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Optical angular momentum in dispersive media
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The angular momentum density and flux of light in a dispersiotationally symmetric medium are derived
from Noether’s theorem. Optical angular momentum in a dispe medium has no simple relation to optical
linear momentum, even if the medium is homogeneous. A d@rbulpolarized monochromatic beam in a
homogeneous, dispersive medium carries a spin angular mameof +/ per energyiw, as in vacuum. This
result demonstrates the non-trivial interplay of dispersiontributions to optical angular momentum and energy.
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The discovery by Alleret al. [1] that light beams can carry ally addressed [5]. The conserved optical angular momentum
orbital angular momentum has led to intensive study of thés associated with rotational symmetry and must therefere b
angular momentum of light and its applications (see [2] forcalculated using Noether’s theorem.

a recent review). In vacuum, the linear momentum density Note that the problem solved here is self-contained, unam-
p = ¢oE x B of light determines its angular momentum den- biguous, and unaffected by considerations of angular memen
sity r x p. A beam with azimuthal phase dependence cartum transfer between light and matter. We consider only the
ries orbital angular momentum in the direction of propaga-correct expression for conserved optical angular momentum
tion, distinct from the more familiar spin angular momentuman analysis of the transfer of optical angular momentum to
of circular polarization{A per photon)l[2]. Inside a medium, matter requires ingredients not needed herel[7, 8]. The-ques
however, these expressions for the linear and angular mometion we address is one of the most basic that can be posed for
tum densities of light are no longer correct. If the beam hasny field theory. The solution to the problem, in combination
frequency components for which absorption is significamnth with the result for the energy-momentum tensor, demoresrat
there is no conserved optical linear or angular momentuma remarkable interplay of dispersive contributions to tbe-c
But if the beam is confined to a frequency range where losseserved quantities of light.

are negligible, then light in a rotationally symmetric maui As in [4], our results are derived from Noether's theorem
will carry a conserved angular momentum. A frequency rangapplied to the electromagnetic action in a dispersive nradiu
with negligible losses will in general exhibit dispersimigi-  assuming a finite frequency range with negligible losses. In

ble light in glass being the most famous example. The probsuch a frequency range the dielectric functions can be fitted

lem solved in this paper is the following: what is the optical an even series in frequency:

angular momentum density and flux in a dispersive, rotation- - -

ally sym_metnc medlgmfor beams W|t_h ne_gl|g|bl_e absorpﬁon e(r,w) = Z ean(r) W, K(rw) = Z Ko (r) 0™, (1)
Even if the beam is monochromatic, dispersion contributes = —

to the energy-momentum and angular momentum of light.

This is best known from the Brillouin expression for the wheres(r,w) is the relative permittivity and the relative per-

time-averaged energy density of monochromatic light in ameability isy(r, w) = x(r,w) ™. In practice the series ifil(1)

dispersive mediuml|[3], which depends on the derivativegvill have a finite number of terms and will represent a fit to

de(w)/dw anddp(w)/dw of the permittivity and permeability  dispersion data in the frequency range of interest, but we al

at the frequency of the beam. The time-averaged monochrdow an infinite number of terms to obtain the results in their

matic momentum density also depends @rw)/dw and  greatest generality. The expansions (1) are standardat tre

dp(w)/dw [4, 6]. The energy density and momentum den-ing dispersion in frequency ranges where absorption is neg-

sity for beams with a finite frequency range has a much morégible (see e.g..[9]). To ensure the existence of a conserve

complicated dependence on the dispersion [4]. Here we fing@ptical angular momentum, the medium is taken to be rota-

the angular momentum density and flux for a finite frequencyiionally symmetric, with dielectric functionsl(1) dependion

range and also specialize the result to the monochromatic= +/r - r. TheD andH fields in the frequency domain and

case. Unlike in vacuum, the angular momentum density hai the time domain are

no simple relation to the linear momentum density (even in - - ,

a homogeneous medium where the latter obeys a conserval (1, w) = g0e(r, w)E(r, w), D(r,t) = eoe(r,i0;)E(r, t),

tion law). This means that the conserved angular momentunH (r, w) = kok(r, w)B(r,w), H(r,t) = rkok(r,i0;)B(r,t).

