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Abstract

In this thesis, we revisit the seventeen year old question of how hot Jupiters got
to their short period orbits, given that gas-giant planet building is supposed to
take place beyond the ice-line at about 3 AU. Two major theories are generally
used to explain this mystery. Firstly, exchange of energy and angular momentum
between the newly-built planet and the progenitor dust and gas disk could result
in planetary migration to a short period. This is generally believed to result in
planets on circular orbits, with orbital angular momenta that are aligned with
the host star spin. The competing theory which has gained more support in
recent years, is that gravitational interactions leading to planet-planet scattering
and/or Kozai interactions with massive and distant objects caused the planets
to migrate violently (scattering) or slowly (Kozai) to short period, eccentric and
misaligned orbits. These orbits are then expected to circularise and align under
tidal interactions with the host star. In addition, the host star is expected to show
evidence of spin-up if the tide on the star is strong enough.

Our contribution to this field is to provide additional support for the scenario
involving dynamical interaction and tidal damping. We present observational
evidence in the form of 158 new radial velocity measurements for 12 planets
and a reanalysis of existing radial velocity data and photometric constraints
from the literature for a total of 64 planetary systems. We also critically consider
a further 30 newly announced planets from the literature. We show that there is
no evidence for a finite eccentricity in several cases that were previously claimed
to be “exceptions” to the observed trend that close-in planets are on circular orbits
and the generally accepted reason that they underwent strong tidal interactions. We
also show that the dissipative effect of tides raised in the planet by the star and
vice versa explain all the eccentricity and spin-orbit alignment measurements
available for transiting planets. We find evidence for excess rotation of the star in
6 systems, showing that heavy and close-in objects can exert strong tidal effects
on the star. Hot Jupiters on circular orbits clump on the mass-period relation,
which thus appears to be related to the stopping mechanism of orbital migration
for hot Jupiters.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In this chapter, we describe the problem of migration for hot Jupiters. We de-
scribe the two major theories typically used to explain this mystery, and then
look at the evidence that was accumulating in favour of strong tidal interactions
in these systems as of 2009. We then consider how the matter became more
confusing as new observations of eccentricities were made available. In fact,
several very short period systems were initially claimed to have small but finite
eccentricities, undermining the observed trend for tidal circularisation. Exotic
scenarios were postulated, but it eventually became clear that many of these
“exceptions” were spurious. We also present an outline of the rest of the thesis.

1.1 Other worlds out there

About five centuries ago, planet Earth was demoted from being considered to be
the center of the Universe to being a mere planet in the Solar System, orbiting the
Sun (Copernicus, 1965, First Published: 1543). Our Solar System remained the
only known example of such a system for the next five centuries, until Wolszczan
and Frail (1992) announced the first exoplanet known to mankind that would
be confirmed, using radio observations of the pulsar PSR1257+12. The first
exoplanet to orbit a Sun-like star was announced by Mayor et al. (1995), around
the main sequence star 51 Peg.

According to the International Astronomical Union (2006), a planet is a body
that has achieved a nearly round shape (i.e. in hydrostatic equilibrium) because
rigid body forces are outweighed by the self-gravity. The official definition in-
cludes a heliocentric orbit and an orbital path cleared of debris, so in the case of
an exoplanet, we require the body to be in orbit around a star.

1.2 Planet formation

Almost all of our knowledge of planet formation comes from observational and
theoretical studies carried out for the Solar System (e.g. see references in Lis-
sauer, 1993, for this Section). According to the Solar Nebula theory (Pollack,
1984), the Sun is thought to have formed from the collapse of a region a gi-
ant molecular cloud. A part of the original material ended up in a flattened
protoplanetary disk around the young Sun, due to the conservation of angular
momentum. This disk was made up of gas and dust, from interstellar grains and

17



18 CHAPTER 1. INTRODUCTION

stellar nebula condensates. The dust grains began to grow by accretion, produc-
ing progressively larger rocks, which keep growing in an oligarchic manner into
protoplanets (Pollack et al., 1996). These protoplanets stop growing when they
have cleared the region around them, and are unable to interact and collide with
their neighbours.

The planetary composition depends on the formation distance from the Sun
(Barshay and Lewis, 1976). Terrestrial planets form in the inner part of the So-
lar System, where volatile materials such as water and other ices are depleted
and refractory materials abound. Gas giants, on the other hand, are formed at a
distance of several AU from the host star, beyond the ice-line. This name refers
to the fact that that is the region where the volatile materials exist in condensed
form due to the lower temperature. In the Core Accretion theory, they initially
form in the same way as terrestrial planets, but as the mass increases past a crit-
ical core mass (Mizuno, 1980), the gravitational effects on the surrounding gas
gets stronger, and the planet can accrete gas in the form of a hydrogen and he-
lium envelope. The gas accretion then stops when the protoplanetary disk evap-
orates after ∼ 106 – 3× 107 years due to the brightening T-Tauri star, the planet
accretes all the gas available at its orbit, or a gap forms in the disk (Lissauer,
1993, and references therein.). In the case of exoplanets, Levison, Lissauer, and
Duncan (1998) studied the formation of giant planets from planetary embryos.
A competing scenario for the formation of gas giants is the direct gravitational
collapse of a region of the protostellar nebula (Boss, 1997), which is thought to
be the formation mechanism for planets at ∼ 100 AU (Boley, 2009).

1.3 Close-in planets

The discovery of an exoplanet around the solar-type star 51 Peg (Mayor and
Queloz, 1995) was an exciting time for the astrophysics community, because the
existence of planets around other stars had been the object of speculations for
a long time. The biggest surprise, however, was the short period of the orbit.
This kickstarted the study of such close-in planets, called hot Jupiters because
of the high temperatures reached from the intense stellar insolation. Since 1995,
several hundred such hot Jupiters have been discovered, with a large range of
masses, radii, semi-major axes, and eccentricities.

Observational studies of the solar system gave no indications that such an
extreme system as 51 Peg could exist, and according to the core accretion model,
a gas giant cannot form that close to the star, because of the high temperature
(Lin, Bodenheimer, and Richardson, 1996). The current radius and gravity of that
planet makes it safe against Jeans escape (the escape velocity of hydrogen is suf-
ficiently large as not to be exceeded by the atmosphere mean thermal speed) and
hydrodynamic escape (where high energy radiation from the star is absorbed by
hydrogen in the atmosphere, causing a planetary wind). In the early days of
planet formation, however, the planet would have been at least ten times larger,
and the surface gravity would have been a lot lower. This means that the Jeans
and hydrodynamic evaporation rates would have been much higher. Stellar
wind ablation would have been yet another obstacle to gas giant planet build-
ing at such a short period. Lin, Bodenheimer, and Richardson (1996) suggested
that the planet must have formed beyond the ice-line at ∼ 5 AU, and migrated
inwards subsequently (see also Ida and Lin, 2004). Several scenarios (e.g. see
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references in Ogilvie and Lin, 2004, for this Section) have been proposed to ex-
plain the migration of a gas giant to such a close orbit, and we review them in
the following sections.

An alternative scenario is proposed by Ward (1997), where in-situ collapse of
embryos (brought closer to the star by Type I migration) could also produce hot
Jupiters. This would concentrate a large fraction of the disk’s solid material in
a small region, and should result in a planet rich in refractory and CHON ma-
terials. The higher density would then cause the planetary radius to be smaller
than that for a planet with a composition dominated by hydrogen and helium.
Given that so many close-in planets are found to have unexpectedly inflated
radii (See Alonso et al., 2004; Bouchy et al., 2005; Charbonneau et al., 2000, etc.),
this scenario is quite unlikely.

1.4 Disk migration

Goldreich and Tremaine (1980) studied the exchange of angular momentum be-
tween a body embedded in a disk and the disk itself, a scenario which applies to
the rings of the Solar System giant planets, and the protoplanetary disk. Lin and
Papaloizou (1986) studied the effects of a protoplanetary disk on protoplanets.
Specifically, tidal interactions between the protoplanet and the disk could result
in significant migration (Ward, 1997).

This migration of a giant planet, which clears a gap in the disk where it
orbits, is called Type II migration (see Baruteau and Masset, 2012, for details
of Type I migration of low mass planets in a disk, and Type III migration, of a
planet in a massive disk.).

Type II migration was studied by Lin, Bodenheimer, and Richardson (1996)
for the case of 51 Peg, and later by many others (see Baruteau and Masset, 2012,
for copious references.). As Rasio and Ford (1996) point out, this model requires
that the dissipative effect of the protoplanetary disk shuts down at a critical
moment for the planet to survive. This would make such planets very rare, in
contrast to observations.

One stopping mechanism, as described by Lin, Bodenheimer, and Richardson
(1996), is the tidal interaction of the migrating planet with the rapidly spinning
young star. Angular momentum transfer from the stellar rotation to the plan-
etary orbit would cause the planet to migrate outward, balancing the inward
migration due to the disk. Given that the star is rotating slower than the orbital
motion today, it means that there was a time when the star slowed down just
enough for the planet to reach corotation with the star. This would cause the an-
gular momentum transfer to reverse direction, and the planet would plunge in-
wards. To avert this catastrophe, the star would need to have contracted enough
by that time to make the infall timescale much longer than expected for the
young star. Thus, a very precisely defined co-evolution of stellar spindown, in-
ternal contraction, and tidal interaction would be necessary to ensure the planet
survives (Rasio and Ford, 1996).

A different suggestion, as described by Lin, Bodenheimer, and Richardson
(1996), is that the planet migrates inwards in the protoplanetary disk until it
reaches a cavity in the disk. This cavity is created by the stellar magnetosphere,
which truncates the disk at about 0.08 AU, which is slightly less than the corota-
tion radius. A planet that makes it to 0.05 AU still experiences angular momen-
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tum exchange with the disk, but it is reduced by a factor Mp/M∗ due to the 2:1
resonance. Tidal interactions at this point would still cause the planet to migrate
inwards, but the migration timescale is now much longer than the contraction
timescale, and the migration stops. Again, this scenario suffers from the fine
tuning of the timescales described above.

A third mechanism has been invoked to account for the stopping mechanism
for the migration of hot Jupiters to distances significantly larger than 0.05 AU but
still well within the ice-line. In this case, the amount of migration that happens
depends on the mass of the planet, and the mass of the disk, its viscosity, and
lifetime. As long as the gas disk dissipates before the planet has plunged into the
star, the planet can survive as a hot Jupiter at an intermediate period (Trilling,
Lunine, and Benz, 2002, and see references in Ogilvie & Lin 2004).

There are several difficulties with the disk migration scenario. For example,
the eccentricity and spin-orbit misalignment angle distribution are difficult to
reproduce. Papaloizou, Nelson, and Masset (2001) looked at planets with masses
between 1 and 30 Jupiter masses, interacting tidally with a disk. They found
that objects with masses below 10 Mjremain on circular orbits, in contrast to
observations (e.g. WASP-14b, Mp = 7.34 Mj, e = 0.088 ± 0.003, Joshi et al.
2009). Papaloizou, Nelson, and Masset (2001) did find a transition region for 10
Mj≤ Mp ≤ 20 Mj, and growth of eccentricity (up to about 0.25) for objects above
20 Mj. Still, this scenario struggles to explain the large eccentricities of objects
like HD 80606b (e = 0.933± 0.001, Naef et al. 2001), HD17156b (e = 0.675± 0.004,
Barbieri et al. 2007) and HAT-P-2b (e = 0.517± 0.003, Bakos et al. 2007).

Rice, Veljanoski, and Collier Cameron (2012) use the results of Armitage
(2007) at the end of disk migration, as a starting point for secular tidal inter-
actions, to predict the distribution of hot Jupiters. In practise, they also find that
disk migration alone is insufficient to predict the observed distribution, and they
have to invoke a stopping mechanism, in the form of the magnetospheric cavity
leading to a pile up of planets at 4 days. Even then, they have to artificially
inflate the expected pile-up by about 20–30% to match the observations. Despite
matching the eccentricity and period distributions, this approach completely ig-
nores the wealth of information in the observed distribution of stellar obliquities
relative to the orbital plane, as summarised by Winn et al. (2010) and Triaud
et al. (2010). In particular, Winn et al. (2010) find a strong correlation with the
distribution of obliquities and the stellar effective temperature (see Section 1.5),
which is simply not addressed by the disk migration scenario.

1.5 Dynamical interactions and tidal circularisation

The main competing theory of hot Jupiter migration is the scenario proposed
by Rasio and Ford (1996), which involves an exchange of angular momentum
between two or more giant planets. This dynamical instability can be violent, in
which case one planet either gets ejected from the system, or moves to a much
larger orbit. The other planet gets kicked inward into an eccentric, short period
orbit. Under the right circumstances (small periastron distance, large dissipation
factor in the star, the planet or both), this eccentric orbit can then be damped by
tidal dissipation, leaving the planet on a tight, circular orbit. Otherwise, the
planet may be left on an intermediate period orbit, with a finite eccentricity.
The Kozai mechanism (Kozai, 1962) is another way to migrate a planet to a
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point where tidal circularisation can produce a circular planet on a tight orbit.
We review the gravitational scattering and Kozai scenarios here, but defer the
discussion of tidal circularisation till Chapter 2.

1.6 Gravitational scattering

In the Rasio and Ford (1996) scenario, the planets form as described by standard
formation theory (see section 1.2) and interact later in their lifetimes. For exam-
ple, if one planet has a different secular orbital evolution, their paths might bring
them close enough to interact. Another avenue for interaction is an increase in
their masses through accretion, turning a formerly stable system into an unstable
one. When Rasio and Ford (1996) studied simulated systems with two gas giant
planets of equal masses, they found that about half of the simulations ended in
a merger, with the resultant planet found at a rather unexciting orbital distance,
comparable to the initial separation. On the other hand, in those systems where
the two planets did not merge, one of them moved away from the system with a
small positive total energy (kinetic energy+potential energy), which meant it was
leaving the system on a hyperbolic orbit. To conserve total energy and angular
momentum, the planet that got left behind moved into a shorter period, eccen-
tric orbit. Even though many of those planets remain on orbits with periods
& 0.4 year, some do achieve a very high eccentricity (close to 1), and conse-
quently have a very short periastron distance. These could then experience tidal
dissipation, as explained in the next subsection, to achieve a tight circular orbit.
Rasio and Ford (1996) note that they only found systems with eccentricities too
small to circularise in less than about one billion years, but systems with higher
eccentricities that circularise a lot faster should be possible in principle. Wei-
denschilling and Marzari (1996) found essentially identical results for two equal
mass planets, and they cautioned that their simulations did not form enough
star-grazing orbits. They suggested that two processes may be at work, gravi-
tational scattering producing the intermediate period eccentric orbits, while the
short period circular orbits involve disk migration and tidal stopping. This is in
contrast to the present study, where we support the view that the majority of hot
Jupiters migrate and stop by gravitational scattering and tidal interactions alone.

1.6.1 Eccentricity distribution

A strong constraint on the migration scenario may be derived from the empirical
distribution of orbital eccentricities for the gas giant exoplanets. In this case, we
need to exclude the close-in planets (Porbit . 10d), because they are affected by
tidal circularisation (see Section 6.2). Ford, Havlickova, and Rasio (2001) used
numerical simulations of equal mass planets starting from just within the Hill
stability region, extending the work done by Rasio and Ford (1996). Again, they
found that the dominant outcome was either a merger or an ejection, depending
on the ratio of the planet radius to the semi-major axis. The merger scenario
is expected to produce a high proportion of circular orbits at an intermediate
semi-major axis, in contrast to observations, which show a wide distribution of
eccentricities for planets that don’t undergo strong tidal interactions. Further,
even for these systems where one planet gets ejected and the other is left on
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an eccentric orbit, the resulting eccentricity distribution had a higher mean and
smaller spread than observations (Ford, Havlickova, and Rasio, 2001).

Ford, Rasio, and Yu (2003) study two planets with unequal masses, and three
equal mass planets. For two planets with unequal masses, they show that the re-
sulting semi-major axis for the surviving planet (when the companion is ejected)
is limited to a f inal ≥ 0.5ainitial, with the lower limit corresponding to the equal
mass case. The mean of the resulting eccentricity distribution, on the other
hand, depends strongly on the mass ratio. The spread of each such distribution
is small, but a spread of mass ratios could easily produce a wider distribution.
For a plausible mass distribution that is consistent with the known exoplanet
systems at the time, they showed that the computed eccentricity distribution
matched the observed one (see Figure 3 of Ford, Rasio, and Yu, 2003). Inciden-
tally, they even found a similar agreement with observations when they simu-
lated equal mass three-planet systems.

Adams and Laughlin (2003) performed numerical simulations of crowded
systems (10 planets), using several mass distributions for the planets. They
found that giant planets with semi-major axis a ∼ 1 AU and eccentricity in
the whole range (0 ≤ e ≤ 1) can be produced, from planets initially found at
5AU ≤ a ≤ 30AU. Papaloizou and Terquem (2001) studied the multi-planet case
with 5 ≤ N ≤ 100 planets initially lying up to 100 AU from the star, and found
that close encounters with the star can occur for about 10% of their simulations.

Terquem and Papaloizou (2002) consider a system where a few massive plan-
ets (7–8 Mj) form at a distance of ∼ 100 AU, and a lower mass planet (∼0.3–8
Mj) forms in a disk closer to the star. The low mass planet forms on a circular
orbit, because of dissipation in the protoplanetary disk. The outer planets un-
dergo dynamical interactions, which results in most of them getting ejected, but
a few are left on eccentric orbits. Specifically, the massive planets are modelled
as distant perturbers on eccentric orbits. When the protoplanetary disk dissi-
pates, and the orbit of the less massive planet is free to evolve, it can undergo
secular gravitational interaction with the massive planets and its eccentricity can
grow. For the less massive planets that don’t collide with the star, many can get
close enough to undergo tidal circularisation.

The dynamical effects of giant planet migration are expected to inhibit ter-
restrial planet formation in the region outside the shortest periastron distance
of any of the giant planets (Veras and Armitage, 2005). Veras and Armitage
(2006) used numerical N-body simulations of triple planet systems with a real-
istic range of masses to study this effect statistically. Like others in this section,
they obtained eccentricity distributions for the giant planets that were consistent
with the non-tidally interacting observed exoplanets. To study the possibility
that interaction with a residual disk might influence the outcome, Chatterjee et
al. (2008) used an initial mass distribution and a semi-major axis distribution for
gas giants as predicted by the core-accretion scenario, and carried out numerical
simulations of the outcomes from gravitational scattering, both with and with-
out a residual gas disk. Raymond, Armitage, and Gorelick (2010) performed a
similar study, and both studies agree that the effects of the disk is mass depen-
dent, and only seems to affect the low mass planets (Mp < MSaturn). For the
Jupiter mass planets, the results matched the observations quite well.

Jurić and Tremaine (2008) find similar results as Chatterjee et al. (2008), de-
riving a computed eccentricity distribution largely consistent with observations,
although their simulations underpredict objects on circular orbits at intermediate
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distances. They also predict misaligned objects, with a proportion of simulated
systems & 10 % that are highly inclined (& 25◦). In other simulations, Ford and
Rasio (2008) found that the two planet scenario with unequal masses overpre-
dicts the low eccentricity planets if the mass distributions vary over two orders
of magnitude, whereas it overpredicts the high eccentricity planets for a mass
distribution spanning one order of magnitude. They obtain good agreement
with observations if they use an intermediate value. One remaining problem
is that planet-planet scattering for two planets is maximally effective at pump-
ing up the orbital eccentricity of the surviving planet for the equal mass case,
where the resulting eccentricity is about 0.62± 14 (from simulations). In that
case, orbital eccentricities exceeding & 0.8 are quite surprising (e.g. HD 80606b,
e = 0.933± 0.001, Naef et al. (2001)).

From a purely observational perspective, Wright et al. (2009) find that planets
in multi-planet systems have slightly smaller eccentricities than planets in single
planet systems. In addition, they find that the two cases have different period
distributions. The single planets tend to pile up at ∼ 3 d, and show a jump in
frequency near 1AU, whereas multi-planet have a more uniform distribution in
log-period. This suggests that the multi planet systems survived the dynamical
interactions, whereas the the single planet systems are the result of drastic event,
leaving the surviving planet on a tighter orbit.

The higher eccentricities of massive planets

An interesting constraint from eccentricity measurements comes from the ob-
servation that higher mass objects tend to have higher eccentricities (Marcy et
al., 2005). This would be surprising in the disk-migration scenario, as a larger
object that originally formed on a circular orbit would require a larger pertur-
bation to alter its orbit. Halbwachs, Mayor, and Udry (2005) argued that the
objects beyond the tidal circularisation limit come from the tail end of stellar for-
mation, because their eccentricities matched the eccentricity distribution from
stellar binaries. Ribas and Miralda-Escudé (2007), on the other hand, argued
that the there are indeed, two populations of objects, but the dichotomy occurs
in mass. The low mass objects (Mp . 4 Mj) form via standard accretion of gas
onto a solid core made from ice and rock from the protoplanetary disk, whereas
the heavier objects (Mp & 4 Mj) are the tail end of star-formation, having been
formed from direct fragmentation and collapse of the gas cloud that gave rise to
the system. Core-accretion planets would form with initially circular orbits, and
would have to acquire their measured eccentricities later on in their lives. The
heavier objects would have to be formed beyond ∼ 30 AU, and then they would
migrate inwards, acquiring their large eccentricities from the migration process.
This scenario would cleverly explain the brown-dwarf desert by positing that
the brown dwarfs would struggle to migrate by the same mechanism because
of their heavier mass. The low mass objects would also have an upper limit set
by the material in the protoplanetary disk, whereas the high mass objects would
have a lower mass limit due to the fragmentation process.

