
Multi-objective Supervised Learning

Jonathan E. Fieldsend and Richard M. Everson

School of Engineering, Computer Science and Mathematics, University of Exeter,
UK, EX4 4QF [J.E.Fieldsend,R.M.Everson]@exeter.ac.uk

Summary. This chapter sets out a number of the popular areas in multi-objective
supervised learning. It gives empirical examples of model complexity optimisation
and competing error terms, and presents the recent advances in multi-class receiver
operating characteristic analysis enabled by multi-objective optimisation.

It concludes by highlighting some specific areas of interest/concern when deal-
ing with multi-objective supervised learning problems, and sets out future areas of
potential research.

1 Introduction: What is supervised learning?

A common task in machine learning is to learn the functional relationship
between inputs and outputs. The inputs x are generally vectors of features,
which may be discrete, continuous or mixed. The output is typically a scalar
y, the target. If y is a continuous variable then the problem is known as a
regression problem; for example, x might be a vector of rainfall measurements
and y might be the height of a river at a particular place. On the other hand, if
y is a discrete variable then the problem is known as a classification problem:
y here indicates into which class the observations x fall; a common example is
medical diagnosis in which x is a vector of physiological measurements for a
particular person and y indicates whether the person has a particular disease
(y = 1, say) or not (y = 0).

During supervised learning the machine is equipped with a set of training
data comprising pairs {xn, yn}

N
n=1 of features and targets, which are assumed

to be representative of the process being modelled. If the mapping x 7→ y is
successfully learned then the learned function can be used to make predictions
of the target for features whose target is unknown.

A number of problems arise in supervised learning. On the data side there
is the issue of how well the training data actually represents the generating
process (e.g., if important relationships are not represented, they cannot be
learnt), whether the generating process is stationary or not (whether the prob-
lem itself changes over time). Perhaps the most important question facing the
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supervised learner is how to prevent over-fitting; that is how to ensure that
the learned function models the underlying relationship between features and
targets, but not any noise present in the training data.

On the function induction side there is the problem of choosing a priori
which specific model/family of models to use, and how complex a represen-
tation to allow. There is also the issue of which error term to use during the
training/learning process in order to generate the model with the best gener-
alisation ability or other related properties. Finally, there is the issue of which
subset of inputs/features to induce the model from.

The chapter proceeds as follows. In section 2 a more formal definition of
supervised learning is provided, this is followed by a number of sections giv-
ing empirical examples of evolutionary multi-objective optimisation (EMOO)
in the supervised learning domain. Section 3 presents an example of regu-
larisation using EMOO, section 4 discusses competing error terms, and gives
examples from both 2-class and multi-class Receiver Operating Characteristic
analysis. The chapter concludes with a brief discussion of issues arising in the
domain, highlighting potential areas for further work and current unanswered
questions.

2 Different formulations of supervised learning

More formally, given a model f , which predicts an output ŷ (i.e., class mem-
bership probabilities or real valued regression prediction) based on a feature
vector x and model parameters w, so that

ŷ = f(x,w). (1)

The model may be quite simple, such as a linear regressor, but frequently very
flexible, nonlinear models such as neural networks or support vector machines
(SVMs) are used.

Supervised learning techniques try to find a parameterisation w that min-
imises some error E over all feature-target pairs:

ŵ = arg min
w∈W

E(f(x,w), g(x)) ∀x ∈ ℵ (2)

where g(x) is an oracle function that tells the true target value for every
input, ℵ is the set of all valid feature vectors, and W is the set of all feasible
model parameterisations. Typically one does not have access to ℵ or the oracle
function; rather one has a subset of (often noisy) observations in the form
a data set D = {xn, yn}

N
n=1, so that practical supervised learning involves

minimising

ŵ = arg min
w∈W

E(f(xn,w), yn) n = 1, . . . , N. (3)
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Usually the training pairs are assumed to be independently and identically
distributed (i.i.d.) draws from a generating distribution, so that the error
becomes the sum of the error for each training pair:

E =

N∑

n=1

Ẽ(f(xn,w), yn) (4)

In regression problems the error function is usually taken as the squared er-
ror, Ẽ = (f(x,w) − yn)2, which is tantamount to assuming that the observa-
tions are corrupted by Gaussian-distributed noise, although if the noise is not
Gaussian-distributed some other error function will be appropriate. For clas-
sification problems the cross-entropy is the error function that corresponds to
maximising the likelihood of the data [Bishop, 1995b].

