
Optimising decision trees using

multi-objective particle swarm optimisation

Jonathan E. Fieldsend

School of Engineering, Computing and Mathematics,
University of Exeter,
Harrison Building, North Park Road, Exeter, EX4 4QF, UK.
J.E.Fieldsend@exeter.ac.uk

Summary. Although conceptually quite simple, decision trees are still amongst the
most popular classifiers applied to real-world problems. Their popularity is due to
a number of factors – core amongst these is their ease of comprehension, robust
performance and fast data processing capabilities. Additionally feature selection is
implicit within the decision tree structure.

This chapter introduces the basic ideas behind decision trees, focusing on deci-
sion trees which only consider a rule relating to a single feature at a node (there-
fore making recursive axis-parallel slices in feature space to form their classification
boundaries). The use of particle swarm optimisation (PSO) to train near optimal
decision trees is discussed, and PSO is applied both in a single objective formula-
tion (minimising misclassification cost), and multi-objective formulation (trading off
misclassification rates across classes).

Empirical results are presented on popular classification data sets from the well-
known UCI machine learning repository, and PSO is demonstrated as being fully
capable of acting as an optimiser for trees on these problems. Results addition-
ally support the argument that multi-objectification of a problem can improve uni-
objective search in classification problems.

1 Introduction

The problem of classification is a popular and widely confronted one in data-
mining, drawing heavily from the fields of machine learning and pattern
recognition. Classification, most simply put, is the assignment of a class Ci

to some observed datam x, based on some functional transformation of x,
p̂(Ci|x) = f(x, s,D), where p̂(Ci|x) is an estimate of the underlying probabil-
ity of observation x belonging to class i (the class typically assigned by the
classifier to x being that class with the highest estimated probability), and D

is some set of pre-labelled data used in the selection of model parameters s.
Depending on the classifier used, it may produce the probability directly, a
score that can be converted into a probability, or a hard classification (that is,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12828007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Jonathan E. Fieldsend

assigning all the probability to a single class). The learning (or optimisation)
aspect in classifiers relates to s, the tunable parameters of classifier function
f().1 These are adjusted so as to minimise the difference between the esti-
mated probabilities assigned to data, and the underlying true probabilities.
Often the latter are not known, and this has to be approximated using the
corpus of training data D, and possibly some prior.

The range of classification problems is extensive, with applications as di-
verse economics and finance, biology, engineering and safety systems, medicine,
etc. One of the most popular classifiers (if not the most popular) is the deci-
sion tree [2]. A decision tree consists of a sequence of connected nodes, each of
which act as a discriminator. The edges between the nodes are uni-directional,
and travelling down from the root node, they act to sequentially partition the
data space until a terminus node (also known as a leaf) is reached. The leaf as-
signs a class (or infrequently a pseudo class probability) to the unique volume
of feature space covered by the leaf. The internal nodes themselves partition
the data by applying a rule to the data, typically these are of the form ‘if-
then-else’. For instance, the rule may be ‘if feature 2 is greater than 2.5, go to
child node 1, else go to child node 2’. This feature may for instance be the age
of an individual or the amount of money applied for in a loan – and the child
nodes may contain further rules, or be leaf nodes relating to actual decisions.

Decision trees derive a lot of their popularity from their ease of compre-
hension. The assignment of class can be traced back to a sequence of rules,
which make it easy to explain to end users; this also aids tremendously in
their application to e.g. safety critical systems [3] or medical applications [4],
where ‘black box’ classifiers have difficulty passing regulatory hurdles due to
their opaque processing nature. Additionally their computational complexity
is relatively low and are ideally specified for batch processing, meaning they
are widely used for real-time classification tasks, and problems requiring a
large throughput of data.

The chapter will proceed as follows, in Section 2 decision trees will be
discussed in further depth along with their properties. In Section 3 the ba-
sic particle swarm optimisation (PSO) algorithm is introduced, followed by
Section 4 which discusses the representation of decision trees to enable opti-
misation by PSO. Section 5 discusses various multi-objective problems related
to decision trees, and introduces a multi-objective PSO variant to optimise
decision trees. Section 6 presents empirical results using the most popular
data sets from the widely used UCI machine learning repository [5], with a
chapter summary presented in Section 7.

1 It sometimes also relates to choosing f(), or to selecting the most informative
members of D to learn from (data which can also form a part of s in some
classifiers, e.g. k-nearest neighbours and support vector machines [1]).

Optimising decision trees using multi-objective PSO 3

C2C1

F2 > 0.554398 ?

Y N

C2

C1

F1 > −0.601457 ?

Y N

F2 > 0.259347 ?

Y N

C1

F1 > 0.366803 ?

F2 > 0.464246 ?

Y N

F1 > −0.620504 ?

C1C2 C1

Y N NY

C2 C1

NY

F2 > 0.279509 ?

Fig. 1. Left : Decision tree partitioning of the Ripley data feature space, minimising
total misclassification (class 1 data denoted by circles, class 2 by crosses). Right :
Corresponding trees.

2 Decision trees

As mentioned in the preceding section, the nodes in a decision tree act as
rules, recursively partitioning the decision space. If the rule covers a single
feature, as the example given above, then the partitions are axis parallel2,
although this generates quite a simple decision boundary, as the tree depth is
increased the feature space can be partitioned into more and more different
sections, and the resulting decision boundary becomes more complex (though
piecewise linear, and axis parallel in these sections).

2 Some decision trees also combine features in single rules, enabling non-axis-
parallel partitions of feature space. This form will not be covered further here
however.

4 Jonathan E. Fieldsend

Fig. 2. Bayes rule decision boundary on the synthetic Ripley data (the best pos-
sible decision boundary, assuming equal misclassification costs, generated from the
underlying data model).