Ford and Rasio (2008) cautioned against this choice of Mp = 4 Mj, which
was based on a marginal correlation between planet mass and stellar metallicity.
Ford and Rasio (2008) then argued that a larger sample of planets having a
host star with and without a binary companion would be needed to test this
hypothesis. On the other hand, Wright et al. (2009) find that high mass planets
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M sin i > 1 Mj have a broad distribution of eccentricities within 0 < e < 0.5,
but low mass planets have a distribution that shows a peak near e = 0. More
recent work by Raymond, Armitage, and Gorelick (2010) also confirms that the
observed eccentricity distribution matches the isolated planet-planet scattering
scenario, and the mass dependence is easily explained if the masses of the two
objects have similar masses.

As described in Section 1.9, we use an updated sample of systems in this
study, and we find that the eccentricity distribution of the more massive planets
are not surprising when we consider all the planets and the tides in the star and
the planet.

1.6.2 Semi-major axis distribution

In addition to reproducing the observed eccentricity distributions, several of the
works described in the two previous sections also find support for the dynam-
ical scattering scenario by reproducing short period objects, with semi-major
axes consistent with observations. Raymond et al. (2009) looked at simulated
three planet systems, with initial mass distributions consistent with observa-
tions. They found that after planet-planet scattering and the ejection of one
planet, the two remaining planets remain on shorter period orbits, and are
closely packed (i.e. within one or two Hill radii). This is consistent with ob-
served multi-planet systems, which are found to be closely packed (see refer-
ences in Raymond et al., 2009).

A useful constraint on the semi-major axis distribution has been suggested
from the observation of multi-planet systems in resonances (Marcy et al., 2008).
A strong candidate mechanism for producing such mean motion resonances
(MMRs) is the gas disk migration scenario, where the planets migrate in a con-
vergent fashion to enter the resonance (Kley, Peitz, and Bryden, 2004; Lee and
Peale, 2002; Snellgrove, Papaloizou, and Nelson, 2001). On the other hand, Ray-
mond, Armitage, and Gorelick (2010) showed that planet-planet scattering can
also naturally explain resonant systems, and in addition, could also populate
higher order resonances than disk migration can (see section 4.2 in Raymond,
Armitage, and Gorelick, 2010). Future observations of resonant systems could
help confirm this.

1.6.3 Obliquity distribution

The protoplanetary disk is expected to be aligned with the equator of the pro-
tostar, i.e. perpendicular to the spin of the star (Lissauer, 1993; Stapelfeldt et
al., 1998). In that case, the obliquity of the stellar spin with respect to the or-
bital angular momentum would be zero. Interestingly, the different migration
scenarios make very clear predictions on the resultant distribution of obliqui-
ties. For example, the disk migration scenario as outlined by Lin, Bodenheimer,
and Richardson (1996) is expected to preserve any initial obliquity, whether it
is zero or otherwise. Further, Lubow and Ogilvie (2001) find that the obliquity
actually decays in that scenario, and Cresswell et al. (2007) find similar results.
The planet-planet scattering scenario, on the other hand, predicts that the in-
clinations will be non-zero (Chatterjee et al., 2008; Jurić and Tremaine, 2008;
Raymond, Armitage, and Gorelick, 2010). In the presence of a third body with



1.6. GRAVITATIONAL SCATTERING 25

the right mass and orbit in the system, the Kozai mechanism can further increase
the stellar obliquity (see Section 1.7).

If we could measure the obliquity of a sample of planetary systems, we
could confront these theories with observations. Unfortunately, the best we can
do is to obtain the sky-projected spin-orbit angle (λ) for transiting planets, via
the Rossiter-McLaughlin effect (McLaughlin, 1924; Rossiter, 1924, see also Sec-
tion 3.1.2 for a more detailed description of the Rossiter-McLaughlin effect). Es-
sentially, a planet transiting across the face of a rotating star will cover part of
the surface, and depending on the viewing and orbital geometry, can cause an
anomaly in the spectral lines of the starlight. The first projected spin-orbit angle
was measured by Queloz et al. (2000), who found that the rotation of the star
HD 209458 was aligned with the orbit of the planet HD 209458b. In the follow-
ing years, many similarly aligned objects were found, pushing the community
to cautiously lean towards the disk migration model.

Unexpectedly, in 2008, Hébrard et al. (2008) found that the orbital plane of
the planet XO-3b was misaligned with respect to the spin of the host star, with
λ = 70± 15◦. Since that time, numerous objects with a significant misalignment
have been found, including objects on retrograde orbits (Triaud et al., 2010; Winn
et al., 2009a). This was not easily explained by disk migration scenarios. The
planet-planet scattering scenario, on the other hand, does produce objects with
significant misalignments.

Indeed, Jurić and Tremaine (2008) used N-body numerical simulations to find
that strong dynamical interactions can have a large impact on the orbital incli-
nations of planets migrating in this way. Up to about 10% of their simulations
showed objects with large inclinations (& 50◦) after the scattering process. Sim-
ilar work by Chatterjee et al. (2008) obtained comparable results, and showed
that an object moving to an orbit with short pericenter tends to acquire a higher
inclinations, up to about 60◦ (See Chatterjee et al., 2008, Figure 9). Raymond,
Armitage, and Gorelick (2010) found that inclinations 0◦ . i . 15◦ were quite
common in most simulations, but just as in the case of eccentricity, equal mass
systems produced the largest pumping up of orbital inclination, up to about
∼ 80◦ (see Raymond, Armitage, and Gorelick, 2010, fig 10). Again, similarly to
the eccentricity case, Raymond, Armitage, and Gorelick (2010) found that simu-
lations including a planetesimal disk resulted in smaller inclinations than simu-
lations without disks, but this effect is most prominent for low-mass planets. Of
course, this does not explain all the obliquities measured to date: for example,
the objects with much larger obliquities, including the retrograde orbits, need
some other mechanism to explain them. We cover this question in Section 1.7.

As the evidence was mounting for a whole population of misaligned systems,
Winn et al. (2010) pointed out an intriguing trend: hotter exoplanet host stars
tend to have a higher obliquity. Albrecht et al. (2012) added more than a dozen
new Rossiter-McLaughlin (RM) measurements (See Section 3.1.2) and further
confirmed the trend. Since the RM effect can only measure the sky-projected
angle, Schlaufman (2010) used a different method involving photometry and
the projected rotational velocity of the stars, to obtain the component of the
obliquity along the line of sight to 10 systems. Again, he found higher obliquities
for hotter stars.

The scenario that Winn et al. (2010) propose is that the migration of all (or
most of) the known hot Jupiters occur via planet-planet scattering (and possibly
Kozai interactions), which leads to high obliquities. The reason that hotter stars
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seem to have misaligned spins whereas cooler stars are aligned, is that the for-
mer retain their obliquities, whereas the latter lose it through tidal interactions.
Indeed, Winn et al. (2010) identified a limit at T=6250 K, where the two popu-
lations seem to diverge. For stars with T<6250 K, a significant amount of the
star’s outer envelope is convective. This allows the star to undergo tidal dissi-
pation via turbulent dissipation (see Section 2.2 For hot stars with T>6250K, the
mass of the convective zone has shrunk to the extent that turbulent dissipation
is ineffective, leaving the objects with a high obliquity. Hansen (2012) used a
more theoretical approach and lacked the newer RM measurements of Albrecht
et al. (2012), but still agreed qualitatively with the Winn et al. (2010) result.

1.6.4 Gravitational microlensing constraints

In addition to the eccentricity and inclination distributions, another observa-
tional constraint that could have supported the gravitational scattering scenario
is a measurement of the number of free floating planets in the Galactic volume
where we have found planetary systems. Unfortunately, using gravitational mi-
crolensing survey observations, Sumi et al. (2011) find that the abundance of
free floating planets is about twice the number of main-sequence stars (1.8+1.7

−0.8).
Veras and Raymond (2012) estimated that this leads to the number of planets
ejected per unstable planetary systems to be about neject = 2 – 50. The wide
range accounts for uncertainties in the estimates of the number of stars with
giant planets, and the number of such systems that become unstable. Using
numerical N-body simulations, Veras and Raymond (2012) argue that even the
lower limit, neject = 2, is implausibly large. Instead, they show that neject should
be smaller than 1 for gravitational scattering, and the ratio of free-floating plan-
ets to stars should be close to one. If gravitational scattering is not enough to
account for the measured value, then other mechanisms must be invoked, such
as dynamical interactions in multiple star systems, or external effects such as
disruption from passing stars or Galactic tides.

1.7 Kozai mechanism

As mentionned in Section 1.6.3, the planet-planet scattering model on its own,
only appears to produce obliquities of up to about 60◦. Because of the sky-
projected nature of the measured misalignment angle λ, a large value of λ means
that the obliquity ψ is large, but a small value of λ does not constrain the obliq-
uity ψ to be small (Fabrycky and Winn, 2009). Thus, λ is a lower limit on the
obliquity. Still, many objects (e.g. XO-3, Hébrard et al. (2008), HD 80606, Pont
et al. (2009), etc. ) have large values of projected spin-orbit angle, and thus have
large obliquities, including retrograde orbits.

Kozai (1962) studied the influence of Jupiter’s orbit on the highly inclined
and eccentric orbits of asteroids. Similarly, Lidov (1962) studied the effect of
the moon on the orbit of near-Earth artificial satellites. This mechanism is now
known as the Kozai-Lidov mechanism, or simply the Kozai mechanism. Essen-
tially, the Kozai mechanism requires three objects in a hierarchical triple, i.e.
with an inner binary and an outer companion orbiting the inner binary (Eggle-
ton and Kisseleva-Eggleton, 2006). If the orbital plane of the outer companion is
inclined at 39.2◦ < i < 140.8◦ as compared to the inner orbit, secular interactions



1.7. KOZAI MECHANISM 27

due to weak perturbations from the distant third body (Fabrycky and Tremaine,
2007) can lead to large oscillations in eccentricity and inclination of the inner
orbit. As long as the outer period is less than about 100 years, even a brown
dwarf or a giant planet can lead to large amplitude Kozai cycles over ∼ 10Myr
(Eggleton and Kisseleva-Eggleton, 2006), without necessarily showing up on a
radial velocity measurement compaign at present-day precisions.

Mazeh, Krymolowski, and Rosenfeld (1997) first suggested that the high ec-
centricity (e = 0.63± 0.08, Cochran et al., 1997) of the planet 16 Cygni Bb may
be due to the Kozai effect. They used numerical simulations to study three body
systems, and suggested that the distant companion 16 Cygni A, could be caus-
ing a modulation of the eccentricity of the planet, provided the orbital planes
of the inner and outer binaries are separated by about 60◦. Holman, Touma,
and Tremaine (1997) obtained similar results, and pointed out the accompany-
ing variation in inclination for the inner binary. Kiseleva, Eggleton, and Mikkola
(1998) studied the Kozai mechanism in stellar triple systems, but included the
effects of tidal friction. The Kozai mechanism causes the eccentricity to oscillate
between extremes, and the pericenter distance can decrease dramatically to the
point that tidal dissipation can reduce the eccentricity at a shorter semi-major
axis. Observationally, Tokovinin et al. (2006) found that the period distributions
for isolated stellar binaries and inner binaries in triple systems were different.
This could mean that the inner binaries in the triple systems start with a simi-
lar period distribution to isolated binaries, but the Kozai mechanism forces the
inner binary to have a large eccentricity, leading to a short pericenter distance
and thus the inner orbit can circularise at a shorter period. Kiseleva, Eggleton,
and Mikkola (1998) speculated that the same effect may be responsible for the
formation of close-in hot Jupiters. Wu and Murray (2003) studied this possibility
for the planet HD 80606b, which is on a highly eccentric orbit (e = 0.933± 0.001,
Naef et al. 2001). They showed how the Kozai mechanism, combined with tidal
dissipation, can cause the planet to migrate inwards, after formation.

Zucker and Mazeh (2002) found that short-period, massive planets (P < 100
d, Mp > 2Mj) are more likely to be found in stellar binary systems. Desidera and
Barbieri (2007) showed that the Kozai mechanism and tidal friction can operate
in these systems where the stellar binary companions are close enough (a . 300
AU). Malmberg, Davies, and Chambers (2007) noted that the Kozai system can
also lead to planet-planet scattering, when the secular evolution of one object
brings it close to another. This can then lead to consequences described in Sec-
tion 1.6.

Fabrycky and Tremaine (2007) extended the works of Holman, Touma, and
Tremaine (1997) and Kiseleva, Eggleton, and Mikkola (1998), to look at Kozai cy-
cles due to a distant companion in stellar triples, and include tidal friction. They
also apply their results to hot Jupiters, and concluded that at most, a modest
fraction of hot Jupiters could have been formed by the Kozai mechanism and
tidal friction. This conclusion, however, was based on a handful of observations,
and the more recent sample of exoplanets with a measured spin-orbit angle in-
cludes many objects with large obliquities, including retrograde objects. In fact,
Fabrycky and Tremaine (2007) did point out that the Kozai mechanism with tidal
friction yielded a population of objects where the minimum pericenter reached
is equal to the Roche limit. The subsequent orbital circularisation by tidal inter-
actions with the host star then cause the final semi-major axis to be twice the
Roche limit, due to the conservation of angular momentum. This is consistent
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with the results of Faber, Rasio, and Willems (2005) and Ford and Rasio (2006).
Nagasawa, Ida, and Bessho (2008) extended the numerical works of Rasio

and Ford (1996) by following the orbital evolution of systems with three Jupiter-
mass planets, allowing for the Kozai mechanism to operate. In contrast to previ-
ous work (Fabrycky and Tremaine, 2007; Holman, Touma, and Tremaine, 1997;
Holman and Wiegert, 1999; Malmberg, Davies, and Chambers, 2007; Marzari et
al., 2005) which consider Kozai interaction from stellar mass companions, Na-
gasawa, Ida, and Bessho (2008) use outer planets for the same purpose. They
follow the setup of Marzari and Weidenschilling (2002), but include tidal damp-
ing of the orbital energy using the dynamical tide formulation of Ivanov and
Papaloizou (2004) (See Section 2.4. During the chaotic stage of the system evo-
lution, tidal damping can only circularise the orbit if the pericenter distance is
small enough (. 0.02-0.04 AU). Generally, the probability of such a large ec-
centricity (0.98-1.0) after scattering is quite low. Thus, the tidal circularisation
process is too slow to form circular hot Jupiters in more than about 10% of cases
(Chatterjee et al., 2008; Marzari and Weidenschilling, 2002; Weidenschilling and
Marzari, 1996). On the other hand, even if the inner planet is isolated from the
outer ones and safe from chaotic gravitational scattering, it can still undergo
Kozai cycles on a secular timescale. Indeed, it may go through several Kozai
cycles, by building up the eccentricity on a secular timescale, interacting with
the outer planets repeatedly, and entering subsequent Kozai cycles with lower
angular momentum each time. The later Kozai cycles can then achieve eccen-
tricities close enough to unity that tidal circularisation can then operate on the
inner orbit. In contrast to the previous studies that only considered the first
stable state, Nagasawa, Ida, and Bessho (2008) find that the probability of form-
ing hot Jupiters rises to 30% over the next few million years when the secular
interactions are considered.

Retrograde orbits

Most of the early work on the Kozai migration scenario followed the quadrupole
approximation of the gravitational potential, using a stellar mass perturber (Fab-
rycky and Tremaine, 2007; Mazeh, Krymolowski, and Rosenfeld, 1997; Wu and
Murray, 2003). Unfortunately, the underlying assumption, that the inner planet’s
angular momentum component parallel to the total angular momentum is con-
stant, restricts the formation of retrograde orbits with respect to the total angular
momentum (Naoz et al., 2011). On the other hand, Ford, Kozinsky, and Rasio
(2000) showed that with planetary perturbers, this component does not need to
be constant.

Naoz et al. (2011) used the octupole approximation using Hamiltonian per-
turbation theory, and showed that the angular momentun component parallel
to the total angular momentum can even change sign, producing a retrograde
orbit (see their Figure 1. for a dramatic demonstration of a high obliquity excur-
sion). The octupole-order evolution equations are appropriate to study closely
coupled orbits involving planetary perturbers. In addition, these equations al-
low the Kozai cycles to be quasi-periodic, and an arbitrarily high eccentricity can
be achieved, leading to a shorter pericenter distance (Ford, Kozinsky, and Rasio,
2000; Naoz et al., 2011). Thus, the Kozai effect at octupole order, coupled with
tidal interactions, can form misaligned hot Jupiters on short period orbits in a
two planet system within one hundred million years.
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Disruption of the Kozai mechanism

Despite the success of the Kozai scenario in producing misaligned hot Jupiters
with short periods, the Kozai mechanism can be disrupted in a number of cases
where the apsidal motion produced by the third body is in competition with
apsidal motion induced by general relativity, quadrupolar distortion of the inner
binary due to their own rotation, or quadrupolar distortion of the inner binary
due to each other (Eggleton and Kisseleva-Eggleton, 2006; Malmberg, Davies,
and Chambers, 2007; Nagasawa, Ida, and Bessho, 2008).

1.8 Confusion: Are tides not enough?

It was clear in the early days of exoplanet science, that irrespective of the migra-
tion mechanism (Sections 1.4 –1.7), tidal interactions between the host star and
the close-in hot Jupiters would be important (Lin, Bodenheimer, and Richardson,
1996; Rasio et al., 1996; Rasio and Ford, 1996). The strong tidal effects should
increase sharply with decreasing period and these orbits are thus expected to
circularise on a timescale much smaller than the system age. A higher tendency
for such circular orbits is indeed observed in the sample of transiting planets (bi-
ased towards detection of short-period objects), as compared to those from RV
surveys. This has been interpreted as a signature for tidal circularisation. The
transition from eccentric orbits to circular orbits at short period has also been
seen in binary star systems (e.g. Mathieu and Mazeh, 1988 and see references
in section 8 of Mazeh, 2008). Indeed, if we consider a short period hot Jupiter
system to be a tidally interacting binary with a tiny mass ratio, we expect the
orbit to be circularised, aligned and synchronised with the stellar rotation (Hut,
1980) within a fraction of the system lifetime.

The strength of tidal interactions depends on the dissipation mechanism in-
side the star or the planet. Pont (2009) plotted a/(RpR∗)1/2 (representative of
the system scale, and by proxy, the orbital period) against Mp/M∗ (the mass
ratio, which influences tidal interactions). If tidal effects exerted a major influ-
ence on final orbital configuration of the transiting planet systems, we would
expect objects with small system scale to have eccentricities compatible with
zero. Indeed, Pont (2009) found this expected trend in the then-known sample
of transiting exoplanets, with heavy objects on long period eccentric orbits, and
very short-period orbits that were circular.

Unfortunately, over the next few years, the picture got more complicated, as
several objects were apparently found to have eccentric orbits at very short pe-
riods. In Figure 1.1, we have plotted an update of Figure 2 from Pont (2009).
From the top panel, it is clear that there are many objects on eccentric orbits at
very short period, which undermines the role of tidal interactions in the final
orbital evolution of these exoplanets. The clear distinction between circular or-
bits and eccentric orbits as noted by Pont (2009) is now gone. In particular, the
objects WASP-12b (Hebb et al., 2009) and WASP-14b (Joshi et al., 2009) were very
puzzling cases.

WASP-12b orbits very close to its host star (P = 1.09 d), even by the standard
of hot Jupiters. Moreover, WASP-12b has an inflated radius (R = 1.8 Rj); one
of the most extreme examples of anomalous radii for hot Jupiters. As a result,
the planet fills its Roche lobe (Fossati et al., 2010b; Haswell et al., 2012; Li et al.,
2010). With such a short orbital distance, and large size, a gas giant planet is
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Figure 1.1: Top: Updated version of Figure 2 from Pont (2009). The squares
represent objects on eccentric orbits, from the literature before this study. Bot-
tom: Same plot as the one on the left, but taking into account the results of this
study, that there is no evidence for eccentricity in CoRoT-5b, WASP-5b, WASP-
6b, WASP-10b, WASP-12b, WASP-17b and WASP-18b. The crosses in both panels
represent objects with unknown eccentricities.
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expected to undergo complete orbital synchronization and circularization on a
short time-scale (∼ 100,000 years, see Section 6.2). Indeed, most planets orbiting
closer than 0.05 AU are observed to have circular orbits. However, (Hebb et al.,
2009) determined a value of e = 0.049± 0.015, a 2.8 σ significant departure from
circularity (based upon the Lucy and Sweeney, 1971, test). López-Morales et al.
(2010) measured the secondary eclipse of WASP-12b from the ground with SPI-
Cam on the ARC Telescope at Apache Point Observatory in the z’ band. Their
best-fitting result initially indicated an secondary eclipse with a significant time
lag (e cos ω = 0.0156± 0.0035) compared to the epoch expected for a circular
orbit, with a similar level of significance to H09. This would have made the
planet by far the subject of the strongest tidal dissipation in any known plan-
etary system at the time – by a factor of about 400, as compared to WASP-14b
(see Section 4.5). This is because of the short circularization time-scale and the
reportedly significant eccentricity.

