
Estimating Classification Uncertainty of Bayesian 
Decision Tree Technique on Financial Data 

Vitaly Schetinin, Jonathan E. Fieldsend, Derek Partridge, Wojtek J. 
Krzanowski, Richard M. Everson, Trevor C. Bailey, and Adolfo Hernandez 

Summary. Bayesian averaging over classification models allows the uncertainty 
of classification outcomes to be evaluated, which is of crucial importance for mak-
ing reliable decisions in applications such as financial in which risks have to be  
estimated. The uncertainty of classification is determined by a trade-off between 
the amount of data available for training, the diversity of a classifier ensemble and 
the required performance. The interpretability of classification models can also 
give useful information for experts responsible for making reliable classifications. 
For this reason Decision Trees (DTs) seem to be attractive classification models. 
The required diversity of the DT ensemble can be achieved by using the Bayesian 
model averaging all possible DTs. In practice, the Bayesian approach can be     
implemented on the base of a Markov Chain Monte Carlo (MCMC) technique of 
random sampling from the posterior distribution. For sampling large DTs, the 
MCMC method is extended by Reversible Jump technique which allows inducing 
DTs under given priors. For the case when the prior information on the DT size is 
unavailable, the sweeping technique defining the prior implicitly reveals a better 
performance. Within this chapter we explore the classification uncertainty of the 
Bayesian MCMC techniques on some datasets from the StatLog Repository and 
real financial data. The classification uncertainty is compared within an Uncer-
tainty Envelope technique dealing with the class posterior distribution and a given 
confidence probability. This technique provides realistic estimates of the classifi-
cation uncertainty which can be easily interpreted in statistical terms with the aim 
of risk evaluation. 
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1 Introduction 

The uncertainty of Bayesian model averaging used for applications such as 
financial prediction in which risks should be evaluated is of crucial impor-
tance. In general, uncertainty is a triple trade-off between the amount of 
data available for training, the classifier diversity, and the classification 
accuracy [1–4]. The interpretability of classification models can also give 
useful information to experts responsible for making reliable classifica-
tions. For this reason Decision Trees (DTs) seem to be attractive classifica-
tion models for experts [1–7]. 

The main idea of using DT classification models is to recursively parti-
tion data points in an axis-parallel manner. Such models provide natural 
feature selection and uncover the features which make the important con-
tribution the classification. The resultant DT classification models can be 
easily interpretable by users. 

By definition, DTs consist of splitting and terminal nodes, which are 
also known as tree leaves. DTs are said to be binary if the splitting nodes 
ask a specific question and then divide the data points into two disjoint 
subsets, say the left or the right branch. Figure 1 depicts an example of the 
DT consisting of two splitting and three terminal nodes. 

Note that the number of the data points in each split should not be less 
than that predefined by a user. The terminal node assigns all data points 

Fig. 1. An example of decision tree consisting of two splitting and terminal nodes 
depicted by the circles and rectangles. The split nodes ask the questions Q1 and Q2

and an outcome is assigned to one of the terminal nodes with the probabilities P1,
P2, and P3

falling in that node to a class of majority of the training data points residing 
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Estimating Classification Uncertainty of Bayesian Decision 

in this terminal node. Within a Bayesian framework, the class posterior 
distribution is calculated for each terminal node [4–7]. 

The required diversity of the DTs can be achieved on the base of 
Bayesian Markov Chain Monte Carlo (MCMC) methodology of sampling 
from the posterior distribution [4–7]. This technique has revealed promis-
ing results when applied to some real-world problems. Chipman et al. [6] 
and recently Denison et al. [7] have suggested the MCMC techniques in 
which for sampling from large DTs they used Reversible Jumps (RJ)      
extension suggested by Green [8]. The RJ MCMC technique making such 
moves as birth and death allows the DTs to be induced under the priors 
given on the shape or size of the DTs. Exploring the posterior distribution, 
the RJ MCMC should keep the balance between the birth and death moves 
under which the desired estimate of the posterior can be unbiased [6–8]. 

Within the RJ MCMC technique the proposed moves for which the 
number of data points falling in one of splitting nodes becomes less than 
the given number are assigned unavailable. Obviously that the priors given 
on the DTs are dependent on the class boundaries and noise level in data 
available for training, and it is intuitively clear that the sharper class boun-
daries, the larger DTs should be. However in practice the use of such an 
intuition without a prior knowledge on favourite shape of the DTs can lead 
to inducing over-complicated DTs and as a result the averaging over such 
DTs can produce biased class posterior estimates [6, 7]. Moreover, within 
the standard RJ MCMC technique suggested for averaging over DTs, the 
required balance cannot be kept. This may happen because of over-fitting 
the Bayesian DTs [9]. Another reason is that the RJ MCMC technique ave-
raging over DTs assigns some moves which cannot provide a given num-
ber of data points allowed being in the splitting nodes unavailable [10]. 

