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CHAPTER 28

OPTIMIZING FORECAST MODEL COMPLEXITY USING
MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

Jonathan E. Fieldsend and Sameer Singh

Department of Computer Science, University of Exeter
North Park Road, Exeter, EX4 4QF, UK

E-mail: J.E.Fieldsend@exeter.ac.uk

When inducing a time series forecasting model there has always been
the problem of defining a model that is complex enough to describe the
process, yet not so complex as to promote data ‘overfitting’ – the so-
called bias/variance trade-off. In the sphere of neural network forecast
models this is commonly confronted by weight decay regularization, or
by combining a complexity penalty term in the optimizing function.
The correct degree of regularization, or penalty value, to implement for
any particular problem however is difficult, if not impossible, to know
a priori. This chapter presents the use of multi-objective optimization
techniques, specifically those of an evolutionary nature, as a potential
solution to this problem. This is achieved by representing forecast model
‘complexity’ and ‘accuracy’ as two separate objectives to be optimized.
In doing this one can obtain problem specific information with regards to
the accuracy/complexity trade-off of any particular problem, and, given
the shape of the front on a set of validation data, ascertain an appropriate
operating point. Examples are provided on a forecasting problem with
varying levels of noise.

1. Introduction

The use of neural networks (NNs), specifically multi-layer perceptrons
(MLPs), for classification and regression is widespread, and their continu-
ing popularity seemingly undiminished. This is not least due to their much
vaunted ability to act as a ‘universal approximator’ – that is given sufficient
network size, any deterministic function mapping can be modelled. This is
typically done where the process (function) is unknown, but where example
data have been collected, from which the estimated model is induced.

Seasoned practitioners will however know that the great amenability of
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NNs is a double edged sword. It is difficult, if not impossible, to tell a priori

how complex the function you wish to emulate is, therefore it is difficult to
know how complex your NN design should be. Too complex a model de-
sign (too many transformation nodes/weights and/or large synaptic weight
values) and the NN may overfit its function approximation. It may start
modelling the noise on the examples as opposed to generalizing the pro-
cess, or it may find an overly complex mapping given the data provided.
Too few nodes and the NN may only be able to model a subset of the ca-
sual processes in the data. Both of these effects can lead a NN to produce
substandard results in its future application.

Various approaches to confront this problem have been proposed since
NNs have become widely applied; such as weight decay regularization to
push the NN weights to smaller values (which keeps them in the linear
mapping space),5,27 pruning algorithms to remove nodes,21 complexity loss
functions31 and topology selection based on cross validation.29

More recently the field of evolutionary neural networks (ENNs) has also
been addressing this problem. As the evolutionary approach to training is
not susceptible to the local minima trapping of gradient descent approaches
a large number of studies have investigated this approach to NN training,
a review of a substantial number of these can be found in Yao.33 A number
of studies enable the evolution of different sized ENNs, with some studies
including size penalization22 similar to the complexity loss functions used
in gradient descent approaches. However this leads to the problem of how
you define the penalization – as it implicitly means making assumptions
about the interaction of model complexity and accuracy of the ENN for
your problem (the trade-off between the two).

Through using the formulation and methods developed in the evolu-
tionary multi-objective optimization (EMOO) domain,6,8,14,30 the set of
solutions that describe the trade-off surface for 2 or more objectives of a
design problem can be discovered. This approach can equally be applied
to ENN training in order to discover the set of estimated Pareto optimal
ENNs for a function modelling problem, where accuracy of function emula-
tion, and complexity of model are the two competing objectives. Previous
studies by Abbass 2,3 have tackled this by formulating complexity in terms
of the number of transfer units in an ENN, however his model does not
easily permit the use of other measures of complexity. As such this chap-
ter will introduce a general and widely applicable methodology for EMOO
training of NNs, for discovering the complexity/accuracy trade-off for NN
modelling problems.
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The chapter will proceed as follows: a basic outline of the MLP NN
model is provided in Section 2 for those unfamiliar with NNs. In Section
3 the traditional approaches for coping with the bias/variance trade-off
are discussed, along with their perceived drawbacks. Section 4 presents
the general evolutionary algorithm approach to NN training, along with
recent work on trading-off network size and accuracy and a new model to
encompass many definitions of complexity. In Section 5 a set of experiments
to validate this new approach are described, using time series exhibiting
differing levels of noise. Results from these experiments are reported in
Section 6. The chapter concludes with a discussion in Section 7.