WASP-14b is, after WASP-12b, the known transiting planet having a reported
non-circular orbit (Joshi et al., 2009, e = 0.091± 0.003)) with the second-shortest
period (P = 2.2 d). This makes it another test case for tidal evolution of close-
in gas giants. If its orbital eccentricity is indeed near 0.1, then this non-zero
but relatively low value – in the context of the distribution of giant exoplanet
eccentricities – makes it likely that this planet has undergone some degree of
orbital evolution, and is still subject to strong tidal forces at present. Therefore
its presence may be useful to constrain the tidal synchronization timescale. It
is also an important object when studying the issue of the anomalous radius of
hot Jupiters because of its inflated size (Rp = 1.28 Rj). WASP-14b occupies a
distinctive position in the relevant parameter space: irradiation, orbital distance,
eccentricity and size.

In addition to WASP-12 and WASP-14b, other particularly interesting objects
were CoRoT-5b, WASP-5b, WASP-6b, WASP-10b, WASP-17b and WASP-18b.
Rauer et al. (2009) derived a value of eccentricity e = 0.09+0.09

−0.04 for CoRoT-5b,
a 0.46 Mj planet on a 4.03 day orbit. WASP-5b is a 1.6 Mj planet on a 1.63 day
orbit and was first reported by Anderson et al. (2008). Gillon et al. (2009) used
z-band transit photometry from the VLT to refine the eccentricity of WASP-5b to
e = 0.038+0.026

−0.018, and these authors made a tentative claim for the detection of a
small eccentricity. Gillon et al. (2009), derived an eccentricity e = 0.054+0.018

−0.015 for
WASP-6b, a 0.50 Mj planet on a 3.36 day orbit. Christian et al. (2009) reported
that the 2.96 Mj planet WASP-10b had an orbital eccentricity of e = 0.059+0.014

−0.004,
with a period of 3.09 days. In the case of WASP-17b, a 0.49 Mj planet on a 3.7
d orbit, Anderson et al. (2010) preferred a model with e = 0.129+0.106

−0.068. WASP-
18b, a 10.3 Mj planet on a 0.94 d orbit, was found to have an eccentricity of
e = 0.0092± 0.0028 by Hellier et al. (2009).

At this point, it looked like the tides mechanism was either not strong enough
to explain the eccentricities of short period exoplanets, or some mechanism was
keeping a non-zero eccentricity in those systems. For example, Ribas et al. (2009)
concluded that the eccentric orbit of the transiting hot Neptune GJ-436b (Butler
et al., 2004, e = 0.12± 0.06) could be explained by an additional low-mass planet
in the system, that would pump up the eccentricity via secular interactions. In
the case of WASP-12b, Li et al. (2010) found that the alleged eccentric orbit would
imply a huge amount of tidal energy dissipation in the planet, leading to a large
mass-loss and causing the inflated radius. In that case again, the eccentricity
would need to be pumped up by some other means, for example a hypothetical
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resonant super-Earth. Based on such examples, Ibgui, Burrows, and Spiegel
(2010) simply assumed that the planets WASP-4b, WASP-6b, WASP-12b, WASP-
15b, and TrES-4b had non-zero eccentricities, and concluded that continuous
tidal dissipation could produce the large radii. On the other hand, Beerer et
al. (2011) found that the inflated planet WASP-4b cannot be explained by tidal
inflation alone, given that the eccentricity component e cos ω=0.0024 at the 2-σ
level. Thus, different objects would need to have different inflation mechanisms,
because tidal inflation due to residual eccentricity is not always plausible.

1.9 Updated observational constraints

The present time is significant in the study of exoplanets, because a number
of high quality measurements are now available for the three main observable
effects of tides: circularization, synchronization and spin-orbit alignment. In
this study, we used 158 new radial velocity observations of the known transiting
exoplanet systems for 6 objects with the HARPS spectrograph and 6 objects with
the SOPHIE spectrograph (see Section 3.1.3 for more details). We carried out a
literature survey and collected radial velocity measurements for 54 transiting
planets, as well as other relevant data such as the orbital periods and the time of
mid-transit. Where available, we also used the secondary eclipse constraint on
the eccentricity component e cos ω from published photometric studies.

Given the rapid rate of announcement of new transiting exoplanets, we had
to stop the clock somewhere, and we picked the 1st of July 2010. We selected
only objects that had been reported in peer-reviewed journals or on the online
preprint archive ArXiV.org. Moreover, we selected systems with well measured
parameters (planetary radius Rp and mass Mp to within 10%) and excluded faint
objects (V > 15). At that time, 64 such systems were known. We reanalyse the
existing radial velocity data for 54 transiting systems, providing additional radial
velocity measurements for 12 out of these 64 systems, and include information
on 10 out of these 64 systems without further reanalysis of orbital ephemeris.
These systems are listed in Table 5.1. In Section 5.7, we include a further 30
systems, most of which had been discovered in the mean time.

In addition to the reanalysis of RV measurements with photometric con-
straints, we also introduce two modifications to the Markov Chain Monte Carlo
(MCMC) process commonly used by teams analysing RV data to work out the
orbital parameters of transiting exoplanets. This involves a new treatment of the
correlated noise present in most RV data sets, as well as analysing the data in
model selection mode to check if an eccentric orbit is indeed justified, given the
additional complexity of the eccentric version of a Keplerian orbit (see Section 3.3
for more the details of our analysis). The results of this study are encouraging: it
would appear that the confusing picture sketched in Section 1.8 was misleading.

The presence of residual correlated noise is apparent in the López-Morales
et al. (2010) data (see Figure 4.3) for WASP-12b, as expected for ground-based
photometry at such a high accuracy — the depth of the secondary eclipse is
only about 0.08±0.02 per cent. A space-based measurement of the WASP-12b
secondary eclipse with the Spitzer Space Telescope (Campo et al., 2011) unam-
biguously showed that the timing of the secondary eclipse was consistent with a
circular orbit. This result suggested that the López-Morales et al. (2010) time lag
was probably due to instrumental systematics, and that the orbit of WASP-12b
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is probably circular. A highly fine-tuned orbital alignment would be required to
reconcile the Spitzer result with the ground-based measurement of the eccentric-
ity. Following this, López-Morales et al. (2010) have reanalysed their data and
revised their estimate to e cos ω = 0.016 ± 0.011, an eccentricity with a much
lower significance.

Our own results (Husnoo et al., 2011), with the help of the new radial velocity
measurements, confirm the strong indications of Campo et al. (2011), that all the
available data for WASP-12b is compatible with a circular orbit, and that the
eccentricity of the best-fitting orbit to the radial velocity of Hebb et al. (2009)
and subsequently the secondary eclipse data of López-Morales et al. (2010) may
be due to correlated noise. Not accounting for this noise in the statistical analysis
could lead to an apparent 3-σ significance for the rejection of the null hypothesis
(e = 0), but the new data strongly suggest that the orbit of WASP-12b is indeed
circular. A circular orbit for WASP-12b removes the need for models to explain
the survival of such an eccentricity at this very short period, in face of what
would have been extremely strong tidal effects. In particular, the scenario of Li
et al. (2010), using the eccentricity from H09 to infer values of mass-loss and
tidal dissipation for WASP-12b, loses its principal empirical support.

It is interesting to note that there is an inherent bias in eccentricity measure-
ments from radial velocities, because a Keplerian orbit cannot get more circular
than e = 0. Any noise applied to a circular orbit will result in an eccentric
best-fitting orbit. Underestimating the noise will lead to spurious detections of
small eccentricities. This was already recognised in the context of stellar binaries
by Lucy and Sweeney (1971). These authors showed that spurious eccentricity
detections tended to dominate for e < 0.1 for a typical precision at that time
and stellar binary amplitudes. Four decades later, both companion masses and
RV accuracies having changed by about three orders of magnitudes, and the
same issue resurfaces for exoplanets. In the same way, Laughlin et al. (2005)
showed that the measured orbital eccentricity of HD 209458b, e = 0.014± 0.009
was consistent with the results of simulated data for a circular orbit. Shen and
Turner (2008) also performed an extensive analysis involving simulated data to
show that the estimation of eccentricities for exoplanets in the literature may be
overestimated in about 10 per cent of cases. Recently, Zakamska, Pan, and Ford
(2010) studied this effect in the Butler et al. (2006) catalogue of radial velocity
planets.

In this study (Husnoo et al., 2012; Pont et al., 2011), we find that another six
planets that were previously believed to have eccentric orbits, actually have ob-
served orbital eccentricities that are compatible with zero. For example, WASP-
10 is a transiting planet closer than 0.04 AU, with an orbit that was previ-
ously believed to be eccentric. Christian et al. (2009) found an eccentricity of
e = 0.059+0.014

−0.004, which is at a similar level of significance as the Hebb et al.
(2009) result for WASP-12. Maciejewski et al. (2011) revisited this system and
concluded that it was important to take stellar activity into account when us-
ing the original radial velocity measurements to compute the orbital eccentricity.
This led these authors to conclude the orbit of WASP-10 was probably circular.
In our own study, we also conclude that the original detection of a non-zero
eccentricity was probably spurious (see Section 5.3). Similarly, we find that the
orbital eccentricities of CoRoT-5b, WASP-5b, WASP-6b, WASP-17b and WASP-
18b were overestimated, and the adoption of an eccentric orbit for these objects
is not justified by the available observational data.
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In contrast, we confirm the eccentricity of HAT-P-16b, e = 0.034± 0.003, the
smallest eccentricity that is reliably measured so far for an exoplanet as well
as that of WASP-14b, which is the planet at the shortest period (P = 2.24 d),
with a confirmed eccentricity, e = 0.088± 0.003. The latter illustrates the capac-
ity of SOPHIE to measure accurate values of orbital eccentricity for transiting
planets, given a sufficient number of measurements well distributed in phase
and spread over different nights (the measurements for WASP-12 having most
weight towards an eccentric solution were gathered during only two different
nights).

Our results are shown in the bottom panel of Figure 1.1. We have plotted an
updated version of Figure 2 from Pont (2009), with empty circles representing
circular orbits, filled circles representing eccentric orbits, and grey circles rep-
resenting orbits caught in the process of circularisation. The picture is now a
lot clearer compared to the one in the top panel of Figure 1.1, where several
short-period orbits are unexpectedly eccentric.

The eccentricity distribution at short period has a crucial importance for any
theory of planetary formation and orbital evolution. Planets on orbits that are
consistent with circular gather in a well- defined region of the mass-period plane,
close to the minimum period for any given mass (Husnoo et al., 2012; Pont et
al., 2011). In this study, we find that there are no exceptions to this pattern.
As an ensemble, the totality of transiting planets considered in this study is
in agreement with classical tide theory, with orbital circularisation due to tides
raised on the planet by the star and tides on the star raised by the planet, to
varying degree depending on the position of the planet-star system in the mass-
period plane.

Further constraints on migration

In addition to the eccentricity, the obliquity of the planetary system (see Sec-
tion 6.4) and the rotation rate of the star (see Section 6.3) can also inform us
about the formation history. In this study, we perform an analysis of all the avail-
able eccentricity, spin-orbit, and stellar rotation period measurements available
for transiting exoplanets, and we conclude that gravitational scattering, coupled
with the Kozai mechanism and tidal interactions are the most likely scenario to
explain the migration of hot Jupiters. We consider the spin-orbit measurements
from Triaud et al. (2010) and Albrecht et al. (2012), and we essentially confirm
the results of Winn et al. (2010), as explained in Section 6.4 We find that our
results are compatible with tidal theory, and that there is no need for perturbing
stellar or planetary companions to excite non-negligible eccentricities in short
period orbits.

Conclusion

In this chapter we have described the broad questions addressed in this thesis.
Essentially, hot Jupiters as found close to their stars, couldn’t have formed in
their current locations, because the volatile materials evaporate and condense
beyond the iceline. A migration mechanism must be invoked to explain their
positions, and the two major lines of thought on this matter involve either tidal
interactions with a protoplanetary disk, or dynamical interactions between two



1.9. UPDATED OBSERVATIONAL CONSTRAINTS 35

or more giant planets followed by tidal interactions with the host star.
We will look at the theory of tides (Chapter 2), going over the different mech-

anisms for tidal interactions. In Chapter 3, we consider how the measurements
used in this study are made, and we describe our analysis procedures. We look
at the results on an object-by-object basis in Chapters 4 and 5. This is followed
in Chapter 6 by a global analysis of the ensemble of information on transiting
exoplanets, including the new measurements available in the literature since this
study was originally published. We conclude that a dynamical history followed
by tidal circularisation, alignment and synchronisation is the scenario that is the
most consistent with observations.
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Chapter 2

Theories of tidal interactions

In this chapter, we look at the different types of tidal interaction that could oc-
cur in a hot Jupiter system. The strength of tidal dissipation is dependent on the
mass of the objects, the separation distance, and their internal compositions. In
addition, entirely different tidal forcing and dissipation mechanisms can oper-
ate in different regimes. We first describe the equilibrium tide, and focus on the
particular case of the weak friction model. We then briefly consider the dynam-
ical tide, including the gravity and inertial modes, as well as their dissipation
mechanism.

2.1 Tidal influence

Classical philosophers linked the oceanic tides on Earth with the motion of the
moon (Van Der Waerden, 1987). Seminal work by G. Darwin (Darwin, 1879,
1890) put the equilibrium tide model (Section 2.3) for the Earth-Moon system on
a firm mathematical footing. Later work showed evidence of tidal interactions in
the other Solar System planets and moons (Peale, Cassen, and Reynolds, 1979),
binary stars (Jeans; 1929), and galaxies (Ostriker, Spitzer, and Chevalier, 1972).

Since the term tidal forcing frequency σ will be used a lot in this chapter, let us
describe what it means. This frequency depends on which tide is involved: the
semi-diurnal tide (σ = 2|ωp − n|, where ωp is the planet rotation rate, and n is
the orbital mean motion), or the eccentric annual tide (σ = n). When the planet
is not synchronised, the semi-diurnal tide can dominate, and when the planet is
synchronised, the annual tide dominates. In the intermediate regime, there is a
rich spectrum of tidal frequencies that excite tidal interactions, leading to tidal
dissipation.

2.2 The equilibrium tide

Tidal effects arise when an extended body is found in a non-uniform gravita-
tional field. For example, if we have a heavy planet on a short period orbit (e.g.
CoRoT-3b, 21.7 Mj, Porb = 4.26 d) around a star, the gravitational field of the
planet across the star varies significantly and this non-uniform potential causes
a distortion in the star (see for example Mazeh and Faigler, 2010). The star is
no longer just spheroidal (from fast rotation, P∗rot ≈ 4 d), but additionally takes
the shape of an ellipsoid with three unequal axes. This is called the equilibrium
tide, because the star is assumed to be in hydrostatic equilibrium (Zahn, 2005).

37
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It is an intuitive idea: the non-uniform gravitational potential due to the planet
and the centrifugal force cause two bulges on the star (Figure 2.1). As the planet
moves along its orbit, the equilibrium tide follows the planet. If the star were an
ideal fluid with zero viscosity, it would adjust instantaneously to the tidal per-
turbation. In reality, the star is not an ideal fluid, so there will be some viscosity
(for example, turbulent viscosity — see Zahn, 1977) that delays the arrival of the
tide. If the planet orbits more slowly than the stellar rotation, the tidal bulge on
the star that is closest to the planet will lead the planet, whereas if the planet
orbits faster than the stellar rotation, the closest tidal bulge will trail behind the
planet. Similarly, the star’s gravitational potential can cause equilibrium tides
on the planet, which work in a similar way.

Figure 2.1: In each case, the stellar rotation and orbits are anti-clockwise. Left:
The star rotates faster than the planet’s orbit (Ω∗ > n) and the bulge due to the
equilibrium tide leads the planet. Right: The planet orbits faster than the stellar
rotation (n > Ω∗) and the bulge lags behind the planet.

For tides on the planet, the delay in the arrival of the tidal bulge causes the
dissipation of energy inside the planet. This dissipation of energy without a
transfer of angular momentum causes the planet’s orbit to become less eccentric
(Goldreich and Soter, 1966). For tides on the star, the tidal bulges interact with
the orbit, and cause both the dissipation of orbital energy, and the transfer of
angular momentum between the orbit and the spin of the star. The mechanism
for dissipation inside the two bodies (star and planet) is uncertain. For example,
Darwin (1879) assumed some kind of unspecified friction in the fluid flow in-
side a planet, and Zahn (1975) considered turbulent viscosity in the convective
envelopes of low mass stars.

Given the uncertainties in the dissipation mechanism, it is convenient to
parametrise this dissipation in terms of some bulk dissipation rate, often rep-
resented by the tidal quality factor Q. A higher Q means lower a dissipation
rate, while a lower Q means a higher dissipation rate. This Q value is typically
estimated by physically modelling the energy stored and eventually dissipated
in the bulge. Usually, mixing length theory provides a way to guesstimate the
viscosity, which is then coupled with an assumption for the frequency depen-
dence (Zahn, 1977, Zahn, 1989, etc. See Hansen, 2012 for a review).

Another approach is to consider constraints from the orbital evolution of
the spin and orbital survival of satellites (Goldreich and Soter, 1966) or planets
(Hebb et al., 2010). Essentially, this allows one to place a lower limit on the value
of Q: if the Q were smaller than a given value, the dissipation rate would have
been so strong that the object’s orbit would have decayed, and the object would
have been destroyed. In general, the bulk dissipation constant would depend on
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the tidal excitation frequency σ, as well as the internal composition and structure
of the object.

2.2.1 Constant ε and constant Q formulations

There are several formulations for the bulk dissipation rate in the literature.
Darwin (1879, 1880) assumed that the fluid viscosity was responsible for the
tidal dissipation, and split the perturbing tidal potential into a Fourier series
which could then include the frequency-dependence of the viscosity. Adding
these components together provides the bulk dissipation. In contrast, MacDon-
ald (1964) assumed the dissipation mechanism to be frequency-independent, in
which case the tidal quality factor Q was related to ε, the phase lag between the
tidal potential maximum and the arrival of the bulge’s maximum:

Q−1 = tan 2ε (2.1)

In this case, the tidal quality factor Q was defined in terms of the peak energy
E∗ stored in the system during one tidal cycle, and the average rate of energy
dissipation:

Q−1 =
1

2πE∗

∮ dE
dt

dt (2.2)

Goldreich (1963) follows this general approach, deriving equations for the
tidal evolution of orbital elements to first order in eccentricity. Goldreich and
Soter (1966) also followed the MacDonald (1964) approach, adopting a constant
phase lag, which has the same restrictions on e and ψ. In the general case, the
problem with this approach is that the phase lag ε, and hence the dissipation,
does not decrease for vanishing frequencies. Instead, it switches to zero in a
discontinuous manner when the tidal forcing frequency is zero. Similarly, it
can swap to a negative value discontinuously when the direction of the tidal
perturbation changes relative to the body. Another assumption in this approach
is that the amplitude of each component is constant. These assumptions are
only valid for the small eccentricities e and inclinations ψ that are observed in
the Solar System, because the approximations only work if the tidal potential
has a narrow range of frequencies (Greenberg, 2009).

Unfortunately, many influential studies have made heavy use of this constant-
Q approach in regimes with e > 0.2. For example, Jackson, Greenberg, and
Barnes (2008a) acknowledge that the Goldreich and Soter (1966) formulation is
only valid for small e and ψ, which means higher order corrections are needed
for the larger eccentricities that the exoplanets they consider would have had in
the past. Yet, they integrate the equations of Goldreich and Soter (1966) back-
wards in time, to estimate the original orbital elements of these systems before
tidal interactions started. Unfortunately, as Leconte et al. (2010) explained, the
higher order terms are critical to the study of the high eccentricity regime, and
including these terms produces qualitatively different outcomes because the en-
ergy dissipation is otherwise underestimated by several orders of magnitude.

Jackson, Greenberg, and Barnes (2008a) justify their choice of approximation
with the fact that their approach was conservative. This made sense in 2008,
when they were trying to show that tidal interactions had been important —
models with the higher order terms would produce an even greater amount of
dissipation, and simply confirm their results. Unfortunately, this justification
fails when we consider that the largest change in eccentricity occurs early in
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the system history, and therefore integrating the truncated equations backwards
would not lead back to the starting position. Indeed, Jackson, Greenberg, and
Barnes (2008b) went on to use this approach to study the effects of the tidal
heating from eccentricity damping, and concluded that the inflated hot Jupiters
could have derived their extra heating from tides in recent times. As Leconte et
al. (2010) showed, this is dubious, because a consistent calculation of the radius
and tidal evolution of the inflated hot Jupiters shows that the heating would
have occurred too early in their history to maintain their present-day inflated
radii.

Another study that uses the same approach for the Fourier decomposition
and constant Q approach is that of Ferraz-Mello, Rodríguez, and Hussmann
(2008). On the other hand, this approach is probably acceptable in cases of
small eccentricity (Bodenheimer, Laughlin, and Lin, 2003; Bodenheimer, Lin, and
Mardling, 2001; Lin, Bodenheimer, and Richardson, 1996).

2.2.2 Constant ∆t formulation

An alternative to the constant phase (or constant-Q) formulation is the one with
constant time lag ∆t. This was used by Darwin (1879) and Alexander (1973):
the viscous dissipation is assumed to produce a constant time lag between the
maximum of the perturbing potential at the surface of one body, and the arrival
of the tidal bulge. This is an arbitrary but convenient approximation, based
on an ideal viscoelastic body: in the absence of detailed knowledge about the
viscoelastic properties of giant planets, the constant time lag approach allows
one to compute the tidal evolution for all eccentricities, and the free parameter
∆t is not dependent on the tidal frequency (σ = 2|ωp − n| for semi-diurnal
tides in a non-synchronous object on a circular orbit, and σ = n for a pseudo-
synchronous object on an eccentric orbit – see Leconte et al., 2010).

