
Multi-objective optimisation in the presence of uncertainty

Jonathan E. Fieldsend
Department of Computer Science

University of Exeter, Exeter, UK EX4 4QF
J.E.Fieldsend@exeter.ac.uk

Richard M. Everson
Department of Computer Science

University of Exeter, Exeter, UK EX4 4QF
R.M.Everson@exeter.ac.uk

Abstract- There has been only limited discussion on the
effect of uncertainty and noise in multi-objective opti-
misation problems and how to deal with it. Here we ad-
dress this problem by assessing the probability of domi-
nance and maintaining an archive of solutions which are
mutually non-dominating with some known probability.

We examine methods for estimating the probability of
dominance. These depend crucially on estimating the
effective noise variance and we introduce a novel method
of learning the variance during optimisation.

Probabilistic domination contours are presented as a
method for conveying the confidence that may be placed
in objectives that are optimised in the presence of uncer-
tainty.

1 Introduction

Evolutionary computation (EC) techniques are now exten-
sively used when attempting to discover the optimal or near
optimal parameterisation for problems with unknown or
complex function transformation from parameters to objec-
tive(s) (see for instance the Adaptive Computing in Design
and Manufacture series (Parmee, 2004)). Almost all optimi-
sation procedures search the parameter space by evaluating
the objectives for a given parameterisation before proposing
a new, hopefully better, parameterisation. It is generallyas-
sumed that repeated evaluation of the objectives for a single
parameterisation yields the same objective values. How-
ever, a special, but not insubstantial, class of these prob-
lems exists in which there is additional uncertainty in the
veracity of the results obtained from the system model. One
clear example arises when measurement error or stochas-
tic elements in physical system leads to different results for
repeated evaluations at the same parameter values (Büche
et al. , 2002; Stagge, 1998). Our own interest in this topic
arises from the optimisation of classification error rates in
pattern recognition tasks: precise error rates depend upon
the particular data set used; different, but statisticallyequiv-
alent data sets, arising from bootstrap samples yield dif-
ferent error rates (Fieldsend & Everson, 2004; Everson &
Fieldsend, 2005) and it is important to evaluate the uncer-
tainty associated with optimal classifiers.

Work is ongoing in the scalar optimisation EC community
to tackle these types of problem, and indicates some elitist
techniques can prove fragile (Ranaet al. , 1996; Di Pietro
et al. , 2004), as there is no longer the guarantee that fit-
ness of the elite solution improves with generation. As most

modern multi-objective evolutionary algorithms (MOEAs)
rely heavily on elitism, this should be of concern to practi-
tioners dealing with uncertain multi-objective problems.In
this paper we model the uncertainty in the objectives as ob-
servational noise. We describe, in Section 2, a sequence of
methods for use in multi-objective optimisation depending
on the amount of information that is known about the noise
characteristics. These methods are illustrated on standard
test problems modified by the addition of noise.

Teich (2001) and Hughes (2001) have each addressed mul-
tiobjective optimisation with uncertainty and here we ex-
tend their work by relaxing the assumptions made about the
noise characteristics. Hughes (2001) makes the important
distinction between two sorts of uncertainty. First, the func-
tion being optimised may be in error, that it is it may not be
a faithful model of the system which should be optimised,
but re-evaluations of the function with the same parameters
yield identical results. Secondly, the function being eval-
uated may be noisy; repeated evaluations giving different
results. It is this latter case that we address here, although
the methods may be applied to the former situation if infor-
mation about inaccuracies in the model is available.

Before discussing the effect of uncertainty in the evaluation
of objectives, we briefly review the ideas of dominance and
Pareto optimality which are central to multi-objective opti-
misation.

