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The standard derivations of electromagnetic energy and momentum in media take Maxwell’s equations as the
starting point. It is well known that for dispersive media this approach does not directly yield exact expressions
for the energy and momentum densities. Although Maxwell’s equations fully describe electromagnetic fields,
the general approach to conserved quantities in field theory is not based on the field equations, but rather on the
action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive
the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin’s simple
formula when the fields are monochromatic. The momentum density is not given by the familiar Minkowski
expression D×B, even for time-averaged monochromatic fields. The results are unaffected by the debate over
momentum balance in light-matter interactions.
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I. INTRODUCTION

Momentum balance in light-matter interactions is a subtle
subject that has been debated for over a century. Discussions
of the issues involved, together with references to much of the
relevant literature, can be found in [2–6]. This paper makes
no attempt to contribute to the momentum-balance debate, in
that there will be no investigation of the transfer of momen-
tum (or energy) from light to matter or vice versa. Instead we
isolate a related problem, but one that is mathematically well-
posed and therefore capable of an exact and unambiguous so-
lution. The problem solved here is: what is the conserved
energy-momentum tensor of light propagating in a homoge-
neous, dispersive, lossless magnetodielectric medium? This is
a well-posed problem of macroscopic electromagnetism, but
it appears not to have been fully addressed in the existing lit-
erature on electromagnetic energy-momentum, where the pri-
mary focus has been on momentum transfer between light and
matter. Although the solution is an example of Noether’s the-
orem, the presence of dispersion means that the well-known
expression for the energy-momentum tensor of a field theory
in terms of its Lagrangian density is not valid in this case.
In fact the result cannot be derived in any systematic way
from Maxwell’s equations or a Lagrangian density. Dispersive
macroscopic electromagnetism must be formulated in terms
of an action principle, and the Noether theorem for space-
time translation symmetry must be derived from the action,
leading to an exact conserved energy-momentum tensor. The
problem in fact presents a significant calculational challenge,
which may explain its absence from the momentum-balance
literature. By isolating this problem from the conundrum of
momentum transfer, we show that the issue of electromag-
netic energy-momentum in dispersive media is amenable to
some mathematically exact and unambiguous statements.

The restriction to lossless media in this paper requires com-
ment on the physical significance of the results. A complete
treatment of macroscopic electromagnetism at all frequencies

must include the absorption in the materials that is necessarily
strong in some frequency ranges. Mathematically, this dissi-
pation is a consequence of the restriction to retarded solutions
of Maxwell’s equations, which leads to the Kramers-Kronig
relations [7, 8]. As is well known [8–10], quantifying electro-
magnetic energy-momentum in dissipative media is problem-
atic, and in any case such energy-momentum will of course
not be conserved. In optics, on the other hand, one often
deals with limited frequency ranges where losses are negli-
gible, but where material dispersion cannot be ignored. An
example of the utmost experimental and practical importance
is fiber optics [11], where in many circumstances absorption
can be ignored not only in the entire visible range, but also
into the infrared and ultraviolet. In such a large frequency
range dispersion plays a crucial role in light propagation and
cannot be neglected [11]. The question of how much con-
served energy-momentum is being transported by light has an
unambiguous answer in these circumstances, and the result is
experimentally significant. For example, a light beam encoun-
tering an intense pulse can be frequency shifted through non-
linearity of the medium, and the amount of electromagnetic
energy that is frequency shifted depends, among other fac-
tors, on the energy-momentum tensor of the light beam. One
example of such an experiment is described in [12], where
the light beam encountering the intense pulse was monochro-
matic; this represents the simplest case, but for a light beam
with a complicated spectrum the general expression for the
energy-momentum tensor is required to fully describe the be-
haviour of the beam. This exact energy-momentum tensor is
derived here.