2. Artificial Neural Networks

The original motivation behind artificial NNs was the observation that the
human brain computes in a completely different manner than the stan-
dard digital computer,16 which enables it to perform tasks such as pattern
recognition and motor control far faster and more accurately than standard
computation. This ability is derived from the fact that the human brain is
complex, nonlinear and parallel, and has the additional ability to adapt to
the environment it finds itself in (referred to as plasticity). Artificial NNs
developed as a method to mimic these properties, and terms relating to NN
design (neurons, synaptic weights) are taken from the biological description
of the brain function. However, it is generally the case that NNs in popular
use by researchers use only the concepts of parallelism, non-linearity and
plasticity within a mathematical framework, and do not attempt to copy
exactly the functions of the brain (which are still not fully understood).

The most popular NN model is the multi-layer perceptron (MLP) since
the formalization of the backpropagation (BP) leaning algorithm in the
early 1980s. The basic design of an MLP is shown in Figure 1.

The input signal of an MLP (or feature vector) is propagated through
the network (neuron by neuron), and transformed during its passage by
the combination of the synaptic weights and mathematical properties of
the neurons, until on the final layer an output signal is generated. In the
example shown in Figure 1 the network is defined as being fully connected,
each neuron (or node) being connected to each other neuron in the layers
directly preceding and proceeding it, and having a I : 3 : 2 : 1 topological
design. That is it has I input nodes, followed by two hidden layers, the first
containing 3 nodes and the second 2 nodes, with a single output node. The
two middle layers are referred to as hidden due the fact that the user does
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Fig. 1. Generic multi-layer perceptron, showing the forward flow of the input signal
(function signal) and the backward flow of the error signal.

not commonly observe the inputs or outputs from these nodes (unlike the
input layer where the feature vector is known and the output layer where
the output is observed). The most common transfer function used in the
MLP is the sigmoid function ϕ(). For the jth hidden node of a network
with a vector of z inputs its logistic form is defined as:

ϕ (z) =
1

1 + exp
(
−

(
Bj +

∑|z|
i=1

wi,jzi

)) (1)

where wi,j is the ith input weight between node j and the previous layer,
zi is the output of the ith node in the layer preceding node j and Bj is the
weight of the bias input to the jth node. The bias is similar to the intercept
term used in linear regression and has a fixed value for all patterns.

The adjustment of the synaptic weight parameter variables within an
MLP are most commonly performed in a supervised learning manner using
the fast backpropagation algorithm. Sequences of input and resultant out-
puts are collected from an undefined functional process f(a) "→ b. This set
of patterns are then presented to the MLP in order for it to emulate the
unknown function. The kth input pattern a(k) is fed through the network
generating an output b̂(k), an approximation of the desired output b (il-
lustrated with the arrows pointing to the right in Figure 1). The difference
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between the desired output b and the actual output b̂(k) is calculated (usu-
ally as the Euclidean distance between the vectors), and this error term,
E, is then propagated back through the network, proportional to the par-
tial derivative of the error at that node (illustrated with the dashed arrows
pointing to the left in Figure 1). An in-depth discussion of the history and
derivation of the backpropagation algorithm (and associated delta rule),
through the calculus chain, can be found in Bishop5 and Haykin16. Each
pattern in turn is presented to the MLP, with its weights adjusted using the
delta rule at each iteration. Only a fraction of the change demanded by the
delta rule is usually applied to avoid rapid weight changes from one pattern
to the next. This is known as the learning weight. A momentum term (ad-
ditionally updating weights with a fraction of their previous update) is also
commonly applied. The passing of an entire pattern set through the MLP
is called a training epoch. MLPs are usually trained, epoch by epoch, until
the observed average error of the function approximation reaches a plateau.
The generalization ability of the approximated function is then assessed on
another set of collected data which the NN has not been trained on.

In recent years there has been increasing interest in the use of evolution-
ary computation methods for NN training.33 In these ENNs the adjustable
parameters of an NN (weights and also sometimes nodes) are represented
as a string of floating point and/or binary numbers, the most popular rep-
resentation being the direct encoding form.33 Given a maximum size for a
three layer feed-forward MLP ENN of I input units (features), H hidden
units in the hidden layer, and O output units, the vector length used to
represent this network within an MOEA is of size:

(I + 1) · H + (H + 1) · O + I + H (2)

The first (I + 1) · H + (H + 1) · O genes are floating point and store
the weight parameters (plus biases) of the ENN, the next I + H are bit
represented genes, whose value (0 or 1) denotes the presence of a unit or
otherwise (in the hidden layer and input layer). These decision vectors are
manipulated over time using the tools of evolutionary computation (usually
evolution strategies (ESs) or genetic algorithms (GAs)). At each time step
(known as a generation) the ENNs represented by the new decision vectors
are evaluated on the training data, and selection for parameter adjustment
in the next generation is typically based on their relative error on this
data. The popularity of these approaches to NN training is that they are not
susceptible to trapping in local minima that gradient descent based learning
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algorithms are, and in addition, can use quite complex problem specific error
functions which may be difficult to propagate using derivatives.