Figure 1 shows example decision tree decision boundaries (and correspond-
ing trees) for the two dimensional synthetic data from [6]3. Note that the trees
shown are of various depths, illustrating the way the decision boundary com-
plexity can increase with tree depth. The corresponding Bayes rule decision
boundary for this problem is shown in Figure 2 for completeness.

Amongst the most popular traditional learning algorithms for decision
trees are CART (classification and regression trees) [7], ID3 (iterative di-
chotomiser 3) [8] and C4.5 [9]. The search through all the possible symbol
choices for a symbol (the rule or class to contain in a node), along with all
possible thresholds is typically infeasible (irrespective of the computational
cost of varying the depth of the tree). As such tree learning algorithms typi-
cally employ some form of greedy search, performing a local exhaustive search
at the data covered by a node when selecting its symbol and threshold. The
issue of when to stop growing the tree (make a node a terminal) is be con-
fronted in a number of approaches, by stopping the growth when the reduction
in prediction error (typically entropy is used) falls below a certain threshold,
when the number of points covers by a node falls below a certain threshold, or
letting a tree grow large and then prune back (remove and recombine) leafs,
based on some trade-off of accuracy (error) and complexity (tree size).

Given the nature of the tree learning/optimisation (its size and complex-
ity), and that the learning methods currently used are only locally optimal,
evolutionary optimisation algorithms have also gained popularity as decision
tree parameter optimisers.

3 This data is generated by sampling from four two-dimensional Gaussians, with
centres of class 1 instances at µ11 = (−0.7, 0.3), µ12 = (0.3, 0.3) and centres of
class 2 instances at µ21 = (−0.3, 0.7), µ22 = (0.4, 0.7), with identical covariances
of 0.03I .

Optimising decision trees using multi-objective PSO 5

3 Particle swarm optimisation

The PSO heuristic was initially proposed for the optimisation of continuous
non-linear functions [10]. Subsequent work in the field has developed some
methods for its operation in discrete domains (e.g. [11]) however the contin-
uous domain remains its principle field of deployment.

In standard PSO a fixed population of M potential solutions, {si}M
i=1, is

maintained, where each of these solutions (or particles) is represented by a
point in P -dimensional space (where P is the number of parameters to be op-
timised). Each of these solutions maintains knowledge of its ‘best’ previously
evaluated position (its personal best) pi, and also has access to the ‘best’
solution found so far by the population as a whole, g, which by definition is
also one of the swarm member’s personal best. The rate of position change of
a particle/solution from one iteration/generation to the next depends upon
its previous local best position, the global best position, and its previous tra-
jectory (its velocity, vi). The general formula for adjusting the jth parameter
of the ith particle’s velocity is:

vj,i := wvj,i + c1r1(pj,i − sj,i) + c2r2(gj − sj,i) (1)

sj,i := sj,i + χvj,i. (2)

Where w, c1, c2, χ ≥ 0. w is the inertia of a particle (how much its
previous velocity affects its next trajectory), c1 and c2 are constraints on the
velocity toward the global and local best and χ is a constraint on the overall
shift in position (often a maximum absolute velocity, Vmax is also applied).
r1 and r2 are random draws from the continuous uniform distribution, i.e. r1,
r2 ∼ U(0, 1). In [10] the final model presented has w and χ fixed at 1, and
c1 and c2 fixed at 2. Later work has tended toward varying the inertia term
downward during the search to aid final convergence.

The PSO heuristic has proved to be an extremely popular optimisation
technique, with reputation for relatively fast convergence, and as such is its
application to decision tree optimisation has recently gained interest.

4 Representation

As you may have noted from the description above, decision trees may be
variable in size, with their parameters a mixture of unordered discrete (i.e.
which features and rules to include in nodes, and which class to assign to a
leaf) and ordered continuous (i.e. which thresholds to use in rules). As such
the evolutionary algorithm of choice for optimising them has tended to be
genetic algorithms (see e.g. [12] for a recent discussion of these methods in
a multi-objective setting). Heuristic tree growing and pruning methods are

6 Jonathan E. Fieldsend

14

0

1 2

3 4 5 6

7 8 9 10 11 12 13

Fig. 3. Illustration of a full A-ary tree with L layers, where A=2 and L=3.

amongst the more traditional forms of decision tree construction [2], as dis-
cussed in Section 2, and advanced methods from the machine learning liter-
ature like Bayesian averaging have also been applied [13] (although it is an
open problem to effectively sample from the posterior). Recently Veenhuis et
al. [14] introduced a general PSO-based ‘tree swarming algorithm’ for opti-
mising generic tree structures (i.e. decision trees, parse tress, program trees,
etc) with respect to a single quality (objective) measure. A slightly modified
version of their tree representation is used here, and is described below (with
variations from [14] highlighted).

Figure 3 illustrates a full ordered 2-ary tree with a single root, 4 layers
and directed edges (denoted by T4,2). As the tree is full, the final layer (nodes
7-14) are terminal nodes (leafs), having no children of there own. The size of
a general tree with L layers and arity of A, TL,A, in terms of the number of
internal and terminal nodes is

size(TL,A) =
L−1
∑

i=0

Ai. (3)

(Note also there are size(TL,A) − 1 edges in a full TL,A tree.)
Although trees may be mapped to a continuous valued vector for use in

Equation 1, it is easier for comprehension to describe the mapping in terms
of a continuous valued matrix (the final transformation from a matrix to a
vector representation being trivial). First consider the mapping of the nodes
in a tree to an array. As laid out in [14], and illustrated in Figure 3, the nodes
may be numbered in the tree, starting at 0 at the root, and counting from left
to right at each subsequent level. The index of a child node c of any particular
parent node p can be calculated as:

Optimising decision trees using multi-objective PSO 7

140 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 4. Illustrative node array.

child index(p, c, A) = Ap + c. (4)

Where c denotes the cth child of parent p (i.e. 1 ≤ c ≤ A), and 0 ≤
p ≤ size(TL,A) − 1. Using Equation 4 one can travel down the tree until the
appropriate leaf is reached. Figure 4 shows the node array constructed in this
fashion corresponding to the tree in Figure 3.

