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Summary. In this chapter recent research in the area of multi-objective optimisa-
tion of regression models is presented and combined. Evolutionary multi-objective
optimisation techniques are described for training a population of regression mod-
els to optimise the recently defined Regression Error Characteristic Curves (REC).
A method which meaningfully compares across regressors and against benchmark
models (i.e. ‘random walk’ and maximum a posteriori approaches) for varying error
rates. Through bootstrapping training data, degrees of confident out-performance
are also highlighted.

This approach is then extending to encapsulate the complexity of the model as
a third objective to minimise. Results are shown for a number of data sets, using
multi-layer perceptron neural networks.

1 Introduction

When forecasting a time series there are often different measurements of the
quality of the signal prediction. These are numerous and often problem specific
[1]. Recent advances in regressor comparison has been concerned not solely
with the chosen error measure itself, but also with the distributional properties
of a regressor’s error – this has been formulated in a methodology called
Regression Error Characteristic (REC) curve, introduced by Bi & Bennett
[2]. This curve traces out the proportion of residual errors of a model which
lie below a certain error threshold, allowing the comparison of models given
different error property preferences.

This chapter proceeds with the introduction of evolutionary computation
techniques as a process for generating REC curves for regressor families, in-
stead of for individual regressors, allowing the visualisation of the potential
prediction properties for an entire class of method for a problem.

This approach is then augmented with the simultaneous optimisation of
model complexity, with a similar framework to that introduced in [13]. The
highlighting of regions of the REC curve on which we can confidently out-
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perform the maximum a posteriori (MAP) trained model is also introduced,
through bootstrapping the optimised REC curve.

The chapter proceeds as follows: REC curves are formally defined and
there properties discussed in Section 2. A general model for multi-objective
REC optimisation is introduced in Section 3, and the regression models to
be optimised and compared are presented in Section 4.3. Empirical results
are presented on a range of problems in Section 4, and the methodology is
extended to include complexity trade-off in Section 5. The chapter ends with
a final discussion of results in Section 6.

2 Regression Error Characteristic Curves

Receiver Operating Characteristic (ROC) curves have proved useful for a num-
ber of years as a method to compare classifiers when the costs of misclassi-
fication are a priori unknown. In the binary classification case it plots the
rates of correct classification of one class against the misclassification rates
of the other class, typically derived through changing the threshold/cost of
a particular parameterised classifier. This formulation allows the user to see
what range of classifications they can obtain from a model, and also allows
them to compare models where misclassification costs are unknown by using
such measures as the area under the curve (AUC) and the Gini coefficient. A
more in depth discussion of ROC curves can be found in the chapter on ROC
optimisation in this book.

Inspired by this, Bi & Bennett [2] developed the Regression Error Char-
acteristic curve methodology to represent the properties of regression models.
In a regression problem, the task is to generate a good estimate of a signal yi

(called the dependent variable), from a transformation of one or more input
signals xi (called independent variables), such that

ŷi = f(xi,u). (1)

ŷi is the regression model prediction of yi, given the data xi and the model
parameters u. The optimisation process of regression models typically takes
the form of varying u in order to make ŷi as close to yi as possible, where
closeness is calculated through some error term (like Euclidean distance or
absolute error). This error is calculated for all the n training data points
used, ξ = error(ŷ,y), and the average error, ξ̄ typically used as the scaler
evaluation of the parameters u.

In REC, instead of dealing purely with the average error of a regressor,
the entire error distribution is of interest. The proportion of points forecast
below a certain error threshold are plotted against the error threshold, for
a range of error thresholds (from zero to the maximum obtained error for a
null regressor on a single point). This effectively traces out an estimate of the
cumulative distribution function of the error experienced by a regressor, and
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Fig. 1. Distribution of residual errors of two regression models, a: A and b: B.

can be created by ordering ξ in ascending order, and plotting this against the
element index divided by n.

There are many useful properties of this representation, for instance the
area over the curve (AOC) is a good estimate of the expected error of the
model. However, probably the most useful contribution of the REC formula-
tion is the easy visualisation of error information about a model across the
range of data used to train or test it. This gives information to the user which
may lead them to select a model other than the one with the lowest average
error.

