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Abstract- There has been only limited discussion on the modern multi-objective evolutionary algorithms (MOEAS)
effect of uncertainty and noise in multi-objective opti- rely heavily on elitism, this should be of concern to practi-
misation problems and how to deal with it. Here we ad- tioners dealing with uncertain multi-objective problens.
dress this problem by assessing the probability of domi- this paper we model the uncertainty in the objectives as ob-
nance and maintaining an archive of solutions which are servational noise. We describe, in Section 2, a sequence of
mutually non-dominating with some known probability.  methods for use in multi-objective optimisation depending
on the amount of information that is known about the noise
characteristics. These methods are illustrated on stdndar
test problems modified by the addition of noise.

We examine methods for estimating the probability of
dominance. These depend crucially on estimating the
effective noise variance and we introduce a novel method
of learning the variance during optimisation. Teich (2001) and Hughes (2001) have each addressed mul-
tiobjective optimisation with uncertainty and here we ex-
tend their work by relaxing the assumptions made about the
noise characteristics. Hughes (2001) makes the important
distinction between two sorts of uncertainty. First, thedu
tion being optimised may be in error, that it is it may not be
a faithful model of the system which should be optimised,
1 Introduction but re-evaluations of the function with the same parameters
yield identical results. Secondly, the function being eval
uated may be noisy; repeated evaluations giving different

Evolutionary computatlon_ (EC) techniques are now extenr?esults. It is this latter case that we address here, altihoug

Probabilistic domination contours are presented as a
method for conveying the confidence that may be placed
in objectives that are optimised in the presence of uncer-
tainty.

I . . . . . .
: . .~ mation about inaccuracies in the model is available.
complex function transformation from parameters to objec-

tive(s) (see for instance the Adaptive Computing in DesigBefore discussing the effect of uncertainty in the evabrati
and Manufacture series (Parmee, 2004)). Almost all optimbf objectives, we briefly review the ideas of dominance and
sation procedures search the parameter space by evaluafftayeto optimality which are central to multi-objective iopt
the objectives for a given parameterisation before prampsi misation.
anew, hopefully better, parar_netensatlonj It IS generaﬂ;l-y A general multi-objective optimisation problem seeks to
sumed that repeated evaluation of the objectives for aesmgsl. . C

arameterisation yields the same objective values. Ho imultaneously extremisd) objectives: fa(x), d =
gver a special bﬁt not insubstantialJ class of theée rop-" "’ [ where each objective depends upon a vegtor

» @ special, bl ) e hese p x1,...,2xp) Of P parameters or decision variables. In this

lems exists in which there is additional uncertainty in th

) . aper we are concerned with the problem in which the ob-
veracity of the results obtained from the system model. O &t .
. é ctives themselves are unobservable, but instead we have
clear example arises when measurement error or stochas:

. : ; . access tayy the objectives contaminated loypservational
tic elements in physical system leads to different resuwits f Yd ) op

. .. noiseec:
repeated evaluations at the same parameter values (Bughe . 1
et al., 2002; Stagge, 1998). Our own interest in this topic ya = fa(x) + €q (1)
arises from the optimisation of classification error rates i T he parameters may also be subject to.tr@onstraints:
pattern _recognition tasks: pre_cise error rate; o_lepen_d upon e;(x) >0, j=1,...J )

the particular data set used; different, but statisticatjyiv-

alent data sets, arising from bootstrap samples yield diwhich, for simplicity, we assume can be evaluated precisely
ferent error rates (Fieldsend & Everson, 2004; Everson &he multi-objective optimisation problem may thus be ex-
Fieldsend, 2005) and it is important to evaluate the uncepressed as:

tainty associated with optimal classifiers. minimise  £(x) = (f1(x), ..., fp(x)) 3)

Work is ongoing in the scalar optimisation EC community subject to  e(x) = (e1(x),...,es(x)) >0. (4)

to tackle these types of problem, and indicates some elitist

techniques can prove fragile (Raegal., 1996; Di Pietro When faced with only a single objective an optimal solution

et al., 2004), as there is no longer the guarantee that fifs one which minimises the objective given the model con-
ness of the elite solution improves with generation. As mosftraints. However, when there is more than one objective
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to be minimised solutions may exist for which performancelominated by’. If evaluation of the objectives is uncertain
on one objective cannot be improved without reducing pemwe can only speak about the probability of dominance rather
formance on at least one other. Such solutions are said tttan outright dominance. We use the notato® x’ to
bePareto optimal The set of all Pareto optimal solutions ismean thap(x < x’) > «; clearly whena = 1 proba-
said to form the Pareto front. bilistic dominance is equivalent to the usual deterministi