The representation of node traversal has now been covered, however the
key problem is in the transformation of the rules (symbols) to continuous
values for use in PSO, which can impose a (variable) order on the symbols.
This is confronted by [14] with the use of a symbol vector, whose length is equal
to the total number of symbols possible in a node (in the case of decision trees,
this would be number of different rules plus the number of different classes).
Each element in the symbol vector is a score (here on the range [0,1]), with
the symbol used being determined by the index of the element in the symbol
vector with the maximum score. Consider for instance a classification problem
with five features and three classes, which we want to describe using a tree
exclusively using rules of the ‘if feature greater than else’ form. This would
lead to eight distinct symbols, the first five relating to which feature to use
in the rule, and the last three to which class to assign, i.e. {‘if feature 1 is
greater than, else’,‘if feature 2 is greater than, else’, ‘if feature 3 is greater
than, else’,‘if feature 4 is greater than, else’,‘if feature 5 is greater than, else’,
‘class 1’, ‘class 2’, ‘class 3’}. A node with a symbol vector whose maximum
element was 1, 2, 3, 4, or 5 would be an internal node, whereas one with a
maximum element 6, 7 or 8 would be a leaf (note this representation allows
the mapping to be used for sparser trees, if the node belongs to a layer< L
and is assigned a leaf symbol, then none of that node’s subsequent children
will be evaluated).

Using the symbol vector notation, the decision tree can be represented as
a matrix of symbol scores, M, with each column denoting a node and each
row denoting a symbol, as shown below for a T3,2 tree with five symbols.

8 Jonathan E. Fieldsend

0 1 2 3 4 5 6

S1

S2

S3

S4

S5

M1,1, M1,2, M1,3, M1,4, M1,5, M1,6, M1,7

M2,1, M2,2, M2,3, M2,4, M2,5, M2,6, M2,7

M3,1, M3,2, M3,3, M3,4, M3,5, M3,6, M3,7

M4,1, M4,2, M4,3, M4,4, M4,5, M4,6, M4,7

M5,1, M5,2, M5,3, M5,4, M5,5, M5,6, M5,7

.

The symbol Si to use for a particular node j + 1 being the determined by
the maximum element of the jth column of M. The issue of the threshold is
resolved in [14] by making the decision trees 3-ary, with the first element of the
symbol vector of the first child of an internal node determining the threshold
(by rescaling the value contained from [0, 1] to [min(Fi), max(Fi)], where Fi

denotes the feature used in the rule, and min(Fi) and max(Fi) returning the
minimum and maximum respectively of feature i in the training data. This
is a somewhat wasteful representation as only the first symbol of the first
child node will ever be used, and none of its subsequent children will ever be
accessed (although they will be represented) as it is treated as a terminal node.
The same effect may be implemented with much less space required by adding
an extra row on the bottom of matrix M to hold the threshold to be used if
the node is internal. An arguably even better approach, is to add z extra rows
on the bottom of M (where z is the number of features), so that there are
different threshold values represented for each different feature. This allows
the thresholds at nodes to be learnt in parallel and prevents the problems that
may arise when changing the feature potentially makes the single threshold
stored inappropriate. This does increase the number of dimensions of the
problem, but should act to improve the smoothness of the search space.

It is worth noting that whereas the matrix representation is easier to inter-
pret, there is no reason for it not to be represented in a program as a vector.
Conversion between the two representations is trivial, and if a preferred op-
timiser is already implemented to deal exclusively with vector represented
solutions, this intermediate conversion may be used as an interface between
the solution and evaluation.

5 Multi-objective PSO

As discussed above, PSO has previously been applied to single objective de-
cision tree optimisation (where total misclassification is the objective to be
minimised). There are however situations where one might want to optimise a
decision tree with respect to multiple objectives. Three specific situations are
covered here. Firstly when also minimising the size of the tree. This may be
important due to processing time – the larger the tree the longer the process-
ing time for a particular query, which in certain situations may be a critical

Optimising decision trees using multi-objective PSO 9

factor (e.g., real time fraud detection). Secondly when also minimising the
number of features used by the tree. Initial and subsequent feature selection
for a classification system has a cost associated with it (sometimes quite sig-
nificant, e.g. chemical/biological measurements), minimising the number of
features used acts to lower this cost, and also remove any redundancy across
features. Thirdly when multiple error measures need to be optimised – for in-
stance in binary classification problems the overall misclassification rate may
be less important than the relative true and false positive rates, where mis-
classification costs are not equal (e.g. cancer detection). A brief outline of
these types of multi-objective problem is given below.

5.1 Multiple objectives

Structure

As mentioned in the introduction, one of the attractions of decision trees as
classifiers is the fast computation time when classifying new data. The com-
putational cost is directly proportional to the number of internal nodes in a
tree, and therefore the smaller the tree the faster the processing ability. Addi-
tionally there tends to be a trade-off between a decision tree’s generalisation
ability and size (a tree that is too big – too flexible – may overfit to the data
being trained on). This is usually apparent when the number of data samples
covered by each leaf is very small (hence the use of pruning in some tree learn-
ing algorithms, as mentioned in Section 2). A natural additional objective is
therefore to minimise the size of the tree (see for example [12]).