As noted above, the full range of training examples is generally unavail-
able and one has to be content with a finite (and often small) training set.
An inevitable consequence of this is that the models with a high degree of
flexibility are able to fit the peculiarities of the particular training data set
rather than the general trends in the data. Clearly optimisation to a particular
data set inhibits generalisation and renders predictions on unseen data poor.
A common way to tackle this over-fitting is to regularise the error function
by augmenting (3) with a regularisation term that penalises overly-complex
models, thus the error to be minimised becomes:

E = Edata + αEreg (5)

where Edata is the data error function (equations (3) and (4)), Ereg is a penalty
that increases as the model becomes more complex, and α is a regularisation
parameter1. A widespread choice for Ereg is the weight-decay penalty:

Ereg = ‖w‖2 (6)

This penalty function penalises models with large parameters—models with
large nonlinear terms that are therefore likely to be over-fitting. Although the
form of the penalty may at first sight may appear somewhat ad hoc, it is natu-
rally interpreted from a Bayesian point of view as a prior probability over the
parameters [MacKay, 1992a,b, Bishop, 1995b]. Other complexity-penalising
functions such as Minimum Description Length (MDL), the Bayesian Infor-
mation Criterion (BIC) and the Aikaike Information Criterion (AIC) have
been proposed [see e.g. Duda et al., 2000].

Conventionally, the overall error is minimised and the regularisation pa-
rameter determined by cross-validation. It is shown in the next section how
choosing the model parameters may be viewed as a two-objective optimisation
problem.

1 Other approaches to controlling over-fitting have been to use pruning algorithms
to remove nodes [LeCun et al., 1990], other complexity loss functions [Wolpert,
1997] and topology selection methods [Utans and Moody, 1991].
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Fig. 1. Noisy sine wave training data (dots), with noiseless generating function
shown with the solid line. Noise drawn from a Gaussian with zero mean 0.3 standard
deviation. 63 training data points (input values drawn at intervals of 0.1 from 0 to
2π).

3 Regularisation by multi-objective optimisation

Arguably one of the more fruitful avenues investigated so far by the EMOO
community in multi-objective supervised learning is complexity model opti-
misation (see e.g. [Fieldsend and Singh, 2004, Jin et al., 2004, Pappa et al.,
2004] for recent work and overviews). As noted earlier, there tends to be a
problem, especially when using models with high representation capability, to
over-fit a model parameterisation to the training data leading to poor gen-
eralisation ability. A textbook example of this would be when using neural
networks (NNs). Given enough activation units NNs are universal approxima-
tors, allowing sufficient complexity within the model to permit them to model
any deterministic underlying generation process. However, determining the
appropriate complexity a priori for a problem so as not to over-fit the data at
hand is a persistent problem. As noted above, in statistical machine learning
this over-fitting is typically tackled by the use of weight decay regularisation.
This approach requires the determination of the regularisation parameter α
on the weighting of this penalty. The use of EMOO on the other hand al-
lows optimisation over all complexities. As such the problem can be cast as
bi-objective for EMOO, with the first objective being the minimisation of the
error function (in the regression problems shown here, the mean square error),
and the second objective being the minimisation of model complexity (here,
the sum of the squared weights of a multi-layer perceptron (MLP) neural
network, equation 6).
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Fig. 2. Estimated Pareto optimal front of NNs (dots) and the same NNs evaluated
on a validation set from the same generation and noise process (crosses), note the
switch back effect in the lower left corner.

A simple example is now provided. The problem is the regression of a
noisy sine wave, using the training data illustrated in Figure 1, with circles
denoting the training data and the line representing the continuous (noiseless)
generating process. Using a simple greedy (1+1)–evolution strategy (ES), as
described by [Fieldsend and Singh, 2002, 2005], one can discover the networks
corresponding to the estimated Pareto front shown in Figure 2 with dots.

Algorithm 1 A general ‘greedy’ (1+1)–ES scheme for multi-objective op-
timisation in supervised learning, where e is the set of error evaluations on
model parameterisation w and data x. Error terms to be minimised without
loss of generality.

Inputs:
T Number of generations
M Number of initial samples of w

1: F := initialise(x,M) Initial estimate of front
2: for t := 1 : T

3: w := select(F ) Select from archive
4: w′ := perturb(w) Perturb/mutate parameters
5: e := evaluate(x,w′, ) Evaluate error functions
6: F := update(F,w′) Update archive
7: end
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A general (1+1)–ES is given in algorithm 1. In the implementation of this
general algorithm in this section an initial non-dominated set of points was
generated by training a MLP (with one input unit, 50 hidden units and one
output unit) using the quasi-Newton method [Bishop, 1995b, Nabney, 2001]
and evaluating its objectives every 50 epochs, up to 5000 epochs (Algorithm
1 line 1). The ES was run for 50000 generations (line 2), with a probability
of weight mutation of 0.1 and mutation being formed of additive draws from
a zero mean Gaussian with standard deviation of 0.2 (line 4). In the imple-
mentation here update() (line 6) ensures F always contains the best current
estimate of the true Pareto front by storing an unconstrained non-dominated
set of the best parameterisations found so far.