A general multi-objective optimisation problem seeks to
simultaneously extremiseD objectives: fd(x), d =
1, . . . , D where each objective depends upon a vectorx =
(x1, . . . , xP ) of P parameters or decision variables. In this
paper we are concerned with the problem in which the ob-
jectives themselves are unobservable, but instead we have
access toyd the objectives contaminated byobservational
noiseε:

yd = fd(x) + εd (1)

The parameters may also be subject to theJ constraints:

ej(x) ≥ 0, j = 1, . . . J (2)

which, for simplicity, we assume can be evaluated precisely.
The multi-objective optimisation problem may thus be ex-
pressed as:

minimise f(x) = (f1(x), . . . , fD(x)) (3)

subject to e(x) = (e1(x), . . . , eJ(x)) ≥ 0. (4)

When faced with only a single objective an optimal solution
is one which minimises the objective given the model con-
straints. However, when there is more than one objective

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12828057?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to be minimised solutions may exist for which performance
on one objective cannot be improved without reducing per-
formance on at least one other. Such solutions are said to
bePareto optimal. The set of all Pareto optimal solutions is
said to form the Pareto front.

The notion ofdominancemay be used to make Pareto op-
timality clearer. Assuming that the goal is to minimise the
objectives and there is no noise, a decision vectorx is said
to strictly dominateanotherz (denotedx ≺ z) iff

fd(x) ≤ fd(z) ∀d = 1, . . . , D and
fd(x) < fd(z) for somed.

(5)

Less stringently,x weakly dominatesz (denotedx � z) iff

fd(x) ≤ fd(z) ∀d = 1, . . . , D. (6)

A set of decision vectorsF is said to be anon-dominated set
if no member of the set is dominated by any other member:

x 6≺ z ∀x, z ∈ F. (7)

A solution to the minimisation problem (3) is thusPareto
optimalif it is not dominated by any other feasible solution,
and the non-dominated set of all Pareto optimal solutions is
the Pareto frontP .

Elitist MOEAs generally maintain a non-dominated set or
archive F of solutions which form the estimated Pareto
front. As the optimisation proceeds new solutions are gener-
ated (either by copying and perturbing solutions inF (e.g.,
(Knowles & Corne, 2000)) or by mutating and recombin-
ing solutions in a search population (e.g., (Zitzler & Thiele,
1999; Debet al. , 2000)). If the new solution, sayx′ is not
dominated by a member ofF thenx′ is added toF , and any
solutions inF that are dominated byx′ are deleted fromF .
In this wayF is always a non-dominated set that cannot
move away from the true Pareto frontP .

Taking as a starting point an elitist MOEA, the effect of
noise within the evaluation process is twofold. Firstly, the
optimising procedure is affected as solutions which should
be added toF may be rejected as the noise may represent
them as dominated by an element ofF , and conversely, so-
lutions that should not have been entered into the archive
may be entered, as noise makes them seem better than they
are. This therefore has the effect of reducing the algorithm
efficiency. Secondly, the final archive may over estimate the
true Pareto front due to “lucky” noise realisations making
an objective better than is really feasible. In addition, the
archive may also contain a large number of solutions which
would actually be dominated by other archive members (if
evaluated without noise).

2 Probabilistic dominance

The crucial operations in elitist multi-objective optimisation
are whether to add a proposed solutionx′ to the archive and
which solutions to delete from the archive because they are

dominated byx′. If evaluation of the objectives is uncertain
we can only speak about the probability of dominance rather
than outright dominance. We use the notationx ≺α x′ to
mean thatp(x ≺ x′) ≥ α; clearly whenα = 1 proba-
bilistic dominance is equivalent to the usual deterministic
dominance.

Probabilistic dominance allows us to use the usual deter-
ministic elitist algorithms, but we maintain an archive in
which we have a degree ofconfidence. Thus we only in-
clude a proposalx′ in the archive if thetotal probability
that it is dominated by another point in the archive is less
than1 − α.

