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Abstract

This study compares a number of selection regimes for the choosing of global best (gbest) and personal best

(pbest) for swarm members in multi-objective particle swarm optimisation (MOPSO).

Two distinct gbest selection techniques are shown to exist in the literature, those that do not restrict the selection

of archive members and those with ‘distance’ based gbest selection techniques. Theoretical justification for both of

these approaches is discussed, in terms of the two types of search that these methods promote, and the potential

problem of particle clumping in MOPSO is described. The popular pbest selection methods in the literature are

also compared, and the affect of the recently introduced turbulence term is viewed in terms of the additional search

it promotes, across all parameter combinations. In light of the discussion, new avenues of MOPSO research are

highlighted.

Keywords: Multi-objective optimisation, particle swarm optimisation.

1 Introduction

Since its inception in 1995 [15] the particle swarm optimisation (PSO) heuristic has gained rapid popularity as a

technique to facilitate single objective optimisation.1 Like the standard evolutionary algorithm (EA) methods of

genetic algorithms (GAs) and evolutionary strategies (ESs), PSO was inspired by nature, but instead of evolution it

was the flocking and swarm behaviour of birds and insects that motivated its development.

A population of individual solutions is maintained in PSO, whose representation is similar to that of ES, that is

a string of floating point decision parameters, which are used in an individual’s evaluation. During the optimisation

process of PSO (following initialisation), members of this population are flown (have their parameters adjusted)

according to their previous flying experience. This flying experience is both in terms of the particle as an individual,

and as a member of a wider group (the entire population or a subset of it). The general PSO model implements this by

adjusting an individuals decision parameters to make them ‘closer’ to the decision parameters of two other solutions;

191 separate articles are listed in the web PSO bibliography at http://www.computelligence.org/pso/bibliography.htm.
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the best evaluated individual found so far by the population, gbest (or that from a local subset, lbest), and the best

evaluated individual found previously by that individual, pbest.

Until recently PSO had only been applied to single objective problems, however, in a large number of design

applications there are a number of competing quantitative measures that define the quality of a solution. For instance,

in designing the ubiquitous widget, a firm may wish to minimise its production cost, but also maximise/minimise

one or more widget performance properties. These objectives cannot be typically met by a single solution, so, by

adjusting the various design parameters, the firm may seek to discover what possible combinations of these objectives

are available, given a set of constraints (for instance legal requirements and size limits of the product). The curve

(for two objectives) or surface (more than two objectives) that describes the optimal trade-off possibilities between

objectives is known as the true Pareto front. A feasible solution lying on the true Pareto front cannot improve any

objective without degrading at least one of the others, and, given the constraints of the model, no solutions exist

beyond the true Pareto front. The goal, therefore, of multi-objective algorithms (MOAs) is to locate the Pareto front

of these non-dominated solutions.

Multi-objective evolutionary algorithms (MOEAs) are a popular approach to confronting these types of problem

by using evolutionary search techniques [1, 4, 7, 5, 9, 8, 10, 12, 13, 17, 16, 19, 31, 21, 23, 25, 27, 28, 30, 32, 29]. The use

of EAs as a tool of preference is due to such problems being typically complex, with both a large number of parameters

to be adjusted, and several objectives to be optimised. EAs, which can maintain a population of solutions, are in

addition able to explore several parts of the Pareto front simultaneously. PSO similarly has these characteristics, so,

given the promising results reported in the literature comparing PSO to EA techniques in the uni-objective domain,

a transfer of PSO to the MO domain seems a natural progression.

In 2002 this progression occurred, with a number of different studies published on multi-objective PSO (MOPSO)

[2, 6, 14, 24]. However, although most of these studies were generated in tandem, each of these studies implements

MOPSO in a different fashion. Given the wealth of MOEAs in the literature this may not seem particularly surprising,

however the PSO heuristic puts a number of constraints on MOPSO that MOEAs are not subject to. In PSO itself

the swarm population is fixed in size, and its members cannot be replaced, only adjusted by their pbest and the gbest,

which are themselves easy to define. However, in order to facilitate an MO approach to PSO a set of non-dominated

solutions (the best individuals found so far using the search process) must replace the single global best individual in

the standard uni-objective PSO case, in addition, there may be no single previous best individual for each member

of the swarm. Interestingly the conceptual barrier of gbest and lbest tends to get blurred in the MO application of

PSO. A local individual may be selected for each swarm member, however these lbest individuals may all also be

non-dominated (representing local areas of the estimated Pareto front maintained by the swarm), making them all

also gbest. Choosing both which gbest, lbest and pbest to direct a swarm member’s flight therefore is not trivial in

MOPSO. The principle divergence within [2, 6, 14, 24] has therefore been on how these are selected, with a separate
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divergence on whether an elite archive is maintained.

