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Abstract

Short Term Conict Alert (STCA) systems are complex software programs, with
many parameters that must be adjusted to achieve best performance. We describe a
simple evolutionary algorithm for optimising the trade-o� between wanted alerts and
nuisance alerts. The procedure yields an estimate of the Pareto optimal Receiver Op-
erating Characteristic for the STCA system and we discuss additional uses of this for
characterising and comparing the performance of STCA systems and airspaces.

1 Introduction

The recent European move towards standardisation of Short Term Conict Alert (STCA)-
type systems means that by the end of 2008 all European ANSPs (Air Navigation Service
Providers) will be expected to implement a system which at least conforms to the minimum
requirements laid out in the Eurocontrol speci�cation [EUROCONTROL, b]; see [EURO-
CONTROL, a] for additional guidance material. STCA systems are essentially classi�ers
that classify aircraft pairs into `operationally relevant alerts' or true positives (TP) and
false positive (FP) or `nuisance alerts' { alerts that unnecessarily attract the controller's
attention. Central to the safety case for STCA are the two criteria [EUROCONTROL, b]:

1. \the proportion of conicts detected by the Controller in time for controller resolution
will be enhanced by the use of STCA"; and

2. \any negative e�ects on safety shall be small compared with the safety bene�t and
reduced as far as reasonably practical".

Thus the Eurocontrol speci�cation stipulates that an STCA system shall provide alerts
for operationally relevant conicts, while keeping false and nuisance alerts to an e�ective
minimum.

The challenge for system analysts and maintenance personnel is in making informed
decisions about a classi�er's likely performance and selecting an appropriate trade-o� be-
tween `operationally relevant' alerts, and those which are deemed nuisance or false. STCA
systems are generally complex and tuning them manually involves adjustment of a great
many (typically over 1000) operational parameters. In this paper we briey describe how
automation of the optimisation process, using a multi-objective evolutionary algorithm, can
produce a good approximation to the best possible set of trade-o�s between true and false
positive rates, and we explore further uses of this optimal set of trade-o�s.
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2 ROC analysis & Pareto optimality

Regarding the STCA system as a classi�er g(x;�) which gives an estimate of the probability
that a feature vector x (for STCA the radar tracks of a pair of aircraft) belongs to one of
two classes. We assume that the classi�er depends upon a vector of adjustable parameters
�, and we denote by T (�) the classi�er's true positive classi�cation rate, while the false
positive rate is denoted by F (�).

If the costs of an incorrect classi�cation were known it would be straightforward to
calculate the expected cost for any particular parameter and data set Duda and Hart [1973].
It would then be possible to adjust the parameters to minimise the expected cost. However,
this procedure requires accurate speci�cation of the misclassi�cation costs which are seldom
known accurately. However, the Receiver Operating Characteristic (ROC) curve displays
the trade-o� between true and false positive rates as the ratio of misclassi�cation costs is
varied for a particular set of parameters (see Fawcett [2006] for a recent review of ROC
methods). As the misclassi�cation cost ratio is varied a non-decreasing ROC curve in the
(F; T ) plane is obtained for any particular �xed set of parameters, and di�erent, possibly
intersecting, ROC curves are obtained for di�erent parameters. With the ROC curves on
hand the user can select the operating point with a full knowledge of the possible trade-o�s
involved.

Of course, all these measures based upon the ROC curve require knowledge of the ROC
curve, which hitherto has been unavailable for the STCA system. In this section we show
how multi-objective evolutionary algorithms may be used to derive the ROC curve for the
STCA system optimised over all possible parameter values. That is, we seek to discover the
set of parameters that simultaneously minimise F (�) and maximise T (�).

A general multi-objective optimisation problem seeks to simultaneously extremise D

objectives:
yi = fi(�); i = 1; : : : ; D (1)

where each objective depends upon a vector � of P parameters. It is convenient to assume
that all the objectives are to be minimised, so for the STCA system we minimise the pair of
objectives (�T (�); F (�)). The multi-objective optimisation problem may be conveniently
expressed as:

minimise y = f(�) = (f1(�); : : : ; fD(�)) (2)

where � = (�1; : : : ; �P ) and y = (y1; : : : ; yD). Note that the parameters may also be subject
to some constraints, such as being within a previously explored range.

