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Radiation damping optical enhancement in cold atoms

Jin-Hui Wu1, SAR Horsley2, M Artoni3,4 and GC La Rocca5

The typically tiny effect of radiation damping on a moving body can be amplified to a favorable extent by exploiting the sharp reflectivity

slope at one edge of an optically induced stop-band in atoms loaded into an optical lattice. In this paper, this phenomenon is

demonstrated for the periodically trapped and coherently driven cold 87Rb atoms, where radiation damping might be much larger

than that anticipated in previous proposals and become comparable with radiation pressure. Such an enhancement could be observed

even at speeds of only a few meters per second with less than 1.0% absorption, making radiation damping experimentally accessible.
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INTRODUCTION

A body in motion relative to a light source experiences not only a light

pressure but also a damping force that depends on its velocity, akin to a

viscous friction.1 Pressure is a result of the momentum exchange

between light and matter due to photons scattering, while damping

arises from the Doppler effect and opposes, for instance, the velocity of

a moving mirror.2 This velocity-dependent force damps mechanical

oscillations at a rate of the order of P5mc2, with P being the light

power and m the mirror mass. Radiation damping could be used to

control macroscopic moving objects or reversibly to implement pre-

cision motion sensing schemes. Gaining control over radiation damp-

ing forces is interesting in its own right.3–6 However, this capability can

also develop into a new approach to manage the dynamics of hybrid

optomechanical atom-membrane interfaces,7 where the motion of cold

atoms is strongly coupled to the vibration of a micro-mechanical

membrane.8 Controlling the coherent motion of cold atoms via radi-

ation damping, particularly if this control can be performed all-optic-

ally as we will demonstrate below, would permit substantial

engineering of the mechanical oscillator, including the quantum-

limited read-out of its position9–12 and the efficient exchange of

quantum states among light, the oscillator and cold atoms.13

However, for ordinary velocities and a light power that is not too

large to destroy the mirror, radiation damping is usually several orders

of magnitude smaller than the pressure and, hence, particularly dif-

ficult to detect, even for the smallest diffraction-limited mirrors of

m<10212 g.14–16 With such a small figure, radiation damping can

hardly be of any practical use at variance, e.g., with radiation pressure

that is routinely employed to cool atoms.17 Methods to enhance such a

typically tiny damping are now being sought for. This enhancement is

performed by exploiting the sharp optical response near one edge of

the photonic stop-band in a dielectric Bragg mirror15 or in a one-

dimensional (1D) ordered structure of cold 87Rb atoms.18 In the latter

case, this enhancement hinges on the formation of stop-bands near

an atomic resonance in a periodic atomic structure, a subject that

is relatively unexplored.19–24 Only very recent experiments have

reported quite sharp reflectivity profiles in this regime.25,26

Hence, we propose here a new mechanism to achieve a large radi-

ation damping effect in a 1D atomic photonic crystal. The enhance-

ment is found to occur around a narrow stop-band opening up in the

cold confined 87Rb atoms when driven into a L configuration27 of

levels by a pump beam (cf. Figure 1) that allows for an efficient all-

optical (external) control. The expected enhancement occurs in the

Autler–Townes (AT) splitting regime and arises from the ultrahigh

sensitivity of reflectivity (transmissivity) near such an optically

induced stop-band. Consequently, the enhancement can be controlled

on demand by changing the pump intensity and frequency. In a cold

sample of density 6.031012 cm23, e.g., for atoms sloshing within the

confining optical potential at characteristic velocities (about 1.0 m

s21), the radiation damping force may become so strong as to compare

with the radiation pressure. Controllable damping enhancement of

various orders of magnitude, with a concomitant large suppression of

absorption, makes this proposal a remarkable improvement over pre-

vious ones15,18 and a viable option for the observation of radiation

damping effects.

MATERIALS AND METHODS

Our ensemble of cold 87Rb atoms is loaded into an optical lattice of

period a formed by retro-reflecting a light beam of wavelength lo52a

(Figure 1). In each period of such a dipole trap, the confined atoms

occupy a small region d,,a with a homogeneous volume density N0.