For an incompressible giant planet, the phase lag ε and the tidal quality factor
Q are related by the following (Efroimsky and Williams, 2009, eqn 105)

1
Q(σ)

=
tan ε(σ)

1−
(

π
2 − ε(σ)

)
tan ε(σ)

(2.3)

and for a perfect viscoelastic oscillator, ε is given by Greenberg (2009),

tan ε(σ) =
σ

τ(ω2
0 − σ2)

(2.4)

where ω0 is the natural frequency of the oscillator (≈ 30 min, estimated out from
the free-fall time for a planet) and τ is a viscous damping timescale. In the limit
of ω0 >> σ (i.e. a realistic tidal period of several days), the phase lag becomes
(Leconte et al., 2010)

ε(σ) ≈ σ

τω2
0
≡ σ∆t (2.5)

The constant ∆t model is therefore equivalent to a body that has Q−1(σ) ≈
ε(σ) ∝ σ (Greenberg, 2009; Leconte et al., 2010). The tidal evolution equations
reproduced in Section 2.3 are exact for all eccentricities and obliquities, in the vis-
cous dissipation approximation (Leconte et al., 2010). In contrast, the approaches
using a constant ε or Q involve a Fourier decomposition of the forcing potential,
followed by a phase lag corresponding to each tidal frequency. The constant Q
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model corresponds to a truncation of the Equations 2.7 and 2.6 (see later). This
is why that these approaches are limited to small eccentricities. In fact, Leconte
et al. (2010) show that for a pseudo-synchronous planet, the truncated models
can lead to a growth of the semi-major axis if e ∼ 0.21, and a growth of the
eccentricity for e ∼ 0.33. In the full model, both a and e are seen to decrease
with time (see Figure 1 of Leconte et al., 2010). We revisit the the weak friction
model as applied to the equilibrium tide in the next section (Section 2.3).

2.2.3 Eggleton et al. formulation

Eggleton, Kiseleva, and Hut (1998) followed a slightly different route. Instead of
immediately assuming that the lag time ∆t is a constant, they considered the case
where it is proportional to the quadrupolar tensor of the mass distribution in a
frame that rotates with the star. With a few simplifying assumptions (such as an
isotropic viscosity, a small but dominant quadrupolar tensor), they linearise the
continuity equation for the flow inside the body, and show that this approach is
similar to the constant time lag (constant ∆t) approach. The resulting equations
are valid to large eccentricity and obliquities, unlike the constant Q or constant
phase approach. This formulation is preferred by many authors, such as Barker
and Ogilvie (2009); Bolmont et al. (2012); Dobbs-Dixon et al. (2004); Fabrycky
and Tremaine (2007); Hansen (2010, 2012), because it affords clearer physical
insights on the dissipation of the equilibrium tide.

2.3 Equilibrium tide: the weak friction model

In this section, we focus on the theory of equilibrium tides, as described by
Leconte et al. (2010), following Hut (1981). As shown in Figure 2.1, the tidal
potential due to the planet causes the star to deform into an ellipsoid. The
non-zero viscosity of the star causes the bulge to lead (Ω > n), or lag behind the
planet (Ω < n). This viscous dissipation model of the equilibrium tide is suitable
for describing tidal dissipation in planets, viscous dissipation does not appear
to be relevant for stars. It does however, approximate turbulent dissipation,
which occurs in the convective envelope of lighter stars (Hut, 1981). Even though
the frequency-dependence of the tidal quality factor Q may be very different
in objects without a convective envelope, or objects where the dynamical tide
dominates, Ogilvie and Lin (2004) and Ogilvie and Lin (2007) show that the
frequency-averaged quality factor can still be independent of frequency in the
limit of small Ekman number (i.e. in cases where viscosity is negligible) as long
as the ratio of the tidal frequency and the orbital motion σ/n > 2. Of course, the
actual dissipation mechanism may be very different, such as radiative damping
(Zahn, 1975), wave breaking (Barker and Ogilvie, 2010), etc.

2.3.1 Tidal bulges

The tidal bulges can be replaced by point two masses, each one being given by

µ = 1
2 k2,∗Mp

(
R∗
r

)3
, where R∗ is the stellar radius, and r represents the instan-

taneous distance between the star and planet centers. The star is then repre-
sented by a point mass M∗ − 2µ. Confusingly, Leconte et al. (2010) call k2,∗ the
star’s Love number of degree 2, whereas Hut (1981) called it the apsidal motion
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constant of the primary, following from Lecar, Wheeler, and McKee (1976). In
practise, the Love number k2,∗ is twice the apsidal motion constant (Ragozzine
and Wolf, 2009), and in this study, we only ever use it in a factor k2,∗∆t∗ which is
unknown by about two orders of magnitude (see for example Barker and Ogilvie
2009; Carone and Pätzold 2007; Hansen 2012, etc).

Physically, the Love number represents the ratio of the perturbation induced
in the internal potential of the star, due to the tidal potential from the planet
(Gavrilov and Zharkov, 1977). For a rigid body, this quantity would be zero.
The Love number is a bulk physical characteristic that reflects the internal dis-
tribution of mass in a body, including the central condensation of a star or the
presence/absence of a solid core in a planet (Ragozzine and Wolf, 2009). A liquid
planet of uniform density would have a value of k2 = 3/2 (Goldreich, 1963). A
Sun-like star has a value of k2,∗ ≈ 0.03 whereas the value for Jupiter is k2,J ≈ 0.49
(Ragozzine and Wolf, 2009).

The gravitational force between the two bulges is ignored, because the cor-
responding quadrupole term in the expansion of the gravitational potential is
negligible. Similarly, the theory can be applied to two deformable objects sepa-
rately (so far, we have focussed on a deformable star and a point-like planet). In
this case, we assume the tidal bulges on the two objects don’t interact, and we
can simply calculate the effects on rate of change of the orbital parameters by
each body separately, and add them up.

2.3.2 Orbital and rotational evolution

The gravitational forces between each bulge on the deformable star and the per-
turbing planet are not the same, because of the different distances. This causes
a torque to be exerted on the star by the planet (and vice-versa), allowing the
system to exchange energy and angular momentum between the stellar rotation
and the orbit (Hut, 1981). The average rate of energy and momentum exchange
is worked out from the torque acting over a whole orbit, and divided by the pe-
riod. Together, these give the rate of change of the eccentricity and semi-major
axis (ė, ȧ). The change in orbital angular momentum causes a change in in e
and a. The rate of change of the stellar rotation Ω∗ can also be computed if we
assume that the star-planet system conserves angular momentum. This would
be the case if the angular momentum loss due to the stellar wind is neglected.

In addition to the orbital evolution due to the exchange of energy and angular
momentum from the torque, the non-zero viscosity of the star causes a time lag
in the arrival of the bulge. In this case, the perturbing force on the star is radial
and does not cause an exchange of angular momentum, but it does cause orbital
energy to be dissipated in the star. This contributes an extra term to the rate of
change of the orbital parameters e and a.

The equations given by Hut (1981) were limited to small obliquities, but
Leconte et al. (2010) extended them to arbitrary obliquities. We reproduce these
equations here, because they are used in Chapter 6.

The evolution of the semi-major axis a is described by the differential equa-
tion

1
a

da
dt

=
4a

GM∗Mp

{
Kp

[
N(e)xp

ωp

n
− Na(e)

]
+ K∗

[
N(e)x∗

ω∗
n
− Na(e)

]}
(2.6)

where the terms N(e), Na are functions of the eccentricity e alone, and are de-
fined later in this section. The two terms K∗ and Kp represent the contributions
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from dissipation in the star and planet respectively, and will also be described
later on. The orbital frequency is given by n = 2π

Porb
, where Porb is the orbital

period, while ω∗
2π

Prot,∗
and ωp = 2π

Prot,p
are the rotational angular frequency of the

star and planet respectively. Similarly, Prot,∗ and Prot,p are the rotational periods
of the star and planet respectively. The parameter x∗ is the cosine of the stellar
obliquity ε∗, and xp is the cosine of the planetary obliquity εp relative to the total
angular momentum plane. The evolution of the eccentricity e is given by

1
e

de
dt

=
11a

GM∗Mp

{
Kp

[
Ωe(e)xp

ωp

n
− 18

11
Ne(e)

]
+ K∗

[
Ωe(e)x∗

ω∗
n
− 18

11
Ne(e)

]}
(2.7)

and the functions Ωe(e) and Ne(e) will be defined later on. The evolution of
the angular momentum of the star and planet are given by the following two
equations

dC∗ω∗
dt

= −K∗
n

[(
1 + x2

∗

)
Ω(e)

ω∗
n
− 2x∗N(e)

]
(2.8)

dCpωp

dt
= −

Kp

n

[(
1 + x2

p

)
Ω(e)

ωp

n
− 2xpN(e)

]
(2.9)

where the C∗ and Cp are the principal moments of inertia of the star and planet
respectively. The obliquities evolve as

dε∗
dt

= sin ε∗
K∗

C∗ω∗n

[
(x∗ − η∗)Ω(e)

ω∗
n
− 2N(e)

]
(2.10)

dεp

dt
= sin εp

Kp

Cpωpn

[
(xp − ηp)Ω(e)

ωp

n
− 2N(e)

]
(2.11)

where the functions Ω(e) and N(e) are used as before. The parameter η is the
ratio of rotational angular momentum to orbital angular momentum for each
object:

η∗ =
Mp + M∗

MpM∗
C∗ω∗

a2n
√

1− e2
(2.12)

η∗ =
Mp + M∗

MpM∗

Cpωp

a2n
√

1− e2
(2.13)

The terms describing the strength of the dissipation stellar and planetary
tides are given by

K∗ =
3
2

k2,∗∆t∗

(
GM2

∗
R∗

)(
Mp

M∗

)2 (R∗
a

)6

n2 (2.14)

Kp =
3
2

k2,p∆tp

(
GM2

p

Rp

)(
M∗
Mp

)2 (Rp

a

)6

n2 (2.15)

The ratio of the stellar term to the planetary term is

K∗
Kp

=
k2,∗∆t∗
k2,p∆tp

(
Mp

M∗

)2(R∗
Rp

)5

(2.16)
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which means the typical values of k2,∗∆t∗
k2,p∆tp

∼ 100,
(

Mp
M∗

)2
∼ (10−3)2 and

(
R∗
Rp

)
∼

105 lead to a ratio of about 10. This means the stellar tide can dominate, unless
the terms in the square brackets of Equations 2.6 and 2.7 have different orders
of magnitude. We now list the parameters N(e), Na(e), Ne(e), Ω(e), Ωe(e):

N(e) =
1 + 15

2 e2 + 45
8 e4 + 5

16 e6

(1− e2)6 (2.17)

Na(e) =
1 + 31

2 e2 + 255
8 e4 + 185

16 e6 + 25
64 e8

(1− e2)15/2 (2.18)

Ne(e) =
1 + 15

4 e2 + 15
8 e4 + 5

64 e6

(1− e2)13/2 (2.19)

Ω(e) =
1 + 3e2 + 3

8 e4

(1− e2)9/2 (2.20)

Ωe(e) =
1 + 3

2 e2 + 1
8 e4

(1− e2)5 (2.21)

2.4 The dynamical tide

A star or planetary body can be considered as a 3D oscillator (Goldreich and
Nicholson, 1989; Zahn, 1975). For example, when a planet on an eccentric orbit
reaches periastron, the tidal potential perturbation is at a maximum, and can
excite normal modes of oscillation in the host star. This means that orbital energy
is converted into oscillations that can be then be damped to dissipate the energy.
This process can occur at each periastron, and the energy is dissipated during
the rest of the orbit. If all the energy of an encounter is dissipated during that
time, the total energy of the orbit will keep decreasing on secular timescales,
while the angular momentum is unchanged. This causes the orbit to circularise.
On the other hand, if the damping is too slow, the newly excited modes from
a more recent encounter can be out of phase with the previous encounter, and
the overall response can be chaotic. If the orbit is circular, any deviation from
synchronous rotation can still induce oscillations and this mechanism can still
occur.

Three restoring forces can be involved in the propagation of these waves
(Zahn, 2008):

• buoyancy due to gravity can produce gravity modes of oscillation

• the Coriolis force can produce inertial modes of oscillation, and

• the compressibility of the gas can produce acoustic modes of oscillation.

Collectively, these oscillations are called the dynamical tide.
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2.4.1 Gravity modes

Observations of high mass binaries showed circular orbits at short period (Prim-
ini, Rappaport, and Joss, 1977), even though the extended radiative envelope of a
high mass star is free of convective turbulence and thus cannot support turbulent
dissipation of the equilibrium tide. Cowling (1941) considered the possibility of
non-radial oscillations in a high mass polytropic star in a binary and Zahn (1970)
extended this work to include realistic stars, with a convective core and a radia-
tive envelope. Gravity modes can be excited close to the convective-radiative
boundary, on the radiative side. At that point, the Brunt-Väisälä frequency (the
frequency at which a parcel of a statically stable environment will oscillate if
displaced vertically) becomes equal to the tidal forcing frequency, and the wave-
length of the gravity modes are long enough to couple with the tidal potential
(Goldreich and Nicholson, 1989). As the gravity wave undergoes only a weak
radiative dissipation in the interior, it propagates to the stellar surface, where
it dissipates in a thin layer, depositing angular momentum. The dissipation
layer achieves a synchronised state first, and then acts as a barrier to outgoing
waves, causing them to dissipate further inside. In this case, the star can become
synchronised from the outside in. The dissipation by radiative damping was
described by Zahn (1975).

Radiative damping would generally be more applicable to high mass stars,
but Terquem et al. (1998) considered its relevance in the case of solar-type stars.
They studied a close binary system where a solar-type star has a companion on a
circular orbit, and was heavy enough to exert tidal forces on the host. The Cori-
olis force was ignored (i.e. non-rotating star), and they considered dissipation
in the convective zone and the radiative by turbulent dissipation, and radiative
damping respectively. They compared their results with the equilibrium tide
limit, and found that this didn’t work for a standard solar model. In fact, they
found that the turbulent viscosity would have to be about 50 times larger than
mixing-length theory would predict. Instead, they found that g-mode oscilla-
tions induced from inside the radiative core can extend into the outer convective
region, where they are dissipated by turbulent viscosity. Strong dissipation can
occur if the g-mode oscillations achieve a global resonance.

Another mechanism for the dissipation in solar-type stars was suggested by
Goodman and Dickson (1998), who studied the effects of non-linear wave break-
ing. Essentially, if an internal gravity wave is excited at the interface between
the radiative core and the convective envelope, it can propagate towards the
center. These waves can reflect coherently, and thus feed into a global stand-
ing mode in the radiative zone (Barker and Ogilvie, 2010). If the tidal frequency
matches such a global standing mode, efficient dissipation can only occur at that
particular frequency , and thus the contribution to the overall dissipation rate is
minimal. Indeed, because of the stellar spin-down, the system does not stay very
long in any resonance, and simply moves on (Savonije and Witte, 2002). Only in
special cases can resonance locking occur, and thus allow the contribution to be
larger (Witte and Savonije, 1999).

If the amplitude and frequency of the tidal forcing are large enough, and the
conditions at the center of the star are favourable (stable stratification of the core,
which depends on stellar mass and main-sequence age, Ogilvie and Lin 2007),
the waves can enter the non-linear regime, and be reflected with a perturbed
phase, or simply be dissipated because wave breaking occurs (Goodman and
Dickson, 1998). This means that the energy from the wave is rapidly and irre-
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versibly transformed into turbulence, which then dissipates. In this case, we can
have efficient dissipation over a continuous range of tidal frequencies. Barker
and Ogilvie (2010) used a numerical model based on a non-rotating star and
worked out that for a given orbital period P the effective tidal quality factor Q′

would be given by

Q′ ≈ 1.5e5
(

P
1 d

)8/3

(2.22)

for the Sun, and it varies by . 5 over the mass range 0.5–1.1 M�. The conditions
for wave breaking and dissipation is(

M�
M∗

)(
Mp

Mj

)(
P

1 d

)1/6

& 3.3 (2.23)

Because of the dependence on a radiative core, this mechanism is ineffective in
a star with a convective core, eg: WASP-18, WASP-12, OGLE-TR-56.

In the planetary context, the convective nature (Guillot et al., 2004) of the
interiors of hot Jupiters means that radiative damping cannot occur there. On
the other hand, the stellar insolation can cause the surface layers of hot Jupiters
to reach radiative equilibrium, and thus they could support radiative damping
or non-linear damping as above, once g-mode oscillations are started above the
convective region (Dobbs-Dixon et al., 2004).

2.4.2 Inertial modes

The natural frequency of oscillation of a star or gas planet due to the restoring
force of gravity can be estimated from the free-fall time 2π/ω0 ≈ 1

4

√
3π

2Gρ̄ , where
G is the gravitational constant, and ρ̄ is the mean density (Leconte et al., 2010)
— this value is ∼30 minutes for the Sun and Jupiter. Ogilvie and Lin (2004)
argued that this dynamical frequency can be much larger than the tidal forc-
ing frequency: this allowed them to linearize the fluid dynamical problem of a
slowly rotating planet. These objects are expected to be adiabatically stratified,
because of efficient convection (Guillot et al., 2004), which can also carry inertial
waves (i.e. the restoring force is the Coriolis force, instead of gravity). If the tidal
forcing frequency matches some of these inertial modes, the tidal response can
be enhanced (Papaloizou and Savonije, 1997). Ogilvie and Lin (2004) argue that
the dissipation of inertial waves could be important in many cases of interest.

As Savonije, Papaloizou, and Alberts (1995) pointed out, the inertial modes
occur in a dense or continuous spectrum in the absence of viscosity. The re-
sponse of a star can then contain strong high frequency components. Inertial
modes can also travel throughout the planet or star, unlike g-modes that are
stopped by the convective envelope (Ogilvie and Lin, 2004). However, once a hot
Jupiter’s rotation is synchronised, tidal dissipation of inertial waves becomes
less efficient (Ogilvie and Lin, 2004). For n/Ω > 2, the dissipation would be
inefficient, and would tend to be frequency-independent. Ogilvie and Lin (2007)
extended the work of (Ogilvie and Lin, 2004) to solar-type stars. Again, they
concluded that inertial waves could be important in these systems.

One intriguing scenario that involves inertial waves has been suggested by
Lai (2012). Winn et al. (2010) had noted that the alignment of the stellar spin
with the orbit in hot Jupiter systems with cool stars could post a problem if
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the entire angular momentum of the planet is surrendered to align the star: the
planet would be destroyed. To get around this problem, they suggested that the
core and the envelope could decouple, and thus it would take a much smaller
angular momentum exchange to align the stellar envelope. As Lai (2012) point
out, this is a problem because the significant differential rotation of the fluid can
lead to instabilities which would quickly couple the core and the envelope.

Instead, Lai (2012) worked out that if inertial waves in the star were relevant,
there would be a component that is only permissible for misaligned systems.
This component would work to align the system. Once the system is aligned, this
component of the oscillations is forbidden, and therefore stops working. Thus,
once alignment is attained, the radial decay due to that component becomes
negligible. In this case, orbital decay and spin-orbit alignment no longer share
the same dissipation quality factor, and instead have two different factors, and
hence two different timescales. Alignment can happen on a shorter timescale
than the current age of the system, and yet the tidal decay would take longer
than the current age.

Conclusion

In this chapter, we have looked at several mechanisms for tidal dissipation and
orbital evolution in hot Jupiter systems. We refer to the literature on the equilib-
rium tide in later chapters of this thesis. In the next chapter, we give an overview
of the observations and the analysis techniques used in this study.
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CHAPTER 3. METHODS OF OBSERVATION AND ANALYSIS

Chapter 3

Methods of observation and analysis

In this chapter, we look at the techniques involved in making the observations
used in this study, and the subsequent analysis of these observations. In par-
ticular, we use radial velocity measurements, as well as transit photometry to
constrain the orbital eccentricities of close-in exoplanets. These measurements
are analysed in a Bayesian framework, and we include prior information from
stellar evolution in the case of WASP-12. We include a treatment of correlated
noise in the analysis, and use model selection to establish the nature of the orbit,
eccentric or circular.

3.1 Radial velocity

3.1.1 Origin of the radial velocity signal

When two objects are bound by the gravitational force, they will orbit each other
around their common center of mass. If the mass ratio is extreme, as is the case
for a star-planet system, the center of mass resides inside the heavier object, in
this case, inside the star. We can measure the radial motion of the star along
the line of sight using Doppler spectroscopy (see next section), because the light
from the star is red-shifted when it moves towards us and blue-shifted when
it moves away. This radial velocity signal follows a conic section (Murray and
Dermott, 1999), given by

Vr = K [cos(θ + ω) + e cos ω] (3.1)

where e is the orbital eccentricity, ω is the argument of periastron, and θ is the
true anomaly. This latter variable is obtained as follows: the time variable t
is converted to the mean anomaly Ma, which is then converted to an eccentric
anomaly Ea, which is in turn converted into the true anomaly θ. The mean
anomaly Ma is given by

Ma =
2π

P
(t− T) (3.2)

where P is the period of the orbit, T is time of periastron and t is the time vari-
able. The mean anomaly Ma is related to the eccentric anomaly Ea by Kepler’s
equation:

Ma = Ea − e sin Ea (3.3)

49



50 CHAPTER 3. METHODS OF OBSERVATION AND ANALYSIS

which must be solved numerically for Ea, and the true anomaly is obtained using
the two equations

cos θ =
cos Ea − e

1− e cos Ea
(3.4)

and

sin θ =

√
1− e2 sin Ea

1− e cos Ea
(3.5)

The semi-amplitude K of the radial velocity (Pater and Lissauer, 2001) signal
is given by

K =
2πG
Porb

1/3 Mp sin i
(M∗ + Mp)2/3

1√
1− e2

(3.6)

where Porb is the orbital period, Mp is the mass of the planet, and M∗ is the mass
of the star. The inclination i tells us how the orbit is oriented relative to the line
of sight – in practise, it introduces a degeneracy Mp sin i whereby a light planet
with an orbit aligned with the line of sight can give a radial velocity signal as
large as that from a heavier planet with an inclined orbit w.r.t. the line of sight.
This means that a radial velocity time series can only tell us the minimum mass
Mp sin i of the planet, not its absolute mass Mp.