2.1 Illustration

Let us start with a toy example where we have two regression models available
to us, A and B, which are predicting some time series (for instance the demand
of a product in the next month). If model A experiences, on average, an
absolute error of 0.99 and model B an absolute error of 1.06, then without
any additional information one would typically choose to use model A as it
exhibits a lower mean error. Knowing the distributional properties of this
error, however, may lead to a different decision.

Figure 2.1 shows an (illustrative) error distribution of the absolute errors of
models A and B, Figure 2.1 in turn traces out the REC curves for A (solid line)
and B (dashed line). This shows that although model A has a lower average
error than model B, its largest errors (the top 15%) are proportionally bigger
than that of model B – meaning it makes more extreme errors than model
B. Given that the cost of extreme errors to the user of the forecast may be
proportionally greater than small errors (small under predictions of demand
can be taken up by inventoried goods, large under predictions may result in
turning customers away), B may actually be preferred.1

1 It should be noted in the original work by Bi and Bennett they recommended
ranking models by the AOC – i.e. an estimate of the mean expected error. However
this assumes proportional costs of error, which in many situations is not the case.
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Fig. 2. REC curves of two regression models, A (solid) and B (dashed).

The final choice of model will depend upon the preferences and costs of
the user of the model which may be difficult to incorporate in an optimisation
algorithm when there is no a priori knowledge of the shape of the REC curves
possible [5].

[2] used REC to compare different regressors trained to minimise the aver-
age error, and so were effectively interested in those models which minimised
the AOC. When we are interested in a particular region of the REC curve
(distributional property of our residual errors), minimising the AOC of a sin-
gle model will not necessarily lead us to the best model given our preferences.
However minimising the AOC of a set of models can.

Using the previous illustration, if we merge the two REC curves of models
A and B, taking only the portions which are in front, we can create an REC
curve which illustrates the possible error/accuracy combinations given the
available models. The illustration in Figure 2.1 shows this composite REC
curve along with the REC curves of two new models, C and D. As the REC
of model C lies completely below the composite REC curve, we can see that
for any possible error/accuracy combination models A and/or B are better
than model C. Model D however is slightly in front of the composite REC for
a small range of accuracy, and so would be useful to retain and offer to the
end user as a possible model.

3 Multi-Objective Evolutionary Computation for REC

The generation of a composite REC curve to describe the possible er-
ror/accuracy combinations for a problem (given a model family or families)
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Fig. 3. Composite REC of models A (solid) and B (dashed), and REC curves of
models C and D.

is easily cast in terms of multi-objective optimisation problem. However the
casting itself can be in two different forms, which affect both the representa-
tion and the complexity of the optimisation process.

3.1 Casting as a 2 objective problem

The obvious representation of the REC optimisation problem is as a 2-
objective problem, the first objective (error threshold) to be minimised and
the second objective (accuracy) to be maximised. In this case a single param-
eterisation, u, results in n error/accuracy pairs, which need to be compared
to the current best estimate of the composite REC curve. Any values on the
current best estimate which have higher error threshold for the same accu-
racy as u need to be removed as they are dominated and replaced by relevant
the pair(s) from the evaluation of u. Formulated in this fashion, O(n log n)
domination comparisons are needed for each parameter vector compared to
the current best estimate of the Pareto front/composite REC curve.

We can instead however represent the problem as an n objective problem,
which actually turns out to be faster.

3.2 Casting as an n objective problem

On calculating the error, ξ, of two parameterisations u and v, and arranging
them in ascending order, we can use these n dimensional errors as the fitness
vectors for u and v. The accuracy term (the second objective in the previous
formulation) always takes on the value of the index (over n) of the elements
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Fig. 4. Composite REC curves from casting the REC optimisation problem as a a:
2-objective or a b: n-objective one. Note that all the points in (a), are included in
(b) .

of ξ, so each element of the ordered ξ for u is coupled with the correspond-
ing element of the ordered ξ of v. If all the error thresholds at each index
for the regressor with decision vector (parameters) u are no larger than the
error thresholds at the corresponding index for regressor v and at least one
threshold is lower, then the regressor parameterised by u is said to strictly
dominate that parameterised by v (u ! v).

