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Abstract

Calculation of the marginal likelihood or evidence is a problem central to model
selection and model averaging in a Bayesian framework. Many sampling methods,
especially (Reversible Jump) Markov chain Monte Carlo techniques, have been de-
vised to avoid explicit calculation of the evidence, but they are limited to models
with a common parameterisation. It is desirable to extend model averaging to mod-
els with disparate architectures and parameterisations. In this paper we present a
straightforward general computational scheme for calculating the evidence, applic-
able to any model for which samples can be drawn from the posterior distribution
of parameters conditioned on the data. The scheme is demonstrated on a simple
feature subset selection example.

1 Introduction

Model comparison, model selection and model averaging depend upon the availab-
ility of a measure of the quality of a model given some data. Within the Bayesian
paradigm the relevant quantity is p(D |M) which is known as the model evidence
[MacKay, 1995] or marginal likelihood [Kass and Raftery, 1995] and which measures
the probability of the data D conditioned on the model M. The evidence appears as
the denominator in Bayes’ rule for the posterior probability of the model parameters
θ given observed data D:

p(θ |D,M) =
p(D |θ,M)p(θ |M)

p(D |M)
. (1)

Specification of the model defines the likelihood p(D |θ,M) while priors over the
parameters p(θ |M) are typically assigned to embody subjective expectations. The
evidence, however, may be regarded as merely a normalising factor, ensuring that
the posterior density integrates to unity, and is unimportant for comparing posterior
probabilities of parameters for a particular model, M. Indeed, analytic calculation
of the evidence is intractable in all but the simplest cases.

Nonetheless, the model evidence is essential for comparing models. As MacKay
[2003, page 379] remarks,

The normalising constant Z [= p(D |M)] is often the most important
number in the problem, and I think every effort should be devoted to
calculating it.
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The purpose of this paper is to present a straightforward computational scheme for
calculating the evidence using samples drawn from the parameter posterior distri-
bution, and to show how it can be used in practice.

In the remainder of this section we discuss Bayesian model averaging in more
detail, before describing our computational scheme in section 2. We demonstrate
the efficacy of the scheme in section 3 and conclude with a discussion in section 4.

1.1 Model averaging

Although the marginal likelihood is useful for comparing unsupervised models, for
definiteness we concentrate on the supervised learning of the mapping from features
x to targets y. We assume that a model M, which depends on some parameters, θ,
gives the probability p(y |x, θ,M) of the target having value y given the feature x.
For example, if M is the family of linear discriminants with link function φ, so that
y = φ(

∑

i wixi + w0), then p(y |x, θ,M) is the probability that x belongs to one of
two classes and θ = w is a vector of weights and the bias, w0. As a second example,
if M is the family of radial basis function regressors, then θ is the collection of
basis functions centres and variances together with the interconnection weights.
Traditional methods fix θ at a ‘best’ value, usually chosen by minimising an error
function (or, equivalently, maximising a likelihood or penalised likelihood) based on
some training data D. These ‘best’ parameters are then used in the model to make
predictions on previously unseen data. The Bayesian model-averaging approaches
instead average over the set of parameters θ. See Clyde and George [2004] for
a recent review of developments in Bayesian model averaging. The averages are
taken with respect to p(θ |D,M), the posterior probability of the parameters having
observed the data:

p(y |x, D,M) =

∫

p(y |x, θ,M)p(θ |D,M) dθ. (2)

This averaging process provides a number of advantages over the ‘best’ value ap-
proach. First, weighted averaging over models is a natural response to the incor-
rect specification of the model and avoids the brittleness associated with a single
highly-tuned (but probably incorrect) model. Secondly, the posterior distribution
of models allows the estimation of confidence measures in the resultant prediction
or classification. Thirdly, Bayesian averaging is the optimal decision policy with
respect to quadratic loss.

