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Abstract. In this paper two novel methods for projecting high dimen-
sional data into two dimensions for visualisation are introduced, which
aim to limit the loss of dominance and Pareto shell relationships be-
tween solutions to multi-objective optimisation problems. It has already
been shown that, in general, it is impossible to completely preserve the
dominance relationship when mapping from a higher to a lower dimen-
sion – however, approaches that attempt this projection with minimal
loss of dominance information are useful for a number of reasons. (1)
They may represent the data to the user of a multi-objective optimi-
sation problem in an intuitive fashion, (2) they may help provide in-
sights into the relationships between solutions which are not immedi-
ately apparent through other visualisation methods, and (3) they may
offer a useful visual medium for interactive optimisation. We are con-
cerned here with examining (1) and (2), and developing relatively rapid
methods to achieve visualisations, rather than generating an entirely
new search/optimisation problem which has to be solved to achieve the
visualisation– which may prove infeasible in an interactive environment
for real time use. Results are presented on randomly generated data, and
the search population of an optimiser as it progresses. Structural insights
into the evolution of a set-based optimiser that can be derived from this
visualisation are also discussed.
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1 Introduction

The visualisation of a set of solutions maintained by modern evolutionary multi-
objective optimisation (EMO) algorithms is of interest to researchers wishing to
track the behaviour of algorithms, decision makers who use the output of EMO
algorithms, and those wishing to develop interactive multi-objective optimisers.
Most EMO practitioners are comfortable with visualising a set of solutions with
2 or 3 objective dimensions as a scatter plot of points, and can rapidly determine
the non-dominated subset (and those associated with dominated shells [5]) from
this. Visualisation of sets with more objectives is often more difficult to inter-
pret via a single scatter plot, and a range of other approaches has been used
to visualise these populations in the multi-objective optimisation literature (e.g.
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parallel coordinate plots [7, 15, 12] heatmaps [22, 25], directed graphs [24], Cher-
noff faces [1], and self-organising maps [21, 11]). Dominance relations and shells
are not always apparent in these visualisations however (or are only presented
between adjacent shells). We are concerned with visualising more than just the
estimate of the Pareto front that comes out of most modern EMO algorithms,
but more broadly any general set of points (e.g. a search population), from which
a visualisation thereof can inform us of the structure of the set. Such visualisa-
tions can give us extra information relating to the Pareto front estimation, and
convey to the problem holder visually how an optimisation is progressing.

Here we are concerned with producing a visualisation in the plane, which may
be relatively rapidly computed, and is interpretable quickly by both experienced
practitioners in EMO, and by problem owners who may not be as familiar with
the interpretation of the methods mentioned above. We focus on a single scatter
plot of points representing solutions (unlike pairwise coordinate plots [4], which
uses D(D−1) separate scatter plots). We shall shortly provide a brief discussion
of some existing examples of these, and introduce our two new approaches, but
before this we will more formally define Pareto dominance, which is crucial to
most modern EMO algorithms, and our visualisation approaches.

2 Pareto dominance

Pareto dominance is used extensively within the search processes of most modern
multi-objective optimisation algorithms [4], and, even if not used explicitly in
the search process (if aggregation techniques are used for fitness assignment for
instance), it is still used to define the properties of the final output set from
the optimisers. EMO algorithms are concerned with exploring a decision space
for design solutions, where an evaluation of a particular design results in an
associated point in objective space. If we consider (without loss of generality)
that all objectives are to be minimised, an objective vector y of D objectives
(y1, . . . , yD) is said to dominate another y′, written y ≺ y′, iff:

(yi ≤ y′i,∀i) ∧ (∃i, yi < y′i). (1)

