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Abstract. This paper sets out a number of the popular areas from the
literature in multi-objective supervised learning, along with simple exam-
ples. It continues by highlighting some specific areas of interest/concern
when dealing with multi-objective supervised learning problems, and
highlights future areas of potential research.

1 Introduction: What is supervised learning?

Supervised learning is the term applied in the machine learning field to tech-
niques for inducing a function mapping between pairs of inputs and desired
outputs – based on some body of training data. Inputs are typically vectors of
inputs (discrete, continuous or mixed) and outputs typically a single continuous
value (in which case the problem is called regression), or a vector of class mem-
bership probabilities/scores (in which case the problem is called classification).
The training data is a finite set of data, usually of known veracity, which it
is generally hoped is representative of the underlying generating process to be
modelled. This underlying process may lead to an infinite number of possible
pairings. The function induction is carried out in order to be able to predict the
correct output value/label for input combinations not previously encountered –
to be able to ‘generalise’ from the training data.

A number of problems arise in supervised learning. On the data side there is
the issue of how well the training data actually represents the generating process
(e.g., if important relationships are not represented, they cannot be learnt),
whether the generating process is stationary or not (whether the problem itself
changes over time), and how to prevent ‘over-fitting’ the training data (i.e., how
to model the underlying relationship but not any noise present in the training
data, or spurious relationships). There are also often issues of data with missing
or incorrect output pairings.

On the function induction side there is the problem of choosing a priori

which specific model/family of models to use, and how complex a representation
to allow. There is also the issue of which error term to use during the train-
ing/learning process in order to generate the model with the best generalisation
ability or other related properties. Finally, there is the issue of which subset of
inputs/features to induce the model from.
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The paper proceeds as follows. In the next section a more formal definition
of supervised learning is provided, along with examples of multi-objective super-
vised learning. Following this a brief discussion of issues arising in the domain
is provided.

2 Different formulations of multi-objective supervised

learning

In a more formal notation, given a model f , which predicts an output ŷ (e.g.
class membership probabilities or real valued regression prediction) based on
an input vector x and model parameters u, ŷ = f(x,u). Supervised learning
techniques try to find a parameterisation u such that

û = argmin
u∈U

error(f(ℵ,u), g(ℵ)), (1)

where g() is the underlying generating process, ℵ is the set of all valid input
vectors, and U is the set of all feasible model parameterisations. Typically one
does not have access to ℵ or g(ℵ), and instead one has a subset of observations
from the generating process (denoted here as X and Y ) – which may include
noise. As such the problem changes to estimating:

ũ = arg min
u∈U

error(f(X,u), Y ), (2)

Obviously the key is determining the error function (whether it is Euclidean or
another Minkowski metric for regression problems, risk minimisation for classifi-
cation problems [2], or something application specific), along with which learning
algorithm to use to approximate (2) – and any augmentations needed to the error
function in order to mitigate any over-fitting to X .

A choice must also be made as to whether to use the data ‘as is’ in the
assignment of an error value, or manipulate it through cross-validation or other
sampling techniques.

2.1 Bias/variance trade-off

Arguably one of the more fruitful avenues investigated so far by the evolutionary
multi-objective optimisation (EMOO) community in multi-objective supervised
learning is complexity model optimisation (see e.g. [10, 16, 19] for recent work and
overviews). As noted earlier, there tends to be a problem, especially when using
models with high representation capability, to overfit a model parameterisation
to the training data leading to poor generalisation ability. A textbook example
of this would be when using neural networks (NNs). Given enough activation
units NNs are universal approximators, allowing sufficient complexity within
the model to permit it to model any deterministic underlying generation process.
However, determining the appropriate complexity a priori for a problem so as
not to overfit the data at hand is a persistent problem. In statistical machine
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Fig. 1. Noisy sine wave training data (dots), with noiseless generating function shown
with the solid line. Noise drawn from a Gaussian with zero mean

√

.3 variance. 63
training data points (input values drawn at intervals of 0.1 from 0 to 2π).

learning this is typically confronted by the use of weight decay regularisation [2,
20] – in which a penalty term for large absolute weights is fed into the learning
algorithm (the larger the weight in a sigmoidal transfer unit in an NN, the more
non-linear its mapping in input space).1 Obviously this approach necessitates a
prior on the weighting of this penalty. The use of EMOO approaches on the other
hand allows us to optimise over all complexities. As such the problem can be
cast as bi-objective for EMOO, with the first objective being the minimisation of
the error function (in the regression problems shown here, the root mean square
error), and the second objective being the minimisation of model complexity
(here, the sum of the absolute weights of a multi-layer perceptron (MLP) neural
network).