Analytic expressions for the posterior probabilities are available only in rare,
simple situations [see, for example, Bernardo and Smith, 1994]. Using Bayes’ rule
(1) in equation (2) shows that the difficulty lies in calculating the evidence, which
is the normalising factor p(D |M) in (1):

p(D |M) =

∫

p(D |θ,M)p(θ |M) dθ. (3)

Recourse is frequently made to Markov chain Monte Carlo (MCMC) methods to
approximate (2). The key to the MCMC process is that samples θ

(k) may be drawn
from the posterior p(θ |D,M), even when the posterior is only known up to a
constant normalising factor. With K samples the averaging integral (2) may then
be approximated as

p(y |x, D,M) ≈
1

K

K
∑

k=1

p(y |x, θ(k),M). (4)



With the burgeoning computational resources available, MCMC methods have
become well established (see Liu [2001] for a recent survey). In addition, the Re-
versible Jump extension to MCMC [RJMCMC: Green, 1995; Denison et al., 2002]
permits integration over parameter sets whose dimensionality is not fixed. For ex-
ample, the number of hidden units in a neural network [Andrieu et al., 2001], the
number of neighbours in a k-nearest neighbour (k-NN) model [Holmes and Adams,
2002] or the number of inputs for feature selection [e.g., Carlin and Chib, 1995;
Sykacek, 2000; Vehtari and Lampinen, 2001].

However, state of the art (RJ)MCMC currently permits averaging over the para-
meters of models with a common parameterisation, θ, which we call a family, de-
noted by M; thus one may average over all k-NN models or all linear logistic
regressors, but not over both families together. A logical development of this idea
would be to extend model averaging beyond single model families to cover several
architectural families of model.

Extending the RJMCMC formalism to cover changes in dimension associated
with jumps between families is a superficially attractive avenue. However, formu-
lating an overarching model to include several disparate models is difficult. Even if
a grand model could be constructed, coming up with efficient proposal densities to
make transitions between the disparate families within the model is likely to very
hard, and the derivation of the attendant Jacobian of the transformation θ "→ θ

′

for inter-family transitions will be difficult and error prone. Moreover, one would
have to construct special proposals and calculate Jacobians between every pair of
families comprising the grand model.

If the evidence p(D |Mi) for each model family Mi were available then the model
averaging could be extended to cover families of models:

p(y |x, D) =
∑

i

p(y |x, D,Mi)p(Mi |D) (5)

∝
∑

i

p(y |x, D,Mi)p(D |Mi)p(Mi). (6)

where p(Mi) are priors over each of the model families. With the evidences on
hand it is simple to perform this averaging: with a target of K samples overall,
we run Markov chains for each family Mi and average the predictions from K ×
p(D |Mi)p(Mi) independent samples from the chain for model family Mi.

Alternatively, instead of averaging over all families the evidence may be used to
select the model family for which there is greatest evidence and inferences can then
be conducted by (RJ)MCMC within this family.

2 Calculating Evidence

Various methods have been proposed for direct MCMC calculation of evidences
[Kass and Raftery, 1995; Bos, 2002]. The simplest, but least efficient, is to sample
from the prior p(θ |M) and then to estimate (3) by averaging the likelihood p(D |θ,M)
over the sampled values. The harmonic mean of the likelihood values using samples
from the posterior p(θ |D,M) is much more efficient, but suffers from a certain
amount of instability [Kass and Raftery, 1995], although modifications to avoid the
instability have been proposed by Newton and Raftery [1994] and Gelfand and Dey
[1994].

Our approach to calculating the evidence is essentially that of Aitken [1991]. The
key is to partition the available training data, D, into an evidence set, DE , and a



training set, DT . Then the evidence for model M conditioned on the training set,
is

p(DE |DT ,M) =

∫

p(DE |θ)p(θ |DT ,M) dθ (7)

which can be calculated by drawing samples from p(θ |DT ,M) in the usual way
and using them to average the likelihood of the evidence partition, p(DE |θ). The
result, p(DE |DT ,M), is the likelihood of the evidence data given the training data
under the model M. It is analogous to the innovations probability p(xt |Dt−1,M)
in hidden Markov models, where xt is an observation at time t and Dt−1 denotes
all the data observed up to and including time t − 1 [e.g. Rabiner, 1989].

However, the above method of calculating the evidence suffers from the draw-
back that each of DT and DE form only a portion of the available data D, and in
this there is a direct analogy with the problems encountered in data-based assess-
ment of classification rules. In such assessment we split the available data into a
portion for training the classifier and a portion for assessing its performance, while
in the present case the ‘training’ is the estimation of the posterior probabilities
p(θ |DT ,M) and the ‘assessment’ is the calculation of p(DE |θ) for averaging. In-
creasing the DE/DT ratio will improve estimation of p(DE |θ) but at the expense
of poorer estimation of p(θ |DT ,M), and vice-versa. This may not be a problem
if very large amounts of training data are available, but in general we would like to
optimise data usage in the estimation process. To do this we can draw on techniques
from data-based classification assessment.