Succinctly, the best set of solutions to a multi-objective problem (the Pareto set)
are the maximal set for which it is impossible (given the problem constraints) to
improve any single objective (or group of objectives) of a set member by varying
its parameters without having to decrease its performance on one or more other
objectives. The image of this set in objective space is known as the Pareto front,
F . Given any objective vector set Y = {yi}Ni=1, the non-dominated subset of
Y is determined as S0 = {y ∈ Y |@z ∈ Y, z ≺ y}. This can be taken one step
further (as for instance in the popular NSGA-II algorithm [5]), where not only is
a dominance relationship put on members of Y (i.e. where any two members are
mutually non-dominating, (y′ ⊀ y)∧ (y ⊀ y′), or one dominates the other), but
also every member of Y is assigned to a Pareto shell. Here members of S0 are said
to be in the zeroth Pareto shell (an estimate of the Pareto front, F̂). Subsequent



shells are defined iteratively in the same manner, subject to the previous shell
being removed from Y until the empty set ∅ is obtained. That is

Sj = {y ∈ Y ′j |@z ∈ Y ′j , z ≺ y} (2)

where Y ′j = Y \ ⋃j−1
k=0 Sk, and Y ′j = ∅ for j ≥ k∗ with some k∗ ∈ {1, 2, . . .}.

Note that under (1) and (2) it is possible for two members of Y to be mutually
non-dominating, but for one to be in a better shell than the other.

3 Approaches for visualising multi-dimensional solution
sets via scatter plots

If we wish to project an objective vector y ∈ RD into R2 to enable visualisation
as a point in a plane we must utilise a dimension reduction technique of some
form, and, unless there are redundant or perfectly correlated objectives, some
information loss is inevitable.

One of the most popular linear dimension reduction techniques is principal
component analysis (PCA, [16]), which identifies the directions of objective space
that capture the maximum amount of variance in the solutions. Neuroscale [20,
19] has also been used for multi-objective visualisation [11, 8] – but unlike PCA
it provides a non-linear mapping. However, although popular across many ap-
plication domains, both Neuroscale and PCA are oblivious to whether solutions
dominate each other, or are mutually non-dominating in multi-objective popula-
tions, or what their Pareto shell is. We recently defined a new distance measure,
the dominance distance, that captures the similarity of the dominance relations
of solutions, and we have used this to project mutually non-dominating sets us-
ing multi-dimensional scaling [23, 26] to points on the plane [25]. In the same
work we also investigated the use of Radviz [13, 14] for this mapping. However
even with these representations is is not geometrically apparent which solutions
are in which shell or which dominate others.

In [18] a visualisation is presented which does map the S0 solutions in a multi-
dimensional objective space to a mutually non-dominating shell in R2, with all
other mapped solutions being dominated by members of the planar representa-
tion of S0 (although subsequent shells are not explicitly represented). We will
discuss the method described in [18] further in Sect. 5, as it is conceptually the
close to the methods we propose.

4 Desired properties when visualising shells in the plane

Given a set Y D = {yi}Ni=1 ⊂ RD, we wish to find a mapping to Y 2 = {ui}Ni=1 ⊂
R2 such that if yi ≺ yj , then ui ≺ uj , and if yi 6≺ yj , then ui 6≺ uj . In
general a mapping u = g(y) with this property does not exist (the reader is
directed toward the proof provided in [18] for further details). Instead here we
shall concern ourselves with a mapping with two properties, one of which we can
guarantee, and the second of which we seek a good approximation to, namely:



1. Ensure that the mapping preserves Pareto shells. That is, if we denote by
SDj the jth Pareto shell in an ambient space of D dimensions, then u ∈ S2j
(where u = g(y)). The superscript on Sj denotes the dimensionality of the
space which it inhabits.