The results obtained below generalize a well-known ap-
proximation for electromagnetic energy in dispersive media.
As is familiar from the textbook treatments [7, 8], the Poynt-
ing theorem that follows from Maxwell’s equations does not
directly lead to an expression for the electromagnetic en-
ergy density in the case of lossless, dispersive media. The
standard procedure [7, 8] is to make a restriction to quasi-
monochromatic fields, in which case one can extract an ap-
proximate expression for the time-averaged energy density,
due to Brillouin (Eq. (21) below). For general fields one is
reduced to making a formal time integration of the Poynting
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theorem [9]. But as noted above, in the dispersive case one
cannot derive Noether’s theorem from a systematic manipu-
lation of the dynamical equations of the theory, as is done in
the Poynting theorem; instead, one must start with the action
that underlies the equations. Noether’s theorem guarantees
the existence of an exact energy density for arbitrary fields in
lossless dispersive media and this energy density is derived
here.

In the case of electromagnetic momentum density, the dis-
persionless result is the familiar Minkowski expression [2–
6] D × B. We note again that this statement refers to
the conserved electromagnetic energy-momentum tensor: the
Minkowski momentum density D × B unambiguously gives
the conserved electromagnetic momentum of light propagat-
ing in a non-dispersive, lossless, homogeneous medium [2–
6]. It is shown below that in dispersive media the momentum
density is more complicated, and is not given by Minkowski’s
formula.

II. THE ACTION

The results follow straightforwardly once an action princi-
ple is written for electromagnetism in dispersive, lossless me-
dia. For this purpose the dynamical variables must be taken to
be the scalar potential φ and vector potential A, defined by

E = −∇φ− ∂tA, B = ∇×A. (1)

The relationship between fields in the time and frequency do-
mains (the latter denoted by a tilde) is, for the example of the
electric field,

E(r, t) =
1

2π

∫ ∞
0

dω
(
Ẽ(r, ω)e−iωt + c.c

)
=

1

2π

∫ ∞
−∞

dω Ẽ(r, ω)e−iωt,

(2)

where the reality of E(r, t) implies Ẽ(r,−ω) = Ẽ∗(r, ω). In
the frequency domain we have

D̃ = ε0ε(r, ω)Ẽ, H̃ = κ0κ(r, ω)B̃, (3)

where ε(r, ω) is the relative permittivity of the (in general in-
homogeneous) medium, κ0 = µ−10 , and the relative perme-
ability is µ(r, ω) = κ(r, ω)−1. As the medium can be as-
sumed to be lossless in the frequency range of interest, ε(r, ω)
and κ(r, ω) are real and even functions of ω [8], and so they
have the series expansions

ε(r, ω) =

∞∑
n=0

ε2n(r)ω2n, κ(r, ω) =

∞∑
n=0

κ2n(r)ω2n, (4)

where these equations define the coefficients ε2n(r) and
κ2n(r). In practice, the series (4) will represent a fit to the
dispersion data of the material for the frequency range of in-
terest; we take these series to be infinite, but the subsequent
results also hold when they are finite series. Equations (2)–(4)

show that in the time domain the Maxwell equations (with no
free charges or currents) are

ε0∇ · [ε(r, i∂t)E] = 0, (5)
κ0∇× [κ(r, i∂t)B] = ε0ε(r, i∂t)∂tE, (6)

while the other two Maxwell equations are automatically sat-
isfied because of (1). Note that series expansions of the form
(4) are standard in treating dispersion in frequency ranges
where losses are negligible, for example in linear and non-
linear fiber optics [11]. Moreover the transformation from the
frequency to the time domain apparent in (5)–(6), and the re-
verse transformation, are a standard part of numerical solution
procedures for the propagation of wave packets with spectra
within the frequency range where expansions (4) are valid, for
example in the split-step method [11, 13]. The action S[φ,A]
for the potentials φ and A that gives the dynamical equations
(5)–(6) is

S =

∫
d4x

κ0
2

{
1

c2
E · [ε(r, i∂t)E]−B · [κ(r, i∂t)B]

}
.