Therefore a proposalx′ is added to the archiveF if
∑

x∈F

p(x ≺ x′) < 1 − α. (8)

Likewise, once a new point has been accepted into the
archive we should delete fromF any solutionsx for which:

∑

z∈F

p(z ≺ x) ≥ α. (9)

These criteria could be computationally expensive because
of the need to compute the probability of dominance be-
tween each potential new entrant to the archive and all
the members of the archive. However, the time-cost can
be reduced at the expense of space by keeping a table of
p(x ≺ z) for all x andz in F . Every time there is a new
entrant toF a new row and column of the table need to be
updated (but the entries have to be computed anyway to de-
termine whether to accept the entrant and possibly delete
now-dominated members ofF ); and a row must be deleted
when a member is deleted.

It is possible that we might want to remove the summation
from (9), so that we reject a point if the probability that it
is dominated by any other single archive member is greater
thanα. This would remove problems with (9) if the size of
the archive becomes large, but would leave open the possi-
bility of a point beingalmostdominated by lots of archive
members at theα level.

The imperative issue in using the probabilistic dominance
framework is obviously how to calculatep(x ≺ x′). This is
dependant on whata priori knowledge is available about the
system noise (or what assumptions it is reasonable to make).
Various methods for its calculation in different situations are
now discussed.

2.1 Unknown noise

The most severe case is when the noise properties are com-
pletely unknown. It may be asymmetric and there may be
dependencies between noise in different objectives. In this
case the degree of dominance between two solutions can
be estimated by repeated evaluation at the fixed parameter
valuesx andx′. Suppose that{yi}n

i=1, are the objectives
evaluatedn times atx, and{y′

i}n′

i=1 aren′ evaluations atx′,



then the probability thatx dominatesx′ is estimated by the
fraction of times thatyi dominatesy′

j :

p(x ≺ x′) =
1

nn′

n
∑

i=1

n′

∑

j=1

I(yi ≺ y′

j) (10)

whereI(·) is the indicator function.

Estimating probabilistic dominance by this sampling
method clearly requires several evaluations of the objectives
at bothx and x′, which may be prohibitively expensive.
This cost can be substantially reduced if it is known or it
can be assumed that the noise corrupting each objective is
independent. In this case the evaluations for each objective
dimension can be permuted to form additional samples.

2.2 Independent noise for each objective

If the noise on contaminating the objectives can be assumed
to be independent, the probability of dominance decom-
poses into a product of probabilities for each dimension:

p(x ≺ x′) =
D
∏

i=1

p(fd(x) < fd(x
′)) (11)

Each of the constituent probabilitiesp(fd(x) < fd(x
′)) is:

∫

∞

−∞

p(fd(x) |Yd)

∫

∞

fd(x)

p(f(x′) |Y ′

d) dfd(x
′) dfd(x)

(12)

whereYd andY ′

d represent the evaluations off(x) andf(x′)
respectively. These integrals can be computed if additional
information about the noise distributions is known. Hughes
(2001) has addressed the case of Gaussian noise with known
noise variance, which we review and extend below. An im-
portant simplification occurs when the noise is known to be
bounded: Teich (2001) has modelled the noise as uniform
and has proposed modified archive acceptance schemes for
various MOEAs, similar to those discussed above (8) and
(9). However the boundedness of the noise means that if the
solutions are sufficiently well separated in objective space
dominance or lack of dominance may be decided with no
uncertainty.

2.3 Gaussian noise with known variance

An attractive and often reasonable assumption is that the
noise is Normally distributed about the true objective value;
thus, dropping the indices indicating the particular objec-
tive,

p(y | f(x)) = N (y | f(x), σ2
x
) (13)

where

N (y |µ, σ) = (2πσ2)−
1
2 e−

(y−µ)2

2σ2 (14)

is the standard normal density with meanµ and standard
deviationσ2. Note that (13) allows for the possibility that
the noise varianceσx may vary with location. Using (13) in
(12) gives the probability of dominance in terms of the error
function (Hughes, 2001):

p(f(x) < f(x′)) =
1

2

[

1 + erf
(

m/
√

2
)]

(15)

where

m =
y(x′) − y(x)
√

σ2
x

+ σ2
x
′

. (16)

Clearly ifx′ = x thenm = 0 andp(f(x) < f(x′) = 1/2 as
expected by symmetry. Consequentlyp(f(x) < f(x′)) =
2D and the probability thatx′ and x are mutually non-
dominating is1 − 1

2D−1 .