Feature space

In many real world situations data collection costs time and money. Features
which don’t contribute to the performance of a classifier can be detrimental if
included, and others may duplicate information or have only a marginal effect.
As such feature selection, and feature minimisation are also of concern when
constructing decision trees, and can also be cast as an additional objective,
both as a means of improving generalisation performance, and to decrease the
cost of future data collection.

Multiple error terms

By minimising the total misclassification error one is implicitly stating that
the misclassification costs across classes are equivalent. Often this is not the
case (for example when screening for cancers, or in safety related classifi-
cation problems). Where the costs are unknown a priori and/or the shape
of the trade-off front is unknown, it is appropriate to trade-off the different
misclassification rates in parallel [15, 16]. An illustration of this is provided
in Figure 5 using the synthetic data described earlier. The upper right plot

10 Jonathan E. Fieldsend

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Class 1 misclassification %

C
la

ss
 2

 m
is

cl
as

si
fic

at
io

n
%

Fig. 5. a,c,d) Decision tree partitioning of the Ripley data feature space, trading
off misclassifiction rates between the two classes, b) Corresponding points in mis-
classification rate space.

shows the objective space mapping of three decision trees, where the objec-
tives are minimising the class 1 misclassification rate and minimising the class
2 misclassification rate. Note this is equivalent to the widely used Receiver
Operating Characteristic (ROC) curve representation used for binary classi-
fication tasks – by representing the curve in terms of both misclassification
rates, instead of focusing on a single class (correct assignment and incorrect
assignment rates to that class), the problem is more easily extended to mul-
tiple (i.e. > 2) class problems [15, 16]. The class mapping on feature space
caused by the three mutually non-dominating trees are also plotted in 5, and
arranged in the order they are plotted in the trade-off front.4

5.2 Dominance and Pareto optimality

The vast majority of recent multi-objective optimisation algorithms (MOAs)
rely on the properties of dominance and Pareto optimality to compare and
judge potential solutions to a problem, as such these will be briefly reviewed
here before discussing the multi-objective PSO algorithm.

4 Note that as there is no assessment on a test set of data the generalisation ability
of these trees is not indicated (visually we would be concerned of the overfitting
of the bottom left tree for instance, given our knowledge of the underlying data
generation process).

Optimising decision trees using multi-objective PSO 11

The multi-objective optimisation problem is concerned with the simulta-
neous extremisation of D objectives:

yi = fi(s), i = 1, . . . , D (5)

where each objective evaluation depends upon the parameter vector s =
{u1, u2, . . . , uP}. These parameters may also be subject to various inequality
and equality constraints:

ej(s) ≥ 0, j = 1, . . . , J (6)

gk(s) = 0, k = 1, . . . , K (7)

Without loss of generality it can be assumed that the objectives are to be
minimised, thus the problem can be expressed as:

Minimise y = f(s) = {f1(s), f2(s), . . . , fP (s)}, (8)

subject to e(s) = {e1(s), e2(s), . . . , eJ(s)} ≥ 0, (9)

g(s) = {g1(s), g2(s), . . . , gK(s)} = 0. (10)

When concerned with a single objective, an optimal solution is one which
minimises the objective subject any constraints within the model. In the sit-
uation where there is more than one objective, then it is often the case that
solutions exist for which performance cannot be improved on one objective
without sacrificing performance on at least one other. Such solutions are said
to be Pareto optimal, with the set of all such solutions being the Pareto set,
and their image in objective space known as the Pareto front.

The notion of dominance is crucial to understanding Pareto optimality,
and is relied upon heavily in most modern multi-objective optimisers. A de-
cision vector (also known as a solution/parameter vector) s is said to strictly
dominate another v (denoted s ≺ v) iff

fi(s) ≤ fi(v), ∀i = 1, . . . , D and (11)

fi(s) < fi(v), for at least one i. (12)

Note that the dominance relationship s ≺ v is denoted in the parameter
space domain, whereas the calculation is in the objective space mapping of
the parameters. As such f(s) ≺ f(v) is perhaps more accurate, however the
accepted shorthand will be used throughout the rest of the chapter.

A set of N decision vectors wi is said to be a non-dominated set (i.e. and
estimate of the Pareto set) if no member of the set is dominated by any other
member:

12 Jonathan E. Fieldsend

Algorithm 1 A multi-objective PSO algorithm.
Require: I Number of PSO iterations
Require: M Number of particles/solutions
Require: N Dimension of search problem
Require: w Inertia value
Require: c1 Global search weight
Require: c2 Local search weight
Require: χ Constriction variable
Require: Vmax Absolute maximum velocity
1: {S,V} := initialise population(M,N) See Algorithm 2
2: i := 0
3: Y := evaluate(S) Assess particle
4: G := initialise gbest(S, N) See Algorithm 4
5: P := initialise pbest(S, N) See Algorithm 3
6: while i < I : do

7: V := update velocity(S,P, G, w, c1, c2, N) See Algorithm 5
8: V := restrict velocity(V, Vmax) Ensure no velocity element exceeds Vmax

9: P := S + χV

10: Y := evaluate(S) Assess particle
11: G := update gbest(G,S) See Algorithm 7
12: P := update pbest(P,S) See Algorithm 6
13: w := update inertia(w, n) Decrease inertia
14: i := i + 1
15: end while

wi '≺ wj ∀i, j = 1, . . . , M. (13)

The aim of most MOAs is to find such a non-dominated set – whose image
in objective space is well converged to, and spread across, the true Pareto
front, and is therefore a good approximation of the underlying Pareto set.5

5.3 The optimiser

There are a number of different approaches to extending PSO to multi-
objective problems (see e.g. [17, 18] for reviews). Building on the previous
work of Alvarez-Benitez et al. [19], the implementation used here relies solely
on dominance to select the guides for individual particles (although the use
of distance measures on search space is also investigated). This circumvents
the issue of bias and appropriate objective weighting that other alternative
selection processes can lead to [17].