For the cases when the prior information of the favourite shape of DTs 
is unavailable, the Bayesian DT technique with a sweeping strategy has 
revealed a better performance [10]. Within this strategy the prior given on 
the number of DT nodes is defined implicitly and dependent on the given 
number of data points allowed being at the DT splits. So the sweeping 
strategy gives more chances to induce the DTs containing a near optimal 
number of splitting nodes required to provide the best generalization. At 
the same time within this technique the number of data points allowed to 
be in the splitting nodes can be reasonably reduced without increasing the 
risk of overcomplicating the DTs. 

In this chapter we compare the classification uncertainty of the Bayes-
ian DT techniques with the standard and sweeping RJ MCMC strategies  
on a synthetic dataset as well on the real financial datasets known as the 
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Australian and German Credit datasets from the StatLog Repository [11]. 
In our experiments we also used the Company Liquidity Data recently    
announced by the German Classification Society for competition in data 
mining [12]. The classification uncertainty of the Bayesian techniques is 
evaluated within an Uncertainty Envelope dealing with the class posterior 
distribution and a given confidence probability suggested in [13]. The Uncer-
tainty Envelope technique by estimating the consistency of DT outputs on 
the given data produces allows the classification uncertainty to be estimated 
and interpreted in statistical terms [14]. Using such an evaluation technique 
in our comparative experiments, we find that the Bayesian DT technique with 
the sweeping strategy is superior to the standard RJ MCMC technique. 

In Sect. 2 we first describe the standard Bayesian RJ MCMC technique 
and then in Sect. 3 we describe the Bayesian DT technique with the sweeping 
strategy. In Sect. 4 we briefly describe the Uncertainty Envelope technique 
used in our experiments for comparison of the classification uncertainty of 
the two Bayesian DT techniques. The experimental results are presented in 
Sects. 5 and 6 concludes the chapter. 

2 The Bayesian Decision Tree Technique 

In this section we first present the Bayesian DT technique based on 
MCMC search methodology and second describe Reversible Jump exten-
sion of the MCMC. Finally we discuss the difficulties of sampling large 
DTs within the RJ MCMC technique. 

2.1 The Bayesian Averaging over Decision Trees 

In general, the predictive distribution we are interested in is written as an 
integral over parameters of the classification model 

DDxDx dpypyp )|(),,|(),|(                            (1) 

where y is the predicted class (1, …, C ), x = (x1, …, xm) is the m-
dimensional input vector, and D denotes the given training data. 

The integral (1) can be analytically calculated only in simple cases. In 
practice, part of the integrand in (1), which is the posterior density of 
conditioned on the data D, p(  | D), cannot usually be evaluated. However
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if values  (1), …,  (N) are drawn from the posterior distribution p(  | D), we 
can write 

N

i

ii
N

i

i yp
N

pypyp
1

)()(

1

)( ),,|(1)|(),,|(),|( DxDDxDx .      (2) 

This is the basis of the MCMC technique for approximating integrals 
[7]. To perform the approximation, we need to generate random samples 
from p(  | D) by running a Markov Chain until it has converged to a sta-
tionary distribution. After this we can draw samples from this Markov 
Chain and calculate the predictive posterior density (2). 

Let us now define a classification problem presented by data (xi, yi), i = 
1, …, n, where n is the number of data points and yi  {1, …, C} is a cate-
gorical response. Using DTs for classification, we need to determine the 
probability ij with which a datum x is assigned by terminal node i = 1, …, 
k to the jth class, where k is the number of terminal nodes in the DT. Ini-
tially we can assign a (C – 1)-dimensional Dirichlet prior for each terminal 
node so that p( i | ) = DiC-1( i | ), where i = ( i1, …, iC), is the vector 
of DT parameters, and = ( 1, …, C) is a prior vector of constants given 
for all the classes. 

The DT parameters are defined as = (si

pos, si

var, si

rule), i = 1, …, k – 1, 
where si

pos, si

var , and si

rule

splitting node, respectively. For these parameters the priors can be speci-
fied as follows. First we can define a maximal number of splitting nodes, 
say, smax = n – 1, so },...,1{ maxss posi . Second we draw any of the m predic-
tors from a uniform discrete distribution U(1, …, m) and assign 

},...,1{var msi . Finally the candidate value for the splitting variable xj = si

var

is drawn from a uniform discrete distribution U(xj

(1), …, xj

(N)), where N is 
the total number of possible splitting rules for predictor xj, either categori-
cal or continuous. 

Such priors allow the exploring of DTs which partition data in as many 
ways as possible, and therefore we can assume that each DT with the same 
number of terminal nodes is equally likely [7]. For this case the prior for a 
complete DT is described as follows: 

) .}({)()|()( 1
1

1

1

varvar kpos
i

k

i
ii

rule
i spspsspp                         (3) 

For a case when there is knowledge of the favoured structure of the 
DT, Chipman et al. [6] suggested a generalization of the above prior – they 

define the position, predictor, and rule of each 
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assume the prior probability of further split of the terminal nodes to be depen-
dent on how many splits have already been made above them. For exam-
ple, for the ith terminal node the probability of its splitting is written as

,)1()( isplit dip                    (4) 

where di is the number of splits made above i and ,  0 are given con-
stants. The larger , the more the prior favours “bushy” trees. For  = 0 
each DT with the same number of terminal nodes appears with the same 
prior probability. 

