem with an unconstrained variable A. Weinberger et al.
(2005) used this idea and proposed to use the sub-gradient method to obtain the optimal
solution. Since the modified problem w.r.t. variable A is generally not convex, the sub-
gradient method would lead to local minimizers. For some special SDP problems, it was
shown in Burer and Monteiro (2003) that such dilemma will not happen. Specifically, Burer
and Monteiro (2003) considered the following SDPs:

min
{
Tr(CM) : Tr(AiM) = bi, i = 1, . . . ,m,M ∈ Sd+

}
. (25)

It was proved that if A∗ is a local minimum of the modified problem:

min
{
Tr(CAA⊤) : Tr(AiAA⊤) = bi, i = 1, . . . ,m,A ∈ Rd×d

}
,

14
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then M∗ = A∗(A∗)⊤ is a global minimum of the primal problem (25). However, since the
hinge loss is not smooth, it is unclear how their proof can be adapted to the case of LMNN.

Rosales and Fung (2006) proposed the following element-sparse metric learning for
high-dimensional data sets

min
M∈Sd+

∑
t=(i,j,k)∈T

(1 + x⊤ijMxij − x⊤kjMxkj)+ + γ
∑

ℓ,k∈Nd

|Mℓk|. (26)

In order to solve the optimization problem, they further proposed to restrict M to the space
of diagonal dominance matrices which reduces formulation (26) to a linear programming
problem. Such a restriction would only result in a sub-optimal solution.

Shalev-Shwartz et al. (2004) developed an appealing online learning model for learning
a Mahalanobis distance metric. In each time, given a pair of examples the p.s.d. distance
matrix is updated by a rank-one matrix which only needs the time complexity O(d2).
However, since the pairs of similarly labeled and differently labeled examples are usually of
order O(n2), the online learning procedure takes many rank-one matrix updates. Jin et al.
(2009) established generalization bounds for large margin metric learning and proposed
an adaptive way to adjust the step sizes of the online metric learning method in order
to guarantee the output matrix in each step is positive semi-definite. Since the pairs of
similarity and dissimilarity are usually of order O(n2) where n is the sample number, the
online learning procedure generally needs many matrix updates.

Shen et al. (2009) recently employed the exponential loss for metric learning which can
be written by

min
M∈Sd+

∑
τ=(i,j,k)∈T

e⟨Cτ ,M⟩ +Tr(M),

where T is the triplet set and Cτ = (xi − xj)(xi − xj)
⊤ − (xj − xk)(xj − xk)

⊤ for any
τ = (i, j, k) ∈ T . A boosting-based algorithm called BoostMetric was developed which
is based on the idea that each p.s.d. matrix can be decomposed into a linear positive
combination of trace-one and rank-one matrices. The algorithm is essentially a column-
generation scheme which iteratively finds the linear combination coefficients of the current
basis set of rank-one matrices and then update the basis set of trace-one and rank-one
matrices. The updating of rank-one and trace-one matrix only involves the computation of
the largest eigenvector which is of time complexity O(d2). However, the number of linear
combination for the p.s.d. matrix can be infinite and the convergence rate of this column-
generation algorithm is not clear.

Recently, Guillaumin et al. (2009) proposed a metric learning model with logistic regres-
sion loss which is referred to as LDML. Promising results were reported in its application
to face verification problems. LDML employed the gradient descent algorithm to obtain
the optimal solution. However, in order to reduce the computational time, the algorithm
ignored the positive semi-definiteness of the distance matrix which would only lead to a
suboptimal solution.