2. Minimise dominance misinformation. We describe three ways to quantify
dominance misinformation in Sects. 5, 6 and 7.

Computational methods for quickly determining shells are well-known (see, e.g.
[5]) – and are embedded in many EMO algorithms [4]. Furthermore, ensuring
that shell members are maintained via a projection into a lower dimension is
actually fairly trivial: a very simple approach would be to distribute each shell
as illustrated in Fig. 1. Here there are three shells projected from RD, D > 2,

S2
2

S2
0

S2
1

Fig. 1. Simple projection preserving shells but not necessarily dominance relations.

with the number of members in each shell being |SD0 | = 4, |SD1 | = 6 and |SD2 | = 3.
When projecting these into R2 each shell member is projected to a point in the
positive quadrant, which lies on the circumference of the circle with radius equal
to its shell rank plus one. As long as the mapping is such that the minimum values
of the objectives in both dimensions of S2j are greater or equal to the minima

in S2j−1, then this will have the effect that every member of S2j is dominated

by at least one member of S2j−1, and the members of each S2j are mutually
non-dominating as required.

This mapping provides the first property mentioned above, but still leads to
the issue of where to place the ui to minimise whichever dominance misinforma-
tion objectives may be defined. It is the definition of this property, and methods
to incorporate it within a planar visualisation we shall now discuss. The first new
approach we consider uses proximity to domination rays to convey dominance.
The second we introduce uses a direct geometric transference of the dominance
relation. First however we will describe the visualisation of Köppen and Yoshida
[18].



Fig. 2. Visualisation using the approach of [18] of 100 randomly generated points in
4 dimensions. Left : Dominance links not shown. Middle: Dotted lines show dominance
relations between the members of adjacent shells. Right : Dotted lines show dominance
relations between all members of Y .

5 Visualisation of Köppen and Yoshida

In [18] the non-dominated set from Y D was mapped to the positive quadrant,
lying on the circumference of a circle whose centre point is the origin, and the
objectives were maximised. In keeping with the rest of this paper, where objec-
tives are to be minimised, we have ‘flipped’ the representation from the original
and project instead to the negative quadrant. Once the non-dominated subset
of Y D is mapped, for every dominated point yi ∈ Y D, the subset of SD0 which
dominates it is determined, and the worst objective values in the mapping of
this set are used to fix the position of ui in two dimensions. The exact order of
the solutions mapped to S20 was treated as a permutation problem for a multi-
objective evolutionary optimiser in [18]. The location of projected solutions on
the curve of S20 was determined such that the separation between points was
proportional to the distances of immediate S20 neighbours in the original RD
space. Let π be a permutation of the integers 1, . . . , |SD0 | describing the order in
which the solutions are arranged along S20 , so that uπ1

is placed on the extreme
left, with uπ2 next, and so on. Then the two objectives that Köppen and Yoshida
seek to minimise in the selection of an optimal permutation are

|SD
0 |−1∑
k=1

d(yπk
,yπk+1

) (3)

where d(x, z) is the Euclidean distance between yπk
and yπk+1

, and, denoting
by vl ∈ Y D members of Y D which are dominated by members of SD0 ,

|{k|∃1 ≤ i < k < j ≤ |SD0 |,vl with (yπi ≺ vl) ∧ (yπj ≺ vl) ∧ (yπk
⊀ vl)}| (4)

As such, for each element yπk
, 1 < k < |SD0 |, (4) checks if any two elements lower

and higher in the permuted order both dominate a subset of Y D which the kth
ordered solution does not. The minimisation of (3) and (4) is approximated using
a real-valued sorting encoding in the NSGA-II algorithm [5]. However, how the



final visualisation permutation is selected from the set of trade-off permutations
is not described.

To illustrate this visualisation, we draw 100 points from an isotropic four-
dimensional Gaussian distribution, and then map them down to R2. We first
optimise the permutation in the same fashion as [18], using the NSGA-II al-
gorithm, with a population size 100, for 500 generations. We then select the
solution on the returned F̂ which minimises (4) as the permutation to use in
the final visualisation. We chose this permutation as this objective is essentially
a form of dominance misinformation, which is one of the key properties we are
concerned with. The resultant visualisation is presented in Fig. 2.