A simple example is now provided. The problem is the regression of a noisy
sine wave, with the training data illustrated in Figure 1, with circles denoting
the training data and the line representing the continuous (noiseless) generating
process. Using a simple greedy (1+1) – evolution strategy, as described in [8,
9], one can discover the networks leading to the regressions shown in Figure 2,
which correspond to points on the estimated Pareto front (dots) in Figure 3b.2

Figure 2a shows the regression lines of the 50 models with the lowest complexity

1 Other approaches have been to use pruning algorithms to remove nodes [21], other
complexity loss functions [25] and topology selection methods [24].

2 For completeness an initial non-dominated set of points was generated by training a
MLP (with one inputs unit, 50 hidden units and one output unit) using the quasi-
newton method [2, 18] and evaluating its objectives every 50 epochs (up to 5000
epochs). The ES was run for 50000 generations, with a probability of weight mutation
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(summed absolute weights) from the estimated Pareto front with Figures 2b-f
showing the regression lines of groups of 50 models with consecutively higher
complexity levels.
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Fig. 2. Regression lines of the estimated Pareto optimal NNs on the training data.
Plots (a)–(f) show groups of 50 models, from lowest complexity to highest complexity.

The models span the spectrum from severe under-fitting (such as the almost
straight lines in Figure 2a) to severe over-fitting (such as the wiggly lines shown
in Figure 2f). This range of model types is to be expected from the optimisation

of 0.1 and mutation being formed of additive draws from a zero mean Gaussian with
variance of

√

0.2.
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Fig. 3. a) Regression lines of the estimated Pareto optimal NNs on the training data
(plotted in dotted lines). b) Estimated Pareto optimal front of NNs (dots) and the
same NNs evaluated on a validation set from the same generation and noise process
(crosses), note the switch back effect in the lower left corner.
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Fig. 4. a) Regression line of model with lowest RMSE on training data from estimated
Pareto set. b) Regression line of model with lowest RMSE on validation data from
estimated Pareto set (on training data). c) Regression line of ensemble of 10 models
with lowest RMSE on validation data from estimated Pareto set (on training data).

objectives. The problem still arises as to how to choose an operating model from
the set at the end of the optimisation run. One approach discussed in [10] is
to evaluate the set on a second validation set of data and note at which point
the complexity/accuracy curve ‘switches back’. This is shown in 3b by crosses,
where a validation set of equal size as the training set is used, from the same
generating process. A prominent ‘switch back’ point can be seen in the lower left
hand corner, which would lead one to either choose the model with lowest root
mean squared error (RMSE) in this area, or alternatively use a equal weighted
ensemble of points from this region.

Figure 4 shows the regression line of various approaches with a solid line –
in all cases the dashed line shows the underlying noiseless generating process.
Figure 4a is the model with lowest RMSE on the training data (i.e., the model
corresponding to the leftmost point in Figure 3b), Figure 4b is the model with
lowest RMSE on the validation data (i.e., the model corresponding to bottom left
of the ‘switch back’ cross in Figure 3b), and Figure 4c is the average regression
line of the 10 models with the lowest validation error (the models at the knee of
the switch back). As can clearly be seen, the model with the lowest RMSE on the
training data clearly is overfitting, but the regression lines in Figures 4b and 4c



7

are much closer to the underlying generating process. Even though the network
representation capability is very high (50 hidden units, with only 63 training
points) the use of a complexity minimisation objective and a validation set has
led to a good estimate of the noiseless generating process. Other approaches like
bootstrapping or cross validation could also be employed for a similar effect.

2.2 Input selection

Input selection has been encapsulated both explicitly within supervised learning
EMOO methods (as one of the objectives to be minimised (e.g. [19]), or as part of
the overall complexity to be minimised (e.g. [10]). It is typically separated from
model complexity measures due to the additional cost inputs can sometimes
represent (the fewer inputs used, the lower the cost in sampling inputs for future
classification/regression tasks). Also, the use of spurious inputs is known to
impede the performance of a model [2].

2.3 Competing error terms

Another approach that has proved popular is training with multiple errors. One
area of interest has been in financial applications, where there are application
specific error terms (like return on investment of predicting an asset price) which
when used by itself is difficult to train a model, but in conjunction with a good-
ness of fit error measure can ensure that you have models that accurately predict
the signal and are profitable [8, 22].

Another interesting area is the trade off between different measures of ‘good-
ness of fit’. For instance, using EMOO methods one may optimise with respect
to one measure (e.g. RMSE or absolute error) and also with respect to the dis-
tributional properties of this principle error measure [1, 7].