5. Experiments

In this section we compare our proposed method DML-eig and LMNN-eig with a few
methods: the method proposed in Xing et al. (2002) denoted byXing, LMNN (Weinberger
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Data No. n d ♯class ♯ T ♯D
Wine 1 178 13 3 1134 378

Iris 2 150 4 3 954 315

Breast 3 569 30 2 3591 1197

Diabetes 4 768 8 2 4842 1614

Waveform 5 5000 21 3 3150 1050

Segment 6 2310 19 7 14553 4851

Optdigits 7 2680 64 10 24120 8040

Face 8 400 2576 40 2520 840

USPS 9 9298 256 10 58626 19542

Table 3: Description of data sets n is the number of samples and d is the dimensionality.
For AT&T face data set, we use PCA to reduce its dimension to 64.

et al., 2005) and its accelerated version mLMNN (Weinberger and Saul, 2008), ITML
(Davis et al., 2007), BoostMetric (Shen et al., 2009) and the baseline algorithm that uses
the standard Euclidean distance denoted by Euc. For all the data sets we have set k = 3
for nearest neighbor classification. The trade-off parameters in ITML, LMNN and LMNN-
eig are tuned via three-fold cross validation. The smoothing parameter for DML-eig and
LMNN-eig is set to be µ = 10−4 and the maximum iteration for DML-eig, BoostMetric,
LMNN-eig is set to be 103.

We first run experiments on 9 data sets, that is, 1) wine, 2) iris, 3) Breast-Cancer, 4)
the Indian Pima Diabetes, 5) Waveform, 6) Segment, 7) Optdigits, 8) AT&T Face data set
2 and 9) USPS. The statistics of data sets summarized in Table 3. All experimental results
are obtained by averaging over 10 runs (except 1 run for USPS due to its large size). For
each run, we randomly split the data sets 70% for training and 30% for test validation. We
have used the same mechanism in Weinberger et al. (2005) to generate training triplets.
Briefly speaking, for each training point xi, k nearest neighbors that have same labels as
yi (targets) as well as k nearest neighbors that have different labels from yi (imposers)
are found. From xi and its corresponding targets and imposers, we then construct the
set of similar pairs S (same labels) and the set of dissimilar pairs D (distinct labels), and
the set of triplets T . As mentioned above, the original formulation in Xing et al. (2002)
used all pairwise constraints. We emphasize here, for fairness of comparison (especially the
running time comparison), that all methods including the Xing’s method used the same set
of similar/dissimilar pairs generated locally as above.

Finally we will apply the developed models and algorithms on a large and challenging
face verification data set called Labeled Faces in the Wild (LFW).3 It contains 13233 labeled
faces of 5749 people, for 1680 people there are two or more faces. Furthermore, the data
is challenging and difficult due to face variations in scale, pose, lighting, background, ex-
pression, hairstyle, and glasses, as the faces are detected in images in the wild, taken from
Yahoo! News.

2. Data sets can be found at http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.
3. Data set can be found at http://vis-www.cs.umass.edu/lfw/index.html.

16



Distance Metric Learning with Eigenvalue Optimization

Euc. Xing LMNN ITML BoostMetric DML-eig LMNN-eig

1 3.46(3.60) 4.04(4.00) 3.08(2.07) 1.15(2.07) 2.31(2.18) 1.35(1.30) 2.88(1.87)
2 5.11(2.58) 6.67(3.11) 4.22(1.95) 4.44(2.57) 3.56(2.52) 3.11(1.15) 4.00(2.30)
3 6.47(1.33) 8.18 (1.58) 5.35(1.43) 6.82(1.57) 3.82(1.55) 3.53(0.88) 4.94(1.28)
4 31.09(2.03) 32.09 (3.56) 29.70(3.20) 29.96(2.97) 26.78(2.12) 27.71(3.93) 31.13(2.24)
5 18.87(0.65) 16.43(1.00) 18.61(0.72) 15.94(0.83) 16.86(0.90) 15.33(0.80) 18.49(0.21)
6 5.61(0.92) 5.26(0.60) 3.69(0.70) 5.02(0.70) 4.21(0.48) 2.97(0.55) 3.61(0.83)
7 1.67(0.24) 1.57(0.28) 1.37(0.25) 1.46(0.29) 1.38(0.33) 1.45(0.22) 1.43(0.42)
8 6.67(1.67) 7.75(0.69) 2.08(1.53) 2.42(2.17) 2.25(1.25) 1.67(1.24) 1.67(1.76)
9 3.05 - 2.98 3.92 3.34 3.66 3.13