Figure 3a shows the regression lines of the model with the lowest complex-
ity (summed squared weights) from the estimated Pareto front with Figures
3b-h showing the regression lines of models with consecutively higher com-
plexity levels (sampled at roughly every 50th element of the estimated true
Pareto front shown in Figure 2).

The models span the spectrum from severe under-fitting (such as the al-
most straight lines in Figure 3a) to severe over-fitting (such as the wiggly lines
shown in Figure 3h). This range of model types is to be expected from the op-
timisation objectives. The problem still arises as to how to choose an operating
model from the set at the end of the optimisation run. One approach discussed
in [Fieldsend and Singh, 2004] is to evaluate the set on a second validation
set of data and note at which point the complexity/accuracy curve ‘switches
back’. This is shown in 2 by crosses, where a validation set of equal size as
the training set is used, from the same noisy generating process. A prominent
‘switch back’ point can be seen in the lower left hand corner, which would lead
one to either choose the model with lowest root mean squared error (RMSE)
in this area, or alternatively use a equal-weighted ensemble of models from
this region.

Figure 4 shows the regression line of various approaches with a solid line –
in all cases the dashed line shows the underlying noiseless generating process.
Figure 4a is the model with lowest RMSE on the training data (i.e., the model
corresponding to the leftmost point in Figure 2), Figure 4b is the model with
lowest RMSE on the validation data (i.e., the model corresponding to bottom
left of the ‘switch back’ cross in Figure 2), and Figure 4c is the average regres-
sion line of the 10 models with the lowest validation error (the models at the
knee of the switch back). As can clearly be seen, the model with the lowest
RMSE on the training data clearly is over-fitting, but the regression lines in
Figures 4b and 4c are much closer to the underlying generating process. Even
though the network representation capability is very high (50 hidden units,
with only 63 training points) the use of a complexity minimisation objective
and a validation set has led to a good estimate of the noiseless generating
process. Other approaches like bootstrapping or cross validation during the
optimisation itself can also be employed for a similar effect within the MOEA
approach, see for instance [Fieldsend and Singh, 2005]. In addition an inter-
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Fig. 3. Regression lines of the estimated Pareto optimal NNs on the training data.
Plots (a)–(h) show models sampled regularly from estimated Pareto front, from
lowest complexity to highest complexity.
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Fig. 4. a) Regression line of model with lowest RMSE on training data from esti-
mated Pareto set. b) Regression line of model with lowest RMSE on validation data
from estimated Pareto set (on training data). c) Regression line of ensemble of 10
models with lowest RMSE on validation data from estimated Pareto set (on training
data).

esting approach to regularisation has been explored by Gräning et al. [2006],
who optimise Receiver Operating Characteristic performance on simulated
additional training sets generated by perturbing the features of the training
data with Gaussian noise.

4 Competing error terms

Another application area that has proved popular is training with multiple
errors. Here conflicting ‘goodness-of-fit’ measures are used in the learning
process, typically due to competing properties which are desired of the final
model(s).

4.1 Regression

In the area of regression this has been in the formulation of a trade off between
different measures of goodness-of-fit. For instance, using EMOO methods one
may optimise with respect to one measure (e.g. RMSE or absolute error) and
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also with respect to the distributional properties of this principal error mea-
sure [Bi and Bennett, 2003, Fieldsend, 2006]. In the regression field EMOO
methods have also been used to optimise multiple ‘application specific error
terms’, for instance in financial applications the return on investment of pre-
dicting an asset price. By itself is difficult to train a model using this term, but
used in conjunction with a goodness-of-fit error measure can ensure that you
have models that accurately predict the signal and are profitable [Fieldsend
and Singh, 2002, Schlottmann and Seese, 2004].

4.2 Classification

In classification problems, the task is to allocate new or previously unseen
examples x to one of two or more classes (categories) Cj . This is generally
based on a model, or set of models, induced from some existing corpus of data
whose true classes are known already. The misclassification rate (proportion
of data which is labelled with an incorrect class by the classifier) is typically
taken as a measure of classifier accuracy, and as the objective to be minimised.
However, when there is an imbalance in the number of each distinct class in
a set of data, for training and/or testing, the total misclassification rate can
be misleading. For instance, in a two class problem its is trivial to get a 10%
misclassification rate if there is a 9:1 ratio of the two classes in the data set.