This paper provides a theoretical comparison of a number of different gbest/lbest and pbest selection methods

[2, 6, 14, 20, 24]. The inclusion of a turbulence variable within MOPSO algorithms is also discussed.

The paper takes the following structure: in Section 2 Pareto optimality is reviewed; in Section 3 the general PSO

model is briefly described, as are the current applications in the literature of MOPSO. In Section 4 the different

gbest/lbest and pbest selection methods are defined.

A discussion on further work concludes the paper in Section 5.

2 PARETO OPTIMALITY

Most recent work on MOAs is formulated in terms of non-dominance and Pareto optimality, which we now briefly

reviewed.

The multi-objective optimisation problem seeks to simultaneously extremise D objectives:

yi = fi(x), i = 1, . . . , D (1)

where each objective depends upon a vector x of P parameters or decision variables. The parameters may also be

subject to the J constraints:

ej(x) ≥ 0, j = 1, . . . , J. (2)

Without loss of generality it is assumed that the objectives are to be minimised, so that the multi-objective optimisation

problem may be expressed as:

Minimise y = f(x) = (f1(x), . . . , fD(x)) (3)

subject to e(x) = (e1(x), . . . , eJ(x)) ≥ 0 (4)

where x = (x1, . . . , xP ) and y = (y1, . . . , yD).

When faced with only a single objective an optimal solution is one which minimises the objective given the model

constraints. However, when there is more than one objective to be minimised solutions may exist for which performance

on one objective cannot be improved without sacrificing performance on at least one other. Such solutions are said to

be Pareto optimal [28] after the 19th century Engineer, Economist and Sociologist Vilfredo Pareto, whose work on the

distribution of wealth led to the development of these trade-off surfaces [22]. The set of all Pareto optimal solutions

are said to form the true Pareto front.

The notion of dominance may be used to make Pareto optimality clearer. A decision vector u is said to strictly
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dominate another v (denoted u ≺ v) iff

fi(u) ≤ fi(v) ∀i = 1, . . . , D and

fi(u) < fi(v) for at least one i.
(5)

Less stringently, u weakly dominates v (denoted u � v) iff

fi(u) ≤ fi(v) ∀i = 1, . . . , D. (6)

A set of M decision vectors {wi} is said to be a non-dominated set (an estimated Pareto front E) if no member of the

set is dominated by any other member:

wi 6≺ wj ∀i, j = 1, . . . , M. (7)

3 PSO

In this section the traditional uni-objective PSO is briefly described, followed by descriptions of the various MOPSO

models in the literature.

3.1 Uni-objective PSO

The PSO heuristic was first proposed by Kennedy and Eberhart [15] for the optimisation of continuous non-linear

functions. A fixed population of solutions is used, where each solution (or particle) is represented by a point in

N -dimensional space. The ith particle is commonly represented [2, 6, 24, 26] as Xi = (xi,1, xi,2, . . . xi,N ), and its

performance evaluated on the given problem and stored. Each particle maintains knowledge of its best previous

evaluated position, represented as Pi = (pi,1, pi,1, . . . pi,N ), and also has knowledge of the single global best solution

found so far, in the traditional uni-objective application indexed by g. The rate of position change of a particle then

depends upon its previous local best position and the global best, and its previous velocity. For particle i this velocity

is Vi = (vi1, . . . viN ). The general algorithm for the adjustment of these velocities is:

vi,j := wvi,j + c1r1(pi,j − xi,j) + c2r2(pg,j − xi,j) (8)

xi,j := xi,j + χvi,j , j = 1, . . . , N. (9)

Where w, c1, c2, χ ≥ 0. w is the inertia of a particle, c1 and c2 are constraints on the velocity toward global and local

best, χ is a constraint on the overall shift in position, r1, r2 ∼ U(0, 1). In [15], the final model presented has w and χ

set at 1 and c1 and c2 are set at 2. In a later study by Shi and Eberhart [26] more explicit guidelines for the setting
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of these parameters are presented.

