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Abstract

In this paper we propose a Neural Net-PMRS hybrid for
forecasting time-series data. The neural network model uses
the traditional MLP architecture and backpropagation method
of training. Rather than using the last n lags for prediction, the
input to the network is determined by the output of the PMRS
(Pattern Modelling and Recognition System). PMRS matches
current patterns in the time-series with historic data and
generates input for the neural network that consists of both
current and historic information. The results of the hybrid
model are compared with those of neural networks and PMRS
on their own. In general, there is no outright winner on all
performance measures, however, the hybrid model is a better
choice for certain types of data, or on certain error measures.

1.  Hybrid Forecasting System

The science of forecasting relies heavily on the models used for forecasting, quantity
and quality of data, and the ability to pick the right models for a given data. A
number of past publications on pattern matching have argued the need for using
historic information through pattern matching for forecasting. A number of these
pattern matching techniques, such as our previous PMRS model, have been very
successful on a range of economic and financial data. The main philosophy behind
these pattern matching techniques is to identify the best matching past trends to
current ones and use the knowledge of how the time series behaved in the past in
those situations to make predictions for the future. A range of nearest neighbour
strategies can be adopted for this matching such as the fuzzy Single Nearest
Neighbour (SNN) approach.

Neural networks do not normally use historic matches for forecasting.  Instead, their
inputs are taken as recent lags [2]. However, their ability to formulate a non-linear
relationship between inputs and output has a considerable advantage for producing
accurate forecasts [3].
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In this paper we combine the pattern matching ability with the determination of non-
linear relationship between inputs and output by generating a hybrid model for
forecasting. The hybrid model uses the PMRS model [6,7] for determining historic
matches used as inputs to a neural network model. The results are shown on a range
of scientific time series data and financial market data. We first describe our PMRS
and neural network models on a stand-alone basis, and then their combination.

1.1  PMRS component

If we choose to represent a time-series as y = {y1, y2, ... yn}, then the current state of
size one of the time-series is represented by its current value yn. One simple method
of prediction can be based on identifying the closest neighbour of yn in the past data,
say yj, and predicting yn+1 on the basis of yj+1. Calculating an average prediction
based on more than one nearest neighbour can modify this approach. The definition
of the current state of a time-series can be extended to include more than one value,
e.g. the current state sc of size two may be defined as {yn-1, yn}. For such a current
state, the prediction will depend on the past state sp {yj-1, yj} and next series value
y+

p given by yj+1, provided that we establish that the state {yj-1, yj} is the nearest
neighbour of the state {yn-1, yn} using some similarity measurement. In this paper,
we also refer to states as patterns. In theory, we can have a current state of any size
but in practice only matching current states of optimal size to past states of the same
size yields accurate forecasts since too small or too large neighbourhoods do not
generalise well. The optimal state size must be determined experimentally on the
basis of achieving minimal errors on standard measures through an iterative
procedure.

We can formalise the prediction procedure as follows:

ÿ = φ(sc, sp, y
+

p, k, c)

where ÿ is the prediction for the next time step, sc is the current state, sp is the
nearest past state, y+

p is the series value following past state sp, k is the state size and
c is the matching constraint. Here ÿ is a real value, sc or sp can be represented as a
set of real values, k is a constant representing the number of values in each state, i.e.
size of the set, and c is a constraint which is user defined for the matching process.
We define c as the condition of matching operation that series direction change for
each member in sc and sp is the same.
   In order to illustrate the matching process for series prediction further, consider the
time series as a vector y = {y1, y2, ... yn} where n is the total number of points in the
series. Often, we also represent such a series as a function of time, e.g. yn = yt, yn-1 =
yt-1, and so on. A segment in the series is defined as a difference vector δ = (δ1, δ2, ...
δn-1) where δi = yi+1 - yi, ∀ i, 1≤i≤n-1. A pattern contains one or more segments and it
can be visualised as a string of segments ρ = (δi, δi+1, ... δh) for given values of i and
h, 1≤i,h≤n-1, provided that h>i. In order to define any pattern mathematically, we
choose to tag the time series y with a vector of change in direction. For this purpose,