The uncertainty in whether one solution dominates another
may be reduced by re-evaluating the solutions atx andx′.
As above,{yi}n

i=1 are the objectives evaluatedn times atx,
and{y′

j}n′

j=1 aren′ evaluations atx′. Then the uncertainty
in the location off(x) is reduced proportional to the square
root of the number of repeated measurements:

p(f(x) | y1, . . . , yn, σ2
x
) = N (f(x) | ȳ, σ2

x
/n) (17)

whereȳ = n−1
∑n

i=1 yi is the mean estimate forf(x), with
an analogous expression forx′. The probability of domi-
nance is therefore calculated by (16) but with

m =
ȳ′ − ȳ

√

σ2
x

n +
σ2
x
′

n′

. (18)

These expressions show that the probability of one solution
dominating another can be calculated with increasing accu-
racy as the number of times each solution is re-evaluated is
increased. Also, as might be expected the best estimate for
the f(x) is just the sample mean̄y. However, this analy-
sis is based upon the variance of the contaminating noise
being known. Figure 1 illustrates the importance of having
an accurate knowledge of the variance. The figure shows
n = n′ = 10 noisy evaluations of two objectives atf(x) =
(0.0, 0.0) and f(x′) = (0.1, 0.1). The noise is Gaussian
with covariance matricesΣx = Σx

′ = [ 0.5 0
0 0.1 ] . Contours

in Figure 1a show one and two times the standard error, us-
ing the known variances, centred on the sample mean esti-
mates off(x) andf(x′). The contours depicted in the right
panel show the estimates using the variances estimated from
the samples themselves. With these true standard errors the
p(f(x) ≺ f(x′)) = 0.63 andp(f(x′) ≺ f(x′)) = 0.04
The variances estimated from the data samples themselves
are used in Figure 1b. Clearly the estimates forf(x) are
poor and give a misleading estimates of the probability of
dominance; in this casep(f(x) ≺ f(x′)) = 0.56 and
p(f(x′) ≺ f(x′)) = 0.06. This example highlights the im-
portance of accurately estimating the variance and we now
describe a straightforward Bayesian scheme which can be
used for estimating it as the optimisation proceeds.
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Figure 1:n = n′ = 10 re-evaluations of operating points(0, 0) and(0.1, 0.1), with added Gaussian noise with variances
0.5 and0.1. Contours show the standard error and two times standard error plotted around each mean.a) Using true
underlying variance.b) Variances estimated from each sample group.

2.4 Gaussian noise with unknown variance

During the course of an optimisation we envisage evaluat-
ing the objectives for each parameter setn times. Although
our approximation off(x) cannot incorporate information
from re-evaluations at different parameterisations, if itis as-
sumed that the variance of the corrupting noise is constant
across parameter space then the repeated evaluations can be
combined to learn the variance,σ2.

Consider the re-evaluationsY = {yi}n
i=1 for a fixed param-

eter setx. The likelihood of observing these evaluations is:

p(Y |σ2, f(x)) =

n
∏

i=1

p(yi |σ2, f(x))

= (2πσ2)−n/2 exp

{

− 1

2σ2

n
∑

i=1

(yi − f(x))2

}

. (19)

If we have some prior idea of the probability density,
p(σ2, f(x)), of σ2 andf(x) it may be combined in Bayes
rule with the likelihood to yield a posterior density, which
incorporates the prior information and the likelihood:

p(σ2, f(x) |Y ) =
p(Y |σ2, f(x))p(σ2, f(x))

p(Y )
. (20)

In general we have noa priori belief aboutf(x) and so
choose the prior to be uniform on some suitably large in-
terval of the real line. In some circumstances more may be
known about the location off(x) (for example, thatf(x)
lies in some interval or is positive) in which case more
informative priors can be used. We choose a conjugate
prior (Bernardo & Smith, 1994) forσ2, namely the inverse
gamma prior:

p(σ2) = IG(σ2 | a, b) =
ba

Γ(a)
(σ2)−(a+1) exp

{

−b/σ2
}

.