In order to deal with class imbalance Receiver Operating Characteristic
Analysis (ROC) is typically used in the 2-class classifier optimisation. This
analysis traces out the true positive rate (the proportion of correct assign-
ments to the principal class by the model) against the false positive rate (the
proportion of incorrect assignments of the second class to the principal class
by the model), by varying the classification threshold of the model (if the
model outputs a probability of assignment, or a score), or the parameters of
the model itself. This visualisation shows the trade-off between the accuracy
in classifying the two separate classes for a particular model – as illustrated
in Figure 5. The best possible classifier would operate in the top left of the
plot, with a TPR of one and an FPR of zero. The dashed line denotes the ran-
dom allocation line, the expected performance of a classifier which allocates
class labels to data at random (at some fixed ratio). Any classifier operating
below this line is performing worse than random; it can be reflected through
it simply by switching the class labels it has assigned to data.

The plotting of classifier performance in the TPR/FPR plane also allows a
user to evaluate models given different costs of misclassification. For example,
in medical diagnosis, the cost of misclassifying a patient by saying they do
not have a cancer when they do is far more costly than saying they have
a cancer when they don’t. The latter error will be detected with a biopsy
sample, the former error may not be detected before the cancer progresses to
a more dangerous state.

The area under the ROC curve (AUC), which lies between zero and one,
is often used as a single value to compare classifiers. As explained by Hand
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Fig. 5. ROC example. Points denote the different TPR/FPR combinations possible
from a classifier by using a different threshold on the model output (or alternatively
using different model parameters).

and Till [2001], this measures a classifier’s ability to separate two classes over
the range of possible costs. The Gini coefficient is also used, which is twice
the area between the curve and the random allocation line.

ROC analysis obviously lends itself to optimisation with EMOO meth-
ods, with the TPR and FPR being cast as two separate objectives.2 The
example in Figure 6a shows the decision boundaries formed by radial basis
function (RBF) neural network classifiers on the test problem from [Fieldsend
et al., 2003], optimised in this way using a simple (1+1)-ES.3 Figure 6b in
turn shows the estimated optimal ROC curve on the 250 training data points
(shown with dots on the plot), and their evaluation on 1000 testing data points
(shown with crosses on the plot). Interestingly, although not shown here (but
available in [Fieldsend et al., 2003]), synthetic ROC problems are perhaps
the only supervised learning problems for which the true Pareto front can be
determined and the performance of the optimised solutions compared to it.
This is because with a synthetic classification problem one can determine the
exact posterior probability of any feature vector, and therefore can trace out
the ROC curve of a Bayes rule classifier (the best possible). Without knowing
the generating process one cannot know where the true Pareto front lies for
any classification problem, and therefore how close any particular model is to
it. However, the downside to this is that when optimising a classifier based on
training data, you only actually have access to an estimate of the posterior

2 Alternatively one could maximise the AUC as a function of a set of solutions, if
one was careful as to how the set was updated, as discussed later.

3 The RBFs contained 10 units with Gaussian kernels, optimised in the fashion
discussed in [Fieldsend and Everson, 2005b] using a (1+1)-ES for 5000 generations
with a probability of mutation of 0.1 and variance of additive Gaussian mutation
of 0.2.



Multi-objective Supervised Learning 11

a
−1.5 −1 −0.5 0 0.5 1 1.5

−0.5

0

0.5

1

1.5

2

Feature 1
F

ea
tu

re
 2

b
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False postive rate

T
ru

e 
po

st
iv

e 
ra

te

Fig. 6. a) Decision contours of RBF networks on estimated optimal ROC front,
training data shown with one class denoted by circles and the other by crosses. b)
Estimated optimal ROC front on 250 training data pairs ( denoted by dots) and
their evaluation on 1000 testing data pairs (denoted by crosses).

probability, not the true posterior probability (otherwise you would not need
a classifier in the first place). As such the estimated ROC curve may actually
seem above the known optimal curve. This problem of noise and uncertainty
(which is apparent in most if not all supervised learning problems) is one of
the principal areas needing additional research in multi-objective supervised
learning, and can be the source of over-optimistic assessments of performance.

It is also worth noting that in 2-class ROC optimisation the granularity of
the front is limited by the cardinality of the dataset used – therefore uncon-
strained archives may be used with a priori knowledge as to how large it is
possible for them to grow.