In order to maximise the use of the information in the data, rather than splitting
the dataset into just a single pair of evidence and training partitions, we use a
scheme similar to G-fold cross validation. The data set D is divided into G equally-
sized disjoint subsets, Dg, so that D = ∪G

g=1Dg, and D−g denotes all the data not
in partition g, D−g = D \ Dg. Then p(Dg |D−g,M) is calculated using (7) and a
straightforward plug-in estimate of the total evidence is:

p(D |M) ≈
G

∏

g=1

p(Dg |D−g,M). (8)

As we now demonstrate, (8) provides a viable and effective approach for estimating
the model evidence.

3 Illustration

We illustrate this approach on variable selection in a simple synthetic linear re-
gression problem, for which analytic results are available [Lindley and Smith, 1972;
Bernardo and Smith, 1994].

We have simulated data in which the dependent variable y is generated as a linear
combination of four-dimensional data x with Gaussian-distributed observational
noise:

y = w0 +
4

∑

j=1

wjxj + ε. (9)

The xj themselves are Gaussian distributed with zero mean and unit variance. In
half the data y is a linear combination of x2 and x3 plus noise of unit variance:
y = x2 −4x3 + ε; in the other half of the data the predictive variables are x1 and x3

and the noise has variance 0.22: y = x1 − x3/2 + ε. x4 is irrelevant for prediction.



Mi log p(DE |Mi) log p(DE |DT ,Mi)
(4) -9518.8 -9497.7
(2, 4) -9508.4 -9481.0
(2) -9500.9 -9481.1
(1, 4) -9494.9 -9467.4
(1) -9487.2 -9467.4
(1, 2, 4) -9482.8 -9449.1
(1, 2) -9475.2 -9449.2
(3, 4) -8959.5 -8930.6
(3) -8951.8 -8930.3
(2, 3, 4) -8943.9 -8908.5
(2, 3) -8936.3 -8908.2
(1, 3, 4) -8924.9 -8889.8
(1, 3) -8917.0 -8889.5
(1, 2, 3, 4) -8907.0 -8865.4
(1, 2, 3) -8899.2 -8865.2

Table 1: Estimates of p(DE |DT ,Mi) and ‘true’ evidence p(DE |Mi) for each of 15
models Mi corresponding to different feature combinations.

We regard the linear regression model with each of the possible combinations of
input variables as a separate model so that, excluding the model with no inputs,
there are 15 possible models Mi. If w denotes the vector of coefficients and the
bias w0 for the relevant model, then we choose conjugate, Normal-Inverse-Gamma
(NIG) priors over w and the noise variance σ2; thus

p(w, σ2) = p(w |σ2)p(σ2) (10)

= N(w |m, σ2V)IG(σ2 |α, β), (11)

where V = vI with v = 104, and where IG denotes the inverse-gamma density:

IG(σ2 |α, β) =
βα

Γ(α)
σ−2(α+1)e−β/σ2

, (12)

with hyperparameters α and β. Note that in order to simplify the calculation of the
marginal likelihood, we set a Normal prior with mean zero over all the coefficients
including the bias w0, rather than the more common improper uniform prior over
w0.

Standard theory [see, for example, Bernardo and Smith, 1994] shows that the
posterior distribution for w and σ2 is also NIG with parameters:

m∗ = (V−1 + XT X)−1XT y (13)

V∗ = (V−1 + XT X)−1 (14)

α∗ = α + N/2 (15)

β∗ = β + [yT y − (m∗)T (V∗)−1m∗]/2. (16)

Here X is the matrix of the N observations xn arranged as rows and y is the vector
of the yn.

The ‘true’ evidence of data D = {X,y} is calculated by evaluating the marginal
likelihood:

p(D |Mi) = (2π)−N/2 |V
∗|1/2

|V|1/2

(β∗)−α∗

β−α

Γ(α∗)

Γ(α)
. (17)
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Figure 1: Joined circles: Estimates of p(DE |DT ,Mi) plotted versus p(DE |Mi)
for each of 15 models corresponding to different feature combinations. Crosses:
p(DT |Mi).