Because of the high function complexity that NNs can emulate, there
is always a risk that the NN will simply map the input and output vectors
directly without recourse to creating an internal representation of their
generation process. An illustration of this is shown in Figure 2.
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Fig. 2. Overfitting illustration. Explanatory variable a and dependent variable b with
noise. Top: generating function. Bottom: overfitted signal.

In the illustration the model approximator is too complex, and therefore
fits exactly to the noisy data points instead of modelling the smoother
generating process.
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3. Optimal model complexity

Procedures to prevent the over-fitting of NNs can be categorized as falling
into two broad camps. The first group of methods take the approach that
the model used may be over specified (have more complexity than is needed
to model the problem), but by judicious use of more that one data set in
the training process the risk of over fitting can be minimized. The type
most frequently used is the so called ‘early stopping’ method, where a an
additional validation data set is used in the training process,25 other more
advanced methods based on bootstrapping27 are also in use. The second
group of methods tackles over-fitting with conscious attempts to restrict the
complexity of the NN during its training process, sometimes in conjunction
with early stopping methods.

3.1. Early stopping

There are a number of different approaches to early stopping.25 The tradi-
tional approach is to train a network and monitor its generalization error
on a validation set and stop training when the error on this set is seen
to rise. The general problem with this approach is that the generalization
curve may exhibit a number of local minima, so the early stopping may in
fact be too ‘early’. In order to overcome this the NN is trained as normal,
without stopping until the training error reaches a plateau, at the same
time however the generalization error on a validation set is checked - and
the network parameters when this is lowest recorded and used.

3.2. Weight decay regularization and summed penalty terms

One of the most common approaches to prevent over-fitting through com-
plexity minimization is that of weight decay regularization. This approach
attempts to inhibit the complexity of a particular model by restricting
the size of its weights, as it is known that larger weights values are
needed to model functions with a greater degree of curvature (and there-
fore complexity).5 In its standard form the sum of the squares of the NN
weights are used as a penalty term within the error function, such that

Enew = E + βΘ (3)

where E is the default error function (commonly Euclidean error), Θ is the
sum of squares of the NN weights, β is a weighting term and Enew is the
new error term to be propagated through the NN.
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Other approaches have been developed by researchers in the ENN field
use slightly different summed penalty terms in NN training, for example Liu
and Yao22 include a penalty for the size of the network in their composite
error function.

3.3. Node and weight addition/deletion

Node pruning/addition techniques ignore the complexity through the
weight value approach of weight decay regularization and some of the other
complexity penalty term approaches, and instead couch the complexity of
a NN in terms solely of the number of transformation nodes. The sim-
plest methodology of this approach is exhaustive search, training many
different NNs with different numbers of hidden units and comparing their
performance against each other. The computation cost of this approach is
obviously prohibitive, however it can be constrained to a certain degree
by simply adding an additional node to a previously trained NN, using
the weights of the previous network as a starting point. This method is
described as a growing algorithm approach,5 cascade correlation being an-
other.

In Kameyama and Kosugi17 the opposite approach is taken, with a large
NN initially specified, followed by the selective pruning of NN units. Le-
Cun et al.21 take a different approach of pruning, again citing that the best
generalization is obtained by trading off the training error and network
complexity, their method called optimal brain damage (OBD) focuses on
removing NN weights. The basic idea is to choose a reasonable network
architecture, train the network until a reasonable solution is obtained us-
ing gradient descent methods and compute the second derivative for each
parameter (NN weight). The parameters are then sorted by this saliency,
and those parameters with low saliency are deleted. Ragg and Gutjahr26

in contrast use mutual information in their routine for topology determi-
nation.