6 Representing dominance in RD by closeness in R2

Once we have determined the shell membership of solutions in the original space,
the problem is where to place these solutions on their projection to equivalent
shells in the lower dimensional space. The first set of novel transformations we
present are based upon converting the dominance relation in a higher dimension
to a distance relationship in the two dimensional mapping. That is, we attempt
to place dominated solutions close to those solutions which dominate them,
whilst maintaining correct shells. Here we represent the distance to dominating
individuals in a different fashion to [18], which does not require the running of
a multi-objective optimiser to generate the mapping. Each shell is mapped to a
distinct shell (as illustrated in Fig. 1). We then place the solutions, as close as
possible to the solutions which dominate them. One way of conceiving of this
is that each solution is placed on the curve corresponding to their shell and
connected via a spring to all those points which dominate it. These springs act
to pull together points which are dominated by the same solutions.

This approach is illustrated in Fig. 3. As in [18] the problem arises as to how
to distribute the solutions in S20 , however, instead of casting this as a problem
to tackle with an evolutionary optimiser, we instead order the solutions using
spectral seriation. For a set of K = |SD0 | solutions we require a K×K similarity
matrix A describing the similarity between any pair of solutions of this set. Given
A, to place similar solutions together, we seek a permutation π over the solutions
in SD0 that minimises:

γ(π) =

K∑
j=1

K∑
k=1

Akj(πk − πj)2. (5)

γ(π) is minimised when similar solutions are placed close to each other, and
dissimilar solutions far apart. In general, this is NP-hard because the permuta-
tion is discrete [2]. Instead, [2] suggests finding an approximation obtained by
relaxing the permutation π to a continuous variable w and minimising:

h(w) =

K∑
j=1

K∑
k=1

Akj(wk − wj)2 (6)
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Fig. 3. Left : Illustration of the initialisation of a distance-based visualisation, domi-
nance relationships between points on adjacent shells are shown via solid connecting
lines. Right : Minimal distance rays are plotted projected from the origin through mem-
bers of Y \ S2

2 , which indicate where on each shell a solution must be placed to be the
minimal distance away from the dominating point.

with respect to w. This relaxed objective is subject to two constraints. Firstly,
to ensure that adding a constant to all wn does not change the order of the
individuals the constraint

∑
n wn = 0 is imposed. Also, in order to avoid the

trivial solution in which all wn = 0, we require
∑
n w

2
n = 1. The solution to the

constrained problem can be found with linear algebra via the graph Laplacian
[10, 3] (further details on how to do this efficiently can be found in [17]). The
similarity measure we choose to use here is the dominance similarity, which we
have used previously for MDS visualisations of multi-objective sets [25, 9].

The dominance similarity between two solutions yj and yk, relative to a
third solution yp, is defined as being proportional to the number of objectives
on which yj and yk have the same relation (greater than, less than, or equal) to
yp. That is:

S(yk,yj ;yp) =
1

D

D∑
d=1

[
I((ypd < ykd) ∧ (ypd < yjd))

+ I((ypd = ykd) ∧ (ypd = yjd))

+ I((ypd > ykd) ∧ (ypd > yjd))
]

(7)

where I(q) is the indicator function that returns a value of 1 when the proposition
q is true and 0 otherwise.

The dominance similarity across the set Y = {yi}Ni=1 is obtained by averaging
S(yk,yj ;yp) across all the elements of the set:

Akj =
1

N − 2

N∑
p=1

p/∈{k,j}

S(yk,yj ;yp). (8)



Fig. 4. Visualisation using closeness approach of 100 points randomly generated in 4
dimensions. Top: Initial pass. Bottom: After refinement iterations. Left : No domina-
tion links shown. Middle: Dotted lines show dominance relations between members of
adjacent shells. Right : Dotted lines show dominance relations between all members of
Y D.

Utilising (8) to calculate A for just the SD0 members of Y D (but averaging across
their similarity to all members of Y D), gives us an order on the elements of SD0
with minimisation of (6), which we transfer to S20 . We space the S20 solutions on
the curve proportional to their Euclidean distance in SD0 (as in [18]).