Using the decision tree representation presented earlier, a general multi-
objective PSO algorithm is presented in Algorithm 1.

5 Note that due to the non-linear mappings involved, closeness in objective space
may not relate to closeness in decision space. As such, even if the Pareto front
is known a priori, closeness to it is not a guarantee that the set members are
“close” in parameter space to the Pareto set.

Optimising decision trees using multi-objective PSO 13

Algorithm 2 initialise population(M, N).

1: S := Ø Create empty set
2: V := Ø Create empty set
3: i := 1
4: while i ≤ M do

5: j := 1
6: while j ≤ N do

7: Si,j := U(0, 1) Insert a uniform sample from (0, 1)
8: Vi,j := 0 Initialise velocity – random samples also possible
9: j := j + 1

10: end while

11: i := i + 1
12: end while

13: return {S, V} Return initial search population and velocity

Algorithm 3 initialise pbest(S, N).
1: i := 1
2: while i ≤ N do

3: Pi := Ø Create empty personal best set for search particle
4: Pi := Pi ∪ Si insert current position as initial set
5: i := i + 1
6: end while

7: return P Return personal best sets

Algorithm 4 initialise gbest(S, N).

1: G := Ø Create empty global best set
2: i := 1
3: while i ≤ N do

4: if Si $≺ Sj , ∀Sj ∈ S, i $= j then

5: G := G ∪ Si (If particle non-dominated) add to global best set
6: end if

7: i := i + 1
8: end while

9: return G Return global best set

As detailed in Algorithm 1, the principle inputs to the optimiser are the
coefficients from Equation 1, along with the number of iterations the optimiser
is to be run for (alternatively convergence measures could be used instead
[20]), the number of particles in the search population, I, and the solution
size, N (which can be calculated from the Equations given in Section 4).
The evaluate() procedure (lines 3 and 9) relies on the transformation of
the solution vector to a tree (as described in Section 4), and the subsequent
evaluation on a set of data D and calculation of errors (examples of which are
given in Section 5.1). The search population S, and associated velocities V are
initialised using draws from the uniform distribution (line 1, and Algorithm 3),

14 Jonathan E. Fieldsend

Algorithm 5 update velocity(S,P,G, w, c1, c2, N).
1: i := 1
2: while i ≤ N do

3: j := 1
4: while j ≤ |Si| do

5: r1 = U(0, 1) Draw from a continuous uniform distribution distribution
6: r2 = U(0, 1) Draw from a continuous uniform distribution distribution
7: Vi,j = wvi,j + r1c1(get(G, Si) − Si,j) + r2c2(get(Pi,Si, i) − Si,j)
8: j := j + 1 (Alter velocity according to Equation 1, see Algorithm 8)
9: end while

10: i := i + 1
11: end while

12: return V Return updated velocity

Algorithm 6 update pbest(P,S, N).
1: i := 1
2: while i ≤ N do

3: if Si $≺ Pi
j ∀Pi

j ∈ Pi then

4: Pi := Pi ∪ Si (If particle non-dominated) add to personal best set
5: j := 1
6: while j ≤ |Pi| do

7: if Si ≺ Pi
j then

8: Pi := Pi \Pi
j (If member is dominated) remove from personal best set

9: end if

10: j := j + 1
11: end while

12: end if

13: i = i + 1
14: end while

15: return P Return personal best sets

and after evaluating the search population the global best and personal best
vectors are initialised. As discussed in Section 5.2, there is usually no single
‘best’ solution when optimising with respect to more than one objective, and
as such a set of mutually non-dominated solutions, which are the best so far
encountered by the search population are maintained in G (lines 4 and 10
of Algorithm 1 and Algorithms 4 and 7). Likewise there is likely non single
personal best, and a set of sets P is maintained, with Pi containing the best
set of mutually non-dominating solutions found by particle Si in the search so
far (lines 5 and 11 of Algorithm 1 and Algorithms 3 and 6), as used previous
in e.g. [21].

The basic PSO update algorithm in Equation 1 is implemented in lines
7-8 of Algorithm 1, with line 7 laid out more fully in Algorithm 5. The key
part in Algorithm 5 is line 7 where the get() function is called to return a
global best individual and personal best individual respectively. Two different

Optimising decision trees using multi-objective PSO 15

Algorithm 7 update gbest(G,S, N).
1: i := 1
2: while i ≤ N do

3: if Gj $≺ Si ∀Gj ∈ G then

4: G := G ∪ Si (If particle non-dominated) add to global best set
5: j := 1
6: while j ≤ |G| do

7: if Si ≺ Gj then

8: G := G \Gj (If member is dominated) remove from global best set
9: end if

10: end while

11: j := j + 1
12: end if

13: i = i + 1
14: end while

15: return G Return global best set

Algorithm 8 get(A, s), implementation relying solely on dominance.

1: AS = Ø Initialise empty set of dominating individuals
2: i := 1
3: while i ≤ |A| do

4: if Ai ≺ s then

5: AS := AS ∪ Ai Add set member that dominates s

6: end if

7: i := i + 1
8: end while

9: r := U(1, |AS|) Draw from a discrete uniform distribution
10: return AS

r Return random dominating individual

implementations of these methods are implemented here. The first method,
relying solely on dominance, is laid out in Algorithm 8. Here the selected
global best for a solution, Si, is a member of G which dominates Si (selected
at random from the subset of G which dominates Si). Likewise the personal
best guide of Si is chosen at random from the subset of Pi which dominates
Si. An alternative implementation of get() is presented in Algorithm 9, which
uses a distance measure (Euclidean) in search space to determine the five
‘closest’ members of G to Pi and uses one of them at random as a guide (and
similarly from Pi for choosing a personal best guide).