3.4. Problems with these methods

Network growing and pruning methods are usually characterized as being
slow to converge, with long training time and, for those that use of gra-
dient descent training techniques, susceptible to becoming stuck in local
minima.3 The main criticism directed at weight decay regularization and
other penalty term approaches to training, is the problem of how to spec-
ify the weighting terms needed by these methods. Just as it is difficult to
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ascertain the correct model complexity for a model a priori, so the correct
degree of penalization to include in these adjusted error values is difficult
to know beforehand. In addition the weighted sum approach is only able to
get all points from a Pareto front when it is convex.7 A demonstration of
the problem of composite error weight specification is illustrated below in
Figure 3.
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Fig. 3. Illustration of the problems inherent in using composite error functions to de-
termine an operating point.

Figure 3 shows three different fronts describing the trade-off between
accuracy and complexity. Each with a line tangential to them at the point
where the values are equal (equivalent to β=1 in Equation 3). As can be
seen in the illustration, depending upon the actual interaction of complex-
ity and accuracy exhibited by the process, as described by the curves, three
very different models will be returned by using this composite error weight-
ing. One with high error, low complexity (e1, c3), one with intermediate
complexity and error (e2, c2) and a third with low accuracy and low er-
ror (e3, c1). Again, it must be noted that these results are dependent on
the front shape, which is unknown a priori, but which must be implicitly
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guessed at if the composite error approach is used. Of course it is feasible to
run the composite error algorithm a number of times to discover the shape
of the front, however the algorithm will need to be run as many times as
the number of points desired, which is very time consuming, and even then
non-convex portions of the front will remain undiscovered.

4. Using evolutionary algorithms to discover the
complexity/accuracy trade-off

As discussed in Section 3, until recently researchers interested in constrain-
ing the complexity of their models had to assign one or more variables,
whose value was known to greatly affect the end model, but whose selec-
tion was difficult, if not impossible, to assign without knowing how the
model complexity and accuracy interacts for the specific problem. Instead
of trying to simultaneously optimize these separate objectives by combin-
ing complexity and accuracy into a single error value, which is shown to be
problematic, they can be optimized as two separate objectives, through the
use of EMOO techniques. By using this methodology a set of ENNs can
be produced showing the realized complexity/accuracy trade-off for each
problem.

Before discussing this approach further however, the concept of Pareto
optimality needs to be briefly described.

4.1. Pareto optimality

Most recent work in EMOO is formulated in terms of non-dominance and
Pareto optimality.

The multi-objective optimization problem seeks to simultaneously ex-
tremize D objectives:

yi = fi(x), i = 1, . . . , D (4)

where each objective depends upon a vector x of P parameters or deci-
sion variables, in the case of this chapter, ENN weights and nodes. The
parameters may also be subject to the J constraints:

ej(x) ≥ 0, j = 1, . . . J. (5)

Without loss of generality it is assumed that the objectives are to be
minimized, so that the multi-objective optimization problem may be ex-
pressed as:

minimize y = f(x) = (f1(x), . . . , fD(x)) (6)
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subject to e(x) = (e1(x), . . . , eJ(x)) ≥ 0 (7)

where x = (x1, . . . , xP ) and y = (y1, . . . , yD).
When faced with only a single objective an optimal solution is one which

minimizes the objective given the model constraints. However, when there
is more than one objective to be minimized solutions may exist for which
performance on one objective cannot be improved without sacrificing per-
formance on at least one other. Such solutions are said to be Pareto opti-

mal30 after the 19th century Engineer, Economist and Sociologist Vilfredo
Pareto, whose work on the distribution of wealth led to the development of
these trade-off surfaces.24 The set of all Pareto optimal solutions are said
to form the true Pareto front.

The notion of dominance may be used to make Pareto optimality clearer.
A decision vector u is said to strictly dominate another v (denoted u ≺ v)
iff

fi(u) ≤ fi(v) ∀i = 1, . . . , D ∧ ∃ i fi(u) < fi(v) (8)

Less stringently, u weakly dominates v (denoted u * v) iff

fi(u) ≤ fi(v) ∀i = 1, . . . , D. (9)

A set of M decision vectors {Wi} is said to be a non-dominated set (an
estimated Pareto front) if no member of the set is dominated by any other
member:

Wi +≺ Wj ∀i, j = 1, . . . , M. (10)

4.2. Extent, resolution and density of estimated Pareto set

There are a number of requirements of estimated Pareto fronts that re-
searchers strive for their algorithms to produce. These can be broadly de-
scribed as high accuracy, representative extent, minimum resolution and
equal density.