The distance between shells in the mapping is arbitrary, so we use the angle
of the ray passing through a mapped point and the origin to determine the
placement of dominated solutions. Specifically, the location of a ui is initially
placed on the ray through the origin whose angle is the average of the angles of
the rays associated with the mapped points which dominate it. As the position
of S20 is determined using spectral seriation (as detailed above), the rays defining
S21 , can be rapidly computed, which, along with S20 can then be used to fix S22 ,
and so on. A schematic of this is in shown the right-hand panel of Fig. 3, and an
empirical example is provided in the top panels of Fig. 4 (using the same data as
Fig. 2). However, as only the dominating points are considered for determining
the angle of the ray on which a solution resides, if two solutions are dominated
by exactly the same subset of Y D, then they will lie at the same point – even if
the subsets that they both dominate are not the same.

In order to resolve the issue of mapping points to the same location when
their dominance relationships with Y D as a whole are not identical, an iterative
procedure is used to adjust the locations of S2i points (where i > 1), such that
the mean of the angles in R2 of those points which are dominated in RD, as



well as those which dominate in RD, are used to set the location angles of S2i
members. Each shell is evaluated in turn until all the shells have been processed
(S20 remaining unchanged). This is repeated until the positions no longer vary.
Empirically the number of complete passes before stabilisation is reached has
proved small – in the example shown here for instance the location changes were
negligible (10−3) within six passes. The bottom panels of Fig. 4 shows the result
of this iterative location smoothing – note how a number of individuals in S21
which dominate many elements of S22 have been pulled to a more central region
of the S21 shell by this process. On the other hand, the refinement process has
left the shells in the same general region as the single pass algorithm, so the
single pass seems to give a reasonable approximation (on this instance) to the
final refined visualisation.

7 Representing dominance in RD by dominance in R2

The second new approach we consider here attempts to directly translate the
dominance relationships in the higher dimensional space into the two dimensions
in a way that is conceptually more akin to [18]. Again, the ordering of solutions
mapped to S20 is determined via spectral seriation using dominance similarity,
but instead of placing individuals on dominated shells using angles to dominating
and dominated solutions, we attempt to minimise the divergence between the
dominance relations implied by the lower dimensional visualisation and the true
dominance relations in the original space. That is, if an individual u = g(y) has
the relationship y′ ≺ y, then as far as possible we would like u′ ≺ u to hold
(and vice versa). To this end we propose a deterministic iterative procedure
which attempts to arrange the solutions in each S2j to accomplish this.

When deciding on the placement of the S21 individuals, the members of S20
effectively delimit a number of regions on the feasible curve for S21 . Any point in
one of these regions has an equivalent dominance relation with S20 ; that is, any
point in a particular curve segment rk is dominated by the same subset of S20 .
This is illustrated in the left panel of Fig. 5 – the members of S20 partition S21
into 2|S20 | − 1 segments into which members of S21 can be placed. In selecting
which region to map a solution y ∈ SD1 to, a natural approach would be to find
the one which yields the smallest dominance error. If we denote by ri any point
in the ith region, and by R1 the set of these points (one point for each region)
for the oneth shell, then we can define a dominance error as having two parts:

e1(ri,y,SD0 ) = |{y′ ∈ SD0 |y′ ≺ y ∧ g(y′) ⊀ ri}|, (9)

the number of members of SD0 which dominate y but fail to dominate ri in their
S20 projection and

e2(ri,y,SD0 ) = |{y′ ∈ SD0 |y′ ⊀ y ∧ g(y′) ≺ ri}|, (10)

the number of members of SD0 which do not dominate y but incorrectly dominate
ri in their S2

0 projection. Empirically we find that simply summing these two
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1 has been determined. Note there are no intervals
on the extremes, as the interval ranges must be dominated by at least one member of
the previous shell.

penalty terms to generate a combined error (to minimise) does not lead to a
satisfying projection. This is because (10) tends to outweigh (9) with the result
that all the solutions in dominated shells tend to be pushed close to the axes.
Therefore, we find the subset of Rj which minimises e1, and then choose the
element of this subset with the lowest e2. By geometry, we can see that e1 = 0
can be achieved for any dominated element Y D projected onto S2i , as long as
the shell radius for S2i is

√
2 times the shell radius for S2i−1, or greater. This will

mean that there is a region on the S2i curve which is dominated by all elements
of S2i−1, therefore we choose the shell radii accordingly to guarantee this.