(21)

The hyperparametersa andb control the shape and width of
the prior; asa, b → 0 the prior becomes non-informative,
favouring no particular scale.

Combining the prior and likelihood to evaluate the posterior
shows that the joint posterior is a Normal Inverse Gamma
(NIG) density:

p(f(x), σ2 |Y ) = N (f(x) | ȳ, σ2/n)IG(σ | a′, b′). (22)

The posterior parameters are

a′ = a +
n − 1

2
(23)

b′ = b +
1

2
(n − 1)S2 (24)

where

S2 =
1

n − 1

n
∑

i=1

(yi − ȳ)2 (25)

is the unbiased estimator of the sample variance. The pos-
terior marginal densityp(σ2 |Y ) is again an inverse gamma
density with parametersa′ andb′. The expected value of the
variance is thus (Bernardo & Smith, 1994, page 119):

E[σ2] =
b′

a′ − 1
. (26)

This estimate of the expected variance can then be used in
(15) and (18) to estimate domination probabilities. Note
that (23) and (24) show that at least two evaluations must be
made to contribute to the variance estimate; two evaluations
are clearly necessary to obtain information about the spread
of the noise.

The power of this method derives from the fact that the pos-
terior density forσ2 has the same form as the prior den-
sity, namely an inverse gamma density. This means that the
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Figure 2: Noise variance (a) and standard error of objec-
tives (b) using the Bayesian learning during optimisation.
Sample estimates of noise variance (c) and standard error
objective (d) n = n′ = 3 evaluations made at each parame-
terisation.

posterior from set of evaluations can be used as the prior
for the next set at a new parameter value, so that informa-
tion on the variance is accumulated throughout the optimi-
sation. Note that information about the successive objec-
tives is not propagated because successive evaluations may
be in quite different objective-space locations and propagat-
ing this information would unwarrantedly bias the search.
The estimation of the variances is illustrated in Figures 2
and 3 which, for a three objective test problem described
fully below, show the estimated noise variance and the esti-
mated standard errorsσx/

√
n andσx

′/
√

n′ as the optimisa-
tion proceeds. Also shown in the figures are the estimates of
the noise variances and standard errors using just the sample
estimates of the variances from each group ofn or n′ eval-
uations. As the figures show, the noise estimates converge
rapidly to the true values, permitting accurate estimates of
domination to be made. In contrast, the per group of evalua-
tion sample estimates, which do not propagate information,
do not converge and thus lead to poor estimates of domina-
tion throughout the optimisation.

In fact the marginal density off(x) is a student-t density
(see, for example, (Bernardo & Smith, 1994)):

p(f(x) |Y ) = St(f(x) | ȳ,
na′σ2

x

b′
, 2a′). (27)

The mean of this density is justȳ and its variance is

var[f(x)] =
1

n

2a′

(2a′ − 2)
σ2
x

(28)

which can be used in place of the standard error. The tails
of the student-t density decay more slowly than a Gaussian
density, reflecting the additional uncertainty inf(x) than
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Figure 3: Noise variance (a) and standard error of objec-
tives (b) using the Bayesian learning during optimisation.
Sample estimates of noise variance (c) and standard error
objective (d) n = n′ = 30 evaluations made at each param-
eterisation.

if the noise variance were known. Properly the student-t
density should therefore be used in (12). However, as the
shape parameter2a′ becomes large the student-t approaches
the Gaussian density. Reference to (23) shows that2a′ in-
creases like the total number of evaluations for each objec-
tive, so approximatingp(fd(x) |Y ) by Gaussian densities
rapidly becomes a good approximation.