The first concept, accuracy, is simply that the estimated solutions should
be as close as possible to the true Pareto front. As illustrated in Figure
4, the estimated front of Algorithm A is clearly more accurate than that
of Algorithm B, however the comparison of A and C is more difficult to
quantify, as some members of A dominate members of C, but also the
reverse is true.

Ideally the Pareto solutions returned (or estimates of them) should lie
across the entire surface of the true Pareto front, and not simply be con-
cerned with a small subsection of it. Minimum resolution is a common
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Fig. 4. Illustration of the true Pareto front, and two estimates of it, estimate of algo-
rithm A being clearly more accurate the B, but the comparison of A and C is not as
easy to quantify.

requirement as in many applications the end user may wish the separation
between potential solutions to be no bigger than a fixed value (of course,
in discontinuous Pareto problems this requirement is not entirely realistic).

Much emphasis has been placed by researchers on the non-dominated
solutions returned by the search algorithm being equally distributed (of
even density),9 however it is arguable that this should only be of concern if
the generating process results in evenly distributed solutions. In an actual
application it may well be the case that the generating process produces
an unbalanced Pareto front, this information itself may be very pertinent
to the decision maker – by forcing multi-objective evolutionary algorithms
(MOEAs) to misrepresent this fact by penalizing any representation than
equal density they may well have negative repercussions for the final user
of the information.

An illustration of this is provided in Figure 5. Figure 5a shows the true
Pareto front, with Figures 5b and 5c illustrating the returned sets of two
MOEAs, one which focuses on equal density and one that does not, Figure
5b gives no indication to the end user of the density of solutions to the
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Fig. 5. Comparing the density of estimated Pareto fronts. Illustration of an underlying
true Pareto front (a), and its approximation using an MOEA that is designed to return
equal density along the front (b) and one that does not (c).

lower left of the front.

4.3. The use of EMOO

Abbass2,3 and Abbass and Sarker1 have recently applied EMOO techniques
to trading off the number of hidden units with respect to the accuracy of
the NN, where each point on the Pareto frontier is therefore represented by
an ENN with a different number of hidden units to any other set member.
A description of their memetic Pareto artificial neural network (MPANN)
model can be found in Algorithm 1.

The algorithm presented by Abbass is sufficient when concerned with
NN complexity defined as the number of transfer units, but is insufficient
when concerned with complexity defined as the number of weights or the
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Algorithm 1 The memetic Pareto artificial neural network algorithm.1,2,3

M , Size of initial random population of solutions.
N, Maximum number of EA generations.
E, Maximum number of backpropagation epochs.
1: Generate random NN population, S, of size M , such that each

parameter (weight) of the NN, xi ∼ N (0, 1), and the binary part
of the decision vector is either initialized at one or ∼ U(0, 1).

2: Initialize generation counter t := 0.
3: while t < N

4: Find set of solutions within S which are dominated, S̃,

S := S \ S̃.
5: if |S| < 3

6: Insert members from S̃ until |S| = 3.
7: end if
8: Randomly mark 20% of training data as validation data.
9: while |S| < M
10: Select random representatives from S; x, y and z
11: xnew := crossover(x,y, z)
12: xnew := mutate(xnew)
13: xnew := backpropagation(xnew, E)
14: if xnew ≺ x
15: S := S + xnew

16: end if
17: end while
18: t := t + 1
19: end while
20: end

sum of the squared weight values. This is because the algorithm internalises
the estimated Pareto front F within the search population, and needs the
maximum size of the Pareto front to be less than that of the search pop-
ulation. This can be seen at line 4 of Algorithm 1, where the dominated
members of the search population S are removed. If none of the search pop-
ulation members are dominated (it is a mutually non-dominating set) then
no further search will be promoted (line 9) and the Algorithm will simply
do nothing until the maximum number of generations is reached. As the
second objective in MPANN1,2,3 is discrete, with a maximum limit of Hmax

and a minimum limit of 1, the maximum size of F equals Hmax. As in its
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empirical applications1,2,3 the maximum number of hidden units was 10
and the search population size 50, this problem was not encountered, how-
ever Algorithm 1 cannot be easily applied to situations where the second
objective is to minimize the number of weights, as the maximum size of F
(for a single layer MLP) would be Hmax × I + Hmax + Hmax + 1 and the
search population would therefore need to be significantly greater than this.
In the case of sum of squared weights then there is essentially no limit on
the size of the Pareto set, and therefore no search population in Algorithm
1 would be large enough.