3.1.2 The Rossiter-McLaughlin effect

Our data for WASP-12 (but not the other objects) included an additional signal:
the Rossiter-McLaughlin effect. Light from a rotating star will have a blue shifted
component, corresponding to the part of the star rotating towards us, and a red-
shifted component, corresponding to the part rotating away from us. When a
planet transits across the face of the host star, this planet blocks some of the
stellar light for some time. If the conditions are right (eg: the star rotates fast
enough to produce a differential Doppler signal, but not so fast that it makes
spectroscopic measurements difficult.), this can produce an additional Doppler
signal superimposed on the orbital motion of the star (the smaller bump up and
down in the middle of the phase curve for WASP-12 in the Figure ??.) This signal
is caused by the blocking of part of the red-shifted or blue-shifted light in turn.
The exact shape of this additional signal can tell us the projected spin-orbit angle
for the star-planet system. A system where the orbital plane is aligned with the
stellar equator will produce a symmetrical signal, and a misaligned system will
produce an asymmetrical or even inverted signal. A complication to this picture
is that the stellar limbs are darkened, an effect due to the decrease in gas density
as the planet moves from the center of the star to the edge. To model the radial
velocity signature of the Rossiter-McLaughlin effect, we use the equations from
Giménez (2006). This takes in the current orbital phase (calculated from time t,
and orbital parameters), the projected rotational velocity of the star v sin i, and
the limb darkening parameters.

We use a quadratic limb darkening law, using two parameters u1 and u2.
These are estimated from the Claret (2004a) database. We used the online tool
VizieR(Claret, 2004b), and select Table 4, which lists the quadratic limb darkening
coefficients (a, b). We narrow down the rows using the search facility, and we
select the closest combination of (log g, Teff and [M/H]), picking the values for
the g band.
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3.1.3 Radial velocity measurements

Since 2008, our team had been collecting new radial velocity measurements for
known transiting exoplanets as part of an on-going project (Hébrard et al., 2008;
Mazeh et al., 2008), with a view to refine two orbital parameters that are critical
in studying the orbital evolution of exoplanets: the eccentricity, and the sky-
projected spin-orbit angle.

In this study, we used 158 new radial velocity measurements for 6 objects
in the Northern hemisphere, and 6 objects in the Southern hemisphere (see
Chapters 4 and 5, and Tables A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11, A.1,
A.2 and A.12). These measurements were obtained with the SOPHIE spectro-
graph (Bouchy and The Sophie Team, 2006), mounted on the 1.93m telescope
at the Haute Provence Observatory, and the HARPS spectrograph (Mayor et al.,
2003), mounted on the 3.6m ESO telescope at La Silla, Chile. Both instruments
have participated in the detection of numerous transiting exoplanets, notably the
CoRot and WASP transit searches.

Each instrument is a fiber-fed echelle spectrograph, where two fibers bring
light to the spectrograph: one fiber is fed from the telescope (Perruchot et al.,
2008), and the other brings light from a comparison lamp (ThAr). SOPHIE,
unlike HARPS, has two sets of fibers: one called high-resolution (HR), and one
called high-efficiency (HE). For bright objects, the HR mode is used, and it can
reaches a stability of a few m s−1.

The HE mode lacks two components, a 40.5 µm slit that increases the spec-
tral resolution, and a scrambler that is used to keep the illumination uniform
despite changes due to guiding or atmospheric effects. This difference allows a
higher throughput in HE mode than in HR mode, and allows the observation of
fainter targets (∼ 1 mag). Unfortunately, this mode is less optimised for precise
radial velocity measurements. It turns out that the zero-point of the instrument
could drift by a large amount (up to several dozens of m s−1 in some cases, see
Figure 3.1) over several months. This effect is monitored and corrected for as
part of the long term improvement of the SOPHIE correction pipeline (Bouchy
et al., 2009a), but it is useful to keep this in mind, especially with older datasets
that were collected before this issue was recognised.

From spectra to radial velocity

Each exposure from the instruments results in a CCD frame that is treated in
the usual way for CCD astronomy: a correction is applied for bad pixels, a dark
current frame is substracted and a flat-field correction is applied. The position
of the diffraction orders are then obtained, and the spectrum is wavelength-
calibrated. This is then cross-correlated with an appropriate synthetic spectrum,
chosen from a library of synthetic spectra for stars of each spectral type observed.
The resulting cross-correlation function (CCF) is then normalised and translated
into the solar system barycenter frame of reference, and a Gaussian function
is fitted. The mean of this Gaussian function gives the radial velocity, and the
uncertainty in the radial velocity is computed from the width of the CCF as
explained in a paper by Baranne et al. (1996).
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3.2 Transit photometry

For the WASP-12 object, we fit not only the radial velocity, but also the transit
photometry originally collected by the discovery team (Hebb et al., 2009). A
transit occurs when a planet passes in front of the host star during its orbit. The
probability of transit is low (Winn, 2010): roughly 0.005 for a star the size of the
Sun, and a planet at 1 AU. This probability scales as R∗/a, causing a selection
effect for close-in hot Jupiters. The detection of a hot Jupiter is also helped by
the deeper transit signal, as compared to a smaller planet. We model the transit
using the equations from Mandel and Agol (2002), using the quadratic limb
darkening in the z-band for the WASP-12 transit photometry.

3.2.1 Secondary eclipse & eccentricity

When a transiting planet disappears behind the host star, this is called a sec-
ondary eclipse. In practise, the information in the transit and secondary eclipse
light curves constrain the eccentricity in the following way (Winn and Holman,
2005):

e cos ω ' π

2P

(
t2 − t1 −

P
2

)
, (3.7)

where t2 − t1 is the time difference between an secondary eclipse and a transit
and P is the orbital period. The component e sin ω is dependent on a ratio
involving the durations of the secondary eclipse and transit,

e sin ω ' Ttra − Tocc

Ttra + Tocc
, (3.8)

where Ttra and Tocc are the transit and secondary eclipse durations respectively.
The constraint on e cos ω component of the orbital eccentricity is much stronger
and can help to constrain the eccentricity of the planet (Campo et al., 2011;
López-Morales et al., 2010).

When analysing the secondary eclipse photometry for WASP-12, we simply
set the limb darkening to zero, and model the secondary eclipse using a scaled
copy of the transit model. This scale parameter s can be converted to an sec-
ondary eclipse depth by multiplying it by the corresponding transit depth.

3.3 Bayesian analysis

We use our new RV measurements (Section 3.1.3), in addition to a compilation
of existing RVs, as well as photometric constraints, from the literature (the or-
bital period P, the mid-transit time Ttr, and e cos ω where it is available from
secondary eclipses), to derive updated estimations of the orbital parameters for
the known transiting planets.

We follow a Bayesian approach in our analysis (see for example, Gregory,
2005). Firstly, we engage in parameter estimation to determine updated values
for the orbital eccentricity e, and the mass of the planet (related to the semi-
amplitude K, see equation 3.6). We do this by using a Markov Chain Monte
Carlo (MCMC) integration (see Section 3.4), to produce best-fit values and a
derived uncertainty for each parameter. Secondly, we run the MCMC twice,
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once with a free eccentricity, and then with a fixed eccentricity e = 0, to model a
circular orbit. We use the best fit models from this procedure to compare the two
models, circular orbit versus eccentric orbit. This hypothesis testing step allows
us to determine if the additional complexity of an eccentric orbit is justified by
the data.

There are several major advantages to using a Bayesian approach in this con-
text. Firstly, it allows us to derive combined constraints from radial velocity
datasets and transit light curves (in the case of WASP-12). Secondly, it allows
us to include various priors on parameters where available (e cos ω is available
for some transiting systems from the secondary eclipse). In the case of WASP-
12, we can include a prior from stellar evolution models when modelling the
light curve. Finally, the Bayesian approach provides a natural method to get rid
of “nuisance parameters” (such as the angle of periastron ω), and provides the
marginalised posterior distributions for the useful parameters (e.g. the eccen-
tricity e, the semi-amplitude K, etc.)

3.4 Parameter estimation

We use a Markov Chain Monte Carlo (MCMC) code to fit the RV measurements
(and transit light curve, in the case of WASP-12), and to derive updated values
and uncertainties for the orbital parameters. The use of MCMC methods in this
context has been described by many authors, including Holman et al. (2006).
Our implementation is itself described by Pont et al. (2009). For each parameter,
the MCMC produces a marginal posterior distribution.

In this case, we are using the MCMC for Bayesian parameter estimation. Let
M1 be the statement “The orbit of WASP-12 is circular.” Further, let D be the
statement “The N measurements D1, D2, ... DN had values d1, d2, .... dN at times
t1, t2, .... tN”. Let the parameters X and Y represent the parameters of an orbit
(in practise, there are four parameters for modelling a circular RV orbit, and six
parameters for an eccentric orbit — here we use two to simplify this explanation).
The Bayesian approach allows us to express all our knowledge of the parameters
X and Y as the joint posterior distribution p(X, Y|D, M1, I), where the expression
X, Y represents the logical conjunction operator “and”, and the symbol | means
“given D and I”, where I represents any prior information we have. In this case,
the posterior distribution is given by Bayes’ theorem,

p(X, Y|D, M1, I) =
p(D|X, Y, M1, I)× p(X, Y, M1, I)

p(D|M1, I)
(3.9)

The first term in the numerator on the RHS represents the likelihood func-
tion for this data D, as described further in the next section. The second term
represents the joint prior for the parameters of interest. The term p(D|M1, I) rep-
resents the marginal likelihood, which acts as a normalisation constant in the pa-
rameter estimation problem. The posterior distribution is therefore proportional
to the product of the likelihood and the prior. To determine the preferred value
of parameter X, and the associated uncertainty, we wish to have the marginal
posterior distribution p(X|D, M1, I), where the effects of parameter Y are taken
into account. This is done by integrating the joint posterior distribution over all
possible values of Y:
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p(X|D, M1, I) =
∫ ymax

ymin

p(X, Y|D, M1, I)dY (3.10)

In practise, this is a multi-dimensional integral, because of the large number
of parameters. We use the MCMC method with the Metropolis-Hastings (Chib
and Greenberg, 1995) algorithm, which provides a convenient albeit computa-
tionally intensive solution to this problem. The Markov Chain part of the MCMC
refers to the fact that each entry in the chain depends on the one previous entry
in a probabilistic fashion. After a number of steps, the chain loses memory of
where it has been before, and simply samples the joint posterior distribution
for the parameters. The MCMC procedure carries out this integration in the
following fashion:

1. We start off with a set of “guessed” parameters X0, Y0, (in practise, we start
off with literature values for known objects).

2. We calculate the “merit value” for this set of parameters. The merit func-
tion is the product of the likelihood and any a priori information we want
to impose on the posterior distribution. This includes a component for
correlated noise in the data, which we discuss in the next section.

3. We now take a jump in parameter space: for each parameter, we take the
current value of the parameter and add a random number drawn from a
normal distribution N (0, 1) (multiplied by a “scale” parameter, adjusted
by hand to give an acceptance rate between 10% and 50% in step 6.

4. We calculate the “merit value” for this new set of parameters.

5. We compare the new merit value to the old merit value.

6. If the ratio is larger than unity, the new parameters provide a better fit to
the data and we accept the jump: we store the values of the parameters in
our MCMC chain.

7. If the ratio is less than unity, it indicated the new set of parameters are
worse than the one before. We draw a random number from a uniform
distribution, and we keep the new set of non-optimal parameters if the
ratio of the new and old merit is larger than the number we just drew. If
not, we keep the old set of parameters, and reject the new set.

8. We go back to step 3, and repeat this for a large number of times (eg:
400,000–800,000 steps).

In step 7, keeping a set of parameters that don’t improve the solution allows
the chain to explore parameter space in a random walk, and allows us to escape
a local maximum in the k-dimensional merit surface, where k is the number of
parameters. The actual likelihood function used in the analysis is described later
in Section 3.8.
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3.5 Correlated noise

Random Gaussian noise will, by definition, add a positive or negative contribu-
tion to a RV measurement with equal probability. In practise, RV measurements
for faint objects (V & 12 mag) can be contaminated with non-Gaussian sources
of noise in the data (such as instrumental systematics and stellar variability).
As shown in Figure 3.1, this can reach several dozen meters per second over
several months. In a single night, this can be as much as several meters per sec-
ond. This means that a each RV in a series of measurements taken in one single
night will be offset by a similar amount due to the correlated noise, in addition
to any astrophysical signal and Gaussian noise present. If we use a diagonal
matrix for the uncertainties when analysing the data, we risk over-counting the
RVs affected by this correlated noise. This can lead to an underestimation of the
uncertainties in the final system parameters by a large factor (Pont, Zucker, and
Queloz, 2006)

One shortcut that is commonly used (e.g. the M.I.T. team lead by Josh Winn,
Winn et al. 2006, and our own team in the past Pont, Zucker, and Queloz 2006;
Pont et al. 2009) is to add an extra term (in quadrature) to the instrumental
uncertainty. This extra term is often called “red noise” and is given by

√
Nσr,

where the σr represents the magnitude of the red noise, and N is the number of
measurements that were taken together (and thus suspected to have been offset
in a similar manner). We used this approach in the study of WASP-12 (Husnoo
et al., 2011).

When we move on to the large sample of objects described in Chapter 5, this
technique presents a difficulty: the correlations may last for more than one night,
and it becomes difficult to decide what value of N to use: should a single mea-
surement at the end of a night be counted as part of the next set of measurement
early the following night? In this study, we use a slightly different technique,
based on a correlation timescale.

The fitting statistic χ2 is usually defined by

χ2 =
N

∑
i

(
vo,i − vm,i

σi

)2

(3.11)

where vo,i is the observed RV at time ti and vm,i is the RV predicted by the model.
The quantity σi is the instrumental uncertainty, and may include the red noise
term above added in quadrature. This definition of χ2 is equivalent (Sivia, 2006)
to the inner product (F−D)TC−1(F−D), where F and D are the model and
observed RV time series expressed as a column vector, and C is a covariance
matrix with elements

Ck,k′ =

{
σ2

i for i = i′

0 otherwise, (3.12)

The covariance matrix is a square matrix, with N diagonal elements representing
the formal uncertainties on the measurements. The non-diagonal elements are
zero. If the measurements are not independent, we need to include a term for
correlated noise in the non-diagonal elements:

Ci,i′ = δi,i′σ
2
i +

M

∑
k=1

σ2
k exp− (ti − ti′)

2

2τ2
k

(3.13)
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Figure 3.1: Instrumental drift over several months (SOPHIE measurements of
XO-1). The solid line represents a circular orbit. An eccentric orbit doesn’t
improve the fit appreciably. Note: we were unable to correct for this drift in a
consistent manner and thus decided against using the XO-1 dataset.
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where the index i represents each RV, and the index k is summed over M terms

representing correlation at M different timescales. The term exp− (ti−ti′ )
2

2τ2
i

is

called a squared exponential stationary covariance kernel. The stationary part
of the name means the covariance matrix does not change during the MCMC
integration. The parameter σk here represents the red noise associated with a
timescale τk.

It is difficult to estimate the values of τk and σk. In principle, we should
assign a prior probability over a large range of values for each parameter, and
marginalise over these nuisance parameters. In practise, RV datasets suffer from
incomplete orbital coverage, sparse sampling, and large uncertainties. Our prior
experience (Pont et al., 2009) suggests that correlations over several hours to
about a day are the most important, so we elect to choose a single correlated
noise term, setting M = 1. The corresponding parameters for this term are
then labelled τr and σr. For datasets where the reduced χ2 for a given model
(circular or eccentric) was larger than unity, we estimated σr by repeating the
MCMC analysis with different values of σr until the best-fitting orbit resulted in
a reduced χ2 of unity for some optimal value of σr. For the correlation timescale,
we used τr = 1.5 d in most cases, as described in more detail in Section 5.2.

3.6 Stellar prior

When we fit the transit light curve for WASP-12, we need a value for the system
scale a/R∗, where a is the semi-major axis and R∗ is the stellar radius and we also
need the scaled planet radius Rp/R∗. Rp/R∗ is constrained by the transit depth,
and a/R∗ is constrained by the transit duration and the ingress duration, and
this constrains the stellar density (Winn, 2010). We want to include all relevant
prior information in this analysis, and stellar models can provide a prior on
the connection between stellar mass, radius and effective temperature Teff, while
spectroscopic analysis can provide a constraint on the effective temperature. For
WASP-12, we use Teff = 6300+200

−100 K from Hebb et al. and we include the stellar
model prior in the following fashion.

Girardi et al. (2002) from the Italian group working in Padova, Italy, assem-
bled a database of stellar models in 2002, providing theoretical isochrones. This
table is available in electronic format online, and Aparicio and Gallart (2004)
interpolated this database in the metallicity and age grid. Pont and Eyer (2004)
resampled this database so that the probability density of models is propor-
tional to the proportion of stars with a given mass and age as seen for a random
population of stars in the Galactic disk. Various assumptions go into this pro-
cedure, such as the initial mass function of the Galaxy, and the uniform age
distribution used. This probability resampled grid was used in the PhD thesis
of Alapini-Odunlade (2010), who sorted the grid by density, and labelled the
entries for stellar density, mass, radius and effective temperature with an inte-
ger index k. In this work, we use the index k for our MCMC jumps, meaning
we sample the stellar prior with the correct probability for stellar density. This
avoids the problem with a simple jump in stellar density space, as that would
assume the density of stars are uniformly distributed — they are not: most stars
in the Galactic disk are low mass, and therefore high density stars. The extent of
the grid is large enough to thoroughly cover the probability space for WASP-12:
M∗ = [0.6, 10]M�, R∗ = [0.6, 455]R� and Teff = [2300, 26000] K. The prior infor-
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mation is then imposed on the MCMC chain by penalising jumps that cause Teff
to fall outside the range allowed by the spectroscopic result by Hebb et al.

3.7 Other priors

As described in Section 3.2, the detection of a secondary eclipse can set a pow-
erful constraint on the e cos ω projection of the eccentricity. We use the model
parameters e cos ω and e sin ω for computational efficiency (Ford, 2006). If we
use e and ω, we are setting the desired flat priors on these parameters. Unfortu-
nately, correlations between the two parameters can cause the MCMC to waste
a lot of time attempting to make unfavourable jumps which are more likely to
get rejected.

Figure 3.2: For correlated parameters, we need to use very small steps to sample
the posterior distribution adequately; otherwise, many steps are rejected. Both
cases lead to an inefficient algorithm.

We therefore set flat priors on e cos ω and e sin ω, but this is something that
we need to be careful about, because it means we have a linear prior ∝ e as ex-
plained by Ford (2006) and more recently by Eastman, Gaudi, and Agol (2013).
In fact, in this study, it simply means that we will overestimate the upper lim-
its on eccentricity for orbits that are consistent with circular, which leads to a
conservative estimate of the upper limits. In the case of the eccentric orbits, the
information contained in the data is so consistently compelling that the final es-
timate of the eccentricity e is independent of the actual prior on the eccentricity.

We also include an a priori constraint for the orbital period P and the mid-
transit time Ttr, which are well constrained by transit photometry. In the case of
WASP-12 where we fit both the RV datasets and the photometry, we omit this
constraint.
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3.8 Merit function

From Sivia (2006), the likelihood function for some data sampled with a Gaus-
sian distribution of errors is given by:

P(D|θ, I) =
exp

[
−1

2(F−D)TC−1(F−D)
]

√
(2π)Ndet(C)

, (3.14)

where D is the radial velocity time series data expressed as a vector, θ is the vec-
tor of model parameters, F is the predicted values from the Keplerian model. The
argument of the exponential is the χ2 described in Section 3.5, which includes a
component for correlated noise. The value returned by the merit function to the
MCMC algorithm is this likelihood function, with which we multiply terms for
the stellar prior in the case of WASP-12 (Section 3.6), the constraint on e cos ω
from secondary eclipse photometry where available and the constraints on the
orbital period P and the mid-transit time Ttr (Section 3.7) from transit photome-
try. This general procedure is common in the literature (e.g. Winn et al., 2006).

3.9 Eccentricity bias

When radial velocity measurements are analysed to produce orbital parameters,
it is common to leave the eccentricity e as a free parameter in the Keplerian orbit
model (e.g. Gillon et al., 2009; Hebb et al., 2009; Rauer et al., 2009). This parame-
ter is then constrained by the radial velocity measurements. Other authors (e.g.
O’Donovan et al., 2007; Shporer et al., 2009) fix the eccentricity e = 0, using the
argument that tidal effects should circularise the orbits of close-in planets. Yet
others (e.g. Collier Cameron et al., 2007; Hellier et al., 2009; West et al., 2009)
fix the eccentricity e = 0 because their radial velocity datasets do not provide
adequate constraints on the parameter.