3.2 MOPSO

In this section brief descriptions and critiques of preceding works in this area are provided.

3.2.1 Hu and Eberhart (2002)

A considerable degree of a priori knowledge in terms of test function properties is used in the implementation of the

D = 2 MOPSO in Hu and Eberhart [14]. Instead of a single gbest a local lbest is found for each swarm member

selected from the ‘closest’ two swarm members. The concept of closeness is calculated in terms of only one of the

evaluated objective dimensions, with the selection of the local optima from the two based upon the other objective.

The selection of which objective to fix (used to find the ‘closest’) and which to optimise is based on the knowledge of

the test function design – the relatively simple objective function being fixed.

Individual residing in swarm.

Objective 1

O
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Current pbest

a(t)a(t+1)

New particle position

b
c d

Figure 1: The multi-objective particle swarm optimisation method of Hu and Eberhart [14].

This is shown in Figure 1 with the nearest particles to b highlighted (in terms of the ‘simpler’ objective 2), meaning

the lbest for b is c (the fitter of the two neighbours in terms of objective 1). A single pbest is maintained for each

swarm member, which is only replaced when a new solution is found which dominates it (identical to the ‘conservative’
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preservation of efficiency selection rule described in the earlier work by Hanne [11]). This is demonstrated in Figure

1 with particle a moving to a fitter position at generation t + 1 (one that dominates its previous position). This new

position is mutually non dominating with the pbest of a, however, as the multi-objective evaluation of the new particle

does not lie in the lower quadrant of the pbest (represented in Figure 1 with a square), Pa remains unchanged.

The performance of the MOPSO was demonstrated on a number of test functions from the literature (including

the ZDT test functions from [30]), however no comparison was made with any other models, or the true Pareto fronts

for the problems.

3.2.2 Parsopoulos and Vrahatis (2002)

Parsopoulos and Vrahatis [24] introduce two methods that use a weighted aggregate approach and another that is

loosely based on Schaffer’s MOEA [25]. These were compared on a number of two dimensional problems. In the first

two approaches the weighted aggregate algorithms needed to be run K times to produce K estimated Pareto optimal

points (meaning each run had a single global best). Although [24] states that this approach has a low computational

cost, the need for a separate run for each solution found does not necessarily support this. Their final method - the

Vector Evaluated Particle Swarm Optimiser (VEPSO), uses one swarm for each objective (as illustrated in Figure 2,

where the two swarms are shown pushing toward the opposing axis). The best particle of the second swarm is used

to determine the velocities of the first swarm (act as its global best), and vice-versa.

Objective 1

O
bj

ec
tiv

e 
2

Individual residing in swarm 1.
Individual residing in swarm 2.

Figure 2: The multi-objective particle swarm optimisation model of Parsopoulos and Vrahatis [24].

Comparison between the algorithms was qualitative (based on visual inspection of the found fronts), with no

comparison was made to recent competitive methods in the MOEA domain. In addition the current VEPSO model is
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only designed for D = 2 problems.

3.2.3 Coello and Lechunga (2002)

The main problems with [14, 24] are their formulation purely for 2-dimension problems, and that, by taking their

inspiration from early work in the MOEA domain, they themselves are susceptible to the problems that beset these

early models, which research in the 1990s highlighted, and in a large part rectified. For instance, by using a swarm

for each objective the VEPSO model of [24] will tend to suffer from the same problem of biasing its search toward

the optimising of the individual solutions as Schaffer’s VEGA does. The degree of prior knowledge needed by the

MOPSO of [14] severely restricts its application, and inspection of the plots provided in their paper show that the

model experiences problems discovering solutions over the full extent of the front. The constraints of needing m swarm

members to even have the potential of having m estimated Pareto optimal solutions at the end of the search process

is also very restrictive; typically only a small proportion of solutions in the population at the end of the process with

be estimated Pareto optimal. This in turn necessitates large swarm sizes and therefore increased number of fitness

evaluations, which may be costly in many applications (let alone inefficient). In addition the oscillating phenomena

described in [5] is exacerbated when the Pareto front ‘memory’ is solely contained in X and P .
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Figure 3: 2D Illustration of grid based selection scheme used in [2], with the ‘fitness’ of populated hypercubes high-
lighted.