The method of search population update1,2,3 is essentially a variant of
the conservative replacement scheme described by Hanne15, where an in-
dividual in the search population is only replaced if it is dominated by a
perturbed copy of itself. In this chapter a more generally applicable algo-
rithm will be described for the multi-objective evolution of NNs, with the
emphasis placed on ease of encoding, for the trade-off of complexity and
accuracy

4.4. A general model

Perhaps the simplest EA in common use is the ES, where the parameters
are perturbed to adjust their value from one generation to the next. Its
popularity is probably derived in part from its ease of encoding and use,
however it has also formed the base of a number of successful algorithms
in the MOEA domain, not least the Pareto archived evolutionary strategy
(PAES) of Knowles and Corne.18,19 Due to its simplicity and previous suc-
cess it is also used as the base of Algorithm 2, which is used here to search
for the complexity/accuracy trade-off front.

4.4.1. mutate()

In ES, the weight space of a network is perturbed by set of values drawn
at each generation from a known distribution, as shown in Equation 11.

xi = xi + γ · Θ (11)

where xi is the ith decision parameter of a vector, Θ is a random value drawn
from some (pre-determined) distribution and γ is some multiplier. A (µ, λ)-
ES process is one in which µ decision vectors are available at the start of a
generation (called parents), which are then perturbed to generate λ variants
of themselves (called children or offspring). This set of λ children is then
truncated to provide the µ parents of the following iteration (generation).
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Algorithm 2 The ES based MO training algorithm for complex-
ity/accuracy trade-off discovery.

M , Size of initial random population of solutions.
N, Maximum number of EA generations.
pmut, Probability of weight perturbation.
pw, Probability of weight removal.
pu, Probability of unit removal
E, Maximum number of backpropagation epochs.
1: Initialise NN individual z.
2: z := backpropagation(z, E)
3: Generate random NN population, S, of size M , such that each

parameter (weight) of the NN, xi ∼ N (zi, 1), and the binary part
of the decision vector is either initialised at one or ∼ U(0, 1).

4: F0 = ∅. Update F0 with the non-dominated solutions from S ∪ z
5: Initialise generation counter t := 0.
6: while t < N

7: Create copy of search population, S̃ := S
8: for i = 1 : M

9: S̃i := mutate(S̃i, pmut)

10: S̃i := weightadjust(S̃i, pw)

11: S̃i := unitadjust(S̃i, pu)
12: end for

13: Update F0 with the non-dominated solutions from S̃
14: for i = 1 : M

15: if S̃i ≺ Si

16: Si := S̃i

17: else if S̃i ⊀ Si

18: if 0.5 > U(0, 1)

19: Si := S̃i

20: end if
21: end if
22: end for
23: S := replace(S, F, M

5
)

24: t := t + 1
25: end while
27: end
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The process of selection for which children should form the set of parents
in the next iteration is usually dependent on their evaluated fitness (the
fitter being more probable to ‘survive’). A (µ + λ)-ES process denotes one
where the parents compete with the children in the selection process for
the next generation parent set, which is the method used in Algorithm 2.
Recent work in the field of EAs has shown that the use of heavier tailed
distributions can speed up algorithm performance34 and as such in this
chapter Θ is a Laplacian distribution with width parameter 1, and γ =
0.1. In Algorithm 2 mutate(x, pmut) perturbs the weight parameters of the
decision vector x with a probability of pmut.

4.4.2. weightadjust()

In order for partially connected ENNs to lie within the search space of
the algorithm, the weightadjust() method is used (line 10 of Algorithm 2).
weightadjust(x, pw) acts upon the weight parameters of x, setting them to
0 with a probability of pw (effectively removing them).

4.4.3. unitadjust()

Topography and input feature selection is implemented within the model by
bit mutation of the section of the decision vector representing the network
architecture. This is facilitated by first determining a super-set of input
features and maximum hidden layer sizes. Once this is determined, any
individual has a fixed maximum representation capability. Manipulation of
structure is stochastic. By randomly bit flipping members of the first I
genes of the binary section of the decision vector the set of input features
used by the network is adjusted, and flipping the following H genes affects
the hidden layer.