The notion ofdominancenay be used to make Pareto Op_dommance.

timality clearer. Assuming that the goal is to minimise theé”robabilistic dominance allows us to use the usual deter-
objectives and there is no noise, a decision vegtarsaid ministic elitist algorithms, but we maintain an archive in

to strictly dominateanotherz (denotedk < z) iff which we have a degree a@bnfidence Thus we only in-
clude a proposak’ in the archive if thetotal probability
fa(x) < fa(z) Vd=1,....D and (5) that it is dominated by another point in the archive is less
fa(x) < fa(z) for somed. thanl — a.
Less stringentlyx weakly dominates (denotedk < z) iff ~ Therefore a proposal’ is added to the archivE if
fa(%) < fa(z) Vd=1,....D. (6) S px<x)<1-a. ®8)
xeF

A set of decision vectorg' is said to be @on-dominated set Likewise, once a new point has been accepted into the

ifno member of the set is dominated by any other membe:Cfrchive we should delete froiii any solutionsk for which:

Zp(z <x)>a. 9

zcF

x Az Vx,z€F. @)

A solution to the minimisation problem (3) is th&areto

optimalif it is not dominated by any other feasible sqution,TheSe criteria could be computationally expensive because

and the non-dominated set of all Pareto optimal solutions i ihe need to compute the probability of dominance be-
the Pareto fronp. tween each potential new entrant to the archive and all

Elitist MOEAs generally maintain a non-dominated set othe members of the archive. However, the time-cost can
archive F' of solutions which form the estimated Paretdde reduced at the expense of space by keeping a table of
front. As the optimisation proceeds new solutions are gene#(x < z) for all x andz in F'. Every time there is a new
ated (either by copying and perturbing solutiongfirfe.g., €ntrant toF" a new row and column of the table need to be
(Knowles & Corne, 2000)) or by mutating and recombinupdated (but the entries have to be computed anyway to de-
ing solutions in a search population (e.g., (Zitzler & Thkiel termine whether to accept the entrant and possibly delete
1999; Debet al., 2000)). If the new solution, say is not nhow-dominated members @f); and a row must be deleted
dominated by a member @f thenx’ is added taF’, and any When a member is deleted.

solutllons Inf that are dominated bxz’.are deleted fron#”. ¢ jg possible that we might want to remove the summation
In this way I is always & non-dominated set that cannofom (9). so that we reject a point if the probability that it
move away from the true Pareto frapt is dominated by any other single archive member is greater
Taking as a starting point an elitist MOEA, the effect ofthana. This would remove problems with (9) if the size of
noise within the evaluation process is twofold. Firstlye th the archive becomes large, but would leave open the possi-
optimising procedure is affected as solutions which shoul@ility of a point beingalmostdominated by lots of archive

be added taF” may be rejected as the noise may represefiiembers at the: level.

them as dominated by an elementiafand conversely, S0- g jmperative issue in using the probabilistic dominance

lutions that should not have been entered into the archiyg, 1 awork is obviously how to calculatéx < x'). This is
may be entered, as noise makes them seem better than (je¥enqant on whatpriori knowledge is available about the
are. This therefore has the effect of reducing the algorlthrgystem noise (or what assumptions it is reasonable to make).

efficiency. Secondly, the final archive may over estimate thg, i s methods for its calculation in different situaticare
true Pareto front due to “lucky” noise realisations making, ., discussed.

an objective better than is really feasible. In additiorg th
archive may also contain a large number of solutions which
would actually be dominated by other archive members (2.1 Unknown noise
evaluated without noise).
The most severe case is when the noise properties are com-
o ) pletely unknown. It may be asymmetric and there may be
2 Probabilistic dominance dependencies between noise in different objectives. B thi
case the degree of dominance between two solutions can
The crucial operations in elitist multi-objective optiration ~ be estimated by repeated evaluation at the fixed parameter
are whether to add a proposed solutidrio the archive and Vvaluesx andx’. Suppose thaty;};",, are the objectives
which solutions to delete from the archive because they aswaluated: times atx, and{y’}?" , aren’ evaluations at’,



then the probability that dominates<’ is estimated by the is the standard normal density with mearand standard
fraction of times thay; dominatesy’: deviationo2. Note that (13) allows for the possibility that
the noise variance, may vary with location. Using (13) in
1 &Y (12) gives the probability of dominance in terms of the error
px<x) = — S Iy <y)) (10)  function (Hughes, 2001):

i=1 j=1

, 1
wherel(-) is the indicator function. p(f(x) < f(x)) =3 {1 +erf (m/ﬁ)} (15)