In the previous two studies the maximum number of estimated Pareto points returned at the end of the search

process equalled the swarm size, meaning large swarms were typically used. In comparison Coello and Lechunga

[2] propose a method which is inspired by more recent developments in the MOEA literature. Two repositories are

maintained in addition to the search population. One of the global best individuals found so far by the search process,

F , and one containing a single local best for each member of the swarm. A truncated archive is used to store the
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(global) elite individuals. This archive uses the method from [17] to separate the objective function space into a number

of hypercubes (an adaptive grid), with the most densely populated hypercubes truncated if the archive exceeds its

membership threshold. The archive also facilitates the selection of a global best for any particular individual in [2].

A fitness is given to each hypercube that contains archive members, equal to dividing 10 by the number of resident

particles. Thus a more densely populated hypercube is given a lower score, an illustration of which is given in Figure

3.

Selection of a global best for a particle is then based on roulette wheel selection of a hypercube first (according to

its score), and then uniformly choosing a member of that hypercube. This method therefore biases selection toward

under-represented areas of the estimated Pareto front (unlike the original method developed in [17]). Only one local

best solution is maintained for each swarm member however; if a particle Xi is evaluated and found to be mutually

non-dominating with Pi, one of the two is randomly selected to be the new Pi.

An illustration of the swarm is shown in Figure 4, again particle a is highlighted in its generational move. However

in this model, unlike [14], a(t + 1) has a 50% probability of becoming the new pbest of a.

Individual residing in swarm.

Objective 1
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2

Current pbest

a(t)a(t+1)

New particle position
Member of elite archive

Figure 4: The multi-objective particle swarm optimisation model of Coello and Lechunga [2].

The MOPSO method in [2] was compared with two highly regarded MOEAs, the Pareto Archived Evolutionary

Strategy (PAES) [17] and the Non-Dominated Sorting Genetic Algorithm II [3], with promising results. On the two

dimensional test functions used the MOPSO either outperforms or is not significantly different to the competing

algorithms (using the M∗
1 measure [30]).
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3.2.4 Fieldsend and Singh (2002)

Fieldsend and Singh [6] argued that the approach taken in [2] could be improved even further, as it is not a full

transference of the PSO heuristic to the multi-objective domain. In uni-objective PSO the swarm is concerned with

improving the fitness of each of its members with respect to a single objective. The formulation of Coello and

Lechunga’s model transfers this across by having each particle concerned with improving on all objectives. That is,

selection of the gbest from the archive takes no consideration of where in the fitness landscape a particle is; in randomly

choosing a gbest, a particle may be pushed toward an area in decision space whose fitness evaluation may be fitter

in respect to one objective than the particles present position, but worse on one or more of the other objectives. In

contrast an approach closer to the original model would try and push a particle toward and area in decision space

which was evaluated as dominating its current position, better on at least one objective and no worse on any other

objective. This can be taken even further by attempting to push the particle toward the member of the archive that

not only (at a minimum) weakly dominates it, but that it is closest to in objective space. In this interpretation of

MOPSO each swarm member is therefore concerned with improving a particular region of the estimated Pareto front,

however only a single swarm is used. A shift in the relative position of a particle is not problematic as ‘memory’ of

its search in a particular multi-dimension objective area is retained in the archive should any other particle become

concerned with it (or indeed if it moves back in subsequent generations).

Although this focused or ‘directed’ form of MOPSO seems an appealing transference of PSO to the multi-objective

domain the costs of implementation are prohibitive with existing methods. To find the closest archive member to a

swarm individual Xi takes O (D · |F |) objective comparisons, meaning O (|X | · D · |F |) each generation! However by

using the ordering of individuals caused by the composite point data structure discussed in [5] this approach was made

viable.

Dominated trees and PSO gbest selection Recent studies have highlighted the theoretic inefficiency caused by

representing a non-dominated set with a limited number of solutions [11, 18]. This in turn led Fieldsend et al. [5]

and Everson et al. [4] to empirically demonstrate the inefficiency caused by truncation of estimated Pareto archives

in MOEAs, and develop a number of data structures to facilitate the maintenance of unconstrained archives. In this

section the properties of one of these, the dominated tree, shall be briefly described. For a far more detailed definition

and proofs please refer to [5]. The dominated tree consists of a list of L = d|F |/De composite points ordered by the

weakly-dominates relation, �:

T = {cL � . . . � c2 � c1} (10)

Usually, the stronger condition, ci ≺ cj iff i > j, will hold. The coordinates of each composite point are defined

by (up to) D elements of F , the constituent points of a composite point. An example of a dominated tree in two

dimensions is shown in Figure 5.