This periodic 1D index modulation will cause pronounced photonic

stop-bands as expected.25 We use the transfer matrix formalism to

describe the propagation of a probe field of frequency vp through

such an atomic stack, referring to Ref. 22 for a detailed description
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of this formalism in a similar context. From the frequency-dependent

transfer matrix M(vp) for a single period and with the use of the Bloch

theorem, we obtain the following dispersion relation:

e 2ika{Tr M vp

� �� �
eikaz1~0 ð1Þ

whose solutions yield the complex Bloch wave vector k5k91ik0. The

refractive index associated with the collection of cold trapped atoms,

n vp

� �
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zx vp

� �q
that enters M(vp) is obtained from:

x vp

� �
~

N0m2
13

2e0h�
c12{i Dp{Dc

� �
c12{i Dp{Dc

� �� �
c13{iDp

� �
zV2

c

ð2Þ

where c12 (c13) is the dephasing rate of the spin (optical) coherence r12

(r13),Dp5vp2v31 (Dc5vc2v32) is the probe (pump) detuning rela-

tive to transition 1j i< 2j i ( 1j i< 3j i), and m13 denotes the relevant

electric-dipole moment. Here, we assume that the cold 87Rb atoms

are driven into a three-level L-type configuration27 on the D2 line by a

probe of Rabi frequency Vp traveling in the x-direction and a pump of

Rabi frequency Vc traveling in the y- (or z-) direction (Figure 1). Note

that the probe field may have a small angle of incidence (e.g., h<20) in

the x-direction of an oscillating atomic lattice.22,25 The dressed sus-

ceptibility in Equation (1) holds in the limit of a weak probe

(Vp,,Vc), within the rotating-wave and electric-dipole approxima-

tions. In particular, Equation (1) recovers the case of a single absorp-

tion line when VcR0, but implies a narrow electromagnetically

induced transparency (EIT) window near the probe resonance

when Vcfc13 due to the quantum destructive interference between

two dressed-state transitions. However, for Vc..c13, the dressed

susceptibility evolves into that for two well-separated AT split levels

with the quantum destructive interference becoming unimportant.

Solving Equation (1) for k9 and k0 as a function of vp(Dp) yields

photonic band-gaps that appear at the boundary of the first Brillouin zone

(k95p/a);22 these band gaps are shown in the left and right panels of

Figure 2, respectively, in the presence or absence of the pump. We recall

that in a non-resonant multilayer stack, as for a standard distributed

Bragg reflector,15 a single stop-band opens up near the Bragg frequency;

conversely, in the presence of a resonant absorption line near the Bragg

frequency,18 two stop-bands will arise from the interplay between the

polaritonic gap due to the resonance and the Bragg gap due to the per-

iodic index modulation. The latter case is featured in Figure 2b and 2d

where, for a susceptibility x(vp) in the case without the pump (Vc50),

two wide stop-bands open up in negative and positive detuning regions

near a single absorption line. However, when the pump is on (Vc?0), as

illustrated in Figure 2a and 2c, a third narrow stop-band arises24,26 and

fits between the two wide ones separated by the AT split absorption lines.

In the following, we focus on this additional stop-band by applying

a strong pump to attain AT splitting beyond the EIT regime.27 The

width and position of this narrow stop-band can be manipulated

through the modulation of pump frequency and intensity, which then

allows us to efficiently control the optomechanical properties of our

atomic multilayer. The most relevant damping effects we address here

occur in the steepest region of the reflectivity and transmissivity pro-

files near one edge of this third stop-band, where absorption is sig-

nificantly suppressed. This result is particularly relevant in that the

excited absorption and spontaneous emission cycles may randomize

the atomic motion and hamper the experimental observation of radi-

ation damping.30–34 However, the actual values of the spin dephasing

rate c12 of cold atoms confined in the optical lattice26 do not play a

crucial role in determining the optical response as long as

Vc..c13..c12, and our results do not significantly change for the

range of values 1.0 kHz,c12,100 kHz.

In a typical experimental situation, it is no longer adequate to only

obtain the band dispersion via Equation (1). For a finite sample, we

would need to compute the reflectivity R, transmissivity T and absorp-

tion A512R2T from the transfer matrix MN of the entire stack

MN~MN~
sin Nka

sin ka
M{

sin N{1ð Þka

sin ka
I ð3Þ

where I is the unity matrix and N is the number of primitive cells

(L5Na). From Equation (3), we compute the probe reflectivity

R~ MN (12)

�
MN (22)

�� ��2 and transmissivity T~ 1
�

MN (22)

�� ��2 for a sample

of density N056.031012 cm23 and length L52.0 cm; relevant results

are plotted in Figure 2 in the three stop-bands region near resonance.

The probe reflectivity behaves quite differently within each stop-band,

which may be attributed to the fact that k0, a measure of the extinction

rate of evanescent waves, has very different values within these stop-

bands. The central narrow stop-band, at variance with the other two,

exhibits a much steeper optical response at the edge near atomic re-

sonance, where R(vp) sharply drops to zero from a homogeneous

100% reflectivity plateau as illustrated in Figure 2e. We further com-

pare in Figure 2f the reflectivity (transmissivity) when the pump is off.

In the absence of the central stop-band, we observe a much milder

frequency-sensitivity around resonance yet accompanied by a remark-

able absorption.