6 Empirical results

In this empirical section, certain inputs are kept fixed across all experiments.
The number of search particles M = 20, The global and local search weights,
c1 and c2 are fixed at 2.0 (a common choice in the literature) and the inertia

16 Jonathan E. Fieldsend

Algorithm 9 get(A, s), implementation relying solely on distance in search
space.

1: d = |A|
i=1

Initialise empty vector of distances
2: i := 1
3: while i ≤ |A| do

4: di := ||Ai − s||2Add Euclidean distance between solutions to d member that
dominates s

5: i := i + 1
6: end while

7: {d, I} = sort(d) Sort distances in ascending order, and index
8: r := U(1, min(5, |A|)) Draw from a discrete uniform distribution
9: return AS

Ir
Return random close individual

weight w is initially set at 1.0, and decreased linearly throughout the search
until it reaches 0.1 at the termination of the algorithm. χ is fixed at 1.0, and
Vmax at 0.1 (one tenth of the range of the elements). The dimensionality N
of the search problem is determined by the number of features, classes of the
particular classification problem, and maximum tree size used (as previously
discussed in Section 4). Likewise the number of iterations the optimiser is run
for is varied with the size of the problem.

The first experiment will be to confirm the performance of the optimiser
compared previously publish results, namely those of the single objective
PSO the tree representation drawn from [14]. The implementation here varies
slightly (as laid out in Section 4) and local search in [14] is implemented via
selecting from the closest (in parameter space) search particles as opposed to
from a stored personal best; so it would be useful to quantify the effect of
these changes. Algorithm 1 can be use with just a single objective – the effect
is that G will only ever contain a single particle, and likewise each Pi will
only ever contain a single solution. A number of papers in the literature have
also suggested that transforming a uni-objective problem to a multi-objective
one can actually increase performance with respect to a single objective (see
e.g. [22, 23, 24, 25]), due to the effect on the mapping from search-space to
objective space (making it smoother, but adding gradient, therefore making
it easier to traverse). As such, as well as running Algorithm 1 to optimise the
single overall misclassification rate, it is also run with respect to minimising
the individual misclassfication rates, but keeping note of the member in G

which minimises the overall misclassification.
The experiments in [14] use the Iris data set from the UCI Machine Learn-

ing repository [5].6 The same PSO meta-parameters are used here, with 500
iterations performed and all 150 examples of the dataset used. The algorithms
are run 100 times and Table 1 shows the resulting mean and median total mis-
classification error after 500 iterations (identical classifier evaluations) of the

6 The most popular data set in the repository, with 28,209 hits since 2007 at 30-
07-2008.

Optimising decision trees using multi-objective PSO 17

Table 1. Mean and median total misclassification error results on the Iris data set,
over 100 runs after 500 iterations (see Figure 6 and 7 for plots versus iteration).
Values for TSO, GP and c4.5 taken from [14].

Average Uni-PSO MOPSO1 MOPSO2 MOPSO3 TSO GP C4.5

Mean 5.27 3.24 5.91 2.90 5.84 5.6 5.9
Median 4.00 2.67 4.67 2.00 – – –

Fig. 6. Total misclassification error on Iris data versus PSO generation. Dash-dotted
line denotes mean of the global individual of 100 runs using a single objective,
solid line MOPSO1, dotted line MOPSO2 and dashed line MOPSO3. (For MOPSO
optimisers, global individual selected from the trade-off set based on minimising
total error.)

different optimisers used. The first four are implementations of Algorithm 1,
the first when minimising a single objective (uni-PSO); when minimising the
individual misclassification rates7 with the dominance guide selection method
(MOPSO1); minimising individual misclassification rates with the distance
guide selection method (MOPSO2); and minimising the individual misclassi-
fication rates with a (random) 50/50 use of the two different guide methods
(MOPSO3). The last three columns give the mean result reported in [14] of
their single objective PSO optimiser (TSO), that of a genetic programming
(GP) optimiser, and C4.5. It is encouraging to note that the optimsers intro-
duced here (bar MOPSO2) outperform the results published in [14].

Figure 6 shows how the mean total error varies with iteration for the four
PSO implementations, and Figure 7 does the same for the median. Both plots

7 As it is a 3 class problem this results in 6 different objectives, i.e. the off-diagonal
elements of the confusion rate matrix.

18 Jonathan E. Fieldsend

tell the same underlying story – though it should be noted that the median is
a more robust statistic. Between 10 and 60 iterations the uni-objective PSO
finds significantly better solutions (with respect to total error) compared to
the multi-objective optimisers. This is most likely due to its focused search.
The performance of the uni-objective PSO plateaus at around 200 iterations
(mean) and 50 iterations (median) – indicating it has converged. The multi-
objective optimisers by comparison keep improving the total misclassification
error throughout the search, with MOPSO1 and MOPSO3 overtaking the uni-
objective optimiser, with a significant out performance after 200-300 iterations
(depending on the optimiser). MOPSO2 (with guides selected based on dis-
tance) performs less well comparatively, however it is interesting to note that
it is still improving its performance throughout the search and looks set to
overtake the uni-objective optimiser if run for more iterations.