cannot be constructed from the energy-momentum tensor, al-

though this is how optical angular momentum in media is usuwherer, = ugl. The electromagnetic action in the medium
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@ is [4] as follows, where we use square brackets to denote antisym-
metrization of indices [14};,, is the completely antisymmet-
S — /d4x@ {%E [e(r,i0,)E] — B - [s(r,i0,)B] ¢ , _ric Levi-Ciyitatensqr, and is the Lagrangian density (i.e. the
2 (c ) integrand in the actioh|2)):

with the dynamical variables taken to be the scalar poteptia  L;; =2e0A ;e (r i0;) By + 2e07; V AFe(r,i0;)Ey

and vector potentiad, defined by 0o
+r(i | 2o 1) ey, ()07 ER P 1 By,
E= Vé— A, B=VxA. @®) [ nzlmzl t o
Variation of ¢ and A in (@) gives the macroscopic Maxwell 0 Z Z )™M e, ()07 BEOZ Y ) By
equations (with no free charges or currents) 1 me1
E()V . [E(’l’, Zat)E] = O, (4) + &0 Z Z n+m )am 1E aQn mE]
Hov X [IQ(T, z@t)B] = E()E(’I’, z&t)ﬁtE (5) n=1m=1
The other two Maxwell equations are identities dugo (3). — Ko Z Z 1) g, ()0 B 0Z " By,
The action[(R) is invariant under active rotations of the dy- n=1m=1
namical fieldsp and A around the origin- = 0, and this in- (12)

variance implies the existence of a conserved quantiticalpt Myij = 2Lr3g5% + 2607V 510 (7, 0;) ),
angular momentum. For a homogeneous medium the invari- .

ance of the action holds for rotations of the dynamical fields + 260 (€mifi Aj) — emur; Vi A) (r,i0;) B
around an arbitrary point, but this point can always be chose (13)

as the coordinate origin. An infinitesimal rotation of thals¢  The angular momentum densify112) and fltix| (13) satisfy the

field ¢ around the origin is given by conservation law[{11) when Maxwell's Eq§] (4) afd (5) are
used; one obtains
¢(ra t) — ¢(r - 51‘, t)a (6)
ort = Qe Qy = —Qy, @) KLY+ VMM =l B [Ve(r,id))| B*
where();; = —Q;; denote the three independent infinitesimal — rorl' By {Vﬂfﬁ(ﬁ iat)} B*,  (14)

parameters of the rotation. (We use tensor notation through
out, with indices lowed and raised by the metyig and its ~ which vanishes becaus€ V7! f(r) = 0 for any function of

inverseg®.) The vector potential undergoes the rotation r=4/r-Tr.
‘ The results[(12) and{13) are not gauge invariant. Equiva-
A'(r,t) — (51 + Qb )A7 (r — or, t), (8) lent gauge-invariant expressions are found by noting that t
guantities
and the infinitesimal variations @fand A are thus B o
R = 2e0rl Afle(r, 00, EF, (15)
dp = —Qyr’ V', §A; = Qi AV — QuprP VI A (9) G = 40l A o (r, i) W IF A (16)

Noether’s theorem [10] guarantees that if we let the rotatio identically satisfy
parameters depend on space and time(l,g.= Q;;(r,t), - - N
then the change in the actidd (2) undér (9) can be written in NV F*I 4V (=0, F* +v,G*9) = 0.  (17)

the form ) g iy i
From [IT) we see that adding,F*“ to L*, and adding

—0,FFi 1 v,G"J to M* | does not affect the conservation
law (11). Performing these additions, and using Maxwell’s

3 - Egs. [4) and[(5), we obtain the following gauge-invariant an
where the angular momentum denslty = —L7* and flux  gular momentum density and flux:

MPFi3 = — M*i* obey the conservation law

3S = —% / d'z (L90yQ; + M™Y. Qy5),  (10)

Lij =2r;p;))

O LY 4+ YV MFI = 0. (11) o
+ €9 Z Z n+m€2n )Bt’”*lE[iBf"*mEj]

The angular momentum densify/ emerges as an antisym-

n=1m=1
metric tensor; its dual is a vector and will be constructed o
later. Integrations by parts, in which surface terms areeto b — Ko Z Z I ( )aﬁflg[iafnmeﬂ’
dropped, are required to achieve the fofm (10). Use must also 1 me1

be made of the identities (10) and (11) in ref. [4]. The result (18)



3

Myij =270k, (29) Similar to the energy density and momentum density in a
dispersive medium_[4], the angular momentum density sim-
wherep; ando;; are, respectively, the linear momentum den-plifies considerably for time-averaged monochromatic wave

sity and stress tensor in a dispersive medium [4]: We insert the monochromatfe field
= , 1 _
B B(r, 1) = 5 (Bo(r)e ™ +c), (26)
€0 - - n+m m—1 2n—m j
+ = (1) "y, (r)0" 1 E;0 V.E’
2 ,; mZ:l ! a and aB field of the same form intd_(23). After time averaging,
o 2n all --dependent terms vanish and we obtain the time-averaged
- % DN (1), (10 B9 ™V, B, monochromatic angular momentum dendifyono
n=1m=1
(20) _ o de(r,w
1 Lmono =T X Pmono — ZO El )|m(E0 x Eg)
2 Ko dk(r, w) .
ZTIm(BO x B{), (27)
w

The linear momentum densify (20) is not the Minkowskii mo-
mentumD x B, which is only valid if there is no dlsp(_ersmn. wherepmono is the time-averaged monochromatic linear mo-
The stress tensdr (P1) has the same expression as in the NMantum densityl |4 6]
dispersive case, but is not symmetric in the time domain. The o
momentum density (20) and stress tenkal (21) obey a conser-

vation law only if the medium is homogeneous [4]. A striking Pmono z%og(r,w)Re(Eo x B) — %0 dgg’ w) Im(Eo; VEL*)

property of the angular momentum densiftyl(18) is that it has d w

no simple relation to the linear momentum dengityeven % ”S” w) Im(Bo;VBE). (28)
w

when linear momentum is conserved. The angular momen-

tum flux (29), on the other hand, is completely determined byl’he time-averaged monochromatic energy demityo in a

the linear momentum flux, the stress tenser. The result dispersive medium is given by the well-known Brillouin for-
(@9) is the same expression for the angular momentum flux P 9 y

7
as in vacuum |3], except that the stress tensor is symmatric imula [3.4]
vacuum so that;o;, = o5, whereas this last equality

does not hold in a dispersive medium. Prmono = E_OMEO "Ej + @MHO CH}
It is more usual to write optical angular momentum den- 4 dw 4 dw (29)
sity as a vector, with the flux as a second-rank tensor; thesgys energy result is exact only for monochromatic waves, bu
quantities are simply the duals 6f; andM;;, defined by is often used as an approximation in the quasi-monochremati
o1 o _ case. The exact energy density for finite frequency ranges
L' = §Gljijk7 MY = §eﬂklMlkl_ (22)  where absorption is negligible is given in [4]. Note that the

energy density expressioh {29) is in fact valid for any spa-
The angu'ar momentum densityvecmand second-rank flux tial dependence of the dielectric functions, but the momen-