Table 4: Average test error (%) of different metric learning methods (standard deviation
are in parentheses). The best performance is denoted in bold type. The notation
“–” means that the method does not converge in a reasonable time.

data Xing LMNN/mLMNN ITML BoostMetric LMNN-eig DML-eig

1 1.00 0.87/1.01 4.63 0.49 0.30 0.23
2 2.41 0.57/0.62 3.56 0.10 0.92 0.43
3 3.08 2.71/0.75 4.54 2.04 3.71 3.18
4 2.45 1.73/1.03 3.95 0.20 6.78 0.03
5 231.33 8.83/5.54 7.83 11.36 36.95 1.45
6 109.13 1.73/4.25 61.55 9.06 5.06 1.76
7 59.24 24.81/15.92 37.42 93.73 86.38 2.67
8 182.56 5.54/1.50 40.38 60.31 18.42 2.58
9 – 723.49/454.21 726.88 694.84 572.04 52.48

Table 5: Average running time (seconds) of different methods. The notation “–” means
that the method does not converge in a reasonable time.

5.1 Generalization and Running Time

As we can see from Table 4, DML-eig consistently improves k-NN classification using Eu-
clidean distance on most data sets. Hence, learning a Mahalanobis metric from training
data does lead to improvements in k-NN classification. Also, we can see that DML-eig is
competitive with the state-of-the-art methods: LMNN, ITML and BoostMetric. Indeed,
DML-eig outperforms other algorithms on 5 out of 9 data sets. As expected, LMNN-eig
performs similarly or slightly better than LMNN since these two models are essentially the
same. In Table 5, we list the average CPU time of different algorithms. We can see that
the method proposed in Xing et al. (2002) generally needs more time since it needs the
full eigen-decomposition of a matrix per iteration. DML-eig, BoostMetric and LMNN are
among the fastest algorithms while LMNN-eig is slower than LMNN and mLMNN in most
cases. The accelerated version mLMNN is faster than LMNN.

On the left-hand side of Figure 1, we plot the running time versus the reduced dimen-
sion by principal component analysis (PCA) for AT&T data set. We can observe that
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LMNN, BoostMetric, LMNN-eig and DML-eig are faster than ITML and Xing’s method.
When the dimension is low, LMNN, BoostMetric, LMNN-eig and DML-eig are similar. As
the dimension increases, DML-eig and mLMNN are faster. On this data set, LMNN-eig
runs slower than mLMNN. The reason could be that mLMNN used the techniques of ball
trees and employed only an active set of triplets per iteration. Our algorithms have not
been combined with the techniques of ball trees and are implemented in MATLAB and
better improvements are expected if used in C/C++. On the right-hand side of Figure 1,
we also plot the test errors of various methods across different PCA dimensions. Almost
every method performs better than the baseline method using the standard Euclidean dis-
tance metric. DML-eig performs slightly better than other methods. We observe that, with
increasing PCA dimensions, DML-eig, BoostMetric and ITML yield relatively stable per-
formance across different PCA dimensions. In contrast, the performance of other baseline
methods such as LMNN and Xing’s method varied as the PCA dimensions changed.
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Figure 1: Performance on AT&T Face data set. Left figure: running time (seconds) versus
PCA dimension. Right figure: test error (%) versus PCA dimension; the pink
line is the performance of k-NN classifier (k = 3) using the standard Euclidean
distance.