Estimating probabilistic dominance by this samplingyhere
method clearly requires several evaluations of the ohjesti

at bothx and x’, which may be prohibitively expensive. _ y(x') —y(x)
. . e . m . (16)
This cost can be substantially reduced if it is known or it o2+ 02,

can be assumed that the noise corrupting each objective is L )
independent. In this case the evaluations for each obgecti¢learly ifx’ = x thenm = 0Oandp(f(x) < f(x') = 1/2as

dimension can be permuted to form additional samples. €xpected by symmetry. Consequenilf(x) < f(x’)) =
2P and the probability thak’ and x are mutually non-
dominating isl — 55— .
2.2 Independent noise for each objective o ] )
The uncertainty in whether one solution dominates another
If the noise on contaminating the objectives can be assum&{Y be reducsd by re-evalgatlpg the solut|onlx andx’.
to be independent, the probability of dominance deconf:S @PoVve{y;}i, are the objectives evaluatedimes atx,

poses into a product of probabilities for each dimension: and{yj}}_, aren’ evaluations ak’. Then the uncertainty
in the location off (x) is reduced proportional to the square

root of the number of repeated measurements:

PUFE) Y1, g, 0%) = N(f(x) |G, 0%/n)  (17)

Each of the constituent probabilitipé/a(x) < fa(x'))is:  wherej = n=! 37, y; is the mean estimate fgi(x), with
oo oo an analogous expression fat. The probability of domi-
/ p(fa(x) | Yd)/ p(f(xX')| YY) dfa(x') df4(x) nance is therefore calculated by (16) but with

px<x') = _Hp(fd(X) < fa(x')) (11)

—o0 fa(x) o
(12) m=—9_8_ (18)
0"2( Ui/
whereY; andY] represent the evaluationsfif) andf (x’) EE

information about the noise distributions is known. Hughe ese expressions show that the probability of one solution

(2001) has addressed the case of Gaussian noise with kno inating another can be calculated with increasing accu-
racy as the number of times each solution is re-evaluated is

noise variance, which we review and extend below. An im- . .
creased. Also, as might be expected the best estimate for

portant simplification occurs when the noise is known to bff'n i< ust th | _— thi |
bounded: Teich (2001) has modelled the noise as unifor e_f(x) IS Just the sample meap However, this analy-
is based upon the variance of the contaminating noise

and has proposed modified archive acceptance schemes ot . . . .
various MOEASs, similar to those discussed above (8) an Ing known. Figure 1 illustrates the importance of having

(9). However the boundedness of the noise means that if tA8 accurate knowledge of the variance. The figure shows

2 : . I -
solutions are sufficiently well separated in objective $pacn = n' = 10 noisy evaluations of two objectives f(tx) =

! _ . . .
dominance or lack of dominance may be decided with nE)Ot?]’ 0.0) ?”d F(x) t_' (%1’9‘% Ti\e Or?50'§e 'SCGa;JSSIan
uncertainty. with covariance matriceE, = X, = [%° [, ] . Contours

in Figure 1a show one and two times the standard error, us-
ing the known variances, centred on the sample mean esti-
2.3 Gaussian noise with known variance mates off (x) andf(x’). The contours depicted in the right
panel show the estimates using the variances estimated from
An attractive and often reasonable assumption is that ttiee samples themselves. With these true standard errors the
noise is Normally distributed about the true objective ealu p(f(x) < f(x')) = 0.63 andp(f(x’) < f(x')) = 0.04
thus, dropping the indices indicating the particular objecThe variances estimated from the data samples themselves
tive, are used in Figure 1b. Clearly the estimatesffgt) are
poor and give a misleading estimates of the probability of
p(y| f(x) = N(y| f(x),0%) (13) dominance; in this casp(f(x) < f(x')) = 0.56 and
p(f(x') < f(x’)) = 0.06. This example highlights the im-
portance of accurately estimating the variance and we now
L (ew)? describe a straightforward Bayesian scheme which can be
N(y|p,0) = (2m0?) e 27 (14)  used for estimating it as the optimisation proceeds.

respectively. These integrals can be computed if addition%h

where
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Figure 1:n = n’ = 10 re-evaluations of operating poin{8, 0) and(0.1,0.1), with added Gaussian noise with variances
0.5 and0.1. Contours show the standard error and two times standaod piotted around each meam) Using true
underlying varianceb) Variances estimated from each sample group.