As an initial illustration we estimate p(DE |DT ,Mi) for independently generated
datasets DE and DT , each comprised of N = 4000 observations. For each of the
15 models corresponding to combinations of the input features, p(DE |DT ,Mi) was
calculated by drawing samples {w(k), σ(k)} from the posterior density p(w, σ |DT ,Mi);
these were used to approximate (7):

p(DE |DT , Mi) ≈
1

K

K
∑

k=1

p(DE |w(k), σ(k),Mi). (18)

where the likelihood for the ‘evidence partition’, DE = {X,y} is

p(DE |w, σ) = (2πσ2)−
N

2 exp

{

−
(y − Xw)T (y − Xw)

2σ2

}

. (19)

Table 1 and Figure 1 compare the estimated evidence p(DE |DT ,Mi) with the
true evidence p(DE |Mi) calculated using (17) for the 15 models corresponding to
combinations of the input features. The models are ordered by the true evidence.
There is most evidence for the model using the relevant predictors (x1, x2, x3) and
the models fall into two distinct groups: those with high evidence include x3, which
is predictive for both halves of the data, as an input feature; and those not including
x3 with low evidence.

As Table 1 and Figure 1 show there is good agreement between the estimated
evidence and the true value. The approximation to the evidence correctly orders
the models according to p(DE |Mi). Furthermore, the numerical values of the
approximations are close to the true values. As a crude measure of the variability
that might be expected in p(DE |Mi), the Figure 1 also shows the ‘true’ evidence
p(DT |Mi) for the training partition, which was generated in an identical manner



Mi log p(D |Mi) log
∏

g p(Dg |D−g,Mi)
(4) -9548.2 -9526.5
(1, 4) -9540.7 -9511.9
(1) -9532.5 -9511.3
(2, 4) -9518.8 -9490.0
(1, 2, 4) -9511.6 -9475.8
(2) -9510.6 -9489.3
(1, 2) -9503.4 -9475.1
(3, 4) -8962.5 -8934.6
(3) -8954.4 -8934.0
(1, 3, 4) -8948.5 -8913.2
(1, 3) -8940.3 -8912.6
(2, 3, 4) -8929.1 -8894.1
(2, 3) -8921.0 -8893.6
(1, 2, 3, 4) -8915.5 -8873.2
(1, 2, 3) -8907.3 -8872.6

Table 2: The ‘true’ evidence p(D |Mi) and estimates of p(D |Mi) from
∏

g p(Dg |D−g,M) for each of 15 models Mi corresponding to different feature
combinations.

to DE and has the same number of observations as DE . This indicates that the
approximation to the evidence is within the variability that might arise from the
observation of a particular dataset. However, the reason for the approximations
being systematically larger than the true values is not at present known.

It is also interesting to note that the ‘staircase’ appearance of Figure 1 is due to
the fact that p(DE |DT ,Mi) for a model which includes the irrelevant variable x4

is only very slightly lower than the evidence for the model excluding x4.
The calculation discussed above partitioned the data into a set DT for estimating

the model parameters, while the approximation was evaluated on the remaining
data, DE . We now examine the quality of the ‘cross validation’ approximation
(8). We used a total of N = 4000 observations from the linear regression data and
partitioned them into G = 5 subsets Dg. The data in the complement of Dg were
used to run a Markov chain to draw samples {w(k), σ(k)} from p(w, σ |D−g,Mi); the
samples were then used to average the likelihood p(Dg |w, σ) in a similar manner to
(18). The averages from the 5 separate chains were combined using (8) to estimate
p(D |Mi).

Comparisons of the true evidence and the approximation for each of the 15
feature combinations are shown in Table 2 and Figure 2. Again, except for one
model, the approximation correctly orders the models according to p(D |Mi), and
the numerical values of the approximations are close to the true values.

We remark that some care must be taken with the averaging of the condi-
tional likelihoods p(Dg |w(k), σ(k),Mi). In this problem, as Figures 3 and 4 show,
log p(Dg |w(k), σ(k),Mi) is approximately normally distributed. This presents two
difficulties. First, samples in the extreme right-hand tail of the distribution have a
large influence on the value of 〈p(Dg |w(k), σ(k),Mi)〉. Since these samples are rare
it is necessary to run the Markov chain for long enough to faithfully represent this
tail of the distribution. In the experiments reported here we used 105 samples for
averaging; independence between samples was ensured by using only every seventh
sample in a chain of length 7 × 105, following a burn-in period. Secondly, the wide
range of values of log p(Dg |w(k), σ(k),Mi) means that care must be taken to pre-
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Figure 2: Estimates of p(D |DT ,Mi) plotted versus p(D |Mi) for each of 15 models
corresponding to different feature combinations.