Having set the priors on the parameters  and , we can determine the 
marginal likelihood for the data given the classification tree. In the general 
case this likelihood can be written as a multinomial Dirichlet distribution 
[7]:

,
)(

)(
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}{)|(
1

1

C

i
C

j ji

C

j jij
k

C n

mCp D                        (5) 

where ni is the number of data points falling in the ith terminal node of 
which mij points are of class j and  is a Gamma function. 

2.2 Reversible Jumps Extension 

To allow sampling DT models of variable dimensionality, the MCMC 
technique exploits the Reversible Jump extension [8]. This extension       
allows the MCMC technique to sample large DTs induced from real-world 
data. To implement the RJ MCMC technique Chipman et al. [6] and Deni-
son et al. [7] have suggested exploring the posterior probability by using 
the following types of moves. 

– Birth. Randomly split the data points falling in one of the terminal nodes 

ponding priors. 
– Death. Randomly pick a splitting node with two terminal nodes and    

assign it to be one terminal with the united data points. 
– Change-split. Randomly pick a splitting node and assign it a new split-

ting variable and rule drawn from the corresponding priors. 
– Change-rule. Randomly pick a splitting node and assign it a new rule 

drawn from a given prior. 

V. Schetinin et al. 

by a new splitting node with the variable and rule drawn from the corres-
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The first two moves, birth and death, are reversible and change the 
dimensionality of  as described in [7]. The remaining moves provide 
jumps within the current dimensionality of . Note that the change-split
move is included to make “large” jumps which potentially increase the 
chance of sampling from a maximal posterior whilst the change-rule move 
does “local” jumps. 

For the birth moves, the proposal ratio R is written 

,
)()|'(
)()|( ''

pq
pqR                   (6) 

where the )|( 'q  and )|'(q  are the proposed distributions, ´ and  are 
(k + 1) and k-dimensional vectors of DT parameters, respectively, and p( )
and p( ´) are the probabilities of the DT with parameters and ´:
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where )( var
isN  is the number of possible values of si

var which can be as-
signed as a new splitting rule, Sk is the number of ways of constructing a 
DT with k terminal nodes, and K is the maximal number of terminal nodes, 
K = n – 1. 

For binary DTs, as given from graph theory, the number Sk is the Cata-
lan number

,
2

1
1

k
k

k
Sk                       (8) 

and we can see that for k  25 this number becomes astronomically large, 
Sk  (4.8)12.

The proposal distributions are as follows 
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where DQ1 = DQ + 1 is the number of splitting nodes whose branches are 
both terminal nodes. 

Then the proposal ratio for a birth is given by 
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The number DQ1 in (11) is dependent on the DT structure and it is clear 
that DQ1 < k k = 1, …, K. Analysing (11), we can also assume dk+1 = bk.
Then letting the DTs grow, i.e. k K, and considering Sk+1 > Sk, we can 
see that the value of R c, where c is a constant lying between 0 and 1. 

Alternatively, for the death moves the proposal ratio is written as 

,
)1( 11 k

kQ

k

k

S
S

k
D

d
bR                   (12) 

and we can see that under the assumptions considered for the birth moves, 
R  1. 

2.3 The Difficulties of Sampling Decision Trees 

The RJ MCMC technique starts drawing samples from a DT consisting of 
one splitting node whose parameters were randomly assigned within the 
predefined priors. So we need to run the Markov Chain while it grows and 
its likelihood is unstable. This phase is said burn-in and it should be preset 
enough long in order to stabilize the Markov Chain. When the Markov 
Chain will be enough stable, we can start sampling. This phase is said post
burn-in.

It is important to note that the DTs grow very quickly during the first 
burn-in samples. This happens because an increase in log likelihood value 
for the birth moves is much larger than that for the others. For this reason 
almost every new partition of data is accepted. Once a DT has grown the 
change moves are accepted with a very small probability and, as a result, 
the MCMC algorithm tends to get stuck at a particular DT structure instead 
of exploring all possible structures. 

The size of DTs can rationally decrease by defining a minimal number 
of data points, pmin, allowed to be in the splitting nodes [3–5]. If the number 
of data points in new partitions made after the birth or change moves be-
comes less than a given number pmin, such moves are assigned unavailable, 
and the RJ MCMC algorithm resamples such moves. 

However, when the moves are assigned unavailable, this distorts the 
proposal probabilities pb, pd, and pc given for the birth, death, and change 
moves, respectively. The larger the DT, the smaller the number of data 
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points falling in the splitting nodes, and correspondingly the larger is the 

To show that the balance of proposal probabilities can be biased, let us 
assume an example with probabilities pb, pd, and pc set equal to 0.2, 0.2, 
and 0.6, respectively, note that pb + pd + pc = 1. Let the DTs be large so that 
the birth and change moves are assigned unavailable with probabilities pbu

and pcu equal to 0.1 and 0.3, respectively. As a result, the birth and change 
b bu c cu

Let us now emulate 10,000 moves with the given proposal probabili-
ties. The resultant probabilities are shown in Fig. 2. 