It is also possible (and indeed inevitable if 2|SD0 | − 1 < |SD1 |)1 for some
solutions in S21 to be placed in the same region. We would not however wish to
place them on exactly the same point, as they may not dominate the same subset
of Y D. If more than one solution is placed in a region, then they are spaced evenly
across the curve segment that region defines, otherwise it is placed in the centre
of the segment. After the S21 shell is assigned, subsequent shells are assigned in
order in a similar way to that described for S21 ; that is in (9) and (10) SD0 is

replaced by
⋃j−1
k=0 SDk (where the jth shell is being assigned).

This still leaves the problem of how to order multiple solutions mapped to
the same region. This is, however, another permutation problem, and as such
we simply construct the dominance similarity matrix for solutions in this region,
and order them according to the order suggested by spectral seriation.

1 Generally, in the jth shell (j > 0), there are at most 1 +
∑j−1

i=0 2(|S2
i | − 1) regions

where a shell member may be placed, this growth is illustrated in the right panel of
Fig. 5.



Fig. 6. 100 randomly generated points in 4 dimensions as in previous illustration,
visualisation using dominance approach but with modified minimisation function. Left :
Dominance links not shown. Middle: Dotted lines show dominance relations between
members of adjacent shells. Right : Dotted lines show dominance relations between all
members of Y D.

Table 1. Property comparison of the three scatter plot visualisation methods. yi and
yj are original objective vectors drawn from Y D, and ui and uj are their corresponding
projections using the methods examined into R2.

Köppen & Yoshida Distance-based Dominance-based

(I) If yi ∈ SD
k then ui ∈ S2

k 7 X X
(II) If yi ≺ yj then ui ≺ uj 7† 7 X
(III) If yi ⊀ yj then ui ⊀ uj 7 7 7

† If solutions in S2
0 can be arranged so that (4) is equal to zero, then (II) holds for any

pair of points which are not mapped to the same location in R2. If (4) is not equal to
zero then (II) cannot be guaranteed to hold anywhere in the mapping of [18].

The visualisation approach, using our running example, leads to the pro-
jection shown in Fig. 6. All linked points in this visualisation can be seen to
dominate in a geometric sense.

8 Visualisation comparisons

The dominance and shell properties of the three visualisations we have illustrated
here (that of [18], and our two new visualisations) are presented in Table 1. As-
suming a permutation of S20 can be found such that (4) is equal to zero, then the
method of [18] guarantees property (II) through the placement of the dominated
solutions in Y 2 using the worst values of the mapped dominating subset of Y D0 .
In practice an ordering which obtains (4) equal to zero is rare however, and it
still allows points to be placed on the same location when one dominates the
other. Our distance/angle-based visualisation guarantees (I), however as it rein-
terprets geometric dominance into angles it does not attempt to provide (II) or
(III). Our dominance-based visualisation guarantees both (I) and (II), and tries
to minimise (III) (subject to (II)), by minimising (10) and the corresponding



Köppen & Yoshida Distance-based Dominance-based

G = 1

G = 10

G = 100

Fig. 7. Visualisation of SPEA2 4-objective problem search populations. G indicates
the generation. Dotted lines show dominance relations between all members of Y D.

objective functions for later shells. Note, other mappings to the plane previously
used in the EMO field (e.g. PCA, MDS, Neuroscale, RadViz) do not guarantee
any of the properties listed in the Table 1.