(7)
Variation of φ in (7) gives the Maxwell equation (5), while
variation of A gives (6).

The fact that only even-order time derivatives occur in (5)–
(6) is essential to being able to write an action principle for
these equations. For dissipative media, terms with odd-order
time derivatives occur in (5)–(6), arising from the imaginary
parts of ε(r, ω) and κ(r, ω) which are odd functions of ω [8];
but the action (7) would not generate these terms. In the ac-
tion (7), terms of the form E · ∂2n+1

t E, for example, would
not contribute to the dynamical equations because their varia-
tion gives zero after integrations by parts: δ(E · ∂2n+1

t E) =
(δE) · ∂2n+1

t E + E · ∂2n+1
t δE, and the second term becomes

minus the first upon integrations by parts. It must of course
be impossible to write an action in the dissipative case that is
a functional only of φ and A, since this would imply the ex-
istence of a conserved electromagnetic energy in lossy media
(see below).

III. ENERGY

The action (7) is invariant under active time translations
of the dynamical fields φ and A, and this invariance im-
plies, through Noether’s theorem, the existence of a con-
served quantity, the energy. The extraction of the conserva-
tion law from the action is a standard technique of field the-
ory (see [14], for example). Even if one is unfamiliar with
Noether’s theorem, one can of course verify using the field
equations (5)–(6) that the resulting conservation law does in
fact hold. The theorem [14] shows that if we make an ac-
tive infinitesimal time translation φ(r, t) → φ(r, t + ζ(r, t)),
A(r, t)→ A(r, t+ ζ(r, t)), but take the translation ζ(r, t) to
vary in space and time, then the change in the action can be
reduced to the form

δS =

∫
d4x (ρ ∂tζ + S · ∇ζ) , (8)
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where ρ is the energy density and S is the energy flux, obeying
the conservation law

∂tρ+∇ · S = 0. (9)

The variation δS will clearly be linear in the infinitesimal
translation ζ(r, t), but various numbers of integrations by
parts are required to achieve the form (8) (surface terms pro-
duced by the integrations are to be dropped). Use must be
made of the following identities, which hold for arbitrary
functions Y and Z, up to surface terms:∫

d4xY ε(r, i∂t)(ζZ) =

∫
d4x

[
ζY ε(r, i∂t)Z

−
∞∑

n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1t Y ∂2n−mt Z∂tζ

]
, (10)

∫
d4xY ε(r, i∂t)∂t(ζZ) =

∫
d4x

[
ζY ε(r, i∂t)∂tZ

+

∞∑
n=0

2n∑
m=0

(−1)n+mε2n(r)∂mt Y ∂
2n−m
t Z∂tζ

]
. (11)

These identities were found by first working with small val-
ues of n, where all the terms can be checked by hand, and then
verifying the general expressions (10)–(11) using Mathemat-
ica. Identity (10) with ε(r, i∂t) replaced by κ(r, i∂t) must
also be used. In this way one attains the form (8) with

ρ =
κ0
2

{
1

c2
(∇φ− ∂tA) · [ε(r, i∂t)E] + B · [κ(r, i∂t)B]

− 1

c2

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1t E · ∂2n−m+1
t E

+

∞∑
n=1

2n∑
m=1

(−1)n+mκ2n(r)∂m−1t B · ∂2n−m+1
t B

}
,

(12)

S =− ε0∂tφ ε(r, i∂t)E− κ0∂tA× [κ(r, i∂t)B]. (13)

It is straightforward to verify that (12) and (13) obey the
conservation law (9) when the fields satisfy Maxwell’s equa-
tions (5)–(6). As in the case of dispersionless media, and in-
deed vacuum, the energy density (12) and flux (13) that di-
rectly emerge from Noether’s theorem are not gauge invari-
ant [7, 14]. They are however equivalent to gauge-invariant
quantities because they fail to be gauge invariant up to terms
that identically satisfy the conservation law (9). Specifically,
the quantities

f i t
t := −ε0φ ε(r, i∂t)Ei =: −f t i

t , (14)

f j i
t := −κ0φκ(r, i∂t)(∇iAj −∇jAi), (15)

identically satisfy

∂t∇if
i t
t +∇i(∂tf

t i
t +∇jf

j i
t ) = 0. (16)