a value yi is tagged with a 0 if yi+1 < yi, and as a 1 if yi+1 ≥ yi. Formally, a pattern in
the time-series is represented as ρ = (bi, bi+1, ... bh) where b is a binary value.
   The complete time-series is tagged as (b1, ...bn-1). For a total of k segments in a
pattern, it is tagged with a string of k b values. For a pattern of size k, the total
number of binary patterns (shapes) possible is 2k. The technique of matching
structural primitives is based on the premise that the past repeats itself. It has been
noted in previous studies that the dynamic behaviour of time-series can be
efficiently predicted by using local approximation. For this purpose, a map between
current states and the nearest neighbour past states can be generated for forecasting.
Pattern matching in the context of time-series forecasting refers to the process of
matching current state of the time series with its past states. Consider the tagged
time series (b1, bi, ... bn-1). Suppose that we are at time n (yn) trying to predict yn+1. A
pattern of size k is first formulated from the last k tag values in the series, ρ’ = (bn-k,
... bn-1). The size k of the structural primitive (pattern) used for matching has a direct
effect on the prediction accuracy. Thus the pattern size k must be optimised for
obtaining the best results. For this k is increased in every trial by one unit till it
reaches a predefined maximum allowed for the experiment and the error measures
are noted; the value of k that gives the least error is finally selected. The aim of a
pattern matching algorithm is to find the closest match of ρ’ in the historical data
(estimation period) and use this for predicting yn+1. The magnitude and direction of
prediction depend on the match found. The success in correctly predicting series
depends directly on the pattern matching algorithm.
   The first step is to select a state/pattern of minimal size (k=2). A nearest neighbour
of this pattern is determined from historical data on the basis of smallest offset ∇ .
There are two cases for prediction: either we predict high or we predict low. The
prediction ÿn+1 is scaled on the basis of the similarity of the match found. We use a
number of widely applied error measures for estimating the accuracy of the forecast
and selecting optimal k size for minimal error. The forecasting process is repeated
with a given test data for states/patterns of size greater than two and a model with
smallest k giving minimal error is selected. In our experiments k is iterated between
2≤k≤5.

1.2 Neural Network component

In this paper we use the standard MLP architecture with backpropagation mode of
learning.  In order to enable consistency between the Neural Network model and the
PMRS model, the Neural Network inputs are the 6 most recent lags of the time
series (i.e. Yt-1, Yt-2, Yt-3, Yt-4, Yt-5 & Yt-6, when the value to be predicted is the
actual Yt). This mimics the PMRS approach of pattern matching of up to 5 historic
differences (δ values) which therefore uses the information contained in the most
recent 6 lags. (In other circumstances the 6 lags chosen would be those with the
highest partial autocorrelation function value when correlated with the actual [5]).

In our study, neural networks have two hidden layers with 5 sigmoidal nodes in each
and the networks are fully connected.



The learning rate was set at 0.05 with a momentum of 0.5. The Neural Networks
training was stopped when the combined RMSE on the test and training set had
fallen by less than 0.025% of their value 5 epochs ago. The inclusion of the
validation error prevents over- fitting, however by summing the two errors (as
opposed to strictly using the test error on its own), a slight trade-off is permitted
between the errors while pushing through local minima. In addition this stopping
operator was only used after at least 1000 epochs had passed during training.

1.3  Neural Net-PMRS

Neural Networks with PMRS generated inputs have the same stopping regime as the
standard neural network described above with only topological difference in the
form of number of inputs. Two hybrid models were trained. The first was training on
the matched deltas δ found by the PMRS algorithm, the predicted delta and the lags
used to find them, i.e. a PMRS model fitting two historic deltas would use 3 lags. A
single asterisk in Table 2 denotes this model (NNPMRS*). The second model used
the matched deltas δ found by the PMRS algorithm, the predicted delta and the most
recent lag (this model is denoted by a double asterisk in Table 2 - NNPMRS**).