As pointed out by Lucy and Sweeney (1971) who studied binary stars, any
observational noise in radial velocity measurements will always bias the derived
eccentricity towards a higher value, even for circular orbits. This is because the
eccentricity has a lower bound, and noise can only increase it. These authors
showed that spurious eccentricity detections tended to dominate for e < 0.1 for
a typical precision of the instruments at that time and for typical stellar binary
radial velocity amplitudes. Four decades later, both companion masses and RV
accuracies having changed by about three orders of magnitudes, so the issue
resurfaces now in the field of exoplanets. The effect has been demonstrated for
the exoplanet HD 209458 by Laughlin et al. (2005), where synthetic datasets for
a circular orbit yielded a range of eccentricities consistent with the measured
value of e = 0.014. The F-test suggested by Lucy & Sweeney is useful in this
case, as it allows one to do hypothesis testing on the possibility that the circular
orbit cannot be rejected. Some authors have taken this route (e.g. Anderson et
al., 2011; Enoch et al., 2011). As explained by Anderson et al. (2012), if we use
a non-zero eccentricity when analysing the transit light curve of a planet on a
circular orbit, we can derive wrong estimates for the planet radius. Shen and
Turner (2008) also performed an extensive analysis involving simulated data to
show that the estimation of eccentricities for exoplanets in the literature may be
overestimated in about 10% of cases. Recently, Zakamska, Pan, and Ford (2010)
studied this effect in the Butler et al. (2006) catalog.
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3.10 Model selection

In this study, the eccentricity distribution of the known transiting exoplanets
plays a critical role. It is therefore important that we obtain reliable estimates
of the eccentricities. Since any noise will yield a non-zero estimate for the value
of the eccentricity e, we use Bayesian model selection to evaluate the evidence
discriminating between a circular and eccentric orbit.

It is difficult to establish a prior odds ratio for the two models, so we set the
priors to be equal (even though it is clear that circular orbits are more likely for
close-in planets — see for example Wang and Ford 2011, who discussed planets
discovered with radial velocity). By Bayes’ theorem, the posterior odds ratio for
the eccentric orbit compared to the circular orbit is

Oe,c =
P(eccentric|data)
P(circular|data)

=
P(data|eccentric)
P(data|circular)

P(eccentric)
P(circular)

, (3.15)

and we set the prior odds ratio to unity. Thus, the posterior odds ratio (the first
term on the far RHS) is equal to the global likelihood ratio for the two models,
also called Bayes’ factor. The global likelihood ratio can be worked out from

P(data|Modelj) =
∫

Θj

L(Θj|data)× P(Θj|Modelj)dΘj (3.16)

where Θj represent the vector of parameters for each model j, L(Θj|data) is
the likelihood of the data given model Mj and P(Θj|Modelj) is the joint prior
distribution of the parameters. Assuming the likelihood function is Gaussian
and strongly peaked, we can approximate this integral with a Laplace integral
(Kass and Raftery, 1995), which gives the Bayesian Information Criterion (BIC):

BIC = −2 ln Lmax + k ln N, (3.17)

where N is the number of measurements, k is the number of parameters in
the model used and Lmax is the maximum likelihood obtained for each model.
The maximum likelihood corresponds to the smallest value of χ2 (as given in
Section 3.5) and we obtain it directly from the MCMC for each model. If we
replace Lmax with the expression given by P(D|θ, I) in Equation 3.14 above,

BIC = χ2
min + k ln N + ln

(
(2π)N|C|

)
, (3.18)

where χ2
min is the minimum value of χ2 achieved by the model, N is the number

of measurements, k is the number of parameters in the model, and |C| is the
determinant of the correlation matrix given in Section 3.5 above.

The radial velocity data for a Keplerian orbit involves 6 free parameters: the
period P, a reference time such as the mid-transit time Ttr, a semi-amplitude K,
a mean velocity offset V0, the argument of periastron ω and the eccentricity e
(in practice, we use the two projected compoments e cos ω and e sin ω instead of
e and ω, as explained in Section 3.7). In this study, we use the period P, mid-
transit time Ttr and their corresponding uncertainties as a priori information. We
thus count them as two additional measurements in the calculation of the BIC,
while the number of free parameters in each model (circular or eccentric) is now
decreased by two. In this case, a circular model would have 2 free parameters
(V0 and K), while an eccentric model would have 4 free parameters (V0, K, e, and
ω).
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The term k ln N thus penalises a model with a larger number of parameters
(for example, an eccentric orbit), and we seek the model with smallest BIC. For
each object, we repeated the MCMC analysis using the optimal value for σr for a
circular orbit and an eccentric orbit separately, at τ = 1.5 d (see Section 5.2). We
call these two families. For each family, we performed a fit with a circular model
and an eccentric model. In most cases, the two families agreed on a circular
model (indicated by “C” in Table 5.1) or an eccentric model (indicated by “E”
if e > 0.1 in Table 5.1), indicating this with a smaller BICc or a smaller BICe
respectively. If the two families favoured a circular (or eccentric) orbit, we give
the parameters from the family using an optimal value of σr for the circular (or
eccentric) orbit. In a number of such cases, however, the upper limits on the
orbital eccentricity were larger than e = 0.1. We labelled these eccentricities as
“poorly constrained” (indicated by “P” in Table 5.1). In a few cases, the small
number of measurements or the quality of measurements (e.g. for faint targets,
or low mass planets) meant the two families disagreed: the family using the
optimal value of σr for a circular orbit gave a smaller value of BICc, favouring
the circular orbit and the family using the optimal value of σr for an eccentric
orbit gave a smaller value of BICe, favouring the eccentric orbit. We labelled
these cases “poorly constrained” as well.

Comparison of the BIC with the F-test

The BIC comparison can be related to the F-test if one considers the critical value
F∗ where BICe, the BIC for an eccentric orbit, and BICc, the BIC for a circular
orbit become equal. The level of significance would depend on both k and N.
From Atukeren (2010),

F∗ =
(

N
ke−kc

N − 1
)(N − ke

ke − kc

)
(3.19)

where ke = 6, kc = 4 and N is the number of data points. Thus,

F∗ =
(

N
2
N − 1

)(N − 6
2

)
(3.20)

and the circular hypothesis is favoured if F < F∗, (c.f. BICc < BICe). Following
Lucy and Sweeney (1971), F is calculated from

F =
N − 6

2
χ2

c − χ2
e

χ2
e

(3.21)

and the significance of a given comparison (eccentric versus circular) is proba-
bility of falsely rejecting the null hypothesis (circular orbit), i.e. a Type I error, is
given by

p =

(
1 +

F
β

)−β

(3.22)

where β = 1
2(N− 6). This is the probability of falsely rejecting the circular orbit,

assuming it is true. A small value of p (say, p < 0.05) means we cannot reason-
ably maintain that the orbit is circular, and a large value of p means we cannot
reasonably maintain the orbit is eccentric. Thus, the BIC comparison can be seen
as an F-test with a variable threshold for the p-value: a larger number of mea-
surements can provide stronger evidence, and therefore this must be included
in the model selection procedure (Atukeren, 2010).
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Conclusion

In this chapter, we have looked at the techniques involved in making the obser-
vations used in this study, and the techniques we used in the analysis of this
data. In the next chapter, we look at the analysis in detail, and describe the
interesting objects in this context.
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Chapter 4

Analysis: WASP-12 and WASP-14

In this chapter, we look at the objects WASP-12 and WASP-14. Both are short
period exoplanets, and in 2009, both had been reported to have orbits with small
but significant eccentricities. Our work contributed to show that WASP-12b was
in fact on a circular orbit, and we confirmed the eccentricity of WASP-14b, the
shortest period object with a confirmed and appreciably eccentric orbit. These
results, together with those from Chapter 5 are used in Chapter 6 to show that
the sample of currently known exoplanets is consistent with a history involving
dynamical interactions and tidal effects.

4.1 Short period but eccentric orbits

Transiting planets are an important source of information on the formation,
structure and evolution of exoplanets. Both WASP-12b and WASP-14b are char-
acterized by close-in but apparently eccentric orbits, and therefore represent po-
tentially important systems to constrain the migration, tidal and thermal evolu-
tion of gas giant planets. We combine our radial-velocity data with previously
published data and a realistic treatment of correlated noise to calculate updated
constraints on the orbital eccentricities.

The companion of the 11.7th-magnitude star WASP-12 is a particularly inter-
esting example (Hebb et al., 2009, hereafter H09). It orbits extremely close to its
host star, even by the standards of the so-called “hot Jupiters”, with a period of
1.09 days, corresponding to an orbital distance only 3 times the radius of its host
star. Moreover, WASP-12b has an inflated radius, R ' 1.8 RJ; one of the most
extreme examples of anomalous radii for hot Jupiters. As a result, the planet
fills about half of its Roche lobe (Li et al., 2010).

With such a short orbital distance and large size, a gas giant planet is ex-
pected to undergo complete orbital synchronisation and circularisation on a
short timescale (∼100,000 yrs, using Mazeh, 2008, and assuming Q/k ∼ 105),
much shorter than the age of the system (2 Gyr, H09, or 1.0–2.65 Gyr, Fossati
et al. 2010a).

Indeed, most planets orbiting closer than 0.05 AU are observed to have circu-
lar orbits. However, H09 determined a value of e = 0.049± 0.015 for the orbital
eccentricity of WASP-12b, a 2.8-σ significant departure from circularity (based
upon the Lucy & Sweeny, 1971, test). This would make the planet by far the
subject of the strongest tidal dissipation in any known planetary system — by
a factor of about 400, as compared to WASP-14b. This is because of the short
circularisation timescale and the reportedly large eccentricity, as discussed later.
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Li et al. (2010) studied the case of WASP-12 with that value of eccentricity, and
found a large implied mass loss and dissipation of tidal energy in the planet.

The measured eccentricity is based on fitting a Keplerian orbital motion to
the radial velocity measurements collected by H09 with the SOPHIE spectrome-
ter (Bouchy et al., 2009b; Perruchot et al., 2008) together with transit photometry.
It must be remembered, however, that WASP-12 and WASP-14, are near the faint
end of the capacity of the 1.93-m telescope at OHP, and therefore the measure-
ments are vulnerable to correlated noise.

If a secondary eclipse can be detected with sufficient significance, this pro-
vides a stringent test of the eccentricity (see Section 3.2.1).

López-Morales et al. have measured the secondary eclipse of WASP-12b from
the ground with SPICam on the ARC telescope at Apache Point Observatory in
the z′ band. Their initial results were submitted to arXiv.org as López-Morales
et al. (2009), version 1, but their final version (López-Morales et al., 2010) differs
significantly with respect to the eccentricity. We refer to their version 1 as L09.
Their best-fit the result in L09 paper initially indicated a secondary eclipse with
a significant time lag (e cos ω = 0.0156± 0.0035) compared to the epoch expected
for a circular orbit, with a similar level of significance to H09. Nevertheless, the
presence of residual correlated noise is apparent in the L09 data (see Fig. 4.3), as
expected for ground-based photometry at such a high accuracy — the depth of
the secondary eclipse is only about 0.08±0.02 %.

As a result, the issue remained inconclusive until a space-based measurement
of the secondary eclipse with the Spitzer Space Telescope (Campo et al., 2011,
hereafter C10) unambiguously showed that the timing of the secondary eclipse
was consistent with a circular orbit. This result suggested that the L09 time
lag was probably due to instrumental systematics, and that the orbit of WASP-
12b was probably circular, since a fine-tuned alignment would be required to
reconcile the Spitzer result with the H09 value of the eccentricity. Following
this, (López-Morales et al., 2010) have reanalysed their data and revised their
estimate to e cos ω = 0.016+0.011

−0.009.
After WASP-12b, WASP-14b is a transiting planet with the second-shortest

period (P=2.2 days), having a reported non-circular orbit (Joshi et al., 2009,
e = 0.091± 0.003). This makes it another test-case for tidal evolution of close-
in gas giants. If its orbital eccentricity is indeed near 0.1, then this non-zero
but relatively low value — in the context of the distribution of giant exoplanet
eccentricities — makes it likely that this planet has undergone some degree of
orbital evolution, and is still subject to strong tidal forces at present. Therefore
its presence may be useful to constrain the tidal synchronisation timescale. It
is also an important object when studying the issue of the anomalous radius of
hot Jupiters because of its inflated size, with Rp = 1.28 RJ. WASP-14b occupies a
distinctive position in the relevant parameter space: irradiation, orbital distance,
eccentricity and size.

4.2 New observations for WASP-12 and WASP-14

We obtained 29 radial-velocity measurements for WASP-12 (16 during a sin-
gle night, and 13 at various values of orbital phase, see Table A.1) and 11 for
WASP-14 (see Table A.2), using the SOPHIE spectrograph installed on the 1.93-m
telescope at OHP (France). The observations were gathered between 17 January
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2009 and 27 March 2010. The 16 in-transit measurements for WASP-12 were
initially obtained with the objective of constraining the spin-orbit angle via the
Rossiter-McLaughlin effect. The typical exposure times were 1098 s and 552 s
for WASP-12 and WASP-14 respectively. 1

4.3 The orbital eccentricity of WASP-12b

4.3.1 Correlated noise in RV and photometric data

Figure 4.1 shows our radial-velocity data for WASP-12, together with a circular
orbital solution (solid line, residuals shown in the lower panel) and the eccentric-
orbit fit of H09 (dotted). Our radial velocity data are shown together with the
H09 data in Figure 4.2. As the Figure shows, the radial-velocity signal cannot be
adequately modelled by a periodic orbital signal affected by random noise. The
presence of a correlated non-periodic component is especially obvious during
the in-transit sequence. This could be due to instrumental noise, stellar variabil-
ity or an unaccounted planetary companion in the system, all of which would
behave in the same way as far as the orbital fit is concerned. Given our expe-
rience with SOPHIE in High Efficiency mode (see Figure 3.1), we consider the
first cause as likely.

We use the transit lightcurve from H09 and the secondary eclipse lightcurves
from L09 and C10 with our own radial velocity measurements to perform a
global fit with a Keplerian orbit, and we account for the effect of red noise by
modifying the uncertainties on the data as explained in Section 3.5.

For the H09 photometric transit, we estimate σr = 0.0005 (out of transit flux
normalised to 1.0) and N = 20. Similarly, for the L09 data, we set σr = 0.0002
(out of transit flux normalised to 1.0) and N = 9. For the C10 data, we set
σr = 0.0005 (out of transit flux normalised to 1.0) and N = 9. For our own radial
velocity data, we estimate the red noise parameter to be 9 m s−1, and N = 16
during the transit and N = 1 outside the transit. The former measurements
are taken on the same night, so N = 16 guards against the possibility these
points were shifted together due to instrumental systematics or other effects,
while the other points are taken in different nights so that the uncertainties are
not expected to be correlated.

4.3.2 Analysis

We use the MCMC procedure described in Section 3.4. We vary the period
P, mid-transit time Ttr, system velocity v0, eccentricity components e cos ω and
e sin ω, semi-amplitude K, impact parameter b, scaled planetary radius Rp/Rs,
the stellar mass Ms, stellar radius Rs and effective temperature Teff of the star.
The scaled semi-major axis a/Rs is calculated from the assumption of a Keple-
rian orbit using the period P. We also include a separate term for the depth of
each secondary eclipse data set, because the depth varies with wavelength.

We set the quadratic limb darkening parameters for the H09 transit to ua =
0.1274 and ub = 0.3735 according to Claret (2004a). We ran the MCMC code for
800,000 steps, and found 18% of the steps were accepted.

1These measurements were not made by the author, but by the co-authors (see Author’s
declaration).
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Figure 4.1: Plot showing our new SOPHIE radial velocity data for WASP-12,
overplotted with a circular orbit (solid line) and an orbit with the orbital param-
eters given in H09. The residuals relative to the circular orbit are shown in the
bottom panel.
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Figure 4.2: Plot showing all the radial velocity data for WASP-12, with our new
SOPHIE data plotted with square symbols and the H09 data plotted with dots.
Residuals for an orbit with the H09 value of eccentricity, e = 0.049, are shown in
the bottom panel.
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Parameter H09 New SOPHIE RV and photometry
Centre-of-mass velocity V0 [km s−1] 19.085±0.002 19.062±0.014
Orbital eccentricity e 0.049±0.015 0.018+0.024

−0.014
Argument of periastron ω [o] −74+13

−10 0 (unconstrained)
e cos ω 0.0035±0.0034
e sin ω 0.0177±0.028
Velocity semi-amplitude K [m s−1] 226±4 238±11

Table 4.1: System parameters for WASP-12. Left: H09. Right: Our SOPHIE
radial velocity data, H09 transit photometry data and L09 and C10 secondary
eclipse photometry data. Median values are quoted as well as 68.3% confidence
limits.

4.3.3 Eccentricity

The best solution with our radial velocity data and the constrains from the transit
and secondary eclipse light curves gives e = 0.018+0.024

−0.014. The value of χ2 for the
circular orbit is χ2

c = 33.60 and the value for an eccentric orbit is χ2
e = 32.19.

When these are entered into Equation 3.18 using k = 4 (P, Ttr, V0,K ) and 6 (i.e.
including e sin ω and e cos ω) respectively, and M = 29, we obtain the BICs as
BICc = 47.07 and BICe = 52.40. This means that the circular orbit is preferred,
because the “gain” in minimising χ2 is offset by the penalty for including two
additional parameters e and ω and that according to the data, we do not have
the evidence to reasonably maintain that the orbit is eccentric. Using the Lucy
& Sweeny test, the significance of the eccentricity is p = 0.61, corresponding to
a 0.51-σ result.

Our results for the orbital parameters of the WASP-12 system are shown in
Table 4.1, with the results of the analysis of our new SOPHIE RV data used in
combination with the H09 transit lightcurve, and the L09 and C10 secondary
eclipse lightcurves, compared to the H09 parameters.

The H09 radial-velocity data forces the solution towards a higher eccentric-
ity, significant at the ∼3σ level, but Figure ?? suggests that this is probably an
artefact due to an excursion of the zero-point between different nights.

It is interesting to compare the situation in radial velocity with the similar
sequence of events regarding the secondary eclipse photometric data. Figure 4.3
(left panel) shows the secondary eclipse data for both L09 (top two panels) and
C10 (bottom two panels). The solid line shows a circular orbit, from a global
fit assuming e = 0. The dotted line represents the L09 solution (eccentricity
e = 0.057, and the residuals are plotted for both datasets for the L09 (eccentric)
solution. This shows that the L09 eccentric solution is somewhat plausible for
the L09 data but definitely not for the C10 data. Figure 4.3 (right panel) shows
the same data, and the solid line is still a circular orbit e = 0. The residuals for
both datasets are now plotted for the circular solution e = 0. It is clear that the
circular solution fits the C10 dataset better and remains reasonable for the L09
dataset. This could be explained if the effects of instrumental systematics had
been underestimated in the original L09.

4.3.4 Rossiter-McLaughlin effect

Although our data cover a complete spectroscopic transit, and thus potentially
constrains the projected spin-orbit angle of the WASP-12 system through the
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Figure 4.3: Secondary eclipse flux for WASP-12. Both left and right: The top two
panels show L09 flux and residuals while the bottom two panels show C10 flux
and residuals. As in Figure 1, solid lines represent the secondary eclipse predic-
tion for a circular orbit (e = 0), and dotted lines represent the secondary eclipse
prediction for an eccentric orbit (orbital eccentricity from L09 et al. e = 0.057).
Left: Residuals are plotted for the L09 solution of e = 0.057, which is clearly
inappropriate for the C10 secondary eclipse (bottom).
Right: Residuals are plotted for the circular orbit, which is clearly more appro-
priate for the C10 secondary eclipse (bottom).

Rossiter-McLaughlin effect, the constraint is weak once the possible presence
of non-random noise is taken into account. The distribution of the spin-orbit
angle from our MCMC exploration spans a wide interval extending from a pro-
grade orbit to a projected spin-orbit angle larger than 90 degrees, as shown in
Figure 4.4. The data marginally favours a prograde rather than retrograde or-
bit, with the odds, i.e. the ratio of prograde to retrograde orbits, at 1.05. We
therefore allow λ to be free in our calculations for eccentricity. This does not
appreciably alter the orbital parameters (for example the derived eccentricity in
the case of using a free parameter λ is e = 0.018+0.024

−0.014, while fixing λ = 0 yields
e = 0.017+0.015

−0.010).

4.3.5 Secondary companion

We also looked for possible evidence for a second planetary companion in the
system by examining the residuals as function of time and include a linear trend
in the fitting process:

v(t) = vkeplerian(t) + γ̇(t− t0), (4.1)

We set t0 = 2454900 to allow the MCMC to explore values of γ̇ and we reran
the MCMC twice: once for a circular orbit and once for an eccentric orbit. For
the circular orbit, we found that the limits on the gradient are γ̇ = 0.052± 0.054
m s−1day−1 and χ2 = 27.50, giving BIClinear trend,circular = 44.34, using k = 5 to
penalise this circular model for the extra term. For the eccentric orbit, we found
that the limits on the gradient are γ̇ = 0.050± 0.054 m s−1day−1 and χ2 = 27.39,
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Figure 4.4: Histogram of the projected spin-orbit angle λ for WASP-12. This
shows that the spin-orbit angle is not very well constrained, although it favours
a prograde orbit.

giving BIClinear trend,eccentric = 50.96, using k = 7 to penalise this eccentric model
for the extra term. This would appear to favour the circular model with a trend
of γ̇ = 0.052 ± 0.054 m s−1day−1 , but since this result is consistent with no
trend, and we know from experience that it is possible to obtain this magnitude
of a trend (∼20m s−1over 400 days) with SOPHIE, we do not consider this trend
to be significant.