4.3 Separating classes

An early formulation of the multi-class ROC problem was proposed by Hand
and Till [2001], who introduced a generalisation of the AUC. In summary, their
M measure is the average of the pairwise AUCs between the Q(Q−1)/2 pairs
of classes. More precisely, Hand and Till show that the AUC is the probability,
denoted Â(k | j), that a randomly drawn member of class Ck will have a lower
estimated probability of belonging to class Cj than a randomly drawn member

of Cj. Clearly a classifier which is able to separate Ck from Cj has large Â(k | j),

whereas if it makes assignments no better than chance Â(k | j) = 1/2. Except
in the two class problem Â(k | j) 6= Â(j | k), and exchanging class labels does
not alter their separability, so the classifier’s ability to separate Cj and Ck is

measured by Â(j, k) = [Â(k | j)+Â(j | k)]/2. Hand and Till then define overall
performance of a classifier as:

M =
2

Q(Q − 1)

∑

j<k

Â(j, k). (7)
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Algorithm 2 Evolutionary optimisation of Hand and Till’s M measure.

Inputs:
T Number of generations

1: E := initialise()
2: for t := 1 : T

3: w := select(E)
4: w′ := perturb(w) Perturb parameters
5: if M(E ∪ w′) > M(E)
6: E := E ∪ w′ Insert w′

7: for u ∈ E

8: if M(E) = M(E \ u)
9: E := E \ u Remove redundant elements

10: end

11: end

12: end

13: end

Where Q is the number of classes. This measure thus measures the average
ability of a classifier to separate classes, although it considers the pairwise
performances of the classifier, rather than the full Pareto front. Hand and Till
also describe the measure for a classifier with fixed parameters, rather than for
a parameterised family of classifiers, as done in the next section of this chapter.
A natural generalisation is to consider the multiobjective maximisation (for a
parameterised family) of the Q(Q − 1) pairwise Â(j, k). In fact, this leads to
a simple algorithm for the maximisation of M itself, which is now described.

The key to maximising M is that it is possible to find a set E of parameters
w that together maximise M . Consequently if the addition of a proposed
parameter vector w′ to E increases any one of the Â(j, k) it automatically
increases M ; since an unrestricted set of parameters is kept, no other elements
of E need be deleted so the other Â(j, k) are, at worst, not decreased. This
leads to the straightforward procedure outlined in Algorithm 2. As for the
multi-objective evolutionary algorithm, it maintains an archive E of solutions.
At each stage, a randomly selected member of E is perturbed and the M
measure of the archive plus w′ evaluated; if the addition of w′ increases M
then w′ is retained (line 6 of Algorithm 2) and any parameters which now do
not contribute to M are removed (lines 7-9).

When maximising M over a family of classifiers several ROC curves for
individual classifiers generally contribute to the composite ROC curve for the
family. Example ROC curves for 8 classifiers resulting from the optimisation
of M for synthetic data using the probabilistic k -nn classifier [Holmes and
Adams, 2002] are shown in Figure 7. For each pair of classes the axes of each
panel are Ckk, the true positive rate for Ck, and Ckj , the rate at which misclas-
sifications of Ck examples are classified as Cj . Each ‘ROC curve’ corresponds
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Fig. 7. Pairwise ROC curves for the k -nn classification of the 3-class synthetic data
set. Each row corresponds to a pair of classes. Axes correspond to the true positive
rate Ckk and the rate at which Ck examples are misclassified as Cj . Each curve
corresponds to a distinct parameter combination, so that Â(k | j) is the area under
the envelope of the curves.

to a distinct w = {k, β} parameter value4, and the optimised M is achieved
by the envelope of these curves. Evaluation of the Â(k | j) that contribute to

4 The probabilistic k -nn classifier is discussed further in Section 4.4.
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Fig. 8. Left: Growth of M with iteration during optimisation. Right: Number of
distinct parameter combinations contributing to M during optimisation. Results for
k -nn classification of 3-class synthetic data.

M can be performed by applying the method described by Hanley and McNeil
[1982] and Hand and Till [2001, page 174] for calculating the AUC for a single
classifier to the envelope of the ROC curves.

As Figure 7 shows, after optimisation only 8 distinct (k, β) combinations
contribute to the optimised M ≈ 0.991, although during optimisation up to
20 parameter combinations were involved. Selection of the operating param-
eters on the basis of the Â(j, k) is possible, it is emphasised that the Â(j, k)
summarise the overall pairwise separability rather than permitting specific
choices to be made between particular misclassification rates. Additional in-
formation is available through examination of the families of pairwise tradeoff
curves such as those displayed in Figure 7.