9



Objective 1

O
bj

ec
tiv

e 
2

Composite point.

Individual residing in elite archive.

c1

c2

c3

c4

Figure 5: A 2D dominated tree.

Construction of a dominated tree from |F | points F = {ym}
|F |
m=1, where ym ∈ F , proceeds as follows. The first

composite point c1 is constructed by finding the individual ym with maximum first coordinate; this value forms the

first coordinate of the composite point:

c1,1 = max
ym∈F

(ym,1) (11)

This individual ym is now associated with c1 and removed from F . Likewise the second coordinate of c1 is given by

the maximum second coordinate of the points remaining in F : c1,2 = maxym∈F\T (ym,2). This procedure is repeated

to construct c2 and subsequent composite points until all elements of F are associated with the tree. In general the

dth coordinate of the ith composite point is given by:

ci,d = max
ym∈F\T

(ym,d) (12)

Note that in construction of the final composite point (that is, the composite point that dominates all other composite

points) the |F | elements of F may have been used before all the D coordinates of the final composite point cL have

been defined. The last remaining point in F is reused to define the remaining coordinates (as shown in Figure 5).

Implementation in MOPSO The directed MOPSO uses the properties of the dominated tree archive to select the

‘closest’ archive member to act as a swarm particle’s gbest. For any member of the swarm, Xi, the first non-dominated

composite point, cj , of the global non-dominated set is sought (i.e. where cj � s ≺ cj−1), this takes O (lg (M + 1))

domination comparisons to find (where M is the number of composite points). The global best for an individual Xi is
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that archive member of the composite point cj contributing the vertex which is less than or equal to the corresponding

objective in Xi. An illustration of this is provided in Figure 6.

Figure 6: Selection of local gbest for each swarm member used in Fieldsend and Singh [6].

In the case of a composite point cj with more than one vertex less than or equal to the corresponding objectives

of an individual Xi (as is illustrated in figure 6 between composite point c2 and individual a) one of the vertex that

meets the condition is selected at random to provide the global best (Fi) for the swarm individual Xi.

3.2.5 Mostaghim and Teich (2003)

In partial response to work discussed in [6], Mostaghim and Teich [20] introduced a new method called the Sigma

method as alternative approach to directing particles toward the front. Again an elite archive was maintained (though

truncated), and the pbest method was similar to that of [2], except the most recent non-dominating instance was

maintained. In this approach each particle in the swarm is assigned a vector σ, where |σ| = D, which defines the

gradient of a line connecting that point with the origin. For D dimensions this is calculated as

σ =



















f1(x)2 − f2(x)2

f2(x)2 − f3(x)2

...

fD(x)2 − f1(x)2



















/
(

f1(x)2f2(x)2 + . . . + fD(x)2
)

. (13)
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The σ values are calculated for the swarm and archive at each iteration (an O(D · |X |) operation) and O(D · |F |)

operation) before the σ distances between all the swarm members and all the archive members are calculated (an

O(|X | ·D · |F |) operation). The gbest for a swarm member is selected as the archive member whose σ distance is the

smallest. An illustration of this is shown in Figure 7.

Objective 1
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Individual residing in swarm.

Individual residing in elite archive.

Sigma archive lines

Figure 7: Selection of local gbest for each swarm member used in Mostaghim and Teich [20].

The method is intuitive - though, like the S-metric [29], its results are heavily influenced by where the point

of comparison is placed (in the case of the Sigma method, at the origin). [20] compares the Sigma method to the

methods from [6] and [31] on four test functions (for a single run) which seems to indicate that the Sigma method was

an improvement over the directed-MOPSO of [6].