Traditionally, a set F of decision vectors is said to be non-dominated if no
member of the set is dominated by any other member:

u "≺ v ∀u,v ∈ F, (2)

and this formulation is used to store the archive of the best estimate of
the Pareto front found by an optimisation process. In the REC optimisation
situation, because the set F itself traces out the composite REC, our decision
to add or remove an element to/from F is not quite so straightforward as that
in Equation 2. If we define REC(F ) as the composite curve generated by the
elements in F , then we actually want to maintain F such that:

u "≺ REC(F \ u) ∀u ∈ F. (3)

For this formulation a single domination comparison is needed for each
parameter vector compared to the current best estimate of the Pareto front/
composite REC curve (albeit a comparison across n objective as opposed to
2). Additionally we known that at most n unique model parameterisations
will describe the REC composite curve.

Interestingly the points returned by casting the problem as a 2-objective or
as a n-objective problem are slightly different – the n objective optimisation
of the curve returning an attainment surface representation of the REC curve
(along the error axis) [32, 26], whereas the 2-objective optimisation returns a
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Algorithm 1 REC optimising MOEA.

1: F := initialise() Initial front estimate
2: n := 0
3: while n < N : Loop
4: u := evolve(select(F )) Copy and evolve from F

5: REC(u) Evaluate
6: if u !" REC(F ) If non-dominated
7: F := F ∪ u Insert in archive
8: F := {v ∈ F |v ⊀ REC(F \ v)} Remove any dominated
9: end

10: n := n + 1
11: end

strictly non-dominated front representation (and therefore may have less than
n elements, as illustrated in Figure 3.2

4 Empirical illustration

In this section a simple multi-objective evolutionary algorithm (MOEA) is
introduced to show the generation of REC curves for a number of different
well-known autoregressive problems from the literature, namely the Santa Fe
competition suite of problems [29]. Note that any recent MOEA from the
literature could equally be used [4, 6, 7, 17, 18, 28, 33] – however they would
need augmentation to compensate for the problem specific archive update
shown in Equation 3.

4.1 The optimiser

The MOEA used here is based on a simple (1+1)-evolutionary algorithm, a
model which has been used extensively in the literature [9, 15, 14, 12, 10, 18,
19, 21, 20]. An overview is provided in Algorithm 1. The process commences
with the generation of an initial estimate of the REC curve for the problem
(Algorithm 1, line 1). This can typically be provided by the generation of
random parameterisations of the model and/or the optimisation of the model
with traditional scaler optimisers concerned with the mean error (i.e. back-
propagation or scaled conjugate gradient for a neural network model [24]).
These decision vector(s) are stored in F . The algorithm continues by iterating
through a number of generations (line 3), and at each generation creating a
new model parameterisation, u, through mutation and/or crossover of ele-
ments of F (line 4). u is compared at each generation to F (line 6). If it is
non-dominated by the composite front defined by F , it is inserted into F (line
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Fig. 5. Santa Fe competition series. 1000 sequential points of each used for training.

7), and any elements in F which no longer contribute to the composite front
are removed (line 8).

An equivalent formulation would be to simply update F to minimise its
AOC, and remove any elements that do not contribute to its minimisation
– effectively a set based scalar optimisation. However as later in this chap-
ter the additional imposition of a complexity minimisation objective will be
introduced, the nominally multi-objective formulation will be adhered to here.

The evolve(select(F )) methods (line 4) either generates a new solution by
single point crossover of two members from F and perturbing the weights, or
by copying a single solution from F and perturbing its weights. Crossover
probability was 0.5, weight perturbation probability 0.8 and weight per-
turbation multiplier 0.01 (perturbation values themselves were drawn from
a Laplacian distribution). Parameters used are encoded as real values and
crossover occurred at the transform unit level. Different representations and
crossover/perturbation/selection methods could equally be used, and an ex-
cellent review of those concerned with NN training can be found in Yao [31].
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Fig. 6. Autocorrelation of series a: A, b: C, c: D and d: E.

4.2 Data

The data used in this chapter to show the properties of REC optimisation
is the Santa Fe competition data [29], which is a suite of autoregressive and
multi-variate data problems exhibiting different properties. The final series,
Series F, is not used here as this exhibits the missing data property, which
this chapter is not concerned with.

The other 5 series are:

• Series A: Laser generated data.
• Series B: Three sets of physiological data, spaced by 0.5 second intervals.