Comparing (16) with (9), we see that if ∇if
i t
t is added to ρ,

and ∂tf t i
t +∇jf

j i
t is added to Si, then the conservation law

(9) will still hold. Moreover, with use of Maxwell’s equations
(5)–(6), the energy density and flux that result from these ad-
ditions are gauge invariant and are given by

ρ =
κ0
2

{
1

c2
E · [ε(r, i∂t)E] + B · [κ(r, i∂t)B]

− 1

c2

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1t E · ∂2n−m+1
t E

+

∞∑
n=1

2n∑
m=1

(−1)n+mκ2n(r)∂m−1t B · ∂2n−m+1
t B

}
,

(17)

S =κ0E× [κ(r, i∂t)B]. (18)

The conservation law (9) for the final expressions (17) and
(18) can also be verified using Maxwell’s equations (5)–(6).
In (18) we see that the energy flux is given by the Poynting
vector E×H in the time domain, the obvious generalization of
the non-dispersive result. The energy density (17), however,
has no simple relation to the non-dispersive result, which only
contains the first two terms in (17). It is a simple matter to
express (17) and (18) in the frequency domain.

We can use the exact energy density (17) to derive the stan-
dard textbook result [7, 8] for the time-averaged energy den-
sity of a monochromatic wave in a dispersive medium. Such
a wave has an electric field

E(r, t) =
1

2

(
E0(r)e−iω0t + c.c

)
, (19)

and the B field is of the same form. When the monochromatic
E and B fields are substituted into (17) and a time average is
taken, all t-dependent terms vanish. The series in (17) con-
taining the E field is then

ε0
4

∞∑
n=1

2n∑
m=1

ε2n(r)ω2n
0 |E0|2 =

ε0
4

∞∑
n=1

2n ε2n(r)ω2n
0 |E0|2

=
ε0
4
ω0
dε(r, ω0)

dω0
|E0|2 . (20)

The series in (17) containing the B field undergoes a similar
simplification and the time-averaged monochromatic energy
density ρ̄mono can be written

ρ̄mono =
ε0
4

d[ω0ε(r, ω0)]

dω0
|E0|2 +

µ0

4

d[ω0µ(r, ω0)]

dω0
|H0|2 ,

(21)
which is Brillouin’s formula [7, 8]. For homogeneous
media the monochromatic wave is a plane wave and it
is easy to show, by dividing the time-averaged energy
flow S̄ by ρ̄, that the electromagnetic energy of the plane
wave moves through the medium at the group velocity
c/[d(ω0

√
ε(ω0)µ(ω0))/dω0]. It is of course expected that the

energy of a monochromatic wave in a lossless, homogeneous
medium should move at the group velocity, but here we have
derived this fact for electromagnetism in lossless media with
arbitrary dispersion.
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FIG. 1: The temporal profile of the electric field (top) and energy
density (bottom) of a gaussian pulse in a medium with relative per-
mittivity (22) and µ = 1. Note that the energy density is not zero
at all the local minima; this feature is due solely to the complicated
electric-field series in (17).

In the case of fields that are nearly monochromatic, Bril-
louin’s expression (21) can serve as an approximation of
the time-averaged energy density, but only if ε(r, ω) and
µ(r, ω) do not vary significantly over the range of frequency
components in the fields [7]. As was recently pointed out
in [10], Brillouin’s formula is also exact for time-averaged
fields whose frequency components are uncorrelated, the im-
portant example being thermal radiation. But the exact energy
density for all fields in dispersive, lossless media is given by
(17).