The optimisers which use dominance to select their guides, exclusively or
in tandem with using a distance measure, perform much better than the one
which uses distance exclusively. Interestingly it is only toward the very end of
the runs that the optimiser that uses a mixture overtakes that using strictly
dominance. It seems likely that this is the effect of the distance selection pro-
moting greater search. Toward the end of the run as the optimiser converges
the inertia is very small, so if the number of global and personal best points
which dominate a particle → 1 (or even are identical to the particle) the
variation/search aspect may shrink prematurely. Selecting at random from a

Fig. 7. Total misclassification error on Iris data versus PSO generation. Dash-dotted
line denotes median of the global individual of 100 runs using a single objective,
solid line MOPSO1, dotted line MOPSO2 and dashed line MOPSO3. (For MOPSO
optimisers, global individual selected from the trade-off set based on minimising
total error.)

Optimising decision trees using multi-objective PSO 19

Table 2. Properties of classification problems (sample number refers to number of
complete data points in set – i.e. without missing values) [5].

Data set # classes # features # samples

Adult 2 14 48842
Breast cancer Wisconsin (original) 2 10 683
Breast cancer 2 9 277
Iris 3 4 150
Statlog (Australian credit approval) 2 14 690

Table 3. Mean and median results of uni-objective PSO and MOPSO3 over 30 runs.

uni-obj MOPSO3

Data set mean median mean median

Adult 17.72 17.56 18.13 18.02
Breast cancer Wisconsin (original) 3.26 3.22 2.76 2.63
Breast cancer 21.31 21.30 21.16 21.30
Statlog (Australian credit approval) 13.53 13.62 12.68 12.75

subset of the closest global and personal bests to act as guides means the
search aspect is maintained, whilst at the same time convergence is promoted
by selecting 50% of the time using dominance.

The optimisers we run on a number of other data sets taken from the UCI
machine learning repository, whose details are described in Table 2. Numeri-
cal results are presented in Table 3 for the uni-objective PSO and MOPSO3

variant, running for 1000 iterations with 6 layers for these larger problems.
As the results in Table 3 show, on these problems (bar the Adult data

set) the multi-objective search discovers better overall (equal cost) solutions
than the optimiser that is designed specifically for that objective (again in
the same number of function evaluations). Not only this but at the end of the
run an estimated optimal trade-off set is returned, Figure 9 shows trade-off
solutions returned by the multi-objective optimiser from a single randomly
selected run on the 2-class problems. The Adult data set seems more difficult
than the others for the multi-objective optimiser to push forward. Looking at
Table 2, this data set has considerably more data samples than the others,
meaning the possible objective combinations is also much larger. In this case
MOPSO variants such as the sigma method [26] may fair better at pushing
the front forward as opposed to filling it out.

The Iris problem having 6 objectives is less easy to visualise in this for-
mat, so an alternative representation is provided in Figure 10, providing a
histogram of the the distances of points on the trade-off front from the ran-
dom allocation simplex [15, 16]. The random allocation simplex is the plane
in misclassification rate space which denotes classifiers which assign classes
to data points at random (with some probability). For the 3-class (6 objec-

20 Jonathan E. Fieldsend

Fig. 8. Average total misclassification error over 30 runs. Solid line, mean uni-
objective PSO, dotted line median uni-objective PSO, dashed line mean MOPSO3,
dash-dotted line median MOPSO3. Top right plot Adult dataset, top right Breast
cancer Wisconsin (original) data set, bottom left Breast cancer data set, bottom
right Statlog (Australian credit approval) data set.

tive) problem, the optimal point at the origin is an absolute distance of 2
(number of classes-1) from the random allocation simplex. In keeping with
the minimisation representation, points between the origin and random allo-
cation simplex are given negative distances and points behind (worse than)
the random allocation simplex are given positive distances. As is clear, the
vast majority of points represent classifiers that perform better than random,
with a number a great distance in front of the random allocation simplex.

7 Summary

This chapter has covered the optimisation of decision trees, both with single
and multiple objectives, utilising the representation originally introduced in
[14] for single objective optimisation, and drawing on the extensive work in
the literature on applying PSO to multi-objective problems. Key results not
only include the success in general of applying multi-objective PSO to decision
tree classification problems, able to find a set of decision trees which trade-off

Optimising decision trees using multi-objective PSO 21

Fig. 9. Example trade-off fronts. Top right plot Adult data set, top right Breast
cancer Wisconsin (original) data set, bottom left Breast cancer data set, bottom
right Statlog (Australian credit approval) data set.

−2 −1.5 −1 −0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Distance from random allocation simplex

N
um

be
r o

f c
la

ss
ifi

er
s

Fig. 10. Distance of global best points from the random allocation simplex, taken
from a single run of MOPSO3 on the Iris data set. The distance value of -2 relates to
the optimal (typically not achievable) origin. A point with a distance value greater
than zero is worse than random.

the different misclassification error rates, but that it also tends to find better
single objective solutions compared to uni-objective PSO.

The multi-objective PSO experienced slower convergence and worse per-
formance with the larger Adult dataset. It would be useful to investigate this

22 Jonathan E. Fieldsend

further in future to see if there actually is a correlation between size and com-
parative performance. This may be a result of the fact that as the data set size
increases the resolution in objective space also increases, making the potential
number of points on any front increase and thereby impede convergence. Data
subsampling or algorithms with greater convergence pressure make be more
appropriate for these types of problem.

The multi-objective PSO variant with an equal mix of dominance based
guide selection and distance based guide selection performed best of the three
variants compared, with the assessment that this was due to its mixing of
convergence properties and search properties. A similar effect may well be
found by having a different weighting between the guide selection (as the
dominance approach does tend to converge faster, and not plateau like the
uni-objective variant), or alternatively using a turbulence (mutation) term
(see e.g. [21]).