As the optimised M measures the ability of a particular family of classifiers
to separate classes, it may be used for comparing classifiers. Table 1 shows
the optimised M and number of distinct models (distinct parameter values)
contributing to M for a number of standard machine learning data sets taken
from the UCI repository [Blake and Merz, 1998]. The two-class Ionosphere
data is well known to be easily classified and M (actually the AUC here) is
correspondingly high with only 3 distinct parameter sets for the k -nn classifier
and 4 sets for the MLP. The Image data can be well separated, but only with
the use of 13 parameter sets for k -nn; again better separation is achieved by
the more flexible MLP, but at the expense of many more models. The DNA
data with only 3 classes but 180 features requires 181 (k, β) combinations for
optimal separation. In contrast, even after optimisation the Satimage data
cannot be well separated with k -nn classifiers. Results are not presented for
the MLP classification of the Abalone, Satimage and DNA datasets because
the computation of the Â(j | k) for envelopes of individual classifiers becomes
exorbitantly expensive with many samples and models.
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Table 1. Optimised M measure for UCI data sets.

k -nn MLP

Name Examples Features Q M Models M Models

Abalone 3133 10 3 0.927 33

Image 210 19 7 0.996 13 0.999 25

Ionosphere 200 33 2 0.992 3 0.996 4

Vehicle 564 18 4 0.973 11 0.966 75

Satimage 4435 36 6 0.713 20

DNA 2000 180 3 0.989 181

In summary, although M provides a global measure of a classifier’s per-
formance on a particular dataset and identifies a relatively small number of
optimal parameter sets, the question of how to select an operating point re-
mains. The question arises for instance, whether a single operating point se-
lected from a group which together maximises M would necessarily be as good
as a single operating point maximised for M . In the next section a different
approach to multi-class ROC optimisation is discussed which confronts some
of these issues.

4.4 Multi-class ROC

The authors have shown recently that with Q-classes (where Q > 2) ROC
analysis can be extended and cast in terms of minimising the off-diagonal
elements of the confusion rate matrix [Fieldsend and Everson, 2005b, Everson
and Fieldsend, 2006a,b]. An example confusion rate matrix is given below
– note here the true positive rates and false positive rates are not available
as such, but class assignment rates (where Ci,j/|Ci| denotes the classification
rate of class i data to class j, normalised by the total number of class i data
points).

Predicted Class
1 2 . . . 3

1
C1,1

|C1|
C1,2

|C1|
. . .

C1,Q

|C1|

Actual Class 2
C2,1

|C2|
C2,2

|C2|
. . .

C2,Q

|C2|

. . . . . . . . . . . . . . .

Q
CQ,1

|CQ|
CQ,2

|CQ| . . .
CQ,Q

|CQ|

This is therefore a Q(Q − 1) objective minimisation problem. However,
although the dimensionality of the Pareto front/optimal ROC front increases
rapidly with the number of classes, like the 2-class problem, there is a limit
to the number of distinct points on it which is a function of the size of the
data set used, and Q (albeit potentially very large).
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By extending the Gini coefficient analysis a random allocation simplex
can be used to compare different classifiers in Q(Q− 1) dimensional objective
space. Classifiers whose off-diagonal confusion rates sum to greater than Q−1
are performing worse than average. Additionally that single model, which is
furthest in front of this simplex (closest to the origin) should be the classifier
chosen when no misclassification costs are known (for a more extensive discus-
sion see [Everson and Fieldsend, 2006b]). This also allows the comparison of
different classifiers families for particular supervised learning problems (e.g.
k -nearest neighbour classifiers, decision trees, multi-layer perceptrons, radial
basis functions, etc.). Using this the comparison can concern itself not simply
with the cardinality of dominance between the points on the ROC front pro-
duced, but also using a measure on the objective space which is meaningful
(similar to the volume measure, or S metric, used in general multi-objective
optimisation, but without scaling – and based on a pre-specified region of a
hypercube). More formally, [Everson and Fieldsend, 2006b] have shown that
the volume lying between the origin (the perfect classifier) and the random
allocation simplex, that also lies in the unit hypercube (where it is feasible
for a classifier performing better that average to operate) is:

(Q − 1)Q(Q−1)

(Q(Q − 1))!
−

Q(Q − 1)(Q − 2)Q(Q−1)

(Q(Q − 1))!
. (8)

This region is denoted here by P . The measure on it, G(), is calculated as
the proportion of P dominated by elements of the ROC surface (F ). Therefore,
like the Gini coefficient in two dimensions, G(F ) is a measure of how much
better than random the elements in a set F are. δ(F, F ′) in turn measures
how much of P is dominated by the set F but not by the set F ′. This can be
used to compare two different fronts (for instance generated by two different
classifier families) which possibly overlap in parts.