As mentioned in Section II, the series representations (4) on
which our results are based will in practice be numerical fits to
the measured dispersion data of the material in question, in the
frequency range of interest. Clearly, a finite number of terms
in the series will be sufficient for an accurate treatment of the
dispersion, and the forgoing results hold in this case where all
series terminate. As a theory exercise, however, we now con-
sider an example of an infinite series expansion of the form (4)
for the permittivity, and verify that the expression (17) for the
energy density is a well defined quantity. We take the stan-
dard, damped harmonic oscillator model of a homogeneous
permittivity [7]. At frequencies well below the resonant fre-
quency ω0 of the oscillator, the imaginary part of the relative

permittivity is negligible; the real part is

ε(ω) =1− Ω(ω2 − ω2
0)

(ω2 − ω2
0)2 + γ2ω2

=1 +

∞∑
n=0

C2nω
2n, ω < ω0, (22)

C2n =
Ω

ω2
0ω

2n

n∑
m=0

(−1)m
(
n+m

2m

)(
γ2

ω2
0

)m

. (23)

The series expansion (22) converges for ω < ω0 and we con-
sider a light beam in this material with a spectrum lying far
enough below ω0 for losses to be negligible. The evolution of
the light beam in this dispersive medium can of course only be
computed numerically, but we consider an initial, input gaus-
sian pulse with central frequency ω0/2 and calculate its initial
energy distribution. As is clear from (17), the effect of disper-
sion on the initial energy density will be seen in the temporal
profile of the pulse, rather than the spatial profile, so we con-
sider a fixed point r = 0, which can be viewed as a boundary
through which the pulse enters the medium. We take units
with c = 1 and choose the values ω0 = 10, Ω = 30 and γ = 1
in the relative permittivity (22). The input electric field of the
gaussian pulse centered on ω = ω0/2 at the boundary r = 0
is taken as

E(t)|r=0 = e−t
2/4 cos(ω0t/2) (24)

and is plotted in Fig. 1. We can numerically compute the in-
put magnetic field B(t)|r=0 by transforming to the frequency
domain and use of the dispersion relation k =

√
εω/c and

the Maxwell equation iωB̃ = ∇ × Ẽ. To avoid inessential
complications we ignore the transverse spatial profile of the
pulse and consider a one-dimensional propagation (an actual
one-dimensional propagation in a waveguide such as an op-
tical fiber will involve an effective dispersion different from
(22), but our considerations here are purely for demonstration
purposes). Using E(t)|r=0 and B(t)|r=0 we compute the in-
put temporal profile ρ(t)|r=0 of the energy density (17) (with
µ = 1/κ = 1) and the result is shown in Fig. 1. Note that no
cycle-averaging has been performed; the exact energy density
(17) is not a cycle-averaged quantity. As well as the quanti-
tative change in the energy density caused by the dispersion,
there is a qualitative difference, visible in Fig. 1, compared to
the same pulse in a non-dispersve medium. The local min-
ima of the energy density in Fig. 1 occur at nodes of the elec-
tric (and magnetic) field, but it is clearly seen that the energy
density does not drop to zero at many of these local minima.
This is purely an effect of the dispersion; in a non-dispersive
medium these local minima are zeros of the energy density. In
fact this effect of dispersion is due solely to the complicated
electric-field series in (17). The familiar E · D term in (17)
does not contribute to this feature, which can only be seen
using the exact result (17).
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IV. MOMENTUM

Turning to the electromagnetic momentum, we note that
momentum will be conserved only if the medium is homo-
geneous, so that Noether’s theorem applies to spatial trans-
lations. It is instructive however to retain ε and κ as func-
tions of position and thereby see how the momentum con-
servation law fails to hold in the inhomogeneous case. To
extract the conservation law associated with spatial transla-
tion invariance we make the active infinitesimal translation
φ(r, t) → φ(r + η(r, t), t), A(r, t) → A(r + η(r, t), t) in
the action (7). Noether’s theorem [14] shows that when the
resulting change in the action is written in the form