4.3.6 Light travel time

For completeness, we include a discussion of the light travel time across the sys-
tem. The negligible delay in the secondary eclipse as detected by C10, (0.0012±
0.0006)P would be significant if the light travel time across the system (in re-
ality, only ∼ 10 seconds) were much longer than the measured delay (∼ 110
seconds) and the uncertainties ∼ 60 seconds. In that case, the light travel time
would induce a delay in the secondary eclipse detection, and a measurement
showing a negligible delay would suggest an eccentric orbit was giving an offset
that exactly cancelled the light travel time. This is not supported here, however,
because the light travel time is smaller than both the shift and the uncertainty in
the timing of the secondary eclipse according to the Spitzer measurements.

4.3.7 Apsidal precession

C10 suggested that, for an eccentric orbit, the difference between the secondary
eclipse phase in C10 and L09 could be due to apsidal precession. This would
require that the argument of periastron had changed from ω = −74+13

−10 in Feb
2008 (H09) to ω ∼ −90o in Oct 2008 (C10). In terms of the projected component
of the eccentricity, e cos ω, one obtains e cos ω = 0.014± 0.004 in Feb 2008 using
the H09 orbital parameters, C10 found e cos ω = 0.0019± 0.0007 in Oct 2008,
L09 found e cos ω = 0.0156± 0.0035 in Feb-Oct 2009, and our result is e cos ω =
0.0037± 0.0035 for January 2009 to March 2010. When considered in the order
that observations were made, these values do not support the hypothesis of
apsidal precession.
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4.4 The orbital eccentricity of WASP-14b

Figure 4.5 shows our new SOPHIE data and the existing FIES and SOPHIE data
from Joshi et al. (2009) along with with the best-fit orbit and a circular orbit. We
adopt the prior distribution on the period P from photometric data by Johnson
et al. (2009) and that on the mid-transit time Ttr from Joshi et al. (2009). We work
out the orbital parameters using both our radial velocity data and that published
in the discovery paper.
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Figure 4.5: The new SOPHIE radial velocity data for WASP-14 are shown with
squares, while the Joshi et al. (2009) data from FIES and SOPHIE are shown
with points and crosses respectively. The solid line is the best solution with
e = 0.0877, and the dotted line is a circular orbit. The middle panel shows
residuals plotted for the best-fit orbit e=0.0877, while the bottom panel shows
residuals for a circular orbit (using the parameters of Joshi et al., 2009, for the
spectroscopic transit).
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Parameter Joshi et al This paper
Centre-of-mass velocity V0[km s−1] −4.985±0.003
Orbital eccentricity e 0.091±0.003 0.0877±0.0030
Argument of periastron ω [o] −106.6±0.7 −107±1
e cos ω -0.026±0.002
e sin ω -0.082±0.003
Semi-amplitude K [m s−1] 993±3 991±3

Table 4.2: System parameters for WASP-14. Left: Joshi et al. Right: Our results.
Median values are quoted as well as 68.3% confidence limits.

We include the effect of red noise as explained in Section 3.5, adding 8 m s−1

of correlated uncertainties to each single datapoint and
√

N × 8 m s−1 to each
point in each group where N is the number of points were taken on the same
night (determined from the timestamps).

We ran the MCMC code for 800,000 steps, and found 16% of the steps were
accepted. Our results are shown in Table 4.2. Our best-fit value for the orbital
eccentricity is e = 0.0877± 0.0030, in good agreement with the value found by
Joshi et al. (2009) (e = 0.091± 0.003).

We examined the possibility of a scenario similar to that of WASP-12b, with
correlated noise causing a spurious eccentricity detection. The lower panel of
Figure 4.5 shows the residuals around the best-fit circular orbit (given by a
MCMC run with e = 0 fixed). We find that, in contrast to the case of WASP-12b,
the differences between observation and model assuming a circular solution are
periodic and regular, which would not be the case for correlated noise. The value
of χ2 for a circular orbit is χ2

c = 865 and that for an eccentric orbit is χ2
e = 29.3.

When these are entered into Equation 3.18 using k = 3 (two values of V0, one
for our data with SOPHIE and one for the data from Joshi et al., 2009, using
SOPHIE, and the semi amplitude K) and k = 5 (two additional parameters, the
eccentricity e and the argument of periastron ω) respectively, and M = 38 (we
used both the Joshi, 2009 SOPHIE data and our own RV), we obtain the BICs as
BICc = 876 and BICe = 47.5. The circular orbit is thus overwhelmingly rejected.
Using the Lucy & Sweeny test (Section 3.10), the significance is p = 5.53× 10−25,
corresponding to a 10.3-σ detection.

4.4.1 Secondary companion

In the same manner as for WASP-12b, we looked for possible evidence for a sec-
ond planetary companion in the system by examining the residuals as function
of time, by including a linear trend in the fitting process according to Equa-
tion 4.1 and we reran the MCMC for both a circular and an eccentric orbit.
This time we set t0 = 2454460 HJD. For the circular orbit, we found that the
limits on the gradient are γ̇ = 0.070+0.054

−0.042 m s−1day−1 and χ2 = 852, giving
BIClinear trend,circular = 867, using k = 4 to penalise this circular model for the
extra term. For the eccentric orbit, we found that the limits on the gradient are
γ̇ = 0.078+0.038

−0.046 m s−1day−1 and χ2 = 27.5, giving BIClinear trend,eccentric = 49.3,
using k = 6 to penalise this eccentric orbit model for the extra term. The eccen-
tric orbit without any linear trend is thus favoured, because it had the lowest
BIC.
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4.5 Discussion

From Mazeh (2008), we can work out the circularisation timescale for a system,
using

τcirc =
P

21π

(
Qp

kp

)(
Mp

Ms

)(
a
rp

)5

, (4.2)

which yields about 105 yr for WASP-12b, and 5×107 yr for WASP-14b if we
assume Qp/kp = 105 from Goldreich and Soter (1966). This should be compared
to the ages of the systems, 2.4×109 (H09) and 0.5−1×109 Joshi et al. (2009) yr
respectively. The circularisation timescale (e.g. Jackson, Greenberg, and Barnes,
2008a; Lecar, Wheeler, and McKee, 1976) is given by

1
e

de
dt

= − 1
τcirc

, (4.3)

up to a factor of 2. We can therefore estimate that WASP-12b’s orbit should be
subject to tidal effects at a factor of ∼400 larger than WASP-14b if it really had
an eccentric orbit.

Our results, on the other hand, confirm the strong indications of C10 that all
the available data for WASP-12b is compatible with a circular orbit, and that the
eccentricity of the best-fit orbit to the radial velocity of H09 and subsequently the
secondary eclipse data of L09 may be due to correlated noise. Not accounting for
this noise in the statistical analysis could lead to an apparent ∼ 3σ significance
for the rejection of the null hypothesis (e = 0), but the new data strongly suggest
that the orbit of WASP-12b is indeed circular.

A circular orbit for WASP-12b removes the need for models to explain the
survival of such an eccentricity at this very short period, in face of what would
have been extremely strong tidal effects. In particular, the scenario of Li et al.
(2010), using the eccentricity from H09 to infer values of mass loss and tidal
dissipation for WASP-12b, loses its principal empirical support.

The eccentricity of WASP-14b, in contrast, is confirmed by our measurements.
This illustrates the capacity of SOPHIE to measure accurate values of orbital
eccentricity for transiting planets, given a sufficient number of measurements
well distributed in phase and spread over different nights (the measurements
for WASP-12 having most weight towards an eccentric solution were gathered
during only two different nights).

Conclusion

In this chapter, we have looked at the observational evidence for the orbital
eccentricities of WASP-12b and WASP-14b. Even though the orbit of WASP-12b
initially appeared to be eccentric, newer data showed the original detection was
spurious. In contrast, we confirmed the orbital eccentricity of WASP-14b. In the
next chapter, we expand our study, to look at a larger set of transiting exoplanets.
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Chapter 5

Analysis: Known Transiting Objects

In the previous chapter, we saw how correlated noise in RV measurements can
cause spurious eccentricity detections, using WASP-12b as the canonical exam-
ple. The spurious detection of an eccentricity for WASP-12b suggested there
could be more transiting hot Jupiters for which the eccentricity has been over-
estimated in the literature, due to limited datasets. In this chapter, we expand
our sample, and add new measurements for some objects. This allows us to
obtain a global view of the transiting exoplanet sample, and put constraints on
the eccentricities.

5.1 Larger sample & new data

Given the rapid rate of announcement of new transiting exoplanets, we had to
stop the clock somewhere, and we picked the 1st of July 2010. We selected
only objects that had been reported in peer-reviewed journals or on the online
preprint archive ArXiV.org. Moreover, we selected systems with well measured
parameters (planetary radius Rp and mass Mp to within 10%) and excluded faint
objects (V > 15). At that time, 64 such systems were known. In Chapter 4, we
investigated the orbits of WASP-12b and WASP-14b, as described in the paper by
Husnoo et al. (2011). In this chapter, we discuss the whole sample, as described
in Pont et al. (2011) and Husnoo et al. (2012).

We carried out a literature survey and collected radial velocity measurements
for 54 transiting planets, as well as other relevant data such as the orbital periods
and the time of mid-transit. For the cases of CoRoT-1, CoRoT-2 and GJ-436, we
also used the secondary eclipse constraint on the eccentricity component e cos ω
from Alonso et al. (2009a), Alonso et al. (2009b) and Deming et al. (2007), re-
spectively. In addition to the cases of WASP-12 and WASP-14, we used new
measurements for 10 of these 54 systems: 73 new measurements for 6 objects
in the Southern hemisphere using the HARPS spectrograph (CoRoT-1, CoRoT-3,
WASP-2, WASP-4, WASP-5 and WASP-7 — see Section 3.1.3 and Tables A.3, A.4,
A.5, A.6, A.7 and A.8), and 45 new measurements for 4 objects in the Northern
Hemisphere using the SOPHIE spectrograph (HAT-P-4, HAT-P-7, TrES-2 and
XO-2 — see Section 3.1.3 and Tables A.9, A.10, A.11 and A.12)1. We reanalyse
the existing radial velocity data for those 54 transiting systems (including the
additional radial velocity measurements for 10 systems described above), and

1These measurements were not made by the author, but by the co-authors (see Author’s
declaration).
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include 10 systems without further reanalysis of orbital ephemeris (CoRoT-10,
HAT-P-2, HAT-P-13, HAT-P-15, HD 17156, HD 80606, HD 189733, HD 209458,
Kepler-5, XO-3). These systems, and the updated estimates of their orbital ec-
centricities are listed in Table 5.1.

In Section 5.2, we describe our procedure for estimating the correlation timescale
of the red noise in the radial velocity data. In Section 5.3, we describe the planets
for which we do not consider the evidence for an orbital eccentricity compelling,
despite previous evidence of a departure from circularity (e > 1σ from zero),
followed by Section 5.4, where we describe the planets for which we consider
the orbital eccentricity to be either so small as to be undetectable or compati-
ble with zero. In Section 5.5 we describe planets that can be safely considered
to be on eccentric orbits and finally, in Section 5.6, we describe the planets for
which we consider the orbital eccentricity to be poorly constrained (as described
in Section 3.10). In Section 5.7, we include a further 16 systems, which had been
discovered by the time the paper was submitted. Since the original publications,
yet more systems have been reported, and we include another 14 objects.

5.2 Estimating the correlation timescale

As described in Section 3.5, we use a simplified correlation matrix based on two
parameters to describe the correlation timescale τ and amplitude σr. There is
a degeneracy between σr and τ for the time sampling typical of our RV data:
if we assume a long timescale compared to the interval of time between the
measurements, we are asserting that we have a reason to believe that several
measurements may have been systematically offset in the same direction. A
measurement that occurs within that timescale but is offset to a very different
extent from nearby measurements (e.g. if the correlation timescale τ has been
overestimated) will require a larger value of σr for the dataset as a whole to yield
a reduced χ2 of unity.

To estimate τ, we looked at several datasets for each of the instruments
HARPS, HIRES and SOPHIE. We repeated the analysis in Section 3.4 using val-
ues of τ in the range 0.1–5 d, to check for weather-related correlations. To see
the effects of choosing between an eccentric orbit or a circular orbit on our esti-
mation of τ, we carried each analysis twice, by adjusting σr (see Section 3.5) to
obtain a reduced χ2 of unity (within 0.5%) for each orbital model (circular and
eccentric). We plotted the optimal values of σr against τ for several objects using
data obtained from different instruments separately, as shown in Figure 5.1. For
WASP-2, we used our new HARPS measurements (Table A.5) as well as SOPHIE
measurements from Collier Cameron et al. (2007). For WASP-4 and WASP-5, we
used our new HARPS measurements (Tables A.6 and A.7), and for HAT-P-7, we
used our new SOPHIE measurements (Table A.10) as well as HIRES measure-
ments from Winn et al. (2009a). We found that for those datasets and objects
where the orbital elements were well-constrained the plot showed a gentle in-
crease in σr with τ, for τ ≤ 1.5d, then increased much faster for these datasets
at a timescale of τ > 1.5 d. For objects that have been observed with multiple
instruments, this characteristic timescale is independent, both of the instrument
used or the assumption about the eccentricity (i.e. free eccentricity or e fixed at
zero), suggesting that the correlated noise is probably related to weather condi-
tions. We therefore assumed a correlation timescale of 1.5 d in the rest of this
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Name Eccentricity Eccentricity 95% limit E Mp(Mj)
(literature) (this work) (this work)

CoRoT-1b – 0.006±0.012 (<0.042) C 1.06±0.14
CoRoT-2b – 0.036±0.033 (<0.10) P 3.14±0.17
CoRoT-3b 0.008+0.015

−0.005 0.012±0.01 (<0.039) C 21.61±1.2
CoRoT-4b 0± 0.1 0.27±0.15 (<0.48) P 0.659±0.079
CoRoT-5b 0.09+0.09

−0.04 0.086±0.07 (<0.26) P 0.488±0.032
CoRoT-6b < 0.1 0.18±0.12 (<0.41) P 2.92±0.30
CoRoT-9b 0.11±0.04 0.11±0.039 (<0.20) E 0.839±0.070
CoRoT-10b 0.53±0.04 0.53±0.04 – E 2.75±0.16
GJ-436b 0.150±0.012 0.153±0.017 – E 0.069±0.006
GJ-1214b < 0.27 (95%) 0.12±0.09 (<0.34) P 0.020±0.003
HAT-P-1b < 0.067 (99%) 0.048±0.021 (<0.087) P 0.514±0.038
HAT-P-2b 0.517±0.003 0.517±0.003 – E 8.76±0.45
HAT-P-3b – 0.1±0.05 (<0.20) P 0.58±0.17
HAT-P-4b – 0.063±0.028 (<0.107) P 0.677±0.049
HAT-P-5b – 0.053±0.061 (<0.24) P 1.09±0.11
HAT-P-6b – 0.047±0.017 (<0.078) P 1.031±0.053
HAT-P-7b < 0.039 (99%) 0.014±0.01 (<0.037) C 1.775±0.070
HAT-P-8b – 0.011±0.019 (<0.064) C 1.340±0.051
HAT-P-9b – 0.157±0.099 (<0.40) P 0.767±0.10
HAT-P-11b 0.198±0.046 0.28±0.32 (<0.80) P 0.055±0.022
HAT-P-12b – 0.071±0.053 (<0.22) P 0.187±0.033
HAT-P-13b 0.014+0.005

−0.004 0.014±0.005 (<0.022) C 0.855±0.046
HAT-P-14b 0.107±0.013 0.11±0.04 (<0.18) P 2.23±0.12
HAT-P-15b 0.190±0.019 0.19±0.019 – E 1.949±0.077
HAT-P-16b 0.036±0.004 0.034±0.003 (<0.039) ES 4.20±0.11
HD17156b 0.677±0.003 0.675±0.004 – E 3.223±0.087
HD80606b 0.934±0.001 0.933±0.001 – E 3.99±0.33
HD149026b – 0.121±0.053 (<0.21) P 0.354±0.031
HD189733b 0.004+0.003

−0.002 0.004±0.003 (<0.0080) C 1.139±0.035
HD209458b 0.014±0.009 0.014±0.009 (<0.042) C 0.677±0.033
Kepler-4b 0.25+0.11

−0.12 (< 0.43) 0.25±0.12 (<0.43) P 0.077±0.028
Kepler-5b 0.034+0.029

−0.018 (< 0.086) 0.034±0.029 (<0.086) C 2.120±0.079
Kepler-6b 0.056+0.044

−0.028 (< 0.13) 0.057±0.026 (<0.12) P 0.659±0.038
Kepler-7b 0.102+0.104

−0.047 (< 0.31) 0.065±0.045 (<0.19) P 0.439±0.044
Kepler-8b 0.35+0.15

−0.11 (< 0.59) 0.011±0.24 (<0.39) P 0.57±0.11
TrES-1b – 0.019±0.054 (<0.21) P 0.757±0.061
TrES-2b – 0.023±0.014 (<0.051) C 1.195±0.063
TrES-3b – 0.066±0.048 (<0.16) P 1.86±0.12
TrES-4b – 0.21±0.21 (<0.66) P 0.93±0.17
WASP-1b – 0.19±0.22 (<0.65) P 0.89±0.15
WASP-2b – 0.027±0.023 (<0.072) C 0.852±0.080
WASP-3b – 0.009±0.013 (<0.048) C 1.99±0.13
WASP-4b – 0.005±0.003 (<0.011) C 1.205±0.044
WASP-5b 0.038+0.026

−0.018 0.012±0.007 (<0.026) C 1.571±0.063
WASP-6b 0.054+0.018

−0.015 0.041±0.019 (<0.075) C 0.480±0.038
WASP-7b – 0.074±0.063 (<0.23) P 1.07±0.16
WASP-10b 0.057+0.014

−0.004 0.052±0.031 (<0.11) P 3.15±0.12
WASP-11b – 0.091±0.054 (<0.21) P 0.470±0.035
WASP-12b 0.049± 0.015 0.018±0.018 (<0.05) C 1.48±0.14
WASP-13b – 0.14±0.1 (<0.32) P 0.458±0.064
WASP-14b 0.091±0.004 0.088±0.003 (<0.090) ES 7.26±0.59
WASP-15b – 0.056±0.048 (<0.17) P 0.548±0.059
WASP-16b – 0.009±0.012 (<0.047) C 0.846±0.072
WASP-17b 0.129+0.106

−0.068 0.121±0.093 (<0.32) P 0.487±0.062
WASP-18b 0.009± 0.001 0.007±0.005 (<0.018) C 10.16±0.87
WASP-19b 0.02±0.01 0.011±0.013 (<0.047) C 1.15±0.10
WASP-21b – 0.048±0.024 (<0.11) P 0.308±0.018
WASP-22b 0.023± 0.012 0.022±0.016 (<0.057) C 0.56±0.13
WASP-26b – 0.033±0.025 (<0.086) C 1.018±0.034

Table 5.1: (Continued on the next page.)
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Name Eccentricity Eccentricity 95% limit E Mp(Mj)
(literature) (this work) (this work)

XO-1b – 0.042±0.088 (<0.30) P 0.911±0.088
XO-2b – 0.064±0.041 (<0.14) P 0.652±0.032
XO-3b 0.287±0.005 0.287±0.005 – E 11.81±0.53
XO-4b – 0.28±0.15 (<0.50) P 1.56±0.30
XO-5b – 0.01±0.01 (<0.036) C 1.065±0.036

Table 5.1: Table showing the objects which we considered in this study. We have
included the fifth column to show if the object is on a circular orbit (“C”, ie
circular according to the BIC test and 95% limit on e is less that 0.1), “E”, for
objects that are on eccentric orbits (either determined to be eccentric using the
BIC test, or the orbit is clearly eccentric from the radial velocity plot), or “P”, for
objects which we fail to place any useful constraints on the eccentricity (ie the
95% limit on e is larger than 0.1), or it is unclear from model selection whether
the orbit is circular or eccentric.

study, unless otherwise noted. This means that we are accounting for the red
noise in the same-night measurements, and for measurements that are taken fur-
ther apart in time, this procedure reduces to the more familiar “jitter” term. The
value of σr inferred at τ = 1.5 d in some cases varies by a few percent depend-
ing on the model chosen, i.e. eccentric or circular, and varies across datasets, as
discussed later.

We also investigated the effects of varying τ on our final results. For the
same systems discussed above, we plotted the 95% upper limit on the eccentric-
ity as obtained from each dataset separately. The results are shown in Figure 5.2,
where it is clear that the choice of τ has no effect on the final result for τ ≥ 1.5
d. The only exception is WASP-2 (HARPS), where we only have 8 measure-
ments and the phase coverage is not as complete as for the other objects (see
Figure 5.10). Similarly, the derived parameters V0 and K did not vary apprecia-
bly with τ.

