
Financial time series forecasts using fuzzy and long
memory pattern recognition systems

Sameer Singh & Jonathan Fieldsend
PANN RESEARCH, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF EXETER, EXETER, UK

ABSTRACT.
 In this paper, the concept of long memory systems for
forecasting is developed. The Pattern Modelling and
Recognition System and Fuzzy Single Nearest
Neighbour methods are introduced as local
approximation tools for forecasting. Such systems are
used for matching current state of the time-series with
past states to make a forecast. In the past, the PMRS
system has been successfully used for forecasting the
Santa Fe competition data. In this paper, we forecast
the FTSE 100 and 250 financial returns indices, as well
as the stock returns of five FTSE 100 companies and
compare the results of the two different systems, with
that of Exponential Smoothing and Random Walk on
seven different error measures. The results show that
pattern recognition based approaches in time-series
forecasting are highly accurate. Simple theoretical
trading strategies are also mentioned, highlighting real
applications of the system.

1. INTRODUCTION

Time-series forecasting is an important research area in
several domains. Recently, neural networks and other
advanced methods on prediction have been used in
financial domains [1-3]. Peters [4] notes that most
financial markets are not Gaussian in nature and tend to
have sharper peaks and fat tails, a phenomenon well
known in practice. In the face of such evidence, a
number of traditional methods based on Gaussian
normality assumption have limitations making accurate
forecasts.

One of the key observations explained by Peters [4]
is the fact that most financial markets have a very long
memory; what happens today affects the future forever.
In other words, current data is correlated with all past
data to varying degrees. This long memory component
of the market can not be adequately explained by
systems that work with short-memory parameters. Short-
memory systems are characterised by using the use of
last i series values for making the forecast in univariate
analysis. For example most statistical methods and
neural networks are given last i observations for
predicting the actual at time i+1. Long memory systems
on the other hand are characterised by their ability to
remember events in the long history of time-series data
and their ability to make decisions on the basis of such
memories

The paper is organised as follows. We first discuss
the concept of local approximation in forecasting and
detail its implementation in the PMRS and SNN
algorithms. The paper then discusses the financial index

data used. The results section compares the results
obtained using the PMRS and SNN algorithms with that
of the Exponential Smoothing and Random Walk
methods which are widely used in the financial industry.
The results are compared on a total of seven different
error measures.

2.  METHODOLOGY

PMRS
If we choose to represent a time-series as y = {y1, y2, ...
yn}, then the current state of size one of the time-series
is represented by its current value yn. One simple
method of prediction can be based on identifying the
closest neighbour of yn in the past data, say yj, and
predicting yn+1 on the basis of yj+1. Calculating an
average prediction based on more than one nearest
neighbour can modify this approach. The definition of
the current state of a time-series can be extended to
include more than one value, e.g. the current state sc of
size two may be defined as {yn-1, yn}. For such a current
state, the prediction will depend on the past state sp {yj-1,
yj} and next series value y+

p given by yj+1, provided that
we establish that the state {yj-1, yj} is the nearest
neighbour of the state {yn-1, yn} using some similarity
measurement. In this paper, we also refer to states as
patterns. In theory, we can have a current state of any
size but in practice only matching current states of
optimal size to past states of the same size yields
accurate forecasts since too small or too large
neighbourhoods do not generalise well. The optimal
state size must be determined experimentally on the
basis of achieving minimal errors on standard measures
through an iterative procedure.

We can formalise the prediction procedure as
follows:

ÿ = φ(sc, sp, y
+

p, k, c)

where ÿ is the prediction for the next time step, sc is
the current state, sp is the nearest past state, y+

p is the
series value following past state sp, k is the state size and
c is the matching constraint. Here ÿ is a real value, sc or
sp can be represented as a set of real values, k is a
constant representing the number of values in each state,
i.e. size of the set, and c is a constraint which is user
defined for the matching process. We define c as the
condition of matching operation that series direction
change for each member in sc and sp is the same.