When faced with only a single objective an optimal solution is one which minimises
the objective given the constraints. However, when there is more than one objective to be
minimised solutions may exist for which performance on one objective cannot be improved
without sacri�cing performance on at least one other. Such solutions are said to be Pareto
optimal Coello Coello [1999], Veldhuizen and Lamont [2000] and the set of all Pareto optimal
solutions is said to form the Pareto set.

The notion of dominance may be used to make Pareto optimality clearer. A parameter
vector � is said to strictly dominate another � (denoted � � �) if and only if all the
objectives corresponding to the parameter � are no worse than those obtained with � and
at least one objective is better, that is:

fi(�) � fi(�) 8i = 1; : : : ; D and
fi(�) < fi(�) for some i:

(3)
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Algorithm 1 Multi-objective optimisation of STCA.

1: E := initialise()
2: for n := 1 : N Loop for N generations

3: � := select(E) Select parent to perturb

4: �0 := perturb(�) Perturb parameters

5: (T (�0); F (�0)) := STCA(�0) Evaluate classi�cation rates
6: if �0 6� � 8� 2 E

7: E := f� 2 E j� � �0g Remove dominated elements

8: E := E [ f�0g Insert �0

9: end

10: end

Less stringently, � weakly dominates � if the objectives corresponding to � are all at least
as good as those corresponding to �:

fi(�) � fi(�) 8i = 1; : : : ; D: (4)

A set E of decision vectors is said to be a non-dominated set if no member of the set is
dominated by any other member:

� 6� � for all �;� 2 E: (5)

A solution to the minimisation problem (2) is thus Pareto optimal if it is not dominated
by any other feasible solution, and the non-dominated set of all Pareto optimal solutions
is the Pareto front. Recent years have seen the development of a number of evolutionary
techniques based on dominance measures for locating the Pareto front; see Deb [2001],
Zitzler et al. [2003] for recent reviews.

2.1 ROC optimisation

The basis of our algorithm for locating the Pareto front for STCA is a simple multi-objective
evolutionary algorithm. In outline, the procedure operates by maintaining an archive, E;
of mutually non-dominating solutions, �, which is the current approximation to the Pareto
front/ROC curve. The algorithm is iterative; at each step some solutions in E are copied and
perturbed. Those perturbed solutions that are dominated by members of E are discarded,
while the others are added to E and any dominated solutions in E are removed. In this
way the estimated Pareto front E can only advance towards the true Pareto front.

Algorithm 1 describes in more detail the algorithm as applied to the optimisation of
the STCA system; see Everson and Fieldsend [2006], Reckhouse et al. [2008] for additional
details.

The archive or frontal set E is initialised by drawing parameters for the STCA system
uniformly from their feasible ranges; in addition the current `best' parameter set from
manual tuning �? is added to E. Of course many of these randomly selected parameter
vectors are dominated by other parameter vectors and these dominated parameters are
deleted from E so that E is a non-dominated set (5).

Following initialisation, the loop on lines 2{10 of Algorithm 1 is repeated forN iterations.
At each iteration a single parameter vector � is selected from E; selection may be uniformly
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Figure 1: Conservative optimisation. Circles show estimates of the Pareto optimal ROC
curve for STCA obtained after 12000 evaluations of the multi-objective optimiser. The
cross indicates the manually tuned operating point �?.

random, but a scheme based on `uniselect' method [Smith et al., 2008] was used here to
promote exploration of the front. The selected parent vector is perturbed (by addition of a
random number from a heavy-tailed distribution to aid exploration of parameter space and
escape from local minima) to generate a single child (line 4). Each individual parameter in
the parent vector is perturbed with equal probability.

The true T (�0) and false F (�0) positive rates for the perturbed vector are evaluated by
running the STCA system with parameters �0 on a test database of track pairs. If the child
�0 is not dominated by any of the parameter vectors in E, any parameter vectors in E that
�0 dominates are deleted from the archive (line 7) and �0 is added to E (line 8). These
two steps ensure that E is always a non-dominated set whose members dominate any other
solution encountered thus far in the search.