2. Experimental Details

Each data set was partitioned into consecutive segments of 75% (training data) 15%
(test data) and 10% (validation data). The Neural Network model weights are
adjusted using the Backpropagation algorithm on the training set and stopped (using
the stopping method described later) using the root mean square errors on the
training set and test set. In the case of PMRS, four different PMRS models with
pattern sizes of 2,3,4,and 5 were fitted to the training set and compared on the test
set data. The best performing PMRS model on the test set was then chosen for use
on the validation set and as the input to the NN-PMRS model. The ‘best performing’
model was judged as the PMRS lagged model which had the highest number of
‘best’ error statistics out of the six statistics used: R2, Percentage direction success,
Root Mean Square Error (RMSE), Geometric Mean Relative Absolute Error
(GMRAE), Mean Average Percentage Error (MAPE) and Percentage better than
random walk (BRW). When two PMRS models performed equally well using this
criteria, two NN-PMRS models were fitted.

As the PMRS model needs a store of historical data before it can make predictions
(and therefore be of use as an input to a non-linear system such as a Neural
Network), the data split is slightly different for the NN-PMRS models. The end 10%
of the data is again set aside as an ‘unseen’ validation set, and of the remaining 90%
data, the first 40% is used as the estimation data for the PMRS model to be fitted to.
The remaining 50% is split such that the neural network is fitted to the next 40% and
tested on the following 10%. This results in a 40/40/10/10 split as opposed to the
75/15/10 split used in the other models.



3. Results

The results for the performance of the two hybrid models, PMRS and Neural
networks is shown in Table 2 on a range of error measures recommended by
Armstrong and Collopy [1]. It is evident that no single model performs the best on
all error measures. In this table, we have picked the best performing PMRS models
on the basis of how it performs on test data. For PMRS, we vary the parameter k
(pattern size for matching) between 2 and 5 and select those models that perform the
best on most number of error measures. In some cases, more than one model is
chosen as the best performer as two models can perform equally well on different
error measures. Out of the two hybrid models, we find that NNPMRS* model
consistently outperforms the second model and therefore we use this as our base
hybrid model for comparison with other methods. It is difficult to visualise an
overall winner on each measure. In order to interpret results we simplify this process
in Figure 1. We find that on most time-series, the hybrid model is the best for
generating the lowest GMRAE error and is significantly good on generating high
direction rate success. It outperforms the two other models on all error measures in a
small proportion of cases, and there is no generic trend to comment on. From these
experiments it is abundantly clear that the hybrid model has a considerable future in
the forecasting domain. Some of the improvement in results is small, however any
improvement is of considerable importance in financial domains, where the capital
involved can be extremely large.

4. Conclusions

In this paper we have proposed a novel method of combing pattern matching
techniques with neural networks. This hybrid strategy has the advantage that it
becomes possible to use historic information efficiently, which is not possible in
traditional neural network models. In general, the hybrid model is a better choice in
situations where the model selection process relies heavily on low error on GMRAE
and high direction success. On other error measures, the hybrid model does not, in
the majority of time series, outperform the PMRS and neural net stand-alone
models. Our understanding is that the hybrid strategy is of considerable use in a
range of prediction domains and it is only through empirical analysis, we can
interpret its advantages.
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Data set Description Observations

A Laser generated data 1000

B1, B2, B3 Physiological data, spaced by 0.5 second intervals.
The first set is the heart rate, the second is the chest
volume (respiration force), and the third is the blood
oxygen concentration (measured by ear oximetry).

34000 each

C tickwise bids for the exchange rate from Swiss francs
to US dollars; they were recorded by a currency
trading group from August 7, 1990 to April 18, 1991

30000

D1, D2 Computer generated series 50000

E Astrophysical data. This is a set of measurements of
the light curve (time variation of the intensity) of the
variable white dwarf star PG1159-035 during March
1989, 10 second intervals.

27204

USDBRL Daily Exchange Rate of Brazilian Reals to the US
Dollar (4 & ¾ years) 22nd Oct 95 to 2nd August 2000

1747

USDCAN Daily Exchange Rate of Canadian Dollars to the US
Dollar (8 years) 3rd August 1992 to 2nd August 2000

2722

USDDEM Daily Exchange Rate of German Marks to the US
Dollar (8 years) 3rd August 1992 to 2nd August 2000

2722

USDJPY Daily Exchange Rate of Japanese Yen to the US
Dollar (8 years) 3rd August 1992 to 2nd August 2000

2722

USDCHF Daily Exchange Rate of Swiss Francs to the US
Dollar (8 years) 3rd August 1992 to 2nd August 2000

2722

USDGBP Daily Exchange Rate of Pounds Sterling to the US
Dollar (8 years) 3rd August 1992 to 2nd August 2000

2722

Table 1. 1991 Santa Fe Competition data & exchange rate data

Exchange Rates are daily average Interbank rates (where the average is calculated as
the mid point of the low and the high of that day), 14 Data sets in all, longest being
50,000 points, shortest 1,000 points.