2.5 Variable noise

So far we have assumed that the noise for each objective is
constant for all parameter values, although in practise this
may not be the case, particularly if the noise enters the prob-
lem through the parameterisation. The assumption of con-
stant noise in this case can be dangerous as it may lead to
over-optimistic insertion of solutions into the archive. Al-
though more sophisticated modelling schemes can be de-
vised, the Bayesian updates for the inverse gamma parame-
ters (equations (23) and (24)) may be modified to discount
the contribution of historical data as follows:

a′ = ηa +
n − 1

2
(29)

b′ = ηb +
1

2
(n − 1)S2. (30)

Whenη = 0 all prior information is forgotten and the mea-
sured noise variance is the sample variance, whereasη = 1
recovers the constant noise situation, in which all samples
count equally regardless of how recently they were mea-
sured. Intermediate values ofη exponentially discount his-
torical samples.

Figure 4 illustrates the estimation of time varying noise on
the modified DLTZ2 problem described below. As Figure
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Figure 4: Time varying noise.a: True noise variance at each iteration.b: Estimates of noise variance for three objectives
using Bayesian updates.c: Sample estimates of noise variancen = 5 evaluations taken for each parameterisation.

4a shows, the noise for each of the three objectives was var-
ied in a step-wise manner every 500 iterations. Figure 4b
shows that the modified scheme withη = 0.95 is well able
to track the noise variance, while the variance estimates us-
ing no historical information (Figure 4c) are prone to ex-
treme fluctuations.

3 Examples of optimisation with noise

Here we illustrate optimising with uncertainty in the multi-
objective domain, with Guassian noise of unknown vari-
ance.

We create a modified version of the DTLZ2 test function
(Deb et al. , 2002), which is formulated in its standard 3-
objective parameterisation. Gaussian noise is then added
at each evaluation, with variances 1, 0.5 and 0.05 added to
the three different dimensions. The formulation of this aug-
mented test function is given in Table 1, and is implemented
here withK = 8.

Table 1: Test problem DTLZ2 of Debet al. (2002) for 3
objectives, augmented with Guassian noise with variances
v1, v2 andv3.

f1(x) = cos (x1π/2) cos (x2π/2) (1 + g (x)) + N (0, v1)
f2(x) = cos (x1π/2) sin (x2π/2) (1 + g (x)) + N (0, v2)
f3(x) = sin (x1π/2) (1 + g (x)) + N (0, v3)

g (x) =
∑K

k=3 (xk − 0.5)
2

0 ≤ xk ≤ 1, ∀k

We then run a simple (1+1)–ES MOEA (as described in
(Fieldsend & Everson, 2004; Everson & Fieldsend, 2005))
for 1500 iterations and view the estimated noise variance
and standard error during this time - in relation to the true
(known) values. Figure 2 shows plots of these values us-
ing n = 3 evaluations for each parameterisation, both using
the Bayesian update method (Figures 2a and 2b), and by re-
estimating at each iteration empirically from the samples at
that iteration (Figures 2c and 2d). Figure 3 shows similar
plots, but usingn = 30 evaluations for each parameterisa-

tion instead ofn = 3. Both figures show that after only a
relatively few iterations a good approximation to the under-
lying noise properties is being made by the Bayesian update
method. The variability of simply re-estimating the vari-
ance at each iteration from the samples at that iteration on
the other hand generates a very volatile estimate of the vari-
ance, even when 30 samples are taken at each generation.