5.2 Application to Face Verification

In this experiment we investigate our proposed method (DML-eig) for face verification. The
task of face verification is to determine whether two face images are from the same identity
or not. It is a highly active area of research and finds application in access control, image
search, security and many other areas. The large variation in lighting, pose, expression etc.
of the face images poses great challenges to the face verification algorithms. Inference that
is based on the raw pixels of the image data or features extracted from the images is usually
unreliable as the data show large variation and are high-dimensional.

Metric learning provides a viable solution by comparing the image pairs based on the
metric learnt from the face data. Here we evaluate our new metric learning method using a
large scale face database—Labeled Faces in the Wild (LFW) (Huang et al., 2007). There are
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a total of 13233 images and 5749 people in the database. These face images are automatically
captured from news articles on the web. Recently it has become a benchmark to test new
face verification algorithms (Wolf et al., 2008; Guillaumin et al., 2009; Wolf et al., 2009;
Taigman et al., 2009; Pinto et al., 2011).

The images we used are in gray scale and aligned in two ways. One is “funneled”
(Huang et al., 2007) and the other is “aligned” using a commercial face alignment software
by Taigman et al. (2009). These images are divided into ten folds where the subject identities
are mutually exclusive. In each fold, there are 300 pairs of images from the same identity and
another 300 pairs of images from different identities. We followed the standard procedure
for training and test in the technical report of Huang et al. (2007). The performance of the
algorithms is evaluated by average (and standard error of ) correct verification rate and the
ROC curve of the 10-fold cross validation test.

We investigated several descriptors (features) from face images in this experiment. As
for the “funneled” images, we used SIFT descriptors computed at the fixed facial key-points
(e.g., corners of eyes and nose). These data are available from Guillaumin et al. (2009). We
focus on the SIFT descriptor to evaluate our algorithm as it provides a fair comparison to
Guillaumin et al. (2009). To compare with the state-of-the-art methods in face verification,
we further investigated three types of features for the “aligned” images: 1) raw pixel data by
concatenating the intensity value of each pixel in the image; 2) Local Binary Patterns (LBP)
(Ojala et al., 2002); and 3) LBP’s variation, three-Patch Local Binary Patterns (TPLBP)
(Wolf et al., 2008). The original dimensionality of the features is quite high (3456 ∼ 12000)
so we reduced the dimension using PCA. These descriptors were tested with both their
original value and the square root of them (Wolf et al., 2008, 2009; Guillaumin et al., 2009).

There are two configuration for forming the training sets. One is “restricted configura-
tion”: only same/not-same labels are used during training and no information about the
actual names of the people (class labels) in the image pairs should be used. In the past,
most of the published work on this data set using the restricted protocol (e.g., Guillaumin
et al., 2009; Wolf et al., 2009; Pinto et al., 2011). Another is “unrestricted configuration”:
all available information including the names of the people in the images can be used for
training. So far there are only two published results on the unrestricted configuration
(Guillaumin et al., 2009; Taigman et al., 2009). Here we mainly focus on the restricted
configuration.

LMNN and BoostMetric are not applicable in this restricted configuration setting since
they need label information to generate the triplet set. Therefore, we only compared our
DML-eig method with LDML (Guillaumin et al., 2009) and ITML (Davis et al., 2007). For
each of the ten-fold cross-validation test, we use the data from 2700 pairs of images from
the same identities and another 2700 pairs of images from the different identities to learn a
metric. Then test it using the other 600 image pairs. The performance is evaluated using
accurate verification rate .

Table 6 illustrates the performances of our algorithm and ITML and LDML. The best
verification rate of DML-eig is 81.27%. It outperforms LDML (77.50%) and ITML (76.20%)
in their best settings. Note that the performance of DML-eig is consistently better than
LDML and ITML in each PCA dimension.