 In order to illustrate the matching process for series
prediction further, consider the time series as a vector y
= {y1, y2, ... yn} where n is the total number of points in
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the series. Often, we also represent such a series as a
function of time, e.g. yn = yt, yn-1 = yt-1, and so on. A
segment in the series is defined as a difference vector δδδδ
= (δ1, δ2, ... δn-1) where δi = yi+1 - yi, ∀ i, 1≤i≤n-1. A
pattern contains one or more segments and it can be
visualised as a string of segments ρ = (δi, δi+1, ... δh) for
given values of i and h, 1≤i,h≤n-1, provided that h>i. In
order to define any pattern mathematically, we choose to
tag the time series y with a vector of change in direction.
For this purpose, a value yi is tagged with a 0 if yi+1 < yi,
and as a 1 if yi+1 ≥ yi. Formally, a pattern in the time-
series is represented as ρ = (bi, bi+1, ... bh) where b is a
binary value.

The complete time-series is tagged as (b1, ...bn-1).
For a total of k segments in a pattern, it is tagged with a
string of k b values. For a pattern of size k, the total
number of binary patterns (shapes) possible is 2k. The
technique of matching structural primitives is based on
the premise that the past repeats itself. Farmer and
Sidorowich [5] state that the dynamic behaviour of time-
series can be efficiently predicted by using local
approximation. For this purpose, a map between current
states and the nearest neighbour past states can be
generated for forecasting.

Pattern matching in the context of time-series
forecasting refers to the process of matching current
state of the time series with its past states. Consider the
tagged time series (b1, bi, ... bn-1). Suppose that we are at
time n (yn) trying to predict yn+1. A pattern of size k is
first formulated from the last k tag values in the series,
ρ’ = (bn-k, ... bn-1). The size k of the structural primitive
(pattern) used for matching has a direct effect on the
prediction accuracy. Thus the pattern size k must be
optimised for obtaining the best results. For this k is
increased in every trial by one unit till it reaches a
predefined maximum allowed for the experiment and the
error measures are noted; the value of k that gives the
least error is finally selected. The aim of a pattern
matching algorithm is to find the closest match of ρ’ in
the historical data (estimation period) and use this for
predicting yn+1. The magnitude and direction of
prediction depend on the match found. The success in
correctly predicting series depends directly on the
pattern matching algorithm.

The first step is to select a state/pattern of minimal
size (k=2). A nearest neighbour of this pattern is
determined from historical data on the basis of smallest
offset ∇ . There are two cases for prediction: either we
predict high or we predict low. The prediction ÿn+1 is
scaled on the basis of the similarity of the match found.
We use a number of widely applied error measures for
estimating the accuracy of the forecast and selecting
optimal k size for minimal error. The forecasting
process is repeated with a given test data for
states/patterns of size greater than two and a model with
smallest k giving minimal error is selected. In our
experiments k is iterated between 2≤k≤5.

SNN
The SNN model is based on the premise that accurate
forecasts can be made by finding the best match of a

current actual with historical data. For finding the best
match, a fuzzy proximity measures for membership
computation can be used. The purpose of SNN is to
predict data in the test period on the basis of known
information about estimation period. The fuzzy
proximity measure finds the best match of a given data
point in historical data. For a given test value yn, the aim
is to generate the prediction yn+1. The fuzzy
measurement computes the proximity of yn with all data
in the estimation period (y1…yn-1) using the following
measure:

µj(yn) = [1 + {d(yn, yj)/Fd}
F e

]-1.0

...(1)
d(yn, yj) is the distance between yn and yj.

The neighbour J=j is the nearest if:
µJ(yn) = max (µj(yn))     ... (2)

The prediction is:  ÿn+1 = yJ+1 … (3)

In this manner, the nearest neighbour of yn is yj for
which it has the highest membership value based on the
fuzzy distance measure plus the same direction tag for
previous values.