2.4 Gaussian noise with unknown variance The hyperparametetsandb control the shape and width of
the prior; asa,b — 0 the prior becomes non-informative,
During the course of an optimisation we envisage evaluatavouring no particular scale.

ing the objectives for each parameter séimes. Although Combining the prior and likelihood to evaluate the posterio

our approximation of (x) cannot incorporate information - S
. . S o shows that the joint posterior is a Normal Inverse Gamma
from re-evaluations at different parameterisations,ig #s- "
ﬂ\tIIG) density:

sumed that the variance of the corrupting noise is consta

across parameter space then the repeated evaluations can X). 02 1Y) = N(f(x) | 7.02/mIC(o | d. ). (22
combined to learn the variance?. BFf( hot 1Y) (FE1g,07/mIG(e|d’,b). (22)

Consider the re-evaluatiods = {y;}? , for a fixed param- The posterior parameters are

eter setx. The likelihood of observing these evaluations is: ) n—1

" 2
p(Y |02, f(x)) = [] ply: |0, £(x)) ¥ =b+5n—1)s? (24)

i=1

(23)

= (2m0?) /2 exp {—% zn:(yi - f(x))Q} . (19) where
i=1

1 n
If we have some prior idea of the probability density, 5% = p— > wi—9)? (25)
p(a?, f(x)), of 02 and f(x) it may be combined in Bayes =1

rule with the likelihood to yield a posterior density, which
incorporates the prior information and the likelihood:

is the unbiased estimator of the sample variance. The pos-
terior marginal density(c? | Y) is again an inverse gamma

Y 02, f(x))p(02, f(x density with parametets andd’. The expected value of the
Y] f;(z,)f( /) (20)  variance is thus (Bernardo & Smith, 1994, page 119):

/
In general we have na priori belief aboutf(x) and so E[o?] = b .
choose the prior to be uniform on some suitably large in- a'—1

terval of the real line. In some circumstances more may bBgyjs estimate of the expected variance can then be used in
known about the location of (x) (for example, thalf(x)  (15) and (18) to estimate domination probabilities. Note
lies in some interval or is positive) in which case moren,; (23) and (24) show that at least two evaluations must be
informative priors can be used. We choose a conjugajfade to contribute to the variance estimate; two evaluation

prior (Bemardo & Smith, 1994) fos>, namely the inverse 4.¢ clearly necessary to obtain information about the sprea
gamma prior: of the noise.

p(o® f(x)|Y) =

(26)

p(0?) = IG(0? | a,b) = be (0_2)—(a+1) exp {71)/02} ' Thg power_of this method derives from the fact tha’g the pos-
I'(a) terior density foro? has the same form as the prior den-
(21)  sity, namely an inverse gamma density. This means that the
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Figure 2: Noise variancea) and standard error of objec- Figure 3: Noise variancea] and standard error of objec-
tives (b) using the Bayesian learning during optimisationfives (©) using the Bayeslan qurnmg during optimisation.
Sample estimates of noise varianc} &nd standard error Sample estimates of noise varianc énd standard error

objective () n = n’ = 3 evaluations made at each parameobjective () n = n” = 30 evaluations made at each param-
terisation. eterisation.
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posterior from set of evaluations can be used as the priljrtN€ noise variance were known. Properly the student-t

for the next set at a new parameter value, so that informg€nsity should th?refore be used in (12). However, as the
tion on the variance is accumulated throughout the optimpl@Pe parz_ame(tjéa pecom(fes large the ;tudehnt-t a;g;omaches
sation. Note that information about the successive obje ne Gaussian density. Reference to (23) shows )

tives is not propagated because successive evaluations rﬁé?/ases like thg tOI"’_‘I number of evaluatlons.for each.quec—
be in quite different objective-space locations and prepag t|ve_, so approximating( fa(x) | Y_) bY Gaussian densities

ing this information would unwarrantedly bias the search@Pidly becomes a good approximation.