From Fig. 2 we can see that after resampling the unavailable proposals 
the probabilities of the birth and death moves become equal approximately 
0.17 and 0.32, i.e. the death moves are made with a probability which is 
significantly larger than a probability originally set equal 0.2. 

Fig. 2. The standard strategy: The proposal probabilities for the birth, death, and 
change moves presented by the three groups. The left-hand bars in each group   
denote the proposal probabilities. The right-hand bars denote the resultant prob-
abilities with which the birth, death, and change moves are made in reality if the 
birth and change moves were assigned unavailable with probabilities 0.1 and 0.3, 
respectively

probability with which moves become unavailable. Resampling the unavail-
able moves makes the balance between the proposal probabilities biased.

moves are made with probabilities equal to (p  –  p ) and (p  –  p ),       respec-
tively.
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Because DTs are hierarchical structures, the changes at the nodes located 
at the upper levels can significantly change the location of data points at the  
lower levels. For this reason there is a very small probability of changing 
and then accepting a DT split located near a root node. Therefore the RJ 
MCMC algorithm collects the DTs in which the splitting nodes located far 
from a root node were changed. These nodes typically contain small num-
bers of data points. Subsequently, the value of log likelihood is not 
changed much, and such moves are frequently accepted. As a result, the RJ 
MCMC algorithm cannot explore a full posterior distribution properly. 

One way to extend the search space is to restrict DT sizes during a 
given number of the first burn-in samples as described in [7]. Indeed, under 
such a restriction, this strategy gives more chances of finding DTs of a 
smaller size which could be competitive in terms of the log likelihood val-
ues with the larger DTs. The restricting strategy, however, requires setting 
up in an ad hoc manner the additional parameters such as the size of DTs 

V. Schetinin et al. 

The disproportion in the balance between the probabilities of birth and 
death moves is dependent on the size of DTs averaged over samples. 
Clearly, at the beginning of burn-in phase the disproportion is close to 
zero, and to the end of the burn-in phase, when the size and form of DTs 
are stabilized, its value becomes maximal. 

and the number of the first burn-in samples. Sadly, in practice, it often 
happens that after the limitation period the DTs grow quickly again and 
this strategy does not improve the performance. 

Alternatively to the above approach based on the explicit limitation of 
DT size, the search space can be extended by using a restarting strategy as 
Chipman et al. have suggested in [6]. Clearly, both these strategies cannot 
guarantee that most of DTs will be sampled from a model space region 
with a maximal posterior. In Sect. 3 we describe our approach based on 
sweeping the DTs. 

3 The Bayesian Averaging with a Sweeping Strategy 

In this section we describe our approach to decreasing the uncertainty of 
classification outcomes within the Bayesian averaging over DT models. 
The main idea of this approach is to assign the prior probability of further 
splitting DT nodes to be dependent on the range of values within which the 
number of data points will be not less than a given number of points, pmin.
Such a prior is explicit because at the current partition the range of such 
values is unknown. 

164



Estimating Classification Uncertainty of Bayesian Decision 

Formally, the probability Ps(i, j) of further splitting at the ith partition
level and variable j can be written as 

),1(
min

),1(
max

),(
min

),(
max),( jj

jiji

s xx
xxjiP ,    (13) 

where ),(
min
jix  and ),(

max
jix are the minimal and maximal values of variable j at 

the ith partition level. 
Observing (13), we can see that ),1(

max
),(

max
jji xx  and ),1(

max
),(

min
jji xx  for all the 

partition levels i > 1. On the other hand there is partition level k at which 
the number of data points becomes less than a given number pmin. There-

s

From (13) it follows that for the first level of partition, probability Ps is 
equal to 1.0 for any variable j. Let us now assume that the first partition 
split the original data set into two non-empty parts. Each of these parts 
contains less data points than the original data set, and consequently for the 
(i = 2)th partition either ),1(

max
),(

max
jji xx  or ),1(

max
),(

min
jji xx  for new splitting variable 

j. In any case, numerator in (13) decreases, and probability Ps becomes less 
than 1.0. We can see that each new partition makes values of numerator 
and consequently probability (13) smaller. So the probability of further 
splitting nodes is dependent on the level i of partitioning data set. 

The above prior favours splitting the terminal nodes which contain a 
large number of data points. This is clearly a desired property of the RJ 
MCMC technique because it allows accelerating the convergence of 
Markov chain. As a result of using prior (13), the RJ MCMC technique of 
sampling DTs can explore an area of a maximal posterior in more detail. 

However, prior (13) is dependent not only on the level of partition but 
also on the distribution of data points in the partitions. Analyzing the data 
set at the ith partition, we can see that value of probability Ps is dependent 
on the distribution of these data. For this reason the prior (13) cannot be 
implemented explicitly without the estimates of the distribution of data 
points in each partition. 