4.4.4. The elite archive

In addition to the search population S Algorithm 2 also maintains an elite
archive F of the non-dominated solutions (ENNs) found so far in the search
process. No truncation is used on this set as the process can lead to some
negative repercussions; it can cause some members of F to be dominated
by members of F from an earlier generation (empirical proof of this can be
found in Fieldsend11 and theoretical justification in Hanne15). It also means
that the final front discovered should be distributed in a way more indicative
of the underlying process, as discussed in Section 4.2. Time concerns can be
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addressed by the efficient use of data structures,10,11,12,23 however if growth
is significant then some form of truncation may be worth considering.20

4.4.5. replace()

In order to promote additional search pressure on S in Algorithm 2, the
replace(S, F, M

5
) function updates S by randomly replacing a fifth (M/5)

of its decision vectors with copies of individuals from F . These copies are
selected using partitioned quasi-random selection (PQRS),12 which ensures
that a good spread of solutions is selected from the estimated Pareto front.

4.5. Implementation and generalization

A number of recent approaches to training ENNs when simultaneously ad-
justing topology have done so using a hybrid approach, where training with
EA methods and gradient descent techniques has been inter-levered.1,2,3,22

Justification for this approach has been made for the very sensible reason of
computational efficiency - by using a hybrid learning approach as opposed
to a purely EA training methodology the training time is typically reduced.
However this is not to say that hybrid training does not create problems
of its own, if the problem at hand demands a ‘hand crafted’ error func-
tion, like many in financial forecasting applications,4,11,13,28,32 they may be
difficult to propagate through gradient descent learning methods. Recent
work has highlighted that the most profitable model is not necessarily the
one that minimizes forecast Euclidean error.11,13. As such the method de-
scribed in this chapter uses traditional gradient descent methods to seed
to search process, line 2 of Algorithm 2, but thereafter is exclusively EA
driven, meaning it is easily applicable to the widest range of time series
forecast problems with minimal modification requirements.

Algorithm 2 deals solely with fitting the ENNs to a set of training data,
which then leads us to the question of how to minimize generalization error
with this information? The approach advocated in this chapter is disarm-
ingly simple. Instead of convoluted training and validation during the train-
ing process, validation error/complexity is compared to the Pareto training
error/complexity after training, and a suitable operating ENN chosen using
this comparison. An illustration of this is provided in Figure 6.

The curve on Figure 6a illustrates the complexity/accuracy trade-off
curve discovered on a set of training data, and Figure 6b illustrates the
same ENNs evaluated on some validation data. This curve can be seen as
being non-Pareto, as it curves back on itself at high-complexity, showing
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Fig. 6. Illustration of the complexity/error trade-off front. Left: Training data Pareto
front, Right: the same ENNs evaluated on validation data, from point ‘p’ onwards the
ENNs are overfitted and should not be used.

that those networks have been overfitted. The practitioner should there-
fore operate with ENN at point ‘p’ if they wish to minimize generalization
error, or at a complexity below that if they have constraints on the dis-
tributed complexity of their model (if for instance they are content with a
lower accuracy if they can reduce the number of transfer units/weights in
the network). The actual generalization error can then be assessed on some
additional unseen test data to reassure the choice of complexity. This ap-
proach has an advantage over the common early stopping method described
earlier, in that it doesn’t have the potential to be trapped in local minima,
and it promotes search in areas which are not confined to the gradient
descent weight trajectory.

5. Empirical validation

The methodology introduced in the previous section will now be validated.
Two different measures of complexity will be modelled – that of the sum of
the squared weights, and the number of weights used. Results from choosing
the model at point ‘p’ will be compared to the traditional approach of early
stopping on time series problems with various degrees of noise, and example
fronts produced to support the general methodology.

5.1. Data

The data used will be of a physical process, the oscillation of a laser,a where
an underlying function is thought to drive the observations, but where there

aThe time series data, with full descriptions, can be found at http://www-
psych.stanford.edu/˜andreas/Time-Series/SantaFe.html .
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is also a degree of measurement noise. Additional noise will be added to
these processes in order to promote lower complexity representations and
penalize high complexity representations. A plot of the training data is
shown in Figure 7, Figure 8a shows the scatter plot of the time series
versus its first lag, and Figure 8b shows the correlation coefficient values
for different lags of this data.
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Fig. 7. Laser oscillation time series.

On inspection of the correlation coefficient values, 40 lags were decided
to be used to model the process, resulting in 960 input/output pairings.
This data was then randomly partitioned into an ENN training set of 640
samples and validation set of 220 samples. The unseen test set consisted of
9053 input/output pairings.
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Fig. 8. Laser oscillation time series. Left: Scatter plot of current value against previous
value. Right: Correlation coefficient values for different lags of time series.

Ten different variants of the series where subsequently made with differ-
ent degrees of additional noise, drawn from a Gaussian, to mimic different
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levels of measurement corruption, making a total of eleven time series, each
with a different propensity to overfitting.