The estimation of the variances is illustrated in Figures 2

and 3 which, for a three objective test problem describeg 5 variable noise

fully below, show the estimated noise variance and the esti-

mated standard erroes. /v/n ando /v/n’ as the optimisa-  So far we have assumed that the noise for each objective is
tion proceeds. Also shown in the figures are the estimates @hnstant for all parameter values, although in practise thi
the noise variances and standard errors using just the samg{ay not be the case, particularly if the noise enters the-prob
estimates of the variances from each group @ir " eval-  |em through the parameterisation. The assumption of con-
uations. As the figures show, the noise estimates converg@nt noise in this case can be dangerous as it may lead to
rapidly to the true values, permitting accurate estimaftes @yer-optimistic insertion of solutions into the archivel- A
domination to be made. In contrast, the per group of evalughough more sophisticated modelling schemes can be de-
tion sample estimates, which do not propagate informatiogjsed, the Bayesian updates for the inverse gamma parame-
do not converge and thus lead to poor estimates of domingsrs (equations (23) and (24)) may be modified to discount

tion throughout the optimisation. the contribution of historical data as follows:
In fact the marginal density of (x) is a student-t density A n—1 (29)
(see, for example, (Bernardo & Smith, 1994)): =7 2
1
na' o2 b =nb+ E(nf 1)52. (30)

p(f)IY) = SUf(x) |9, == 2d).  (27)
Whenn = 0 all prior information is forgotten and the mea-
The mean of this density is jugtand its variance is sured noise variance is the sample variance, wheread
recovers the constant noise situation, in which all samples
(28) count equally regardless of how recently they were mea-
sured. Intermediate values gfexponentially discount his-

which can be used in place of the standard error. The tai‘(smcal samples.

of the student-t density decay more slowly than a Gaussidiigure 4 illustrates the estimation of time varying noise on
density, reflecting the additional uncertainty jfiix) than the modified DLTZ2 problem described below. As Figure

1 2d

var{f(x)] = n 2a —2)°
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Figure 4: Time varying noisea: True noise variance at each iteratidn. Estimates of noise variance for three objectives
using Bayesian updates. Sample estimates of noise variance- 5 evaluations taken for each parameterisation.

4a shows, the noise for each of the three objectives was vadien instead ofn = 3. Both figures show that after only a
ied in a step-wise manner every 500 iterations. Figure 4dielatively few iterations a good approximation to the under
shows that the modified scheme with= 0.95 is well able lying noise properties is being made by the Bayesian update
to track the noise variance, while the variance estimates usiethod. The variability of simply re-estimating the vari-
ing no historical information (Figure 4c) are prone to ex-ance at each iteration from the samples at that iteration on
treme fluctuations. the other hand generates a very volatile estimate of the vari
ance, even when 30 samples are taken at each generation.

3 Examples of optimisation with noise Figure 5 shows the fronts obtained for this problem when
using Gaussian noise with variances 0.1 added to the three

. o . L . different objectives. The noiseless front for this problism
Here we illustrate optimising with uncertainty in the multi . . - .
.a shell of radius 1 in the positive octant, centred on the ori-

ggjceé:tlve domain, with Guassian noise of unknown Va“(::]in. The top row of figures correspond to using the Bayesian

variance update methodology and 5 re-evaluations per iter-
We create a modified version of the DTLZ2 test functioration after 5000 iterations. The bottom row of figures corre-
(Debet al., 2002), which is formulated in its standard 3-spond to using a traditional dominance form and archive up-
objective parameterisation. Gaussian noise is then adddate (a single evaluation per parameterisation), whichris r
at each evaluation, with variances 1, 0.5 and 0.05 addedfr 25000 iterations (meaning both were run for the same
the three different dimensions. The formulation of this-augnumber of function evaluations). As can be seen, the re-
mented test function is given in Table 1, and is implementegvalution method with variance update produces an archive
here withK' = 8. front which is representative of thteue operating front and

the points are distributed across the front. The standard

Table 1: Test problem DTLZ2 of Debt al. (2002) for 3 dominance implementation on the other hand creates a front

objectives, augmented with Guassian noise with variancgglich mis-directs the user — Figure 5¢ has many point in

o1 v ando e unobtainable negative region of objective space, amd th
12 5 true operating points in Figure 5d lie much further away

F1(x) = cos (z17/2) cos (z27/2) (1 + g (x)) + N (0, v1) from their corresponding points in Figure 5c than those in
fa(x) = cos (z17/2) sin (zo7/2) (1 + g (x)) + N (0, v2) Figures 5a and 5b. Points are also on average further away
f3(x) = sin (z17/2) (1 + g (x)) + N(0,v3) from the optimal front in 5d than 5b.