4 A theoretical discussion on the effect of the different search methods

currently in use in MOPSO

In this section the effect of the different pbest and gbest selection methods on MOPSO search are discussed. However,

first I shall look closer at the interaction of a turbulence term in MOPSO.
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4.1 Turbulence

The studies that have used turbulence [6, 20] have noted the positive effect it has on the search process. When

considering why this may be the case one must view the effect of turbulence in the context of the general PSO

arithmetic form. In the general case, a particle Xi is pushed/pulled towards its pbest and gbest operating points, as

well as along its current velocity. This means that a hypercuboid is generated in decision/particle space containing

these four points, the bounds of which are defined by the sum of the absolute distances from Xi to the three other

points (each distance multiplied by its relevant constraint from equation 8). Xi can therefore effectively move to any

point within this hypercuboid, but not outside it. An illustration of this is shown in Figure 8 where the decision space

is comprised of two variables. The highlighted area in Figure 8 shows the bounding hypercuboid where particle Xi

can move to, given its previous best Pi, global best Pg and velocity Vi. Therefore, as illustrated, it is feasible for Xi

to be moved to ‘a’, but impossible for it to shift to ‘b’.
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Figure 8: Illustration of the PSO search process, and the volume in which a particle Xi can move at each iteration.

This restriction on a particles movement means that local optima within this bound may be found, but any global

optima outside will not be found on that iteration, and may never be attainable. Turbulence has the effect of increasing

the volume of this bounded region, indeed, if the turbulence is drawn from distributions that extend beyond the range

of the variables then in effect there is no bound on the search process at all. The turbulence term can therefore be

seen to operate as a stochastic process, dislodging particles from local optima they may become stuck in.

4.2 Selection and maintenance of pbest

Four distinct pbest maintenance and selection strategies can be derived from the literature.
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• In the first method, Prandom, a single pbest is maintained [2]. Pi is replaced if Xi � Pi, otherwise, if particle Xi

is evaluated and found to be mutually non-dominating with Pi, one of the two is randomly selected to be the

new Pi.

• In the second method Pnewest, a single pbest is maintained [20]. Pi is replaced if Xi � Pi, otherwise, if a particle

Xi is evaluated and found to be mutually non-dominating with Pi, Xi (the most recent evaluation) is selected

to be the new Pi.

• In the third method Pdominating , a single pbest is maintained [14]. Pi is only replaced if Xi � Pi.
2

• In the fourth method PPareto, a set of pbests is maintained [6]. This set contains the mutually non-dominating

set of solutions that describe the estimated Pareto front found by Xi during the search process.

It is immediately clear that the computational cost of the PPareto is significantly higher than that of Prandom, Pnewest

and Pdominating . The benefit of PPareto would be that it would promote a greater degree of search by the heuristic,

however this could probably be achieved equally as well through the use of an appropriate gbest method or through

turbulence. There is not great difference between Prandom, Pnewest and Pdominating , although the restrictive update

nature of Pdominating may be detrimental in the later stages of the search process. Once the true Pareto front has

been reached by a particle the pbest using Pdominating will no-longer be changed. As such the subsequent coverage of

the true Pareto front may be impeded, as the pbest term will be constantly pulling the particle back to a fixed point.

4.3 Selection of gbest or lbest

From the previous section six different types of gbest selection can be identified.

• The first method, Grandom, is simple uniform selection of an instance from F . The principle benefit of this

approach is that this selection is rapid, O(1), however it biases selection to already densely represented areas of

the estimated Pareto front.

• The second method, Gpartitioned, is based on unbiased selection of the front. Here the front is partitioned (for

example into grids in [17] and bins of equal width in [4, 5]), with selection first uniformly of a partition, and

then uniformly from that partition. If a method such as partitioned quasi random selection (PQRS) [5] is used

this selection takes O(lg(|F |)) objective comparisons.

• The third method, Gbiased, also uses partitioning, but biases selection toward those partitions which have fewer

members. This can be achieved, for example, by using roulette wheel selection of partitions (as used by the

MOPSO in [2] and one of the MOPSOs in [6]).

2 N.B. This is equivalent to Pnewest , but always selecting the oldest of two mutually non-dominating points.
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• The fourth method,Gdirected, is the local-global method of [6], where a gbest individual from an elite archive is

selected locally to each swarm member. As stated previously, this takes O (lg (M + 1)) domination comparisons

• In the fifth approach, GSigma, the Sigma method of [20] is used to determine the gbest for each swarm member,

needing O(|F | · D + |X | · D + |F | · D · |X |) calculations.