5.2. Model parameters

MOEA training was applied through the process described in Algorithm 2,
with the following parameters: Hmax = 10, γ = 0.1, pmut = 0.2, pw = 0.02,
pu = 0.02, N = 5000, E = 5000 and |S| = 100. In addition, a NN was
trained for each of the time series using the more advanced early stopping
method described in subsection 3.1, for 20000 epochs. The leaning rate for
all algorithms using backpropagation was 0.05, with a momentum term of
0.5. In addition the MOEA with the minimizing sum of squared weights
objective updated F during the initial training of the seed neural network,
this was found to improve training as it gave a good first estimate of the
trade-off front.

6. Results

Figure 9 is an indicative plot of the realized fronts created by the set of op-
timal ENNs F evaluated on the training, validation and test sets. Although
the set is mutually non-dominating on the training data, the validation
and test data sets both exhibit the folding-back predicted in the previous
section, indicating the ENN to select if the user is solely concerned with
minimising generalization error. The point at which this fold back occurs
is observed to lower as the amount of noise increases (see Table 1).

Figure 10 on the other hand shows the evaluation of ENNs training
with the second objective of number of weights minimization. The size of
F at the end of this process is substantially smaller than that of squared
sum of weights minimization (averaging around 100 as opposed to over
10000), however this form of training can be viewed as more useful to the
practitioner who is concerned with the trade-off of accuracy versus actual
NN size, as shows that the NN can be drastically reduced with only a
marginal increase in error, if they wish to distribute a far simpler model.

Table 1 gives the error and ‘complexity’ of the different models selected
at ‘p’ by the MOEAs with the different complexity objectives for the 11
data sets, along with that of a NN trained in the traditional early stopping
fashion. The error rates can be seen to be equivalent, with the MOEAs
seeming to perform slightly better as the amount of noise increases. The
MOEA models minimizing sum of the squared weights can also be seen to
have much lower weight values compared to the early stopping approach as
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Fig. 9. Training, validation and test set fronts for the error and Σw2 minimization
training process, with additional noise N (0, 4). The phenomena of the validation and
test set fronts folding back on itself can be clearly seen.
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Fig. 10. Training, validation and test set fronts for the error and #w minimization
training process, without additional noise. The user now gains the information that the
number of active weights (connectivity) of the NN can be drastically reduced with only
a marginal increase in error, if they wish to distribute a far simpler model.

the noise increases.

7. Discussion

EMOO approaches to NN training have already proved useful in providing
trade-off fronts between competing error objectives in financial time series
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Table 1. Results of single ENN model selected at point ‘p’ on validation front, and
an early stopping backpropagation NN.

‘p’, Σw2 min. ‘p’, #weight min. Backprop
Added noise Error Σw2 Error #w Error Σw2

- 6.9 459.3 6.9 410 6.9 459.3
N (0, 1) 7.7 444.6 7.7 410 7.7 444.6
N (0, 2) 8.9 450.7 8.9 404 8.9 450.7
N (0, 3) 15.8 342.5 16.6 388 15.8 345.5
N (0, 4) 23.0 332.2 28.2 78 23.0 346.9
N (0, 5) 33.4 297.0 37.9 33 33.4 297.1
N (0, 6) 46.2 106.9 46.3 75 46.3 154.9
N (0, 7) 58.9 42.7 58.9 52 59.7 145.6
N (0, 8) 74.1 19.4 74.6 19 75.3 141.5
N (0, 9) 89.7 18.6 90.3 23 89.8 142.5
N (0, 10) 107.3 10.39 108.3 24 110.8 138.9

forecasting,11,13 and a methodology already exists for learning the trade-
off front between NN accuracy and the number of hidden units.1,2,3 The
methodology described in this chapter takes this further and presents a pro-
cess for encapsulating other definitions of NN complexity within a MOEA
training process. These have been shown to be equivalent or better than
the popular early stopping approach to NN training on a physical time se-
ries process with many different degrees of noise, and therefore over-fitting
propensity, for the selection of a single ‘best’ NN in terms of generaliza-
tion error. However more importantly, by using the assessment of a set
of estimated Pareto optimal ENNs on validation data, the non-dominated
ENNs can give the user a good representation of the complexity/accuracy
trade-off of their problem, such that NNs with very low complexity may
feasibly be used. In the example series used in this paper the cost in terms
of realized error of this approach was surprising low.
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