By varying the dimension of principal components of the SIFT descriptor, the perfor-
mance of DML-eig of the 10-fold cross validation test is plotted in Figure 2. The best
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Method PCA Dim. Original Square Root

ITML 35 0.7537± 0.0158 0.7627± 0.0161

LDML 35 0.7660± 0.0070 0.7750± 0.0050

DML-eig 35 0.7742± 0.0213 0.7793± 0.0214

ITML 40 0.7618± 0.0125 0.7643± 0.0121

LDML 40 – –

DML-eig 40 0.7752± 0.0198 0.7838± 0.0195

ITML 55 0.7530± 0.0185 0.7557± 0.0187

LDML 55 0.7280± 0.0060 0.7280± 0.0040

DML-eig 55 0.7900± 0.0189 0.7938± 0.0163

ITML 100 0.7340± 0.0250 0.7403± 0.0216

LDML 100 – –

DML-eig 100 0.8055± 0.0171 0.8127± 0.0230

Table 6: Performance comparison on LFW database in the restricted configuration (mean
verification accuracy and standard error of the mean of 10-fold cross validation
test) with only SIFT descriptors. “Square Root” means the features preprocessed
by taking square root before fed into metric learning method. The result of LDML
is cited from Guillaumin et al. (2009) where it was reported that the best result
of LDML is achieved with PCA dimension 35. Our result of ITML is very similar
to that reported in Guillaumin et al. (2009).

Method Accuracy

High-Throughput Brain-Inspired Features, aligned (Pinto et al., 2011) 0.8813± 0.0058

LDML + Combined, funneled (Guillaumin et al., 2009) 0.7927± 0.0060

DML-eig + Combining four descriptors (this work) 0.8565± 0.0056

Table 7: Performance comparison of DML-eig and other state-of-the-art methods in the
restricted configuration (mean verification rate and standard error of the mean of
10-fold cross validation test) based on combination of different types of descriptors.
The descriptors vary in different study. The best result up to date is achieved using
sophisticated large scale feature search (Pinto et al., 2011).

performance is achieved when the dimension of principal components is 100. So we fix this
dimension for SIFT feature in the following experiment. As mentioned in Guillaumin et al.
(2009), the peak performance in a specific PCA dimension is due to the limit of training
samples. The PCA dimension achieving the best performance is 35 for LDML and 55 for
ITML. This number for DML-eig is 100 which is larger than that of both LDML and ITML.
It shows that the DML-eig metric is less prone to overfitting than both LDML and ITML.
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Figure 2: Performance of DML-eig, ITML and LDML metric by varying the dimension of
the principal components using SIFT descriptor. The result of LDML is copied
from Guillaumin et al. (2009).

Besides the SIFT descriptor, we also investigated to combine it with other three types of
descriptors aforementioned. Following Wolf et al. (2008); Guillaumin et al. (2009), we com-
bine the distance scores from 4 different descriptors using a linear Support Vector Machine
(SVM). The performance of DML-eig is compared to the other state-of-the-art methods
in Table 7 and Figure 3. Note that each of these published results use its own learning
technique and different feature extraction approaches which makes the conclusion hard to
draw.

The best result reported to date is 88.13% in restricted configuration which performs
sophisticated large scale feature search (Pinto et al., 2011). This work used multiple compli-
mentary representations which are derived through training set augmentation, alternative
face comparison functions, and feature set searches with a varying number of model layers.
These individual feature representations are then combined using kernel techniques. The
results by other state-of-the-art methods are also based on different descriptors (Guillaumin
et al., 2009; Wolf et al., 2009). The best result achieved by DML-eig is 85.65%, which is
close to the other state-of-the-art approaches. In addition, we note that the performance
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Figure 3: ROC curve of DML-eig and other the state of arts methods for face verification
on LFW data set.

of DML-eig based on the single SIFT descriptor (81.27% in Table 6) is better than that of
LDML based on 4 types of descriptors (79.27% in Table 7). The ROC curves of different
methods are depicted in Figure 3. We can see that DML-eig outperforms ITML and LDML
while it is suboptimal to the best up-to-date method (Pinto et al., 2011) which, however,
employed sophisticated feature search method.