2. FINANCIAL DATA

The financial data used in this study are end of day data
for the British FTSE 100 and FTSE 250 indices as well
the stock prices of British Aerospace, Hong-Kong
Shanghai Banking Corporation (HSBC), British
Petroleum, Glaxo-Wellcome and Allied Domecq. The
FTSE 100 data spans over 16 years from May 1982 to
October 1999 and the FTSE 250 data over 5 years from
February 1994 to October 1999. The stock data span on
average 9.5 years from between May and July 1992 to
October 1999. All data was obtained through LIFFE
data services.

 In all cases the models used were initially trained
on 80% of the available data (converted to returns), the
remaining 20% was used to test the forecasting ability of
each of the models, with the models making one day
predictions of the end of day returns.

4.  RESULTS

The first error measure we shall focus on is the ability to
correctly predict the direction of series change; positive
or negative relative to the current position. The other
measures include Root Mean Square Error, Geometric
Root Mean Square Error, Geometric Mean Relative
Absolute Error, Mean Square Error, Mean Absolute
Percentage Error and Percentage Better than the
Random Walk (Armstrong and Collopy [5]). The results
with respect to the different financial time series are
shown in Table (4.1).

For all time series, the fuzzy SNN model is able to
predict the correct direction of movement seven out of
ten times (the average accuracy being just under 71%).
The PMRS algorithm also performed well, with the best



model for each time series having an average accuracy
of 69%. This supports the stated assumption of the
models that the match between the current market
situation and the historical market situation is a crucial
link for making accurate forecasts.

The fuzzy SNN model performs better than the
PMRS model on six of the seven time series, which in
turn performs better than either the Exponential
Smoothing or Geometric Walk methods.

The information as to whether the return series will
be higher or lower the next day is important for the
trading buy-sell-hold strategy.

If the return value is predicted as being higher
tomorrow, and today’s return is positive then it would be
best to hold onto your stocks, or buy into that position if
it is not presently held. If however the returns value is
predicted to fall tomorrow, and today’s return was also
negative, then it may be useful to sell those stocks (if
they have not already be sold).

A more ambiguous situation arises when the
predicted directional movement of the return series is
positive when the current returns are negative, or
negative when the current returns are positive. Here
accuracy with respect to the actual value, not just
directional movement is needed, as a rise in returns from
a negative return state may result in a positive return, or
may just infer a lower negative return the next day.
Likewise the actual size of a predicted returns fall from
a positive returns state will determine whether a smaller
positive return is realised, or a negative one.

The SNN model has the lowest Mean Absolute
Percentage Error (MAPE) for all time series. It also has
the lowest Mean Square Error (MSE), arithmetic Root
Mean Square Error (RMSE) and Geometric Root Mean
Square Error (GRMSE) of the four predictors for all the
time series except the FTSE 250 (where Exponential
Smoothing has the lowest). The SNN model has mixed
results when compared to the other models and the
random walk model. This is shown by the GMRAE
measure (which should be minimised) where the SNN
model consistently outperforms the other predictors,
however when using the Percentage Better than Random
Walk value it does not compare as favourably, with
Exponential Smoothing performing the best.

The PMRS model performs slightly less well in
comparison to the ES and RW models, having lower
RMSE, MAPE and MSE values than the other two
models for five of the seven time series, lower GRMSE
for six and lower GMRAE for all seven. It’s Percentage
Better than Random Walk was worse than both
Exponential Smoothing and SNN (except for the FTSE
250 data), However it’s direction success value was
uniformly higher than both Exponential Smoothing and
Random Walk.

4.  CONCLUSIONS

In this paper we have shown that a pattern recognition
algorithm for forecasting is an alternative solution to
using statistical methods, that have limitations in non-
linear domains. The SNN model’s performance was
found to be better than that of the PMRS model and the
statistical models; it is expected that further research on
both these predictors will yield even better results in the
future.

We also expect that SNN and PMRS technology
will be further developed and fine-tuned for practical
trials.
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Table (4.1) Error measures of the four prediction models.