vent numerical overflow and underflow when averaging the ‘un-logged’ probabilities.
The normal nature of the distribution of log p(Dg |θ,Mi) in this particular prob-

lem means that the integral (7) could be finessed with a semi-analytic approxima-
tion. However, calculations for other models (e.g., the probabilistic k-NN model of
Holmes and Adams [2002]) indicate that the distribution of p(Dg |θ) may have a
quite different shape, necessitating straightforward Monte Carlo integration of (7)
as performed here. On the other hand the distribution of p(Dg |θ) for the prob-
abilistic k-NN model is skewed towards large likelihood values thus reducing the
number of samples needed to obtain a good approximation to the average.

4 Discussion

In this paper we have proposed a straightforward scheme for numerically approx-
imating the evidence of a model or family of models. Calculations on a simple, but
non-trivial, linear regression problem indicate that the scheme yields reasonably ac-
curate approximations. Implementation of the approximation scheme requires only
that samples can be drawn from the posterior distribution of the model parameters,
together with calculation of model likelihoods. It is thus widely applicable to the
many model families for which (RJ)MCMC methods have been developed.

In order to make full use of the information available in a dataset, we combined
estimates from partitions of the data using the ‘plug-in’ estimate (8), which gives
reasonably accurate results. An alternative method of combining evidence estimates
from partitions Dg and D−g is to approximate the integral (7) as a sum:

p(Dg |M) =
G

∑

g=1

p(Dg |D−g,M)p(D−g |M). (20)
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Figure 3: Samples log p(Dg |w(k), σ(k),Mi) used for averaging p(Dg |θ,Mi). The
horizontal line indicates log〈p(Dg |w(k), σ(k),Mi)〉.

Methods which treat (20) as a system of linear equations to be solved for p(Dg |M)
and p(D−g |M) are a focus of further work.

We mention that in the nomenclature of statistical physics, the evidence is known
as the partition function Z and the free energy of an ensemble is F = − log(Z).
Neal [1993] reviews a number of numerical methods—importance sampling, ther-
modynamic integration, and distribution overlap—and has proposed an annealed
importance sampling method [Neal, 1998] for estimating the difference in free energy
for a pair of systems. However, these methods estimate the free energy difference,
and in general the systems must be quite similar and require a common paramet-
erisation.

Variational methods [e.g., Jaakkola et al., 1998] also provide an approximation
to the evidence although they are of course approximations and good variational
approximations are not available for all models. An alternative method for calcu-
lating the evidence is via a Laplace approximation to (3). In practice, variational
methods and Laplace approximations can be difficult to apply and the quality of
the approximation they provide is unknown.

The evidence calculation scheme proposed here opens up a viable method for
Bayesian model averaging over architecturally distinct families of model. Thus
current work is focusing on averaging over families of classifier, such as linear logistic
regressors (a family of global models), radial basis function classifiers (semi-local
models) and probabilistic k-nearest neighbour classifiers (local models). Averaging
within each family may be performed by Reversible Jump MCMC integration.

This method requires the running of G ≥ 2 Markov chains for each model or
model family over which averaging is to be performed, even if it subsequently turns
out that some of the models have negligible evidence. It is therefore not a replace-
ment for RJMCMC methods, the beauty of which lies in their ability to sample
models in proportion to the evidence for the model, even if the space of possible
models is very large or infinite. We therefore view the principal application of this
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Figure 4: Histogram of the samples log p(Dg |w(k), σ(k),Mi) shown in Figure 3.

method to be the extension of model averaging or model selection to a (relatively
small) range of architecturally distinct model families.

Nonetheless, this method might be used for model averaging within a model fam-
ily in which RJMCMC is possible, but technically difficult. For example, Richardson
and Green [1997] showed how to construct reversible jump Markov chains for Gaus-
sian mixture models in one dimension, in which the reversible jumps are made over
the number of Gaussian kernels in the mixture model. Extending their technique
to mixture models in more than one dimension is theoretically straightforward, but
finding efficient proposal densities and calculating the relevant Jacobians is daunt-
ing. On the other hand MCMC for each fixed number of mixture kernels can be
performed by straightforward Gibbs sampling; if the evidence for each number of
kernels were assessed with this technique, samples from each model could then easily
combined in the correct proportions.
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