Figure 5 shows the fronts obtained for this problem when
using Gaussian noise with variances 0.1 added to the three
different objectives. The noiseless front for this problemis
a shell of radius 1 in the positive octant, centred on the ori-
gin. The top row of figures correspond to using the Bayesian
variance update methodology and 5 re-evaluations per iter-
ation after 5000 iterations. The bottom row of figures corre-
spond to using a traditional dominance form and archive up-
date (a single evaluation per parameterisation), which is run
for 25000 iterations (meaning both were run for the same
number of function evaluations). As can be seen, the re-
evalution method with variance update produces an archive
front which is representative of thetrue operating front and
the points are distributed across the front. The standard
dominance implementation on the other hand creates a front
which mis-directs the user – Figure 5c has many point in
the unobtainable negative region of objective space, and the
true operating points in Figure 5d lie much further away
from their corresponding points in Figure 5c than those in
Figures 5a and 5b. Points are also on average further away
from the optimal front in 5d than 5b.

4 Representing uncertain fronts

Although evaluating the uncertainty in thetrue objectives
is useful when optimising with uncertainty, it is important
to evaluate and convey the uncertainty in the final front ob-
tained. In order to do this we can evaluate the probabil-
ity that a particular set objective values is dominated by a
parameterisation on the front. This permits assessment of
the degree of confidence that the performance will be better
than the set of objective values.

In order to make this idea more concrete, we illustrate it
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Figure 5: Fronts found during two different search methods –re-evaluations with Bayesian update of variance estimate,
and standard (single evaluation) method.Top left: Mean of evaluations (5 evaluations per parameterisation).Top right:
Actual (noiseless) evaluations.Bottom left: Assigned objective evaluations (1 evaluation per parameterisation). Bottom
right: Actual (noiseless) evaluations.

on the optimisation of the Receiver Operating Curve for a
classifier used for Short Term Conflict Alert (STCA) sys-
tems alerting whether pairs of aircraft are likely to become
dangerously close (Fieldsend & Everson, 2004; Everson &
Fieldsend, 2005). In this problem we aim to maximise the
number of true positives while minimising the number of
false positives. Uncertainty is present because the classifier
is trained and evaluated on a finite-sized dataset. The uncer-
tainty may be assessed by evaluating the classification rates
on bootstrap samples of the data or by using a normal ap-
proximating to the variance of the bootstrap sample (Ever-
son & Fieldsend, 2005). The estimated Pareto front was lo-
cated using a standard MOEA; then by drawing samples for
every solution in the estimated Pareto frontF, we estimate
the probability that any operating point is dominated by a
solution on the front. Figure 6 shows theprobabilistic dom-
ination contoursfor the STCA system obtained using this
method. Clearly, quoting a true/false positive rates basedon
the 50% contour may be over-optimistic in the light of the
uncertainty in the objectives and a more conservative assess-
ment would report the rates for the 90% contour along with
the probability of dominance. We point out the similarity
of these probabilistic domination contours to the attainment
surface technique for repeated runs of MOEAs (Grunert da
Fonsecaet al. , 2001; Fonsecaet al. , 2005).

5 Conclusion

In this paper we have presented methods for multi-objective
optimisation with uncertain objectives. When the noise
characteristics are unknown sampling methods may be used
to assess the probabilities of dominance, but these may be
time-consuming when objective evaluations are expensive.
If the noise can be assumed to be Normally distributed, we
have presented a Bayesian algorithm for learning the noise
variance. Empirical results indicate that this effectively in-
corporates historical information and rapidly converges to
the correct value. A simple modification of this method per-
mits the tracking of variable noise, which was identified as
a problem by Di Pietroet al (2004).

We have assumed throughout that the noise contaminating
each objective is independent of the noise on other ob-
jectives. This assumption is may be too strong in some
cases, particularly for parametrically introduced noise.The
Bayesian scheme can straightforwardly be modified to han-
dle this case by using inverted Wishart densities in place
of the inverse Gamma densities. However, handling non-
Gaussian noise in an efficient manner remains an active area
of research.

Finally, we advocate the use of probabilistic domination
contours for the presentation of estimated Pareto fronts as
these permit assessment of the degree of confidence that
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Figure 6: Probabilistic domination contours for correct
alerts (true positive) and incorrect alerts (false positives)
for the STCA system described in (Everson & Fieldsend,
2005).

may be placed in an operating point.
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