SERIES Predictor RMSE GRMSE GMRAE MSE MAPE Better Direction



than RW

Ftse100 SNN 2.67 1.05 0.0010 5563 175 59.90 73.13
PMRS k=2 3.03 1.21 0.0011 7147 287 53.73 68.77

*** PMRS k=3 2.99 1.16 0.0011 6964 278 55.01 69.15
PMRS k=4 3.03 1.22 0.0011 7143 285 64.26 68.38
PMRS k=5 3.19 1.19 0.0011 7912 309 53.72 67.48
ES 3.30 1.31 0.0012 8481 370 64.26 65.81
RW 3.45 1.37 0.0013 9246 403 0 48.45

Ftse250 SNN 2.92 2.07 0.0032 2292 183 47.56 62.92
*** PMRS k=2 3.14 2.11 0.0036 2640 305 49.44 67.79

PMRS k=3 2.96 2.01 0.0036 2335 280 46.06 60.30
PMRS k=4 3.07 2.11 0.0036 2521 349 44.19 58.80
PMRS k=5 3.33 2.23 0.0038 2962 335 43.07 61.04
ES 2.81 2.01 0.0036 2115 303 62.55 64.04
RW 2.92 2.08 0.0037 2271 331 0 49.44

AER SNN 4.12 3.55 0.0023 6337 142 55.62 71.92
PMRS k=2 4.13 3.57 0.0027 6366 217 47.86 64.97
PMRS k=3 4.14 3.56 0.0026 6418 202 47.32 62.83
PMRS k=4 5.80 4.21 0.0027 12620 247 48.93 65.78

*** PMRS k=5 5.80 4.19 0.0025 12586 235 49.73 68.72
ES 5.58 4.78 0.0026 11642 218 61.23 62.83
RW 5.85 5.01 0.0027 12817 231 0 51.60

HSBC SNN 5.02 1.75 0.0022 9249 177 54.37 68.85
*** PMRS k=2 5.09 1.97 0.0024 9481 274 50.54 67.48

PMRS k=3 5.07 2.08 0.0028 9417 337 48.63 64.75
PMRS k=4 5.18 2.05 0.0026 9828 327 49.73 62.84
PMRS k=5 5.22 2.11 0.0025 9966 306 52.18 66.12
ES 6.77 2.18 0.0027 16783 662 59.83 60.92
RW 7.10 2.30 0.0027 18457 726 0 52.73

BP SNN 1.05 0.56 0.0020 425 148 58.53 72.97
*** PMRS k=2 1.16 0.68 0.0024 515 227 55.38 68.77

PMRS k=3 1.20 0.65 0.0024 552 225 53.28 66.40
PMRS k=4 1.25 0.66 0.0025 597 238 52.49 65.35
PMRS k=5 1.23 0.63 0.0024 584 238 53.28 65.09
ES 1.28 0.69 0.0025 630 259 63.51 66.67
RW 1.34 0.72 0.0026 688 276 0 51.44

GXO SNN 2.16 1.22 0.0020 1784 179 57.63 71.84
*** PMRS k=2 2.26 1.24 0.0022 1942 274 53.68 68.95

PMRS k=3 2.70 1.45 0.0024 2768 261 52.37 68.68
PMRS k=4 5.18 2.05 0.0026 9828 326 49.72 62.84
PMRS k=5 2.76 1.50 0.0024 2902 269 51.05 66.05
ES 6.77 2.18 0.0027 16783 662 59.83 60.93
RW 7.10 2.30 0.0027 18457 726 0 52.73

ALD SNN 0.61 0.31 0.0021 139 121 59.31 74.80
PMRS k=2 0.71 0.39 0.0026 190 212 51.18 67.19

*** PMRS k=3 0.65 0.36 0.0024 158 196 52.49 70.87
PMRS k=4 0.70 0.36 0.0026 188 198 49.34 66.67
PMRS k=5 0.69 0.37 0.0025 181 200 47.50 63.78
ES 0.72 0.38 0.0025 199 206 62.73 64.30
RW 0.75 0.39 0.0026 215 220 0 50.39

Numbers in bold denote the best results for each error statistic, ‘***’ denotes the chosen PMRS model for each time series
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