RESULTS AND DISCUSSION

The overall light force experienced by a cold sample of 87Rb atoms

oscillating in a 1D optical lattice is obtained by first computing the
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Figure 1 (a) Atomic Bragg mirror obtained by loading cold 87Rb atoms into an

optical lattice formed by retro-reflecting a laser beam of wavelength lo that is far-

detuned from relevant atomic resonances (dipole trap). The confined atoms

arrange themselves into a 1D chain of pancake-shaped layers with an average

thickness d and are located at the standing-wave antinodes of period a5lo/2.

Such an ordered atomic structure can be set to move coherently inside the

lattice.28,29 When a weak probe pulse impinges from the left, the moving Bragg

mirror experiences a (viscous) friction force that depends on its velocity u and can

be all-optically controlled through the frequency and intensity of an external

pump. (b) The slightly detuned probe (Vp) and pump (Vc) fields drive all the

confined cold atoms into a three-level L configuration. The three states corre-

spond to the hyperfine split levels of the D2 line in 87Rb.
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transfer rate of the four-momentum dPm/dt in the atoms’ rest frame

with the help of a Maxwell stress tensor. Upon Lorentz-transforming

to the lab (primed) frame, where the atoms move with a velocity u
along x, the relevant component of the average four-force dPm=dth i’
is:18

dPx

dt

	 
’
~

g2P ’
c

2x gv0p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ u=cð Þ2

q &
P0

c
Fx

(0){
u

c
Fx

(1)

h i
ð4Þ

where g~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{u=cð Þ= 1zu=cð Þ

p
and v0p~vp

�
g result from the

Lorentz transformation and 2x(gv0p) is the force in units of the incid-

ent light mean power (P9) over the speed of light (c). The momentum

transfer rate and hence 2x(gv0p) depend on the atoms’ velocity u

through the reflectivity and transmissivity in a complicated manner.

However, for velocity ranges typical of experiments involving cold

atoms in moving optical lattices, one has g<12u/c such that it is viable

to expand R gv0p

� �
and T gv0p

� �
, which appear in 2x(gv0p). To the

first order in u/c, one arrives at the simplified expression on the right-

hand side of Equation (4), where Fx
(0)~1zR v0p

� �
{T v0p

� �
and

Fx
(1)~ 1z 3R v0p

� �
{ T v0p

� �
zv0p LR v0p

� �.
Lv0p{LT v0p

� �.
Lv0p

h i

are, respectively, the velocity-independent and velocity-dependent

force components. This expansion is valid provided that the Doppler

shift u=cð Þv0p is smaller than the frequency range over which R v0p

� �
sharply rises to unity at the stop-band edge. Such a frequency range is

approximately 1.5c13 in Figure 2e, but becomes four times as much in

Figure 4a.

It follows from Equation (4) that, for a lossless (R512T) and non-

dispersive (LR
.

Lv0p~LT
.

Lv0p~0) medium, the velocity-independ-

ent term reduces to the pressure force z2R v0p

� �
P0
.

c, while the velo-

city-dependent term reduces to the damping force {4R v0p

� �
P0u
.

c2.

The latter is much smaller than the former, which makes the damping

force difficult to observe for practical lattice velocities u and light powers

P. To have Fx
(0)&(u=c)Fx

(1) and attain a large enough radiation damp-

ing, we should try to find a highly dispersive medium with

LR
.

Lv0p{LT
.

Lv0p&c= uv0p

� �
accompanied by negligible absorp-

tion. This objective can be achieved with cold 87Rb atoms loaded into

an optical lattice and driven into the L configuration as discussed above.

Another case may be relevant when the probe field is a Gaussian

light pulse (containing Nww1 photons) instead of a monochromatic

plane light wave. In this case, we can verify how the momentum

transfer from a light pulse to a periodic atomic structure depends

on its oscillating velocity (i.e., the Doppler shift). Relevant results will

be used as direct evidence to determine whether the damping force is

comparable to or even larger than the light pressure. The net

momentum DPx imparted in the lab frame by a light pulse can be

obtained by integrating the scaled force 2 gv0p

� �
over the pulse (nor-

malized) frequency distribution f v0p

� �
.