We now provide a further brief comparison of the two methods we have in-
troduced here, along with the method of [18], using the run time population of
an EMO algorithm. We visualise the combined archive and search population of
the popular SPEA2 algorithm [27] as it progresses through the optimisation of a
4-objective optimisation problem (the DTLZ2 test problem [6]). The algorithm
is run with an archive size of 100 and a population size of 100, and we visualise
the combined population of 200 solutions after 1, 10 and 100 generations in Fig.
7. A number of structural properties are immediately apparent from the runtime
results presented in Fig. 7. The two visualisations introduced here clearly show
the number of shells, and the proportion of points on these can be reasonably
gauged. It is interesting to note that the method for placing dominated indi-
viduals from [18] visually loses many dominated individuals in the population
entirely because it maps them onto the same location as a solution which domi-
nates them. On the other hand, [18] does push the elements of S20 (the projection
of the estimated Pareto front, F̂) which do not dominate any other set members



to the two extremes of the shell, so it is clear which non-dominated members are
structurally unsupported. This is not so immediately determined from the other
two visualisations, however it can be coarsely judged by looking at the number
of S20 members which do not have lines attached to them.

All visualisation approaches show that the number of dominated points in
the search population is decreasing as the search progresses, indicating that the
search population is spreading out and advancing slowly (rather than making big
jumps forward – which would lead to a larger proportion of Y being dominated).

The distance- and dominance-based visualisations could be modified to use
more of the plotting space, by making the dominance errors (used in fixing point
locations) concerned with only relationships between adjacent shells – however
this would reduce the structural inference possible from the plots. For example,
it can be seen in the dominance-based visualisation that at G = 1, the members
of shell 4 (and all bar one member of shell 3) are exclusively dominated by
only a small number of members in shell 0, as the members of these shells are
gathered to the top left of the plot, and property (II) means that only members of
shell 0 below and to the left of them can dominate them. This kind of structural
information is not readily apparent in the method of [18], and completely lacking
from approaches which attempt to visualise F̂ alone.

9 Discussion

We have introduced two related novel visualisations of multi-dimensional sets of
points, which endeavour to preserve Pareto shell and dominance information. As
with all point mappings which reduce the dimensionality of the data, there is in-
evitably some loss in information, and assessing the quality of the visualisations
presented is by its nature subjective. However, we believe they are a useful con-
tribution to the group of methods in the field; because they exhibit some useful
properties (listed in Table 1), and have an advantage over some other approaches
in their speed of computation. Of the two, we have a slight preference for the
dominance-based approach. It guarantees two useful relationships in Y D are pre-
served in Y 2 and endeavours to translate the geometric properties practitioners
are already familiar with. That said, as long as the user is comfortable inferring
dominance by angle similarity (and/or links), then the angular/distance-based
approach is generally quicker to compute (as all the various candidate r of the
dominance method do not need to be computed and compared). The method
of Köppen and Yoshida has the advantage of being compact, however shell in-
formation is lost and it can become more cluttered than the other two. It is
also expensive to generate, as (4) is not quick to compute and the ordering of
solutions in S20 requires the use of an evolutionary optimiser. We note however
that spectral seriation could be used to obtain a permutation for S20 here also.

It is possible that ‘better’ point locations may be found given the fitting ob-
jectives of our two methods using evolutionary optimisation approaches, however
this would likely undermine their speed benefits if used to visualise search popu-
lations during a multi-objective optimisation. There are however further avenues



of research that may prove useful. There may be useful information that can be
conveyed in the magnitude of the shell radii (as used in [18] to convey the range
and magnitude of SD0 ). The shape of the shells being mapped to is also arbi-
trary; by allowing a greater freedom in location we may be able to convey more
information, and it may also improve the false positive rate if some solutions can
be closer to their dominating shell and therefore be erroneously dominated by
fewer solutions.

We also look forward to examining the use of these visualisation approaches in
interactive optimisation, for example using the structural information presented
to select population members for further examination and/or variation.
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