To make the birth and change moves within prior (13), the new split-
ting values si

rule,new for the ith node and variable j are assigned as follows. 
For the birth and change-split moves the new value si

rule,new is drawn from a 
uniform distribution: 

),(~ ,1
max

,1
min

, jjnewrule
i xxUs .     (14) 

between 0 and 1 for any variable j and the partition levels i: 1 i < k.
fore, we can conclude that the prior probability of splitting P  ranges 
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The above prior is “uninformative” and used when no information on 
preferable values of si

rule is available. As we can see, the use of a uniform 
distribution for drawing new rule si

rule,new, proposed at the level i > 1, can 
cause the partitions containing less the data points than pmin. However, 
within our technique such proposals can be avoided. 

 For the change-split moves, drawing si

rule,new follows after taking new 
variable si

var,new:
},{~ k

var,new
i SUs                                   (15) 

where Sk = {1, …, m}\si

var is the set of features excluding variable si

var cur-
rently used at the ith node. 

For the change-rule moves, the value si

rule,new is drawn from a Gaussian 
with a given variance j:

),(~,
j

rule
i

newrule
i sNs ,                                    (16) 

where j = si

var is the variable used at the ith node. 
Because DTs have hierarchical structure, the change moves (especially 

change-split moves) applied to the first partition levels can heavily modify 
the shape of the DT, and as a result, its bottom partitions can contain less 
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data points than pmin. As mentioned in Sect. 2, within the Bayesian DT 
techniques [6, 7] such moves are assigned unavailable. 

Within our approach after birth or change move there arise three pos-
sible cases. In the first case, the number of data points in each new parti-
tion is larger than pmin. The second case is where the number of data points 
in one new partition is larger than pmin. The third case is where the number 
of data points in two or more new partitions is larger than pmin. These three 
cases are processed as follows. 

For the first case, no further actions are made, and the RJ MCMC algo-
rithm runs as usual. 

For the second case, the node containing unacceptable number of data 
points is removed from the resultant DT. If the move was of birth type, 
then the RJ MCMC resamples the DT. Otherwise, the algorithm performs 
the death move. 

For the last case, the RG MCMC algorithm resamples the DT. 
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As we can see, within our approach the terminal node, which after making 
the birth or change moves contains less than pmin data points, is removed 
from the DT. Clearly, removing such unacceptable nodes turns the random 
search in a direction in which the RJ MCMC algorithm has more chances to 
find a maximum of the posterior amongst shorter DTs. As in this process 
the unacceptable nodes are removed, we named such a strategy sweeping.

After change move the resultant DT can contain more than one nodes 
splitting less than pmin data points. However this can happen at the begin-
ning of burn-in phase, when the DTs grow, and this unlikely happen, when 
the DTs have grown. 

As an example, Fig. 3 provides the resultant probabilities estimated on 
10,000 moves for a case when the original probabilities of the birth, death, 

Fig. 3. The shrinking strategy: The proposal probabilities for the birth, death, and 
change moves presented by the three groups. The left-hand bars in each group  
denote the proposal probabilities. The right-hand bars denote the resultant prob-
abilities with which the birth, death, and change moves are made in reality if the 
birth and change moves were assigned unavailable with probabilities 0.07 and 0.2, 
respectively

and change moves were set equal 0.2, 0.2, and 0.6, respectively, as assumed 
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at the example given in Sect. 2. The probabilities of the unacceptable birth 
and change moves were set equal to 0.07 and 0.2. These values are less 
than those that were set in the previous example because the DTs induced 
with a sweeping strategy are shorter than those induced with the standard 
strategy. The shorter DTs, the more data points fall at their splitting nodes, 
and less the probabilities pbu and pcu are. In addition, 1/10th of the unac-
ceptable change moves was set assigned to the third option, mentioned 
above, for which two or more new partitions contain less than pmin data 
points.

From Fig. 3 we can see that after resampling the unacceptable birth 
moves and reassigning the unacceptable change moves, the resultant prob-
abilities of the birth and death moves become equal approximately 0.17 
and 0.3, i.e. the values of these probabilities are very similar to those that 
shown in Fig. 2. 

V. Schetinin et al. 

Next we describe the Uncertainty Envelope technique suggested to   
estimate the classification uncertainty of multiple classifier systems the  
details of which are described in [13]. This technique allows us to compare 
the performance of the Bayesian strategies of averaging over the DTs in 
terms of classification uncertainty.

4. The Uncertainty Envelope Technique 

In general, the Bayesian DT strategies described in Sects. 2 and 3 allow 
sampling the DTs induced from data independently. In such a case, we can 
naturally assume that the inconsistency of the classifiers on a given datum 
x is proportional to the uncertainty of the DT ensemble. Let the value of 
class posterior probability P(cj|x) calculated for class cj be an average over 
the class posterior probability P(cj|Ki, x) given on classifier Ki:

,),|(1)|(
1

N

i
ijj KcP

N
cP xx                 (17) 

where N is the number of classifiers in the ensemble.
As classifiers K1, …, KN are independent each other and their values 

P(cj|Ki, x) range between 0 and 1, the probability P(cj|x) can be approxi-
mated as follows

N

i
iij tyI

N
cP

1
),|,(1x)|( x                 (18) 
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where I(yi, ti) is the indicator function assigned to be 1 if the output yi of 
the ith classifier corresponds to target ti, and 0 if it does not. 