• The sixth approach, GEuclidean, also attempts to project the swarm members towards their nearest gbest, using

the Euclidean distance method described (but not implemented) in [6]. Here the weighted Euclidean distances

between the swarm members and the archive members are calculated and the closest archive members are used

as the gbest. The distance between swarm member Xj and archive member Fk is calculated as

dist =

D
∑

i=1

(

fi (Xj) − fi (Fk)

max (fi (F )) − min (fi (F ))

)2

(14)

By dividing each of the individual objective distances by its range in the archive, the distance space is normalised,

thereby mitigating any objective scaling differences. This is illustrated in Figure 9, which again uses the same

set of archive points and swarm members as the previous figures. This approach is an O(|F | ·D · |X |) calculation.

On examination the six gbest methods described here can be seen to fall into two categories. The first ‘unrestricted’

group, Grandom, Gpartitioned and Gbiased, allow for the selection of a gbest, for a given swarm member Xi, from anywhere

in the archive F (albeit with differing probabilities). The second ‘restricted’ group, Gdirected, Gsigma and GEuclidean,

by using some form of distance measure for selection, restrict the possible gbest for a given member of Xi. This

restriction, although initially thought by researchers in the area to be desirable [6, 20] can also be seen to have three

detrimental effects. Firstly, if it is assumed that that there is a mapping between objective and decision space domains

- such that closeness in objective space relates to closeness in decision space,3 then the ‘unrestricted’ methods can

be seen to promote greater search than the ‘restricted’ methods. This is because in the ‘unrestricted’ methods, the

objective hypercuboids generated by the pbest, gbest, Xi and Vi will tend to be larger, ceteris paribus, than that

formed by distance based approaches. This is illustrated in Figure 10 by considering only Xi and its gbest, F(i).

Figure 10a shows the objective hypercuboids containing the swarm individuals and their gbest values where there

is no restriction on where a gbest may be selected from. Figure 10b illustrates an identical situation, where gbest

selection is restricted to the ‘closest’ archive member. The hypercuboids in the second case are clearly smaller -

so assuming that objective distance maps to decision space distance this infers that at each iteration particles in a

distance based gbest method will tend to search smaller areas. Relating this to the previous discussion on the use of

turbulence, this means that gbest selection methods which do not restrict where on the front an F(i) may be drawn,

methods like Grandom, Gpartitioned and Gbiased, promote a greater degree of search within MOPSO.

3N.B. Of course in certain problems, or certain parts of the decision/objective space this is not necessarily the case. However it is an
acceptable general assumption for the discussion here.
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Figure 9: Selection of local gbest for each swarm member.

The second effect that using an ‘unrestricted’ selection routine has opposed to restricting the choice of gbest to

close archive members (however one may define ‘close’) is that they actively work against clumping of particles; that

is, preventing particles focusing on limited areas of the search front. Figure 11 illustrates a situation mid way through

a search process. Here the particles have converged to two distinct clumps within objective space. The ‘unrestricted’

gbest selection method acts to pull these clumps apart by pushing them towards different parts of the estimated Pareto

front (Figure 11a). The ‘distance’ based gbest selection method however does not do this, as its simply pushes the

particles towards gbest individuals which are already in their area. As such it may even promote the clumps to become

even tighter (Figure 11b).

If the pbest and/or velocity of a particle does not overcome this effect then search may only be directed towards

to sub areas of the Pareto front, possibly duplicating efforts and reducing the overall efficiency of the algorithm.
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Figure 10: Search in ‘unrestricted’ (a) and ‘distance’ (b) based selection methods

The third effect can be viewed as a subvariant of either of the previous two effects, but merits discussion in its

own right. If a swarm member reaches the estimated Pareto front (as must be the case every time a new estimated

Pareto point is discovered) it is entirely possible that Xi = Pi = F(i). This means that the second and third term in

Equation 8 equal zero, so that the only variable moving the point (barring turbulence if it is used) is the velocity term

Vi, which may itself be very small at that point. This means a considerable amount of time may needed to move Xi

and promote search further. By using an ‘unrestricted’ gbest selection term however the likelihood of this occurring

is greatly reduced.

5 Further work

The different gbest and pbest selection methods described and examined in this study can been coarsely seen to either

promote convergence or search. At the current time there does not seem to be any principled investigation into how

these should effectively interact within MOPSO. Whether convergence should be promoted in the pbest term and

search in the gbest term, or vice versa. In addition there could be convincing arguments made that their respective

levels should be changed over time. An empirical comparison of combinations of these different methods is part of the

author’s current research interests.
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