The first set is the heart rate, the second is the chest volume (respiration
force), and the third is the blood oxygen concentration (measured by ear
oximetry).

• Series C: Tickwise bids for the exchange rate from Swiss Francs to US
dollars. Recorded by a currency trading group for 12 days.

• Series D: computer generated time series.
• Series E: Astrophysical data. A set of measurements of the light curve

(time variation of the intensity) of the variable white dwarf star PG1159-
035 during March 1989, at 10 second intervals.
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All may be obtained from http://www-psych.stanford.edu/~andreas/
Time-Series/SantaFe.html. Figure 4.2 shows the first 1000 samples of each
of the series (except for series B, where the second 1000 is shown). As can
be seen, the series exhibit varying degrees of oscillation and rapid change. In
the prediction tasks used here, all series are standardised (the mean of the
training data subtracted and divided through by the variance of the training
data), however the error reported is that on the prediction transformed back
into the original range.

Series A, C, D and E are autoregressive problems (i.e. past values of the
same series are used to predict future values). One step ahead predictions are
made, and the number of lags (past steps) to use is determined by observing
the auto-correlation between steps (shown in Figure 4.2). Series B is a multi-
variate problem, and is formulated here as a problem of predicted one of the
series at time t given the values of the two other series at t.

On inspection of the autocorrelations, 40 lags are used for series A and
D, 10 lags for series E. Series C is highly correlated even with very large
lags (see Figure 4.2). 5 lags were chosen for this series, but the correlation
levels and a priori knowledge of the exchange rate market would indict results
outperforming a random walk would be surprising.

4.3 Non-linear Models

In the traditional linear regression model the functional transformation takes
the form of

ŷ = u1x1 + u2x2 + . . . + um−1xn + um (4)

with correspondingly m = p+1 model parameters to fit, where p is the number
of independent variables.

Here however we shall use the non-linear multi-layer perceptron (MLP)
neural network regression model. In an MLP, the functional transformation
takes the form of a number of parallel and sequential functional transforma-
tions. With k parallel transformation functions (known as the hidden layer),
and a single hidden layer, they can be represented in their regression form as:

ŷ = f1(x, u1, . . . , ul) + f2(x, ul+1, . . . , u2l) + . . . + fk(x, u(k−1)l, . . . , ukl) + um

(5)

In the case of the MLP transfer, these units take the form of a hyperbolic
tangent:

f(x,q) = tanh

(

qp+1 +
p
∑

i=1

qixi

)

qp+2 (6)

The first p elements of q are the weights between the inputs to the hidden
unit. The p + 1th element is the unit bias and the p + 2th element is the
weight between the unit and the output. It therefore has m = k(p + 2) + 1
parameters.
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Fig. 7. REC curves of Santa Fe competition series ‘A’ for a 5 hidden unit MLP.
Solid line evolved composite REC, dashed line optimised REC curve of scalar best
model and dot-dashed line REC of null model.

4.4 Results

The first example results are shown here for a 5 hidden unit multi-layer per-
ceptron neural network. The model is initially trained using a scaled conju-
gate gradient algorithm [24], with acts as an initial F . As series A is highly
oscillatory the first difference is used as the dependant variable, and the fi-
nal prediction reconstructed from this. The null model, which is typically the
mean of the data, in this formulation is therefore the more appropriate ran-
dom walk model (which predicts that ŷt = yt−1) – as differencing the data
gives a mean of zero.

Figure 4.3 shows the composite (evolved) REC curve after 20000 genera-
tions, the REC curve of a single model optimised with the scaled conjugate
gradient algorithm for 1000 epochs, and the null model. It should be noted
that the training of the single neural network and the subsequent run of the
MOEA took approximately the same computation time. The composite REC
curve is only slightly in front of the single AOC minimising model, however it
does completely dominate it. Both curves are well in front of the null model
– implying there is indeed information in the series which enables a degree of
prediction beyond the most simple formulation.