M are, from [I8),[I9) and(22), tum _den§ity [(ZB) only measures a conserved quantity if the
medium is homogeneous.
L=rxp To study a specific example, we consider a homogeneous
oo 2n medium, where the dielectric functiongv) andx(w) are in-
+ %0 Z Z (=1)" e, (PO IE x "R dependent of position. The simplest monochromatic wave in
n=1m=1 this case is a plane wave, but a well-known oddity of a circu-
oo 22 larly polarized plane wave in vacuum is that its angular mo-
- 70 SN (D)™ kan ()0 B x 97"B,  mentum densityor x (E x B) in the propagation direction
n=1m=1 turns out to be zera [2]. If the circularly polarized wave is
(23)  given atransverse intensity that falls off to zero at infinihe
M9 =%y o, (24)  angularmomentumin the propagation direction is found to be
+h per photon, the expected spin angular momentum [2]. To
and they satisfy the conservation law capture the full spin angular momentum of a circularly polar
ized monochromatic wave we must therefore consider a non-
L'+ V;MI* = 0. (25) trivial transverse profile. The simplest case is to assume th

the transverse profile decreases to zero slowly comparééto t
The results[(1I8) and(19), or their dudls](23) dnd (24), aee thwavelength scale [3]. The resulting spatial depend@ige)
solution to the problem posed at the beginning of this paper. for the monochromatic electric field (26), and correspogdin
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By(r), are then/[3] non-trivial interplay of dispersive contributions to thiagsi-
cal energy, momentum and angular momentum of light that
Eo(r) = |E(y, 2)(e, + ie.) + i (0, +i0.€) e, ik indicates the expecte(_JI results for phot(_)n momentym gnd an-
‘ k- gular momentum. A rigorous quantization of light in disper-

(30)  sive media requires a full account of absorption consistent
i with Kramer-Kronig relations [11]. The energy-momentum
Bo(r) = ¢E”P(W)E0(r)' (31)  tensor of classical and guantum light in an arbitrary medium
. o . obeying Kramer-Kronig relations is given in [12] in a form
We have taken the wave to propagate in theirection, with  {hatincludes the energy-momentum absorbed by the medium.
{ex, ey, €.} unit vectors along the Cartesian axes. The tranSthe total angular momentum density and flux in an medium
verse beam profile is given B(y, z), n,(w) = \/e(w)u(w)  obeying Kramer-Kronig relations can easily be found from th
is the phase index; = n,(w)w/c is the wave vector and  action in {11/ 12] using Noether’s theorem. Separation tito
the upper/lower signs are for left/right circular polatiza.  energy-momentum and angular momentum into electromag-
One can verify that[(30) and_(B1) satisfy Maxwell's equa-netic and absorbed parts is a difficult problem in generdl, bu
tions whenk& (y, z) is much larger than derivatives 8y, ). for frequencies with negligible absorption the resultsiaet
With the same assumption of a slowly varyiiy, z), thez-  here and in[4] must follow from a more general treatment that
component of the time-averaged angular momentum density,cludes losses.
(20) for the bean{(30) anf(B1) is
As we stressed in the opening paragraphs, we have not an-
_ alyzed angular momentum transfer from light to matter. This
L, = Feoe(w) npc(kw) E(ry -V1)E+e ;((Z)) dngiw) %, transfer can occur either by absorption of a pulse carrying a
(32) gular momentum or by transmission of the pulse through the
medium. The results derived here can be used to calculate the
gtotal angular momentum carried by the pulse when it is com-
pletely contained inside the medium. An analysis of the angu
lar momentum transfered to the material [7] leads to the same
subtleties that have been long debated in the case of linear
momentum (the Abraham-Minkowskii controversy![5} 13]).

wherer, = {y, z} is the transverse position vector anid =
{V,, V.} is the transverse gradient operator. By integratin
(32) over theyz-plane we find the spin angular momentum
per unit length of the beam. The first term [n}32) can be re
written using2€(r; V1) =V, - (r %) - £?V, -r, and
V. -r, = 2, so the integration gives

B £0e(w)ny (w) This research was supported by the Royal Society of Edin-
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wheren,(w) = d[wn,(w)]/dw is the group index. The time-
averaged energy densify {29) of the bean (30) 31)is
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The time-averaged momentum density](28) of the beam
(30) and[(3L) in the:-direction is
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