Another example of competing errors is in receiver operating characteristic
(ROC) analysis, where for two class problems the true positive rate (the pro-
portion of correct assignments to the principle class by the model) is traded
off against the false positive rate (the proportion of incorrect assignments of
the second class to the principle class by the model). The example in Figure
5a shows the decision boundaries formed by radial basis function (RBF) neu-
ral network classifiers on the test problem from [12].3 Figure 5b in turn shows
the estimated optimal ROC curve on the 250 training data points (shown with
dots on the plot), and their evaluation on 1000 testing data points (shown with
crosses on the plot). Interestingly, although not shown here (but available in
[12]), synthetic ROC problems are perhaps the only supervised learning prob-
lems for which the true Pareto front can be determined and the performance of
the optimised solutions compared to it. This is because with a synthetic classifi-
cation problem one can determine the exact posterior probability of any feature

3 The RBFs contained 10 units with Gaussian kernels, optimised in the fashion dis-
cussed in [11] using a (1+1)-ES for 5000 generations with a probability of mutation
of 0.1 and variance of additive Gaussian mutation of

√

0.2.
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Fig. 5. a) Decision contours of RBF networks on estimated optimal ROC front, training
data shown with one class denoted by circles and the other by crosses. b) Estimated
optimal ROC front on 250 training data pairs ( denoted by dots) and their evaluation
on 1000 testing data pairs (denoted by crosses).

vector, and therefore can trace out the ROC curve of Bayes rule classifier (the
best possible). However, the downside to this is that when optimising a classifier
based on training data from a synthetic problem, you only actually have access
to an estimate of the posterior probability, not the true posterior probability
(otherwise you would not need a classifier in the first place). As such the esti-
mated ROC curve may actually seem in front of the known optimal curve. This
problem of noise and uncertainty (which is apparent in most if not all super-
vised learning problems) is one of the principle areas needing additional research
in multi-objective supervised learning, and can be the source of over-optimistic
assessments of performance.

3 Discussion

There are a number of other avenues in multi-objective supervised learning which
have been explored using EMOO (like ensemble training, which will be the sub-
ject of another workshop presentation), however the examples presented here
should present a reasonable overview of the general area.

There are still a large number of open questions in the field of multi-objective
supervised learning. For instance it is an area with a large number of hybrid
models – usually researchers tend to either start a process with a ‘traditional’
local optimiser (like gradient descent in NNs), or iterate between a local process
and an EMOO method. This tends to be because the search space is easier
traversed (at least to begin with) by local methods, and because, for many of the
classifiers/regressors used, the range of parameters to be searched is essentially
without limits. As such EMOO techniques are often used to trace out an estimate
of the Pareto front for a problem after a traditional algorithm has supplied a
single point on a good estimate of the front. The question of how much search
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Fig. 6. Example decision boundaries (from RBF classifiers) with identical operating
points in ROC space.

to carry out with local methods and how much time to spend searching with
EMOO methods is still an open one.

To end, a few points that are worth highlighting are:

Overfitting: Unless there is an explicit casting of an objective to minimise com-
plexity, EMOO approaches to optimising competing errors can be very prone to
overfitting. The use of weight decay regularisation approaches in hybrid EMOOs
may mitigate this somewhat – but to do this they must assume a penalty term
independent of the region of objective space, which is a difficult assumption to
justify.

Many to one mappings: Perhaps more than other application areas, supervised
learning parameter space is full of regions which have identical evaluations in ob-
jective space – especially if it is a classification problem. These disjoint plateaus
can cause many problems for optimisers, and when using an elite multi-objective
optimiser raises the question as to which solution to store if they have the same
objective valuations but very different input space partitioning. Figure 6 illus-
trates this with the synthetic classification problem used earlier – the decision
contours shown have identical misclassification rates on the data, but have dif-
ferent decision boundaries.

Comparison: It would be interesting to see what actual benefits some of the
EMOO approaches have compared to other recent methods from the Machine
Learning community – for instance in feature selection tend to be compared to
forwards/backwards selection, and/or another EMOO method, but recent high
powered models like reversible-jump Markov chain Monte Carlo methods [3] have
been largely ignored.
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Noise, uncertainty, truth: Arguably the largest problem in multi-objective su-
pervised learning is the fact that only samples of the generating process are
available, which tend to be noisy. Optimising with uncertainty/robust optimisa-
tion is an area which is gaining more interest in the general EMOO community at
the current time [15, 23, 13, 14] and supervised learning problems should present
an interesting avenue of research in this area.

4 A final note

The empirical examples provided have been bi-objective ones, however, this has
mainly been due to ease of visualisation, and not necessarily indicative of all
multi-objective supervised learning applications; for instance [4] optimises 3 ob-
jectives for an air traffic alert warning system and the multi-class extension of
the ROC curve developed by Everson and Fieldsend [11, 5, 6] has been applied
to 6 objective problems in published work (and much higher in unpublished
material).
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