Finally, the performance of DML-eig metric may be further improved by exploring
different number of nearest neighbors and different types of descriptors such as those used
in Pinto et al. (2011), making it a competitive candidate for the task of face verification.

6. Conclusion

The main theme of this paper is to develop a new eigenvalue-optimization framework for
metric learning. Within this context, we first proposed a novel metric learning model which
was shown to be equivalent to a well-known eigenvalue optimization problem (Overton, 1988;
Lewis and Overton, 1996). This appealing optimization formulation was further extended
to LMNN (Weinberger et al., 2005) and maximum margin matrix factorization (Srebro
et al., 2004). Then, we developed efficient first-order algorithms for metric learning which
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only involve the computation of the largest eigenvector of a matrix. Their convergence
rates were rigorously established. Finally, experiments on various data sets have shown
that our proposed approach is competitive with state-of-the-art metric learning methods.
In particular, we reported promising results on the Labeled Faces in the Wild (LFW) data
set.

In future we will exploit the extension of the above eigenvalue optimization framework
to other machine learning tasks such as spectral graph cuts and semi-definite embedding
(Weinberger et al., 2004). Another direction for investigation is to develop a kernelized ver-
sion of DML-eig using the techniques in Jain et al. (2010). Finally, we will also investigate
the performance of our methods on the LFW data set in the unrestricted configuration set-
ting, and embed the technique of ball trees (Weinberger and Saul, 2008) into our algorithms
to further increase the computational speed.

Acknowledgments

The authors would like to thank Colin Campbell, Massimiliano Pontil, and Charles Mic-
chelli for stimulating discussion and invaluable comments on the preliminary version of this
paper. The authors also sincerely thank the anonymous reviewers for their comments and
suggestions which have led to valuable improvements of this paper. This work is supported
by the EPSRC under grant EP/J001384/1. The second author would like to thank Cancer
Research UK for the research grant.

Appendix A. Eigenvalue Optimization for Maximum-margin Matrix
Factorization

Another important problem is low-rank matrix completion which recently has attracted
much attention. This line of research involves computing a large matrix with a nuclear-
norm (summation of singular values) regularization and the optimization problem here also
consists of an SDP. Such tasks include multi-task feature learning (Argyriou et al., 2006)
and low-rank matrix completion (Bach, 2008; Candes and Recht, 2008; Srebro et al., 2004).
It has successful applications to collaborative filtering for predicting customers’ preferences
to products, where the matrix’s rows and columns respectively identify the “customers” and
“products”, and a matrix entry encodes customers’ preference of a product (e.g., Netflix
data set, http://www.netflixprize.com/).

Similar eigenvalue optimization formulation can be developed for maximum-margin ma-
trix factorization (MMMF) for collaborative filtering (Srebro et al., 2004). Given a partially
labeled Yia ∈ {±1} with ia ∈ S, the target of MMMF is to learn a large matrix X ∈ Rm×n

where each entry Xia indicates the preference of the customer i for product a. The following
large margin model was proposed in Srebro et al. (2004) to learn X:

minX
∑

ia∈S ξia + γ∥X∥∗
s.t. 1− YiaXia ≤ ξia,

ξia ≥ 0, ∀ia ∈ S,
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where ∥X∥∗ is the nuclear norm of X, that is, the summation of its singular values. The
above model was further formulated as an SDP problem:

minM γTr(M) +
∑

ia∈S ξia

M =
( A X

X⊤ B

)
∈ S(m+n)

+ ,

YiaXia + ξia ≥ 1, ∀ia ∈ S.

(27)

Let ei be a column vector with its i-th element one and all others zero, then we have
Mi(m+a) = Xia = ⟨Cia,M⟩ with Cia = eie

⊤
(m+a). Consequently, the constraint condition

in problem (27) can be written as minia∈S⟨Yia, Cia⟩ + ξia ≥ 1. Using exact arguments for
proving Theorem 3, we can formulate MMMF as an eigenvalue optimization problem.