The larger number of classifiers, N, the smaller is error of the appro-
ximation (17). For example, when N = 500, the approximation error is 
equal to 1%, and when N = 5,000, it becomes equal to 0.4%. 

It is important to note that the right side of (18) can be considered as a 
consistency of the outcomes of DT ensemble. Clearly, values of the consis-
tency,

N

i
ii tyIN 1

)|,(1 x , lie between 1/C and 1. 

Analyzing (18), we can see that if all the classifiers are degenerate, i.e., 
P(cj|Ki, x)  {0, 1}, then the values of P(cj|x) and  become equal. The out-
puts of classifiers can be equal to 0 or 1, for example, when the data points 
of two classes do not overlap. In other cases, the class posterior probabili-
ties of classifiers range between 0 and 1, and the P(cj| x) . So we can 
conclude that the classification confidence of an outcome is characterized 
by the consistency of the DT ensemble calculated on a given datum. 
Clearly, the values of  are dependent on how representative the training 
data are, what classification scheme is used, how well the classifiers were 
trained within a classification scheme, how close the datum x is to the 
class boundaries, how the data are corrupted by noise, and so on. 

Let us now consider a simple example of a DT ensemble consisting of 
N = 1,000 classifiers in which 2 classifiers give a conflicting classification 
on a given datum x to the other 998. Then consistency  = 1 – 2/1,000 = 
0.998, and we can conclude that the DT ensemble was trained well and/or 
the data point x lies far from the class boundaries. It is clear that for new 
datum appearing in some neighbourhood of the x, the classification uncer-
tainty as the probability of misclassification is expected to be 1 –  = 1 – 
0.998 = 0.002. This inference is truthful for the neighbourhood within 
which the prior probabilities of classes remain the same. When the value of 
 is close to min = 1/C, the classification uncertainty is highest and a datum 

x can be misclassified with a probability 1 –  = 1 – 1/C.
From the above consideration, we can assume that there is some value 

of consistency 0 for which the classification outcome is confident, that is 
the probability with which a given datum x could be misclassified is small 
enough to be acceptable. Given such a value, we can now specify the     
uncertainty of classification outcomes in statistical terms. The classifica-
tion outcome is said to be confident and correct, when the probability of 
misclassification is acceptably small and 0.
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Additionally to the confident and correct output, we can specify a confi-
dent but incorrect output referring to a case when almost all the classifiers 
assign a datum x to a wrong class whilst 0. Such outcomes tell us that 
the majority of the classifiers fail to classify a datum x correctly. The confi-
dent but incorrect outcomes can happen for different reasons, for example, 
the datum x could be mislabelled or corrupted, or the classifiers within a 
selected scheme cannot distinguish the data x properly. 

The remaining cases for which  < 0 are regarded as uncertain classi-
fications. In such cases the classification outcomes cannot be accepted 
with a given confidence probability 0 and the DT ensemble labels them as 
uncertain.

Figure 4 gives a graphical illustration for a simple two-class problem 
formed by two Gaussian N(0, 1) and N(2, 0.75) for variable x. As the class 
probability distributions are given, an optimal decision boundary can be 
easily calculated in this case. For a given confident consistency 0, the inte-
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Fig. 4. Uncertainty Envelope characteristics for an example of two-class problem 

gration over the class posterior distribution gives boundaries B1 and B2 
within which the outcomes of the DT ensemble are assigned within the 
Uncertainty Envelope technique to be confident and correct (CC), confi-
dent but incorrect (CI) or uncertain (U). If a decision boundary within a  
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selected classification scheme is not optimal, the classification error       
becomes higher than a minimal Bayes error. So, for the Bayesian classifier 
and a given consistency 0, the probabilities of CI and U outcomes on the 
given data are minimal as depicted in Fig. 4. 

The above three characteristics, the confident and correct, confident 
but incorrect, and uncertain outcomes, seem to provide a practical way of 
evaluating different types of DT ensembles on the same data sets. Compar-
ing the ratios of the data points assigned to be one of these three types of 
classification outcomes, we can quantitatively evaluate the classification 
uncertainty of the DT ensembles. Depending on the costs of types of mis-
classifications in real-world applications, the value of the confidence con-
sistency 0 should be given, say, equal to 0.99. 

Next we describe the experimental results obtained with the shrinking 
strategy of Bayesian averaging over DTs. These results are then compared 
with those that have been obtained with the standard Bayesian DT tech-
nique described in [7]. 

5 Experiments and Results 

This section describes the experimental results on the comparison of the 
Bayesian DT techniques with the standard and sweeping strategies des-
cribed in the above sections. The experiments were conducted first on a 
synthetic dataset, and then on the real financial datasets, the Australian and 
German Credit Datasets available at the StatLog Repository [11] as well as 
the Company Liquidity Data recently presented by the German Classifica-
tion Society at [12]. The performance of the Bayesian techniques is evalu-
ated within the Uncertainty Envelope technique described in Sect. 4. 