Figure 4.4 gives the error histograms of three different points on the com-
posite REC curve, to better illustrate the qualitative difference between the
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Fig. 8. Histograms of models on evolved composite REC. Bottom left, lowest thresh-
old at 0.1 level. Top left lowest threshold at 0.5 level. Top right lowest threshold at
0.9 level. Bottom right histogram of lowest mean error model.

errors made by regressors on different points on the composite REC curve,
the bottom right histogram shows that of the single minimising AOC Model
(trained with the scaled conjugate gradient algorithm – the maximum a poste-
riori model). The bottom left histogram (corresponding to the model with the
lowest threshold at the 0.1 level) can be seen to exhibit the greatest number
of points with very low absolute error. Conversely, although the mean error
of the histogram in the top right is pushed higher than the other four models
shown, it exhibits fewer very high errors than the others. Figure 4.4 shows the
actual errors corresponding to the histograms provided in 4.4, which shows
where these errors are being made.

Uncertainty

In [2] the REC curve presented are the means of a number of different runs (on
cross validation data), meaning they were an average of a number of different
model parameterisations on a number of different datasets – as each model
was trained in turn on the different data. What we are interested in here
more specifically is the expected variation of a single parameterisation, as in
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Fig. 9. Errors of models on evolved composite REC. a: lowest threshold at 0.5
level. b: lowest threshold at 0.9 level. c:, lowest threshold at 0.1 level. d: histogram
of lowest mean error model.

the end we have to decide upon a single model. We can do this effectively
by bootstrapping our training data [8], and noting the variation in errors to
generate a probability of operating in a particular objective space region [11].

More formally, by bootstrapping the data we are generating a data set of
the same size, which is statistically equivalent to the original. If we generate
p bootstrap replications, and evaluate our composite REC curve on these p
data sets, we are provided with p error thresholds for each accuracy level. This
gives us a n × p set of error values Ξ. We can calculate the probability that
the regressor defining the REC curve point at accuracy level, i, will, have a
lower error level than a value ẽ as:

p(Ξi < ẽ) =
1

p

p
∑

j=1

I(Ξi,j < ẽ) (7)

where I(·) is the indicator function.
Figure 4.4a shows the probability contours for composite REC front shown

in Figure 4.3, at the 5% and 95% levels, created from 200 bootstrap resamples
of the data. Figure 4.4b in turn shows the 95% REC contour and the REC
curve of the single model trained using the conjugate gradient algorithm.
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Fig. 10. a: Probability contours of REC for MLP on series A, 5% and 95% level
contours shown around composite REC curve. b: 95% level composite REC contour
and REC curve of MAP model (dashed) and null model (dot-dashed). Error in log
scale to aid visualisation.

From this we can say not only (from Figure 4.3) that the single MAP curve
lies completely in front of that of the single MAP model, but that we are
confident (at the 95% level) that it will lie in front of the single REC model
for accuracy levels from 0.02 up to 0.85 on statistically equivalent data.

Figure 4.4 shows these fronts for the other four test problems (once more
using an MLP with 5 hidden units). Again the 95% composite REC contour
(solid line), the REC of the MAP model (dashed line) and the null model
(dot-dashed line) are plotted. (The null model is again set as the random walk
model – which is a far better fit than the mean allocation model suggested
in [2].) From these we can see that we are confident (at the 95% level) of the
composite REC models outperforming the single MAP model on the accuracy
range 0.01-0.5 for series B, 0.00-0.10 for series D and 0.00-0.30 on series E.
In the case of series C, the REC of the MAP model (and for most of the null
model) lies in front of the 95% composite REC contour, implying there is little
or no information in the series beyond a random walk prediction.

Until this point we have been concerned with the uncertainty over the
error preferences for a regression model (leading to the optimisation of REC
curves), and the uncertainty over the variability of the data used (leading to
the use of probability contours). It is also very likely that, although we may
have a preferred regression model type, we may not know how complex a
model we should use – i.e., in the case of NNs, how many hidden units, how
many inputs, what level of connectivity? In the final section of this chapter
the previous optimising model will be extended so that a set of REC curves
can be returned, in one optimising process, which describe the error/accuracy
trade-off possibilities for a range of model complexities.
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Fig. 11. 95% level composite REC contour and REC curve of MAP model (dashed)
and null model (dot-dashed) for series a: B, b: C, c: D and d: E. Error in log scale
to aid visualisation.