δS = −
∫
d4x

(
Pi ∂tη

i + σ j
i ∇jη

i
)
, (25)

then (in homogeneous media) Pi and σ j
i obey the conserva-

tion law

∂tPi +∇jσ
j
i = 0. (26)

In this way we find the electromagnetic momentum density P

and stress tensor σ j
i . We will carry out this procedure with

ε and κ varying in space; then (26) will fail to hold because
extra terms will appear in this equation that contain spatial
derivatives of ε and κ. Again, use must be made of the identi-
ties (10) and (11) to achieve the form (25) and the result is

Pi =
κ0
2

[
2

c2
∇iA

jε(r, i∂t)Ej

+
1

c2

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1t Ej∂
2n−m
t ∇iE

j

−
∞∑

n=1

2n∑
m=1

(−1)n+mκ2n(r)∂m−1t Bj∂
2n−m
t ∇iB

j

]
,

(27)

σ j
i =L δ j

i + ε0∇iφ ε(r, i∂t)E
j

+ κ0∇iAkκ(r, i∂t)[∇jAk −∇kAj ], (28)

where L in (28) is the Lagrangian density, i.e. the integrand in
the action (7). To obtain gauge-invariant expressions for the
momentum density and stress tensor, we note that the quanti-
ties

f j t
i := −ε0Aiε(r, i∂t)E

j =: −f t j
i , (29)

fk j
i := −κ0Aiκ(r, i∂t)(∇jAk −∇kAj), (30)

identically satisfy

∂t∇jf
j t
i +∇j(∂tf

t j
i +∇kf

k j
i ) = 0. (31)

Thus, addition of∇jf
j t
i to Pi, and of ∂tf

t j
i +∇kf

k j
i to σ j

i ,
does not affect the momentum conservation law (26). After
these additions and use of Maxwell’s equations (5)–(6), the
momentum density and stress tensor are gauge invariant and
are given by

Pi = ε0εijk[ε(r, i∂t)E
j ]Bk

+
ε0
2

∞∑
n=1

2n∑
m=1

(−1)n+mε2n(r)∂m−1t Ej∂
2n−m
t ∇iE

j

− κ0
2

∞∑
n=1

2n∑
m=1

(−1)n+mκ2n(r)∂m−1t Bj∂
2n−m
t ∇iB

j ,

(32)

σ j
i =− ε0Eiε(r, i∂t)E

j − κ0[κ(r, i∂t)Bi]B
j

+
1

2
δ j
i

[
ε0Ekε(r, i∂t)E

k + κ0Bkκ(r, i∂t)B
k
]
,

(33)

where εijk is the (completely antisymmetric) Levi-Civita ten-
sor. It is straightforward to verify that, when the fields satisfy
Maxwell’s equations (5)–(6), the momentum density (32) and
stress tensor (33) satisfy

∂tPi +∇jσ
j
i =

ε0
2
Ej [∇iε(r, i∂t)]E

j

− κ0
2
Bj [∇iκ(r, i∂t)]B

j , (34)

so that the momentum conservation law (26) indeed holds
for homogeneous media. The derivation of (34) in the non-
dispersive case is familiar from the textbooks [15].

Note that the electromagnetic stress tensor (33) is here de-
fined so that it is the spatial part of the electromagnetic energy-
momentum tensor; a widespread convention for the stress ten-
sor differs from this by a minus sign [7]. The stress tensor
(33) is the obvious generalization to the dispersive case of the
non-dispersive result; the fact that this expression describes
the stress tensor in dispersive media is deduced in [8] from
completely different considerations.