5.1 The Characteristics of Datasets and Parameters of MCMC 
Sampling

The synthetic data are related to an exclusive OR problem (XOR3) with 
the output y = sign(x1x2) and three input variables x1, x2 ~ U( 0.5, 0.5) and 
x3 ~ N(0, 0.2) which is a Gaussian noise. Table 1 lists the total number of 
input variables, m, including the number of the nominal variables, m0, the 
number of examples, n, and the proportion of examples of class 1, r.  All 
the four datasets present the two-class problems. 
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Variables with the enumerated number of values were assigned nominal. 
All the above data do not contain missing values. However the Company 
Liquidity Data contain many values marked by 9999999 that we inter-
preted as unimportant under the certain circumstances. The fraction of 
such values is large and equal 24%. 

For all the above domain problems, no prior information on the prefer-
able DT shape and size was available. The pruning factor, or the minimal 
number of data point allowed being in the splits, pmin was given equal bet-
ween 3 and 50 in the dependence on the size of the data. The proposal 
probabilities for the death, birth, change-split and change-rules are set to 
be 0.1, 0.1, 0.2, and 0.6, respectively. The numbers of burn-in and post burn-
in samples were also dependent on the problems. Meanwhile, the sampling 

Table 1. The characteristics if the data sets 

# data m m0 n  r,% 

1 XOR3 3 0 1,000 50.0 
2 Australian Credit 14 13 690 55.5 
3 German Credit 20 20 1,000 70.0 
4 Company Liquidity  26 15 20,000 88.8 

rate for all the domain problems was set equal to 7. Note all the parameters 
of MCMC sampling were set the same for both Bayesian techniques. 

The performance of the Bayesian MCMC techniques was evaluated 
within the Uncertainty Envelope techniques within fivefold cross-valida-
tion and 2  intervals. The average size of the induced DTs is an important 
characteristic of the Bayesian techniques and it was also evaluated in our 
experiments.

5.2 Experimental Results 

5.2.1 Performance on XOR3 Data 

Both Bayesian DT techniques with the standard (DBT1) and the sweeping 
(BDT2) strategies perform quite well on the XOR3 data, recognizing 
99.7% and 100.0% of the test examples, respectively. The acceptance rate 
was 0.49 for the BDT1 and 0.12 for BDT2 strategies. The average number 
of DT nodes was 11.3 and 3.4 for these strategies, respectively, see Table 2. 
Both the BDT1 and the BDT2 strategies ran with the value pmin = 5. The 

V. Schetinin et al. 172



Figures 5 and 6 depict samples of log likelihood and numbers of DT 
nodes as well as the densities of DT nodes for burn-in and post burn-in 
phases for the BDT1 and BDT2 strategies. From the top left plot of these 
figures we can see that the Markov chain very quickly converges to the sta-
tionary value of log likelihood near to zero. During post burn-in the values 
of log likelihood slightly oscillate around zero. 

As we can see from Table 2, both the BDT1 and the BDT2 strategies 
reveal the same performance on the test data. However the number of DT 

Table 2. Comparison between BDT1 and BDT2 on the XOR3 Data 

strategy number of 
DT nodes 

perform, % sure correct, % uncertain, % sure incorrect,
%

BDT1 11.3 7.0 99.7 0.9 96.0 7.4 4.0 7.4 0.0 0.0
BDT2 0.2 100.0 0.0 99.5 1.2 0.5 1.2 0.0 0.0

Fig. 5. The Bayesian DT technique with the standard strategy on the XOR3 data: 
Samples of log likelihood and DT size during burn-in and post burn-in. The bottom 
plots are the distributions of DT sizes 

Estimating Classification Uncertainty of Bayesian Decision 

numbers of burn-in and post burn-in samples were set equal to 50,000 and 
10,000, respectively. The proposal variance was set equal 1.0. 

nodes induced by the BDT2 strategy is much less than that induced by the 
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5.2.2 Performance on Australian Credit Data 

On these data, both the BDT1 and the BDT2 strategies ran with value pmin

= 3. The numbers of burn-in and post burn-in samples were set equal to 
100,000 and 10,000, respectively. The proposal variance was set equal 1.0.

Both the standard DBT1 and the sweeping BDT2 strategies correctly 
recognized 85.4% of the test examples. The acceptance rate was 0.5 for the 
BDT1 and 0.23 for BDT2 strategies. The average number of DT nodes 
was 25.8 and 8.3 for these strategies, respectively, see Table 3. 

Fig. 6. The Bayesian DT technique with the sweeping strategy on XOR3 problem: 
Samples of log likelihood and DT size during burn-in and post burn-in. The bottom
plots are the distributions of DT sizes

V. Schetinin et al. 

BDT1 strategy. It is very important that on this test the BDT2 strategy has  
found a true classification model consisting of the two variables. Besides, 
the BDT2 strategy provides more sure and correct classifications than 
those provided by the BDT1 strategy. 
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5.2.3 Performance on German Credit Data 

Both Bayesian strategies ran with value pmin = 3. The numbers of burn-in 
and post burn-in samples were set equal to 100,000 and 10,000, respec-
tively. The proposal variance was set equal 2.0 to achieve the better per-
formance on these data. 