9(x) =Yg (21— 0.5)°

0<uz, <1,Vk

4 Representing uncertain fronts

We then run a simple (1+1)._ES MOEA (as described in\jihoygh evaluating the uncertainty in theue objectives
(Fieldsend & Everson, 2004; Everson & Fieldsend, 2005)) ;seful when optimising with uncertainty, it is important

for 1500 iterations and view the estimated noise variangg eyajuate and convey the uncertainty in the final front ob-
and standard error during this time - in relation to the trug,ined. In order to do this we can evaluate the probabil-
(known) values. Figure 2 shows plots of these values Ugy that a particular set objective values is dominated by a

ingn = 3 evaluations for each parameterisation, both usinga s meterisation on the front. This permits assessment of
the Bayesian update method (Figures 2a and 2b), and by if degree of confidence that the performance will be better
estimating at each iteration empirically from the samples g4, the set of objective values.

that iteration (Figures 2c and 2d). Figure 3 shows similar
plots, but using: = 30 evaluations for each parameterisaIn order to make this idea more concrete, we illustrate it



Figure 5: Fronts found during two different search methods-evaluations with Bayesian update of variance estimate,
and standard (single evaluation) methdap left: Mean of evaluations (5 evaluations per parameterisatidap. right:
Actual (noiseless) evaluation®ottom left: Assigned objective evaluations (1 evaluation per paranset@n). Bottom
right: Actual (noiseless) evaluations.

on the optimisation of the Receiver Operating Curve for & Conclusion
classifier used for Short Term Conflict Alert (STCA) sys-

tems alerting whether pairs of aircraft are likely to becomey, this paper we have presented methods for multi-objective
dangerously close (Fieldsend & Everson, 2004; Everson gptimisation with uncertain objectives. When the noise
Fieldsend, 2005). In this problem we aim to maximise thgnaracteristics are unknown sampling methods may be used
number of true positives while minimising the number of, gssess the probabilities of dominance, but these may be
false positives. Uncertainty is present because the G&ssi tjme-consuming when objective evaluations are expensive.
is trained and evaluated on a finite-sized dataset. The UNC§the noise can be assumed to be Normally distributed, we
tainty may be assessed by evaluating the classificatios raigaye presented a Bayesian algorithm for learning the noise
on bootstrap samples of the data or by using a normal apariance. Empirical results indicate that this effectiel-
proximating to the variance of the bootstrap sample (Evegorporates historical information and rapidly converges t
son & Fieldsend, 2005). The estimated Pareto front was Igne correct value. A simple modification of this method per-

cated using a standard MOEA,; then by drawing samples f@hits the tracking of variable noise, which was identified as
every solution in the estimated Pareto frdftwe estimate 4 proplem by Di Pietret al (2004).

the probability that any operating point is dominated by a ) o
solution on the front. Figure 6 shows theobabilistic dom- We have assumed throughout that the noise contaminating
ination contoursfor the STCA system obtained using this€ach objective is independent of the noise on other ob-
method. Clearly, quoting a true/false positive rates based jectives. This assumption is may be too strong in some
the 50% contour may be over-optimistic in the light of thec@ses, particularly for parametrically introduced noisse
uncertainty in the objectives and a more conservative asse§ayesian scheme can straightforwardly be modified to han-
ment would report the rates for the 90% contour along wit§lle this case by using inverted Wishart densities in place
the probability of dominance. We point out the similarity©f the inverse Gamma densities. However, handling non-
of these probabilistic domination contours to the attainme Gaussian noise in an efficient manner remains an active area
surface technique for repeated runs of MOEAs (Grunert d@f research.

Fonsecatal., 2001; Fonsecat al., 2005). Finally, we advocate the use of probabilistic domination
contours for the presentation of estimated Pareto fronts as
these permit assessment of the degree of confidence that
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