For the monochromatic wave (19), the series in the mo-
mentum density (32) containing the E field is, after a time
averaging,

ε0
8

∞∑
n=1

2n∑
m=1

iε2nω
2n−1
0

(
E0j∇iE

∗j
0 − E∗0j∇iE

j
0

)
= −ε0

4

dε(ω0)

dω0
Im(E0j∇iE

∗j
0 ). (35)

There is a similar result for the series in (32) containing
the magnetic field, and the complete result for the time-
averaged monochromatic momentum density P̄ in a homo-
geneous medium is

P̄ =
ε0
2
ε(ω0)Re(E0 ×B∗0)− ε0

4

dε(ω0)

dω0
Im(E0i∇E∗i0 )

+
κ0
4

dκ(ω0)

dω0
Im(B0i∇B∗i0 ). (36)

The Minkowski momentum density D × B would give only
the first term in (36). With an additional restriction to a single
plane wave of frequency ω0 in the homogeneous medium, i.e.

E0(r) = E0e
ik·r, B0(r) =

1

ω0
k×E0(r), (37)

|k| = ω0

c

√
ε(ω0)µ(ω0), (38)
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FIG. 2: The temporal profile of the momentum density of a gaussian
pulse in a dispersive medium. The pulse and dispersion are the same
as those described at the end of Section III and used for the energy
density in Fig. 1. Note that the momentum density is not zero at
local minima; this feature is due solely to the complicated electric-
field series in (32).

the expression (36) reduces to

P̄ =
ε0
2c
ε(ω0)ng(ω0)k̂|E0|2, (39)

ng(ω0) = np(ω0) + ω0
dnp(ω0)

dω0
, (40)

where ng(ω0) is the group index, np(ω0) =
√
ε(ω0)µ(ω0)

is the phase index and k̂ = k/|k|. Using the quantum pre-
scription (for µ = 1) in [16] corresponds to taking |E0|2 →
2~ω0/[ε0np(ω0)ng(ω0)] for a single photon; this gives from
(39) a single photon momentum that is np(ω0) times the vac-
uum value, in agreement with the canonical momentum in [6].
We note that the Minkowski expression (the first term in (36))
would give a correction factor of n2p(ω0)/ng(ω0) for the sin-
gle photon [16], whereas the factor np(ω0) has been obtained
here from the general momentum density (32).

At the end of Section III we showed an example of the elec-
tromagnetic energy density for a gaussian pulse in a disper-
sive medium. For the same pulse and medium we use (32) to
compute the input temporal profile of the momentum density,
where the final series in the magnetic field in (32) is absent
for this example. The spatial derivative of the electric field
in (32) is computed by transforming to the frequency domain
and using the dispersion relation k =

√
εω/c (as discussed

in Section III, we assume one-dimensional propagation). The
profile for the momentum density is shown in Fig. 2 and is
seen to have the same shape as the energy density in Fig. 1.
Similar to what was found for the energy density, the fact that
the momentum density does not fall to zero at local minima is
due solely to the complicated electric-field series in (32); this
feature can only be seen with the exact expression (32) and is
absent from the Minkowski contribution D×B in (32).

Electromagnetic angular momentum in dispersive media
can be derived in a similar manner, though this will not be
done here. The angular momentum density is not to be con-
structed from the energy-momentum tensor but rather derived
from the invariance of the action (7) under active rotations (for
rotationally symmetric media).

V. CONCLUSIONS

We have derived the exact conserved energy-momentum
tensor of light propagating in lossless, dispersive, homoge-
neous media. Electromagnetic energy is also conserved when
the medium is inhomogeneous and this case has been in-
cluded. The energy flux and stress tensor in dispersive media
have the same general form as in the non-dispersive case, with
the permittivity and permeability becoming derivative opera-
tors in the time domain. In contrast, the energy density and
momentum density for arbitrary fields have no simple relation
to the non-dispersive results. For time-averaged monochro-
matic waves the Brillouin energy density is recovered, and the
momentum density also takes a simple form (equation (36)).
As stressed in the Introduction, the results do not address the
question of momentum balance in light-matter interactions,
which requires an analysis of momentum transfer between
light and matter [2–6]. The conserved energy-momentum ten-
sor of light in lossless media is a well-defined quantity with its
own experimental significance [12]; it has been derived here
in complete generality within the framework of macroscopic
electromagnetism.
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