3 Illustration

We illustrate the method by showing the results from a conservative optimisation of the
STCA system for the Manchester Area Control Centre (MACC). It is conservative in that
the ranges of parameters to be varied are limited to lie between the minimum and maximum
that have previously been used by NATS so that the parameters are con�ned to regions
of decision space with which personnel at NATS have considerable experience. Although
we could adjust more parameters and adjust parameters over a greater range, the strategy
adopted here provides an assurance that the optimised system is still operating within the
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Figure 2: Aggressive optimisation for the data used in Figure 1. Red squares show the
estimates of the Pareto front using aggressive optimisation, while the blue circles show the
Pareto front from a conservative optimisation (Figure 1). The cross indicates the manually
tuned operating point �?.

usual parameter ranges.
We optimised the true and false positive rates for a database comprised of manually and

semi-automatically categorised encounters. The database included historical track pairs
taken from the �rst two weeks of June 2007. This amounts to roughly 50,000 track pairs
which, for computational reasons, is approximately a third the number of pairs generally
used for manual tuning.

Even this conservative optimisation produces some striking results. Figure 1 shows the
estimates of the Pareto optimal ROC curve obtained using the multi-objective optimiser
after N = 12000 evaluations. The current NATS operating point is also plotted as a cross.
The optimisation has located an ROC curve consisting of 48 points with true positive rates
up to 70% and false positive rates up to 1:16%. In addition the manually tuned STCA oper-
ating point �? lies behind (is dominated by) operating points on the estimated ROC curve.
Although the improvement over �? is relatively small in percentage terms, the quantity of
track pairs processed by the STCA system means that a signi�cant reduction in the num-

ber of false alerts could be achieved while maintaining the current genuine alert rate. We
remark that this optimisation was initialised from 100 randomly chosen parameterisations,
and including the current NATS operating point in the initialisation can result in both a
more rapid convergence and an estimated Pareto front that extends to higher false positive
rates than those found here; see, for example, additional results in [Everson and Fieldsend,
2006, Reckhouse et al., 2008].
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More important, however, than the improvement in true and false positive rates is the
production of the optimal ROC curve itself, because it reveals the true positive versus false
positive trade-o�, permitting the operating point to be chosen with a knowledge of the
range of best possible trade-o�s.

Figure 2 shows the result of an aggressive optimisation of the same data. (Initialised from
100 random parameterisations and the conservative front in Figure 1.) This optimisation
is dubbed `aggressive' because, in contrast to the conservative optimisation, we did not
constrain the parameters to lie within ranges already used when manually tuning STCA.
As Figure 2 shows, the additional freedom allowed to the parameters in the aggressive case
permits an optimal ROC curve to be found that dominates the conservatively optimised
curve in all places, although at low TP and FP rates the conservative and aggressive fronts
virtually coincide. The aggressive front extends to a FP rate of 14:3% and 93:5% TP rate,
although for clarity at low TP and FP these are not shown in the �gure. Although these
parameter settings must be scrutinised by NATS personnel before operational use, these
results show how our evolutionary procedure can automatically locate operating points with
performance well beyond those found manually. In fact it may be observed that the current
operating point �? is close to the corner of the Pareto optimal curve. Choosing an operating
point to the left of the corner would result in a rapidly diminishing genuine alert rate for
little gain in the nuisance alert rate; whereas operating points to the right of the corner
provide small increases in the true positive rate at the expense of relatively large increases
in the false positive rate.

4 Applications

Perhaps the principal use of our evolutionary algorithm is to optimise STCA performance
for a particular airspace and, with the optimal ROC curve on hand, personnel may make
a reasoned choice as to the false alert rate that must be tolerated to achieve a particular
true positive alert rate, or vice versa. However the optimal ROC curve also has a number
of other potential applications which we discuss.

4.1 Visualisation

We emphasise again that the optimal ROC curve for a particular STCA system and par-
ticular locale (airport and operating procedures for the airspace) provides a readily inter-
pretable graph of the best possible trade-o�s between true and false positive rates. This
permits STCA operating parameters to be chosen with a full knowledge of the alternatives,
something that was not possible before the production of the optimal ROC curve.

Furthermore, the ROC curve provides a means of illustrating to non-specialist personnel
what e�ect a change in true positive rate has on false positive rate, in a way that is instantly
comprehensible. This aids communication between personnel responsible for the mainte-
nance of the safety net, users, such as air tra�c controllers, and managers responsible for
strategic decisions.

The optimisation of two objectives may also be straightforwardly extended to include
a third objective, such as the warning time given before an alert is raised [Everson and
Fieldsend, 2006]. This trade-o� is conveniently displayed as a surface (rather than a curve),
allowing an operating point trading-o� three objectives to be selected.
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Figure 3: Comparison of Pareto optimal ROC curves for STCA (blue circles) and ESTCA
(red squares).