Dataset Model k R2 % Dir.
Suc

RMSE GMRAE

(×10-3)

MAPE BRW

A PMRS 4 0.98326 97.000 0.98933 1.635 10.28 95.000

NN (bp) - 0.99707 94.949 0.39313 1.2764 7.0041 92.929

nn-pmrs* 4 0.9845 93.137 0.86214 1.6978 11.287 93.137

nn-
pmrs**

4 0.9826 95.098 0.90955 1.7974 12.146 88.235

B1 PMRS 2 0.99366 70.647 0.077997 0.29556 11.024 35.794

PMRS 5 0.98997 63.471 0.098606 0.26968 14.356 44.735

NN (bp) - 0.98204 78.464 0.131870 0.25546 847.26 38.364

nn-pmrs* 2 0.97110 78.182 0.15517 0.25512 10011 47.636

nn-pmrs* 5 0.94505 76.125 0.21848 0.2678 1446.6 50.346

nn-
pmrs**

2 0.98657 75.577 0.10449 0.26309 646.56 22.405

nn-
pmrs**

5 0.97112 76.009 0.15474 0.26463 1007.6 38.322

B2 PMRS 2 0.83335 60.147 72.295 0.50022 67.339 41.647

PMRS 5 0.77703 67.412 90.893 0.44723 81.976 49.324

NN (bp) - 0.91510 70.315 44.175 0.84700 58.310 56.899

nn-pmrs* 2 0.90470 65.542 44.439 1.09990 59.607 52.422

nn-pmrs* 5 0.91469 67.734 42.434 0.88111 59.270 53.749

nn-
pmrs**

2 0.89625 60.438 46.421 0.94134 64.565 44.867

nn-
pmrs**

5 0.9028 64.475 44.652 0.95816 61.165 50.865

B3 PMRS 3 0.98993 51.029 21.219 0.43080 1.3969 30.882

PMRS 4 0.99009 54.529 21.052 0.40880 1.3522 33.735

PMRS 5 0.98993 54.647 21.229 0.39971 1.4022 35.588

NN (bp) - 0.98660 55.075 23.318 4.16300 4.6472 51.368

nn-pmrs* 3 0.82640 49.683 69.114 1.9272 7.1579 41.522

nn-pmrs* 4 0.989100 65.484 22.449 1.4900 2.5309 60.467

nn-pmrs* 5 0.989100 65.484 22.449 1.4900 2.5309 60.467

nn-
pmrs**

3 0.021970 69.550 5.9163 0.2390 4.51
×1013

49.510

nn-
pmrs**

4 0.99040 48.875 20.420 1.2641 2.1728 43.080

nn-
pmrs**

5 0.99033 48.320 20.25 1.4067 2.2562 42.762

C PMRS 2 1.00000 47.800 2.15××××10-5 0.19019 0.0485 36.333

NN (bp) - 0.99950 43.481 0.000524 0.19000 1.9894 43.481

nn-pmrs* 2 0.99820 43.399 0.000873 0.18932 3.3581 43.431

nn-
pmrs**

2 0.99829 43.399 0.000854 0.18932 3.2846 43.431



Dataset Model k R2 % Dir.
Suc

RMSE GMRAE

(×10-3)