A final point of note is the size of representation (and therefore size of the
search space) is influenced by the maximum number of layers in the decision
tree, the number of features and the number of classes. There is a potential
if these are high for the search landscape to become excessive, with large flat
(uninformative) sections, even with respect to multiple objectives. As such
investigation into smaller representations for continuous optimisers, or for
discrete PSO, would be worth investigating.

References

1. Bishop, C. (2006) Pattern Recognition and Machine Learning. Information Sci-
ence and Statistics, Springer.

2. Duda, R. and Hart, P. (2001) Pattern Classification and Scene Analysis. Wiley,
2 edn.

3. Everson, R. and Fieldsend, J. (2006) Multi-objective optimisation of safety re-
lated systems: An application to short term conflict alert. IEEE Transactions
on Evolutionary Computation, 10, 187–198.

4. Schetinin, V., Fieldsend, J., Partridge, D., Coats, T., Krzanowski, W., Everson,
R., Bailey, T., and Hernandez, A. (2007) Confident interpretation of bayesian
decision tree ensembles for clinical applications. EEE Transactions on Informa-
tion Technology in Biomedicine, 11, 312–319.

5. Asuncion, A. and Newman, D. (2007), UCI machine learning repository.
6. Ripley, B. (1994) Neural networks and related methods for classification (with

discussion). Journal of the Royal Statistical Society Series B , 56, 409–456.
7. Brieman, L., Friedman, J., Olshen, R., and Stone, C. (1984) Classification and

Regression Trees. Chapman & Hall/CRC.
8. Quinlan, J. (1986) Induction of decision trees. Machine Learning , 1, 86–106.
9. Quinlan, J. (1993) C4.5 Programs for Machine Learning . Machine learning,

Morgan Kaufmann.
10. Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization. IEEE In-

ternational Conference on Neural Networks, Perth, Australia, pp. 1942–1948,
IEEE Service Center.

Optimising decision trees using multi-objective PSO 23

11. Kennedy, J. and Eberhart, R. (1997) A discrete binary version of the particle
swarm algorithm. Proceedings of the IEEE Conference on Systems, Man and
Cybernetics, pp. 4104–4109, IEEE Press.

12. Kim, D. (2006) Minimizing structural risk on decision tree classification. Jin,
Y. (ed.), Multi-Objective Machine Learning , vol. 16 of Studies in Computational
Intelligence, pp. 241–260, Springer.

13. Denison, D., Holmes, C., Mallick, B., and Smith, A. (2002) Bayesian Methods
for Nonlinear Classification and Regression. Probability and Statistics, Wiley.

14. Veenhuis, C., Köppen, M., Krüger, J., and Nickolay, B. (2005) Tree swarm
optimization: An approach to pso-based tree discovery. 2005 IEEE Congress on
Evolutionary Computation, vol. 2, pp. 1238–1245.

15. Everson, R. and Fieldsend, J. (2006) Multi-class roc analysis from a multi-
objective optimisation perspective. Pattern Recognition Letters, 27, 918–927.

16. Everson, R. and Fieldsend, J. (2006) Multi-objective optimisation for receiver
operating characteristic analysis. Jin, Y. (ed.), Multi-Objective Machine Learn-
ing , vol. 16 of Studies in Computational Intelligence, pp. 531–556, Springer.

17. Fieldsend, J. (2004) Multi-objective particle swarm optimisation methods. Tech.
Rep. 419, Department of Computer Science, University of Exeter.

18. Coello Coello, C., Pulido, G., and Lechuga, M. (2004) Handling multiple ob-
jectives with particle swarm optimization. IEEE Transactions on Evolutionary
Computation, 8, 256–279.

19. Alvarez-Benitez, J., Everson, R., and Fieldsend, J. (2005) A mopso algorithm
based exclusively on pareto dominance concepts. The Third International Con-
ference on Evolutionary Mutli-Criterion Optimization, pp. 459–473.

20. Fieldsend, J., Everson, R., and Singh, S. (2003) Using unconstrained elite
archives for multi-objective optimization. IEEE Transactions on Evolutionary
Computation, 7, 305–323.

21. Fieldsend, J. and S.Singh (2002) A multi-objective algorithm based upon par-
ticle swarm optimisation, an efficient data structure and turbulence. 2002 UK
Workshop on Computational Intelligence (UKCI’02), Birmingham, UK, pp. 37–
44.

22. Fieldsend, J. and Singh, S. (2005) Pareto evolutionary neural networks. IEEE
Transactions on Neural Networks, 16, 338–354.

23. Knowles, J., Watson, R., and Corne, D. (2001) Reducing local optima in single-
objective problems by multi-objectivization. Zitzler, E., Deb, K., Thiele, L.,
C.Coello, C., and Corne, D. (eds.), First International Conference on Evolu-
tionary Multi-Criterion Optimization, Lecture Notes in Computer Science, pp.
269–283, no. 1993.

24. Jensen, M. (2003) Guiding single-objective optimization using multiobjective
methods. Cagnoni, S., et al. (eds.), Applications of Evolutionary Computing:
EvoWorkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB,
and EvoSTIM, Lecture Notes in Computer Science, pp. 268–276, no. 2611.

25. Abbass, H. and Deb, K. (2003) Searching under multi-evolutionary pressures.
Springer-Verlag (ed.), Proceedings of the 2003 Evolutionary Multiobjective Op-
timization Conference (EMO03), pp. 391–404.

26. Mostaghim, S. and Teich, J. (2003) Strategies for finding good local guides in
multi-objective particle swarm optimization (mopso). IEEE 2003 Swarm Intel-
ligence Symposium.