4.2 Assessing STCA systems

It is important to be able to assess the changes, such as software upgrades, made to STCA
systems themselves. The Pareto optimal ROC curve provides a tool for comparing STCA
systems. By generating the optimal ROC curves for a pair of systems (using the same
training track pairs) the performance of two systems may easily be assessed. Clearly, if one
system's ROC curve dominates another's then the �rst is to be preferred.

As an illustration we display in Figure 3 the Pareto optimal ROC curves for STCA and
Enhanced STCA (ESTCA). ESTCA contains a number of modi�cations and enhancements
to the previous Issue 4 speci�cation of NATS's STCA. Primarily ESTCA introduces a
new �ne �lter to predict the lateral path of aircraft holding in stacks; and secondly it
allows downlinked selected ight level information to be used to provide improved alerting
performance. There are also smaller changes to existing STCA logic. As a result there
are approximately 3800 parameters that may be optimised, in contrast to about 1400 for
STCA. Here we used approximately 73,000 track pairs from the London Terminal Control
Centre (LTCC) during July 2006. In order to increase the number of wanted alerts in the
dataset, a fortnight's worth of track pairs for which an alert is wanted were combined with
a weeks pairs for which an alert should not be raised.

The front for STCA (blue circles) is well converged, however the large number of pa-
rameters in ESTCA means that after � 16; 000 iterations its front is still not yet converged
and comparison of the two systems is not yet possible. It is to be expected that ESTCA,
which is more exible than STCA, should be capable of yielding a superior performance.
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Although, on the basis of these data we are unable to quantitatively compare the systems'
performance, these fronts do illustrate the importance of ensuring the systems are properly
tuned before comparison.

We emphasise that the ROC curve gives a quantitative way of comparing STCA systems,
but in a particular locale; operation under other circumstances may be di�erent.

4.3 Assessing airspace recon�guration

The ROC curve may also be used to monitor the e�ect of airspace recon�guration. If the
optimal ROC curve is known before the change it may be compared with the curve after
the change. This permits STCA maintenance personnel to assess changes in safety-net
performance secure in knowledge that any change observed is due to the airspace change
rather than a sub-optimal con�guration of the STCA system. However, it should be noted
that it will not be possible to use the same data for optimisation before and after the
airspace recon�guration due to changes in tra�c patterns resulting from the recon�guration;
consequently data sets for comparison must be carefully selected. Everson and Fieldsend
[2006] describe a straightforward bootstrap procedure for estimating the variability in the
ROC curve due to the size of the training data, which may be used to assess the magnitude
of errors due to di�erent data sets.

In addition, the particular region of airspace that yields changes in performance may be
identi�ed, possibly leading to further recon�gurations. The evolutionary algorithm may also
be adapted to optimise objectives in addition to true and false positive rates; for example,
alerts in a particular sector might be targeted, together with the average warning time
given.

4.4 Airspace comparison

The Pareto ROC curve may also be used to compare airspaces. An airspace whose Pareto
ROC curve is entirely dominated by the curve from another airspace is an airspace in
which there are necessarily more false alerts for any given wanted alert rate. Although it is
probably unrealistic to specify a priori the ROC curve for an airspace, the con�guration of
airspaces with dominated ROC curves may be candidates for early review.

5 Conclusion

We have briey described a straightforward evolutionary algorithm for the simultaneous
optimisation of the trade-o� between genuine and nuisance alerts for STCA systems. The
methodology is applicable to any STCA system and airspace and is currently being put into
use at NATS as part of the parameter review and optimisation process.

As Europe moves towards standardisation of STCA systems and their operation, an
exciting possibility is that the optimal ROC curve may serve as a measurement tool for
comparing STCA systems and airspaces. It is well known from statistical pattern recogni-
tion that the area under the ROC curve is a measure of a classi�er's ability to distinguish
between two classes (here wanted and nuisance alerts) [Fawcett, 2006]. Although the total
area under the Pareto ROC curve is likely to be less relevant than the area dominated by
the region close to operational parameterisations, the optimal ROC curves of two STCA
systems optimised on the same data provide a direct comparison of the e�cacy of the two
systems. We recognise that curves are only comparable for systems optimised on the same
airspace using common data. Thus the lack of common data is likely to be the greatest
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barrier to assessing systems in this way, but we look forward to a common standard for
evaluating STCA systems over a range of operational conditions.
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