5 Complexity as an additional objective

An additional problem manifest when training regression models is how to
specify a model that is sufficient to provide ‘good’ results to the task at hand
without any a priori knowledge of how complex the function you wish to emu-
late actually is. Too simple a model and the performance will be worse than is
actually realisable, too complex a model and one runs the risk of ‘overfitting’
the model and promoting misleading confidence on the actual error properties
of your chosen technique. Depending upon the regressor used, various methods
to tackle this problem are routinely in use. In the neural network domain these
take the guise of weight decay regularisation [3, 25], pruning [22], complexity
loss functions [30] and cross validation topology selection [27].

A multi-objective formulation of this problem, which recognised the im-
plicit assumptions about the interaction of model complexity and accuracy
that penalisation methods make (e.g. [23]), was recently proposed by the au-
thor [16]. This cast the problem of accuracy and complexity as an explicit
trade-off, which could be traced out and visualised without imposing any
complexity costs a priori.
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Algorithm 2 REC and complexity optimising MOEA.

1: F := initialise() Initial front estimate
2: n := 0
3: while n < N : Loop
4: u := evolve(select(F )) Copy and evolve from F

5: REC(u) Evaluate
6: F̃

− := F \ v ∈ F where |v| ≤ |u| Lower and equal complexity
7: if u !" REC(F̃ ) If non-dominated
8: F := F ∪ u Insert in archive
9: F̃

+ := F \ v ∈ F where |v| ≥ |u| Higher and equal complexity
10: F̃

− := F \ v ∈ F where |v| < |u| Lower complexity
11: F̃

+ := {v ∈ F̃
+|v ⊀ REC(F̃+ \ v)}Remove any dominated

12: F := F̃
+ ∪ F̃

−

13: end

14: n := n + 1
15: end

This method can be applied to the REC optimisation to trace out es-
timated optimal REC curves for different levels of model complexity. Here
complexity shall be cast in terms of the number of model parameters – the
larger the parameterisation of a model from a family, the more complex. In
the linear regression case this is simply the number of coefficients. In the MLP
case this is the number of weights and biases.

5.1 Changes to the optimiser

The evolve(select(F )) methods (line 4) of Algorithm 2 is adjusted in this
extension to allow the generation and evolutionary interaction of parameteri-
sations of differing complexity (dimensionality). The existing crossover allows
the interaction of models with different dimensionality – in addition weight
deletion is also incorporated with a probability of 0.1.

F now contains a set of models generating a composite REC curve for
each complexity level, as such its update is also modified from Algorithm 1.
Line 6 of Algorithm 2 shows the selection from F of those members with
equal or lower complexity to the new parameterisation u into F̃−. u is then
compared to the composite REC curve defined by the members of F̃−, if it
is non-dominated, then it is inserted into F (line 8) and those members of F
with and equal or higher complexity than u are then compared to u, and any
dominated members removed (line 11).

Apart from these alterations the algorithm is run as previously, this time
for 50000 generations.
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Fig. 12. REC/complexity surface for problem A.

5.2 Empirical results

Figure 5.1 shows the composite REC curves for various MLP complexities for
the Series A problem previously defined. As can be see, the REC curve rapidly
approaches a stable position with only 10 weights in the network.

Figure 5.2 in turn provides these plots for the other 4 problems previously
described. Test problem B can also be adequately described with only 10
weights whereas the REC curves of test problem C are relatively unchanged
across all complexities. There are very small adjustments throughout the range
of complexities shown for problem D, although good results can be obtained
with relatively low complexity. On the other hand 20 weights are needed for
problem E before the improvements to the REC curve become relatively small
improvements for higher complexity levels.

6 Conclusion

This chapter has introduced the use of MOEAs to optimise a composite REC
curve, which describes the (estimated) best possible error/accuracy trade off
a regression model can produce for a particular problem.

REC specific properties where also highlighted – the hard limit of the
number of different parameterisations possible, the casting as a 2 objective, n
objective or even scalar problem, and the different computational complexities
of these different formulations.
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Fig. 13. REC curves of series a: B, b: C, c: D and d: E, for varying complexities.

The optimisation method was extended by the use of bootstrapping to
show the probability of performance, on statistically equivalent data. The
problem itself was then expanded so that the complexity of the model was
also optimised, producing a REC surface, which makes it easy to identify
the minimum level of complexity needed to achieve specific error/accuracy
combinations for a particular model family on a particular problem.
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