Due to the shape of the region, it is not quite as trivial to calculate its
volume as it is to calculate the region used in the S metric [Zitzler, 1999], as a
reference simplex is used as opposed to a reference point (and this is further
constrained to lie within a unit hypercube). As such the region defined by P
is a hyper-pyramid, with a Q(Q−1) truncated corners. Monte Carlo sampling
of this region can give a good estimate of the volume dominated however, and
[Fieldsend, 2005] discusses how to do this efficiently.5

When using a soft classifier (one that gives a probability of class member-
ship, or a score) it is computationally efficient to assess the effect of a number

5 If the reader is considering using this measure to compare multi-class ROC curves
they are strongly advised to consult this technical report, as the probability of
randomly generating a sample in the region defined by P , by generating a Uni-

form sample in the unit hypercube, is (Q−1)Q(Q−1)

(Q(Q−1))!
− Q(Q−1)(Q−2)Q(Q−1)

(Q(Q−1))!
, which

rapidly becomes become prohibitively small at even small Q. Sampling methods
developed in [Fieldsend, 2005] generate random points in P with a probability of
≈ 1

Q(Q−1)
.
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Algorithm 3 Converting the general (1+1)–ES scheme for multi-objective
optimisation in supervised learning (Algorithm 1), into a (1+λ) scheme for
ROC optimisation (replacing lines 7 and 8 of original algorithm).

Inputs:
λ Number of cost samples

1: for j := 1 : λ

2: c := sample() sample costs
3: e := evaluate(x,w′, c) Evaluate error functions
4: F := update(F,w′, c) Update archive
5: end

of different sample cost matrices, c, on the misclassification rates for any par-
ticular model parameterisation.6 This is because passing the data, x, through
a classification model can be time consuming, whist transforming this output
using different cost matrices allows the evaluation of many different possible
misclassification combinations relatively cheaply. As such the imposition of
Algorithm 1 is better viewed as a (1 + λ)–ES, with λ cost matrices, c, addi-
tionally sampled for any particular model parameterisation, w.7 As such lines
7 and 8 of Algorithm 1 should be replaced by Algorithm 3.

In the empirical results given below λ = 50 different cost matrices are
assessed for each model parameterisation, drawn from unbiased Dirichlet dis-
tributions, with each optimisation run lasting T = 5000 generations (therefore
5000 unique model parameterisations evaluated, each with 50 different cost
matrices). Probability of parameter mutation was 0.8, with the mutation being
additive draws from a Gaussian distribution with zero mean and 0.2 standard
deviation.

Results are given here for the UCI Image, Vehicle and Satimage data sets.
Details of data set sizes are given in Table 1, and therefore the objective
dimensionality for these sets in this problem formulation are 42, 12 and 30 re-
spectively. The classification models used are the probabilistic k -nn algorithm,
probabilistic k -nn algorithm with tricube kernel [Holmes and Adams, 2002]
and the multinomial logistic regression classifier (MLR) [Bishop, 1995a]. The
probabilistic k -nn classifier is a simple local classifier which classifies based on
the actual classes of known data in the unlabelled data’s immediate locality. It
has two parameters, k, the number of neighbours used and β, which controls
the ‘strength of association’ between neighbours (effectively a way of mak-
ing closer neighbours more important). The MLR is a simple global classifier
which separates feature space into different classes with smooth planes, and
has D(Q + 1) parameters (where D is the number of features – the size of
x). The probabilistic k -nn with a tricube kernal has the local classification

6 Assuming linear costs.
7 These sample costs can be straightforwardly and randomly sampled from a Dirich-

let distribution, see [Everson and Fieldsend, 2006b] for a discussion on this.
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Fig. 9. Distances from the random classifier simplex. Negative distances correspond
to models in P . Left: k -nn; Middle: k -nn tricube. Right: MLR.Top: UCI Image data;
Middle: UCI Vehicle data; Bottom: UCI Satimage data.

properties of the probabilistic k -nn, with an additional tendency to push the
assignment probability down if the unlabelled sample is ‘far’ from any labelled
data.

Figure 9 shows the signed distance of all points lying on the ROC curve for
each classifier from the random allocation simplex – negative numbers mean
the operating point is better than random and a value of -1 indicates that the
model perfectly classifies the data presented. As can be seen, visually both
variants of the probabilistic k -nn classifier seem to do considerably better than
the MLR classifier, with all classifiers performing better than random. Table
2 provide the associated G and δ measures, calculated from 10000 Monte
Carlo samples in P . From these it can be seen that for the Image dataset
the probabilistic k -nn model would tend to be the preferred model, with only
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Table 2. Generalised Gini coefficients and exclusively dominated volume compar-
isons of the probabilistic k -nn, probabilistic k -nn with tricube kernel and MLR
classifiers.