The main panels of Figure 3a and 3c indicate a (normalized) damp-

ing force Fx
(1)&z9:7|108 and absorption A<0.3% near Dp50.5c13

Figure 2 Real (black-solid) and imaginary (red-dashed) parts of the Bloch wave vector k as a function of probe detuning Dp for an infinite periodic structure of cold
87Rb atoms as determined from Equations (1)–(2) with (a) and without (b) the pump. The relevant parameters are c1356.0 MHz, Dc50, N056.031012 cm23,

m1351.5310229 C m, lp5780.792 nm, a5780.787/2 nm and d5a/20. (c) and (d) are enlargements of (a) and (b), respectively, in the resonance region. (e) and (f)

present the reflectivity (black-solid) and transmissivity (red-dashed) profiles corresponding to (c) and (d), respectively, for a L52.0 cm long periodic structure of cold
87Rb atoms as determined from Equation (3).
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(denoted by a red square) in the resonance region when a pump with

Vc5100 MHz is on. Conversely, in the insets of Figure 3a and 3c where

the pump is off (Vc50), we have Fx
(1)&z1:3|107 and A<7.6% near

Dp597.0c13 (denoted by a red square) away from resonance; other-

wise, the absorption would be too large.18 This result clearly indicates

that the damping force can be further amplified 70 times and the probe

absorption can be further suppressed 25 times when working with the

central stop-band rather than the other two. When shorter samples are

used (L50.5 cm), the probe reflectivity and transmissivity are not as

steep as before; however, we still obtain rather favorable results with

Fx
(1)&z2:3|108 and A<0.6% near Dp51.5c13 at one edge of the

optically induced stop-band as demonstrated separately in Figure 4. It

is important to note that the damping force [! u=cð ÞFx
(1)] may be

enhanced to be comparable with the pressure force [!F0
(1)] for u as

small as several tens of cm s21, making the tiny optomechanical effect

of radiation damping accessible to potential experiments. Note that

larger velocities are considered in the more relevant case of a light pulse,

such as in Figure 3b and 3d where the four-force component dPx=dth i’
is computed by the exact expression of Equation (4) rather than the

approximate expansion following it.

Figure 3b and 3d shows the momentum transfer DPx, in units of the

incident light total momentum Nh�k, for a pulse with a Gaussian

frequency distribution f v0p

� �
~

ffiffiffi
p
p

dp0

� �{1
exp { v0p{vp0

� �2



d2
p0

� �

centered at vp0. This quantity depends critically on the lattice velocity

u when the pulse width dp0 is small enough that it doesn’t extend

γγ

P
x

δp0

δp0

N
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Fx

N
hk

a b
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Figure 3 Normalized damping force (a) and absorption (c) as a function of probe detuningDp for a 2.0-cm long periodic structure of cold 87Rb atoms in the presence of

the pump. The insets show the corresponding force and absorption when the pump is off. The relevant parameters are the same as those in Figure 2. Normalized

momentum transfer from a Gaussian light pulse to the same atomic structure of cold 87Rb as a function of central-frequency detuning Dp0 with pulse width dp055.0

MHz (b); dp0520.0 MHz (d). The black-solid, red-dashed and blue-dotted curves refer to velocities u50.0, 16.0 and 26.0 m s21, respectively.

γγ
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Figure 4 Reflectivity (a), normalized damping force (b), transmissivity (c) and absorption (d) as a function of probe detuning Dp for a shorter periodic structure of cold
87Rb atoms in the presence of the pump. The relevant parameters are the same as in Figure 2 except L50.5 cm.
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beyond the steep edge of the stop-band. In numerical calculations, we

have defined Dp05vp02v31 as the central-frequency detuning of the

light pulse relative to the probe resonance. From Figure 3b, we can see

that for a negative (positive) velocity u526.0 m s21 (u516.0 m s21),

the normalized momentum transfer is increased from 0.38 to 1.62

(decreased from 1.70 to 0.66) at Dp0<0.0c13 (Dp0<1.33c13) compared

with that attained for u50.0 m s21. This result indicates that the

radiation damping will significantly enhance (weaken) the radiation

pressure when a medium moves toward (away from) the light pulse

and, thus, always tends to prevent the motion of this medium.

Figure 3d further demonstrates that an increase of the pulse width

will lead to a decrease of the sensitivity of momentum transfer on the

medium velocity.

CONCLUSIONS

In summary, we have investigated the steady optical response of a

periodic structure of cold 87Rb atoms driven into the L configuration

and discussed its potential application for the enhancement of typ-

ically tiny radiation damping forces. This periodic atomic structure

has three photonic stop-bands of high reflectivity near the probe re-

sonance, among which the central narrower one is optically induced

by a pump field. At one edge of this dynamically controlled stop-band,

the reflectivity is very sensitive to the probe frequency yet accompan-

ied by little absorption. This peculiar property has been exploited to

obtain a greatly amplified effect of radiation damping, accessible to

experiments when an optical lattice oscillates at a velocity of approxi-

mately 1.0 m s21. Although our treatment concerns a semiclassical

atomic velocity u, the predicted radiation damping would also affect

the atomic motion even in a fully quantum regime.13,35 Finally, our

scheme does not rely on any concept unique to atoms. Well-developed

stop-bands can also be optically induced, e.g., in a diamond crystal

doped with N–V color centers,36 where radiation damping enhance-

ment may then be anticipated to occur.
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