Theorem 8 MMMF formulation (27) is equivalent to

max
{
min
u∈△

∑
ia∈S

uia
(
ξia + ⟨YiaCia,M⟩

)
: ξ⊤1+ γTr(M) = 1,M ∈ S(m+n)

+ , ξ ≥ 0
}
.

In particular it is equivalent to the following eigenvalue optimization problem:

min
u∈△

max
(
umax,

1

γ
λmax

(∑
ia∈S

uiaYiaCia

))
. (28)

As mentioned above, MMMF (27) is a standard SDP. Indeed, Srebro et al. (2004)
proposed to employ standard SDP solvers (e.g., CSDP Borchers, 1999) to obtain the optimal
solution. However, such generic solvers are only able to handle problems with about a
hundred users and a hundred items. The eigenvalue-optimization formulation potentially
provides more efficient algorithms for MMMF. Since the paper mainly focuses on metric
learning, we leave its empirical implementation for future study.

Appendix B. Proof of Theorem 6

In this appendix we give the proof of Theorem 6. The spirit of the proof is very close to that
of Theorem 1 in Ying and Zhou (2006) where similar conditions on step sizes were derived
to guarantee the convergence of stochastic online learning algorithms in reproducing kernel
Hilbert spaces.
Proof [Proof of Theorem 6] According to the assumption (22) on the step size, we can
assume that, for any t ≥ t0, that αt ≤ 1/2. Hence, the inequality (21) holds true. We will
estimate the terms on the left-hand side of (21) one by one.

For the second term on the righthand side of (21), observe that
∏t

j=t0
(1 − αj) ≤

exp
{
−
∑t

j=t0
αj

}
→ 0 as t → ∞. Therefore, for any ε > 0 there exists some t1 ∈ N

such that the second term on the righthand side of (21) is bounded by ε whenever t ≥ t1.
To deal with the first term on the righthand side of (21), we use the assumption

limj→∞ αj = 0 and know that there exists some j(ε) such that αj ≤ ε for every j ≥ j(ε).
Write

t∑
j=t0

α2
j

t∏
k=j+1

(1− αk) =

j(ε)∑
j=t0

α2
j

t∏
k=j+1

(1− αk) +
t∑

j=j(ε)+1

α2
j

t∏
k=j+1

(1− αk). (29)
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Since j(ε) is fixed, we can find some t2 ∈ N such that for each t ≥ t2, there holds∑t
j=t(ε)+1 αj ≥

∑t2
j=j(ε)+1 αj ≥ log j(ε)

4ε . It follows that for each 1 ≤ j ≤ j(ε), there holds∏t
k=j+1(1 − αk) ≤

exp
{
−
∑t

k=j+1 αk

}
≤ exp

{
−
∑t

k=j(ε)+1 αk

}
≤ 4ε

j(ε) . This in connection with the bound

αj ≤ 1/2 for each j ≥ t0 tells us that the first term of (29) is bounded as

t(ε)∑
j=t0

α2
j

t∏
k=j+1

(1− αk) ≤
4ε

j(ε)

j(ε)∑
j=t0

α2
j ≤ ε.

The second term on the righthand side of (29) is dominated by ε
∑t−1

j=j(ε)+1 αj
∏t

k=j+1(1−
αk). Noting the fact that αj = 1− (1− αj) implies

t∑
j=j(ε)+1

αj

t∏
k=j+1

(1− αk) =

t∑
j=j(ε)+1

[ t∏
k=j+1

(1− αk)−
t∏

k=j

(1− αk)
]

=
[
1−

t∏
k=j(ε)+1

(1− αk)
]
≤ 1.

Therefore, when t ≥ max{t1, t2}, combining the estimation with inequality (21), we have
Rt+1 ≤ (1 + Cµ)ε. This proves the theorem.
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