The standard DBT1 and the sweeping BDT2 strategies correctly rec-
ognized 72.5% and 74.3% of the test examples, respectively. The accep-
tance rate was 0.36 for the BDT1 and 0.3 for BDT2 strategies. The average 
number of DT nodes was 18.5 and 3.8 for these strategies, respectively, 

Table 4. Comparison between BDT1 and BDT2 on the German Credit Data 

strategy number of 
DT nodes 

perform, % sure correct, % uncertain, % sure incorrect,
%

BDT1 27.3 2.8 72.5 6.8 32.8 7.2 62.5 11.4 4.7 4.4
BDT2 20.7 1.1 74.3 5.9 39.4 9.2 54.4 10.5 6.2 3.6

As we can see from Table 4, the BDT2 strategy slightly outperforms 
the BDT1 on the test data. In the same time the number of DT nodes induced 
by the BDT2 strategy is less than that induced by the BDT1 strategy. The 
BDT2 strategy provides more sure and correct classifications than those 
provided by the BDT1 strategy. 
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see Table 4. 

Table 3. Comparison between BDT1 and BDT2 on the Australian Credit Data 

strategy number of 
DT nodes 

perform, % sure correct, % uncertain, % sure incorrect,
%

BDT1 25.8 2.3 85.4 4.0 55.1 9.5  42.0 9.1 2.9 2.9
BDT2 0.9 85.4 4.2 65.4 9.7  30.3 8.9 4.3 2.3

Table 3 shows us that both the BDT1 and the BDT2 strategies reveal 
the same performance on the test data. However the number of DT nodes 
induced by the BDT2 strategy is much less than that induced by the BDT1 
strategy. Additionally, the BDT2 strategy provides more sure and correct

tain classification is also less than that provided by the BDT1 strategy. 
classifications than those provided by the BDT1 strategy. The rate of uncer-
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Both Bayesian DT techniques strategies perform quite well, recognizing 
91.5% of the test examples. The acceptance rate was 0.36 for the BDT1 
and 0.3 for BDT2 strategies. The average number of DT nodes was 68.5 
and 34.2 for these strategies, respectively, see Table 5. 

Table 5. Comparison between BDT1 and BDT2 on the Company Liquidity Data 

strategy number of 
DT nodes 

perform, % sure correct, % uncertain, % sure incorrect,
%

BDT1 68.5 5.2 91.5 0.3 89.8 1.4 2.9 2.1 7.2 0.8
BDT2 34.2 3.3 91.5 0.5 90.2 1.1 2.5 1.7 7.3 0.8

Figure 7 and 8 depict samples of log likelihood and numbers of DT 
nodes as well as the densities of DT nodes for burn-in and post burn-in 
phases for the BDT1 and BDT2 strategies. 

Fig. 7. The Bayesian DT technique with the standard strategy on the Company  
Liquidity data 

V. Schetinin et al. 

5.2.4 Performance on Company Liquidity Data 

Due to large amount of the training data the BDT1 and the BDT2 strate-
gies ran with value pmin = 50. The numbers of burn-in and post burn-in 
samples were set equal to 50,000 and 5,000, respectively. The proposal 
variance was set equal 5.0 which as we found in our experiments provides 
he best performance. 
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Fig. 8. The Bayesian DT technique with the sweeping strategy on the Company 
Liquidity 

From Table 5 we can see that both the BDT1 and the BDT2 strategies 
reveal the same performance on the test data. However the number of DT 
nodes induced by the BDT2 strategy is much less than that induced by the 
BDT1 strategy. 

6 Conclusion 

The use of the RJ MCMC methodology of stochastic sampling from the 
posterior distribution makes Bayesian DT techniques feasible. However, 
exploring the space of DTs parameters, existing techniques may prefer sam-
pling DTs from the local maxima of the posterior instead of the properly 
representing the posterior. This affects the evaluation of the posterior dis-
tribution and, as a result, causes an increase in the classification uncer-
tainty. This negative effect can be reduced by averaging the DTs obtained 
in different starts or by restricting the size of DTs during burn-in phase. 

As an alternative way of reducing the classification uncertainty, we 
have suggested the Bayesian DT technique using the sweeping strategy. 
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Within this strategy, DTs are modified after birth or change moves by     
removing the splitting nodes containing fewer data points than acceptable. 

The performances of the Bayesian DT techniques with the standard 
and the sweeping strategies have been compared on a synthetic dataset as 
well as on some datasets from the StatLog Repository and real financial 
data. Quantitatively evaluating the uncertainty within the Uncertainty Enve-
lope technique, we have found that our Bayesian DT technique using the 
sweeping strategy is superior to the standard Bayesian DT technique. Both 
Bayesian DT techniques reveal rather similar average classification accu-
racy on the test datasets. However, the Bayesian averaging technique with 
a sweeping strategy makes more sure and incorrect classifications. We also 
observe that the sweeping strategy provides much shorter DTs. 

Thus we conclude that our Bayesian strategy of averaging over DTs using 
a sweeping strategy is able decreasing the classification uncertainty with-
out affecting classification accuracy on the problems examined. Clearly 
this is a very desirable property for classifiers used in critical systems in which 
classification uncertainty may be of crucial importance for risk evaluation. 
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