MAPE BRW

D1 PMRS 4 0.98671 77.660 0.000931 0.19888 10.457 63.400

PMRS 5 0.98787 79.540 0.000894 0.19884 10.069 66.120

NN (bp) - 0.99640 86.737 0.000489 0.19900 6.3906 70.454

nn-pmrs* 4 0.98973 80.804 0.000709 0.19485 8.3753 64.804

nn-pmrs* 5 0.99416 85.275 0.000549 0.19477 6.7570 69.647

nn-
pmrs**

4 0.99204 81.961 0.000647 0.19486 7.7160 61.941

nn-
pmrs**

5 0.99287 82.627 0.000617 0.19483 7.5616 63.882

D2 PMRS 4 0.98535 79.680 0.000929 0.19885 11.869 64.500

NN (bp) - 0.99230 83.957 0.000644 0.19900 8.8072 65.913

nn-pmrs* 4 0.99440 86.863 0.000542 0.19469 8.2082 72.314

nn-
pmrs**

4 0.99173 83.980 0.000654 0.19481 9.2745 63.49

E PMRS 4 0.57996 56.487 0.003196 0.36995 7.929
×1017

41.455

NN (bp) - 0.59060 67.929 0.001641 0.36600 2.076
××××1013

39.757

nn-pmrs* 4 0.58428 67.916 0.001628 0.35847 2.343
×1013

40.159

nn-
pmrs**

4 0.51360 65.321 0.001759 0.35890 2.283
×1013

35.400

USD
BRL

PMRS 2 0.99988 56.000 0.001336 2.8258 0.5106 17.143

NN (bp) - 0.99994 46.552 0.000943 2.8445 0.5700 33.333

nn-pmrs* 2 0.99989 64.423 0.001690 4.7359 0.8820 39.423

nn-
pmrs**

2 0.99989 64.423 0.001656 4.7359 0.8581 39.423

USD
CAD

PMRS 2 0.99998 47.44 0.000324 1.9101 0.2729 27.645

NN (bp) - 0.99998 54.983 0.000328 1.9211 0.3115 40.893

nn-pmrs* 2 0.99998 54.027 0.000352 1.8900 0.3411 42.953

nn-
pmrs**

2 0.99998 54.362 0.000354 1.8900 0.3425 42.617

USD
CHF

PMRS 2 0.99991 48.805 0.000817 1.9384 0.6265 27.645

NN (bp) - 0.99856 44.674 0.003165 1.9493 2.8534 43.299

nn-pmrs* 2 0.9979 41.275 0.003481 1.8639 3.2294 40.604

nn-
pmrs**

2 0.9976 42.282 0.003727 1.8638 3.4605 40.940

USD
DEM

PMRS 2 0.99993 50.853 0.000898 1.6618 0.5617 26.621

NN (bp) - 0.99730 40.550 0.005284 1.6771 3.7971 40.550

nn-pmrs* 2 0.99622 40.604 0.005600 1.6064 4.1274 40.604

nn-
pmrs**

2 0.99641 41.611 0.005539 1.6062 3.9973 41.611



Dataset Model k R2 % Dir.
Suc

RMSE GMRAE

(×10-3)

MAPE BRW

USD
GBP

PMRS 2 0.99995 52.218 0.000229 2.9284 0.4277 29.693

NN (bp) - 0.99997 51.890 0.000189 2.9496 0.3805 30.584

nn-pmrs* 2 0.99996 45.973 0.000199 2.8721 0.3839 29.866

nn-
pmrs**

2 0.99995 46.309 0.000206 2.8721 0.3934 29.866

USD
JPY

PMRS 2 0.99988 47.440 0.060916 3.7303 0.6552 24.915

NN (bp) - 0.99993 51.890 0.047101 3.6057 0.5727 31.271

nn-pmrs* 2 0.99987 55.034 0.058962 3.7064 0.7538 37.919

nn-
pmrs**

2 0.99985 56.376 0.063695 3.7870 0.8195 38.255

Table 2.  Table of results for each time series.

The results are on the performance of the chosen PMRS model, NN model and the
two fitted NN models using PMRS inputs on the test set. Results in bold indicate the
best result for that error term.

1 (a) Highest R-Squared value 1 (b) Highest direction success

1 (c) Lowest RMSE 1 (d) Lowest GMRAE

PMRS
38%

NN
49%

NNPMRS*
13%

PMRS
35%

NN
36%

NNPMRS*
29%

PMRS
43%

NN
36%

NNPMRS*
21%

PMRS
21%

NN
14%NNPMRS*

65%



1 (e) Lowest MAPE 1 (f) Highest BRW

Figure 1 (a)-(f) Proportion of models with the best performance on the error measures
averaged across all data tested.
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