Measure Image Vehicle Satimage

G(k-nn) 0.137 0.073 0.116

G(k-nn tricube) 0.080 0.030 0.099

G(MLR) ≈ 0 0.009 ≈ 0

δ(k-nn, k-nn tricube) 0.070 0.044 0.026

δ(k-nn, MLR) 0.137 0.068 0.116

δ(k-nn tricube, k-nn) 0.013 0.001 0.008

δ(k-nn tricube, MLR) 0.080 0.028 0.099

δ(MLR, k-nn) 0 0.005 0

δ(MLR, k-nn tricube) 0 0.007 0

small portions of its front lying behind that of the probabilistic k -nn tricube
model (additionally the probabilistic k -nn model has the single operating point
furthest from the random allocation simplex). A similar result can be seen for
the Vehicle data set, although here it is interesting to note that, although the
MLR visually seems to under perform compared to the k -nn models, the δ
measures show that, for some particular choices of costs, the MLR classifier is
actually the best to choose. The results from the Satimage dataset again give
the same overall order on the classifiers, with the MLR being totally worse,
irrespective of costs, than both types of probabilistic k -nn model. Again, for
some cost combinations the model with the tricube kernel is a better classifier
to use; however for the majority of costs preferences the standard probabilistic
k -nn is the most appropriate classifier to choose of the three model families
compared.

Compared to optimising using the M measure a far larger range of pa-
rameters is found to be optimal under this framework. For instance, when
using the probabilistic k -nn model for the synthetic data in Section 4.3, 8
different parameterisations described the set which maximised M , compared
to approximately 7500 solutions on the Pareto optimal ROC surface for the
same dataset described in [Everson and Fieldsend, 2006b]. The Pareto opti-
mal ROC surface, however, describes the full range of trade-offs that may be
obtained between classification rates, rather than the average class separa-
bility over the range of pairwise cost ratios described by M , and also shows
the user which cost matrix (equivalent to threshold in 2 class cases) is needed
to use with a model parameterisation to obtain a particular expected set of
misclassification rates.
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5 Discussion

There are a number of other avenues in multi-objective supervised learning
which have been explored using EMOO (for instance ensemble training, which
is the subject of another chapter in this book), the examples presented here
present a reasonable overview of the area, with a focus on the new area of
multi-class ROC optimisation. A more general overview can also be found in
[Jin, 2006].

However, there are still a large number of open questions in the field of
multi-objective supervised learning that are worth highlighting:

Hybrid models:

Usually researchers tend to either start a process with a ‘traditional’ local
optimiser (like gradient descent in NNs), or iterate between a local process
and an EMOO method. This tends to be because the search space is easier
traversed (at least to begin with) by local methods, and because, for many
of the classifiers/regressors used, the range of parameters to be searched is
essentially without limits. As such EMOO techniques are often used to trace
out an estimate of the Pareto front for a problem after a traditional algorithm
has supplied a single point on a good estimate of the front. The question of
how much search to carry out with local methods and how much time to spend
searching with EMOO methods is still an open one.

Over-fitting:

Unless there is an explicit casting of an objective to minimise complexity,
EMOO approaches to optimising competing errors can be very prone to over-
fitting. The use of weight decay regularisation approaches in hybrid EMOOs
may mitigate this somewhat – but to do this they must assume a penalty term
independent of the region of objective space, which is a difficult assumption
to justify.

Many to one mappings:

Perhaps more than other application areas, supervised learning parameter
space is full of regions which have identical evaluations in objective space –
especially if it is a classification problem. These disjoint plateaus can cause
many problems for optimisers, and when using an elite multi-objective opti-
miser raises the question as to which solution to store if they have the same
objective valuations but very different input space partitioning. Figure 10
illustrates this with the synthetic classification problem used earlier – the de-
cision contours shown have identical misclassification rates on the data, but
have different decision boundaries.
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Fig. 10. Example decision boundaries (from RBF classifiers) with identical operat-
ing points in ROC space.

Noise, uncertainty, truth:

Arguably the largest problem in multi-objective supervised learning is the fact
that only samples of the generating process are available, which tend to be
noisy. Optimising with uncertainty/robust optimisation is an area which is
gaining more interest in the general EMOO community at the current time
[Hughes, 2001, Teich, 2001, Fieldsend and Everson, 2005a, Goh and Tan, 2006]
and supervised learning problems should present an interesting avenue of re-
search. Given the concerns of data mis-labelling or feature/sensor noise, and
the uncertainty caused when many different models/model parameterisations
can lead to the same objective evaluation (on a certain data sample), as men-
tioned above, all supervised learning problems seem to contain at least one
form of uncertainty.
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