5.3 Orbits that no longer qualify as eccentric

In a number of cases in the past, the derived eccentricity from an MCMC analysis
deviated from zero by more than 1σ, for example CoRoT-5b, GJ436b, WASP-
5b, WASP-6b, WASP-10b, WASP-12b, WASP-14b, WASP-17b and WASP-18b. In
this Section, we discuss the cases of 7 planets, CoRoT-5b, WASP-6b, WASP-10b,
WASP-12b, WASP-17b, WASP-18b and WASP-5b, that are shown to have orbital
eccentricities that are compatible with zero.

CoRoT-5
CoRoT-5b is a 0.46 Mj planet on a 4.03 day orbit around a F9 star (V=14.0), first
reported by Rauer et al. (2009). Using 6 SOPHIE measurements (one of which is
during the spectroscopic transit, which we ignore in this study) and 13 HARPS
measurements, the authors derived a value of eccentricity e = 0.09+0.09

−0.04. In
our study, we used the formal uncertainties quoted with the data without any
additional noise treatment, since they resulted in a reduced χ2 less than unity
for both an eccentric and a circular orbit. We imposed the prior information
from photometry P = 4.0378962(19) and Ttr = 2454400.19885(2) from the Rauer
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Figure 5.1: Plot showing the degeneracy between σr and τ for objects where
the orbital parameters are well constrained (see Section 3.5) because a suffi-
cient number of radial velocity measurements is available and provides suffi-
cient phase coverage. The object being studied is shown in the title for each
panel, and the instrument used for the measurements are shown in parenthesis.
As can be seen on each plot, the optimal σr that gives a reduced χ2 of unity for
each dataset increases slowly with τ for τ < 1.5 d, but increases faster after 1.5
d. This hints that the systematic effects occur on a timescale of 1.5 d, and could
be related to the weather. Note the SOPHIE data for WASP-2 did not provide
full phase coverage — the solution did not converge for an eccentric model and
the knee at τ ∼ 1.5 d is less pronounced.
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Figure 5.2: Plot showing the effect of varying τ on the 95% upper limit on
the derived eccentricity for WASP-2, HAT-P-7, WASP-4 and WASP-5. Except
for WASP-2, where the phase coverage of the HARPS data is incomplete (see
Figure 5.10), varying τ has no effect on the 95% upper limit of the derived
eccentricity for timescales of a few days, τ > 1.5 d. Note: each line on this
plot is made a single dataset.
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et al. (2009) and obtained a value of χ2
c = 15.97 for the circular orbit and a value

of χ2
e = 13.50 for the eccentric orbit (e = 0.086+0.086

−0.054, e < 0.26). Using N = 20,
k = 3 and k = 5 for the circular (two datasets, each with one V0 and a single K)
and eccentric orbits respectively, we obtained BICc = 151.05 and BICe = 154.57.
A smaller value of BICc means the circular orbit cannot be excluded.

WASP-6
WASP-6b is a 0.50 Mj planet on a 3.36 day orbit around a G8 star (V=11.9),
first reported by Gillon et al. (2009). Using 35 CORALIE measurements and
44 HARPS measurements (38 of which occur near or during a spectroscopic
transit, which we ignore in this study), the authors derived a value of eccentricity
e = 0.054+0.018

−0.015. In our study, we used the 35 CORALIE measurements and
the 6 HARPS measurements that were not taken in the single night where the
spectroscopic transit was observed. We used σr = 0 m s−1 for CORALIE (the
data produces a reduced χ2 = 0.89 when fitted with a circular orbit, indicating
overfitting) but for HARPS we used τ = 1.5 d and σr = 4.15 m s−1 to obtain
a reduced χ2 of unity for the circular orbit. We obtained a value of χ2

c = 38.09
for the circular orbit and a value of χ2

e = 33.58 for the eccentric orbit (e =
0.041 ± 0.019, e < 0.075). Using N = 43 (41 RVs and two constraints from
photometry), k = 3 and k = 5 for the circular (two datasets, each with one
V0 and a single K) and eccentric orbits respectively, we obtained BICc = 333.25
and BICe = 336.27. We repeated the calculations, using σr = 0 for CORALIE
(the data produces a reduced χ2 = 0.85 when fitted with an eccentric orbit,
indicating overfitting) but for HARPS we used τ = 1.5 d and σr = 3.59 m s−1

to obtain a reduced χ2 of unity for the eccentric orbit. We obtained a value of
χ2

c = 39.20 for the circular orbit and a value of χ2
e = 34.47 for the eccentric orbit

(e = 0.043± 0.019, e < 0.075). Using N = 43, k = 3 and k = 5 for the circular
and eccentric orbits respectively, we obtained BICc = 333.60 and BICe = 336.39.
We therefore find that the circular orbital solution cannot be excluded, but the
possibility that e > 0.1 is rejected.

WASP-10
WASP-10b is a 2.96 Mj planet on a 3.09 day orbit around a K5 star (V=12.7), first
reported by Christian et al. (2009). Using 7 SOPHIE measurements and 7 FIES
measurements, the authors derived a value of eccentricity e = 0.059+0.014

−0.004. The
FIES data yielded a reduced χ2 less than unity with both eccentric and circular
orbits, indicating overfitting, so we set σr = 0 m s−1.

For the SOPHIE data, used τ = 1.5 d, σr = 54.5 m s−1 to obtain a re-
duced χ2 of unity for the circular orbit. We reanalysed all the radial veloc-
ity measurements, and applied the prior from photometry P = 3.0927636(200)
and Ttr = 2454357.8581(4) from Christian et al. (2009). We obtained a value of
χ2

c = 13.49 for the circular orbit and a value of χ2
e = 7.47 for the eccentric orbit

(e = 0.049± 0.022, less significant than the original claim). Using 14 measure-
ments and two priors from photometry (N = 16), k = 3 and k = 5 for the circular
(two datasets, each with one V0 and a single K) and eccentric orbits respectively,
we obtained BICc = 151.50 and BICe = 151.01. This now appears to show only a
marginal support for an eccentric orbit.

We plotted the SOPHIE radial velocity data against time, as shown in Fig-
ure 5.3 and overplotted a circular orbit as well as an eccentric orbit. Due to the
long time between the first two measurements and the last five, we plot them in
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Figure 5.3: Plot showing SOPHIE radial velocity data from Christian et al. (2009)
for WASP-10, plotted against time. The plot has been split along the time axis
into two panels (left and right) to remove the 160 days without measurements,
for clarity. A circular orbit (solid line) and an orbit with the best-fit eccentricity
(e = 0.048) are overplotted. The residuals relative to the circular orbit are shown
in the bottom panel.

separate panels, shown on the left and right respectively. It is clear that the first
measurement is pulling the eccentricity upwards, and we suspect from experi-
ence that the long term drifts in the SOPHIE zero point in HE mode for faint
targets could have affected the first two measurements. We therefore repeated
our calculations using only the last five measurements from the SOPHIE dataset
and the whole FIES dataset, and set σr = 45.5 m s−1 for SOPHIE. This time, we
obtained a value of χ2

c = 11.81 for the circular orbit and a value of χ2
e = 7.64

for the eccentric orbit (e = 0.043± 0.035). Using 12 measurements and two pri-
ors from photometry (N = 14), k = 3 and k = 5 for the circular (two datasets,
each with one V0 and a single K) and eccentric orbits respectively, we obtained
BICc = 128.71 and BICe = 129.83, this time favouring the circular orbit. We
repeated this calculation, and set σr = 0 m s−1 for both SOPHIE and FIES, as
each dataset gave a reduced χ2 of less than unity for the eccentric orbit (SOPHIE
reduced χ2 = 0.64, FIES reduced χ2 = 0.45). This time, we obtained a value of
χ2

c = 19.30 for the circular orbit and a value of χ2
e = 10.65 for the eccentric orbit

(e = 0.080± 0.055). Using 12 measurements and two priors from photometry
(N = 14), k = 3 and k = 5 for the circular (two datasets, each with one V0
and a single K) and eccentric orbits respectively, we obtained BICc = 128.33 and
BICe = 124.97, this time favouring the eccentric orbit once again. It is therefore
unclear to us whether or not the orbital eccentricity is non-zero as claimed in
Christian et al. (2009).

Maciejewski et al. (2011), used transit timing variation analysis and reanal-
ysed the radial velocity data, to obtain an eccentricity that is indistinguishable
from zero (e = 0.013± 0.063). They argued instead that the original detection
of an eccentricity had been influenced by starspots. The difference between our
value of eccentricity and that derived by Maciejewski et al. (2011) is probably
due to the fact that the latter used a two planet model, which can reduce the
derived eccentricity further — sparse sampling of the radial velocity from a two
planet system can lead to an overestimated eccentricity.
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WASP- 12
WASP- 12b is a 1.41 Mj planet on a 1.09 day orbit around a F9 star (V=11.7),
first reported by Hebb et al. (2009). Using SOPHIE measurements, the original
authors derived a value of eccentricity e = 0.049 ± 0.015. As we showed in
Chapter 4, new SOPHIE radial velocity measurements, as well as the original
transit photometry from Hebb et al. (2009) and the secondary eclipse photometry
from Campo et al. (2011) suggest that the eccentricity is in fact compatible with
zero (e = 0.017+0.015

−0.010) (Husnoo et al., 2011).

WASP-17
WASP-17b is a 0.50 Mj planet on a 3.74 day orbit around a F6 star (V=11.6), first
reported by Anderson et al. (2010). Using 41 CORALIE measurements (three of
which are during the spectroscopic transit, which we ignore in this study) and 3
HARPS measurements, the authors considered three cases: first imposing a prior
on the mass M∗ of the host star, secondly imposing a main-sequence prior on
the stellar parameters and thirdly with a circular orbit. They derived values of
eccentricity e = 0.129+0.106

−0.068 and e = 0.237+0.068
−0.069 for the first two cases respectively.

We set σr = 0 for both HARPS and CORALIE since we obtained a reduced χ2

of slightly less than unity for both eccentric and circular orbits for either dataset
alone, indicating overfitting. We obtained a value of χ2

c = 37.98 for the circular
orbit and a value of χ2

e = 35.94 for the eccentric orbit. Using 41 measurements
and two priors from photometry (N = 43), k = 3 and k = 5 for the circular (two
datasets, each with one V0 and a single K) and eccentric orbits respectively, we
obtained BICc = 399.31 and BICe = 404.80. We thus find that the circular orbit
cannot be excluded, agreeing with the third case (e = 0, fixed) considered in
Anderson et al. (2010) and rejecting the two derived values of eccentricity in that
paper.

WASP-18
WASP-18b is a 10.3 Mj planet on a 0.94 day orbit around a F6 star (V=9.3), first
reported by Hellier et al. (2009). Using 9 CORALIE measurements (we drop the
third measurement in our final analysis, since it produces a 5-σ residual that is
not improved by an eccentric orbit, suggesting that it is a genuine outlier), the
authors derived a value of eccentricity e = 0.0092± 0.0028. In our study, we set
τ = 1.5 d and σr = 20.15 m s−1 to obtain a reduced χ2 of unity for the circular
orbit. We obtained a value of χ2

c = 8.17 for the circular orbit and a value of
χ2

e = 6.64 for the eccentric orbit (e = 0.007± 0.005, e < 0.018). Using N = 10,
k = 2 and k = 4 for the circular (one dataset, with one V0 and a single K) and
eccentric orbits respectively, we obtained BICc = 75.34 and BICe = 78.41. We
repeated the calculations using σr = 22.5 m s−1 to obtain a reduced χ2 of unity
for the eccentric orbit. We obtained a value of χ2

c = 7.14 for the circular orbit and
a value of χ2

e = 6.00 for the eccentric orbit (e = 0.008± 0.005, e < 0.019). Using
N = 10, k = 2 and k = 4 for the circular (one dataset, with one V0 and a single
K) and eccentric orbits respectively, we obtained BICc = 75.50 and BICe = 78.97.
We thus find that the circular orbit cannot be excluded, in contrast to Hellier
et al. (2009). The possibility that e > 0.1 is excluded.

WASP-5 (new HARPS data)
WASP-5b is a 1.6 Mj planet on a 1.63 day orbit around a G4 star (V=12.3), first
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reported by Anderson et al. (2008). Gillon et al. (2009) used z-band transit pho-
tometry from the VLT to refine the eccentricity to e = 0.038+0.026

−0.018, and the authors
made a tentative claim for the detection of a small eccentricity. We analysed
our 11 new HARPS measurements for WASP-5 and the 11 CORALIE RVs from
Anderson et al. (2008) using the photometric constraints on the orbital period
P = 1.6284246(13) and mid-transit time Ttr = 2454375.624956(24) from South-
worth et al., 2009.

We use τ = 1.5 d, σr = 10.6 m s−1 for HARPS and σr = 4.3 m s−1 for
CORALIE to obtain a value of reduced χ2 of unity for the circular orbit for each
dataset separately. We ran the MCMC twice: the first time fitting for the systemic
velocity v0 and semi-amplitude K, and the second time adding two parameters
e cos ω and e sin ω to allow for an eccentric orbit. The best fit result is shown in
Figure 5.4. The residuals for a circular orbit are plotted, and a signal is clearly
present in the residuals. The value of χ2 for the circular orbit is 24.36 and that
for an eccentric orbit is 20.57. This results in a value of BICc = 169.40 for the
circular orbit and BICe = 171.97 for the eccentric orbit, given 22 measurements,
2 constraints from photometry and 3 and 5 free parameters respectively for each
model.

We repeated the above analysis using τ = 1.5 d, σr = 9.4 m s−1 for the
HARPS dataset to obtain a value of reduced χ2 of unity for the eccentric orbit
and σr = 0 m s−1 for CORALIE (which resulted in a reduced χ2 of 0.58). This
time, we obtained a value of χ2 for the circular orbit is 27.35 and that for an
eccentric orbit is 23.00. This leads to a value of BICc = 170.37 for the circular
orbit and BICe = 172.38 for the eccentric orbit. Once again, the circular orbit is
favoured.

A keplerian model, circular or eccentric (e = 0.012± 0.007) does not account
for the scatter in the data the HARPS dataset as shown in Figure 5.4. We have
therefore plotted the radial velocity measurements, the bisector span, the signal
to noise at order 49, the contrast and full width at half maximum for the cross-
correlation function against the same time axis. The trend in radial velocity
residuals can be seen to be correlated with both the bisector span and the full
width at half maximum of the cross correlation function. This suggests a line
shape change that is related to either weather effects or instrumental systematics.
The timescale of this variation is compatible with both scenarios. The bisector
inverse span is generally directly correlated with the residuals, which weighs
against a scenario involving stellar activity, but this is not so clear for the first
three measurements — the drift could be due to stellar activity or an additional
planetary or stellar companion.

We extended the model with a linear acceleration of the form described in
Equation 4.1 and fitted the HARPS data alone using t0 = 2454768 (to allow
the MCMC to explore values of γ̇ more efficiently) and reran the MCMC twice:
once for a circular orbit and once for an eccentric orbit. Firstly, we used σr = 10.6
m s−1 for the HARPS dataset, and the linear trend for a circular orbit resulted
in γ̇ = −2.6± 2.9 m s−1 yr−1 and that for an eccentric orbit is γ̇ = −2.0± 2.9
m s−1 yr−1. The best fit result is shown in Figure 5.5 and the residuals for a
circular orbit are plotted in the bottom panel. The value of χ2 for the circular
orbit is 10.24 and that for an eccentric orbit is 7.70. This results in a value
of BICc,lin = 71.91 for the circular orbit and BICe,lin = 74.49 for the eccentric
orbit, given 11 (N=13) measurements, 2 constraints from photometry and 3 and
5 free parameters respectively for each model. We repeated these calculations
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Figure 5.4: HARPS measurements of WASP-5 plotted against time (left) and
phase with respect to the mid-transit time Ttr (right). In each case, a solid line
is overplotted to represent a circular orbit and the residuals are plotted for this
circular orbit. It is clear that a signal is present in the residuals (see text). An
eccentric orbit with the best-fit value of e = 0.012 is overplotted in both panels
with a dotted line, but it is indistinguishable from the circular solution at this
scale. Note the trend that is apparent in the residuals (second panel from the top
on both the time and phase plots). We correct for this using a linear acceleration
term in our model (see Figure 5.5).
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Figure 5.5: HARPS measurements of WASP-5 plotted against time (left) and
phase with respect to the mid-transit time Ttr (right). In each case, a solid line
is overplotted to represent a circular orbit and the residuals are plotted for this
circular orbit. A model for an eccentric orbit with the best-fit value of e = 0.013
is overplotted in both panels with a dotted line, but it is indistinguishable from
the circular solution at this scale. Both include the linear trend (see Section 5.4
and Figure 5.4).

using σr = 9.4 m s−1 for the HARPS dataset, and the linear trend for a circular
orbit resulted in γ̇ = −3.7± 1.3 m s−1 yr−1 and that for an eccentric orbit is
γ̇ = −3.3± 1.3 m s−1 yr−1. The value of χ2 for the circular orbit is 15.46 and
that for an eccentric orbit is 13.50. This leads to a value of BICc,lin = 69.72 for
the circular orbit and BICe,lin = 72.89 for the eccentric orbit. The circular orbit is
not excluded, and the possibility that e > 0.1 is excluded. The results for both
models, one including the linear trend but excluding the CORALIE data, and
one including the CORALIE data but excluding the linear trend are shown in
Table 5.2. In both cases, we give results for the case where σr is chosen to yield
a reduced χ2 of unity for the circular orbit. We attempted to repeat this using
both the CORALIE and HARPS datasets, but we were unable to obtain a fit with
the MCMC, because of the long time scale between the two datasets.

5.4 Planets on circular orbits

We establish that 20 planets have orbital eccentricities compatible with zero and
the 95% upper limits are smaller than e95 = 0.1. In this Section, we describe the
planets WASP-4b, HAT-P-7b, TrES-2 and WASP-2b, for which we introduce new
RVs. We also establish that the 95% upper limits on the eccentricities of WASP-
5b, WASP-12b and WASP-18b, which have been described in Section 5.3 above.
In addition, we give the 95% upper limits on the eccentricities of CoRoT-1b,
CoRoT-3b, HAT-P-8b, WASP-3b, WASP-16b, WASP-19b, WASP-22b, WASP-26b
and XO-5b in Table 5.1. We discuss the evidence for circular orbits for HAT-P-
13b, HD189733b, HD209458b and Kepler-5b at the end of this section.
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Parameter Anderson et al. HARPS only HARPS & CORALIE
this work this work

(with linear trend) (no linear trend)
Centre-of-mass velocity V0 [m s−1] 20010.5±3.4 20018±12 20009.9±7.4 (HARPS)
Orbital eccentricity e 0 0.013± 0.008 0.012± 0.007

(adopted) (< 0.029) (< 0.026)
Argument of periastron ω [o] 0 (unconstrained) 0 (unconstrained) 0 (unconstrained)
e cos ω – 0.002±0.003 0.003±0.003
e sin ω – 0.012±0.010 0.011±0.009
Velocity semi-amplitude K [m s−1] 277.8±7.8 266.4±1.3 266.9±1.3

Table 5.2: System parameters for WASP-5. Left: Anderson et al. (2008). Right:
Results from our HARPS radial velocity data alone, and results from using both
our HARPS data and the original CORALIE data in Anderson et al. (2008). Me-
dian values for V0 and K are quoted for the circular orbits, as well as 68.3%
confidence limits obtained from the eccentric solution (see section Analysis).

WASP-4 (new HARPS data)
WASP-4b is a 1.2 Mj planet on a 1.34 day orbit around a G7 star (V=12.5), first
reported by Wilson et al. (2008). We analysed our 14 new HARPS measurements
and the 14 CORALIE measurements from Wilson et al. (2008) for WASP-4 and
used the photometric constraints on the orbital period P = 1.33823214(71) and
mid-transit time Ttr = 2454697.797562(43) from Winn et al. (2009b).

We estimate τ = 1.5 d, σr = 11 m s−1 for the HARPS dataset and σr = 4.5
m s−1 for the CORALIE dataset to obtain a reduced χ2 of unity for a circular orbit
for each dataset separately. We ran the MCMC twice: the first time fitting for
the systemic velocity v0 and semi-amplitude K only, ie. a circular orbit (k = 2),
and the second time adding two parameters e cos ω and e sin ω to allow for an
eccentric orbit (k = 4). The best fit result is shown in Figure 5.6. The residuals for
a circular orbit are plotted, and a signal is clearly present in the residuals. The
value of χ2 for the circular orbit is 27.13 and that for an eccentric orbit is 24.32.
This leads to a value of BICc = 208.62 for the circular orbit and BICe = 212.55
for the eccentric orbit, given 14 measurements, 2 constraints from photometry
and 2 and 4 free parameters respectively for each model.

We repeated the calculations, estimating τ = 1.5 d, σr = 10.1 m s−1 for the
HARPS dataset and σr = 7.1 m s−1 for the CORALIE dataset to obtain a reduced
χ2 of unity for an eccentric orbit for each dataset separately. The value of χ2 for
the circular orbit is 27.29 and that for an eccentric orbit is 24.33. This leads to a
value of BICc = 208.72 for the circular orbit and BICe = 212.51.

Note the trend that is apparent in the residuals in Figure 5.6. We have there-
fore plotted the radial velocity measurements, the bisector span, the signal to
noise at order 49, the contrast and full width at half maximum for the cross-
correlation function against the same time axis. For most measurements, the
trend in radial velocity residuals can be seen to be correlated with both the bi-
sector span and the full width at half maximum of the cross correlation function.
This suggests a line shape change that is related to either stellar activity, weather
effects or instrumental systematics. The timescale of this variation is compatible
with all three scenarios.

We repeated the calculations for the HARPS dataset alone, and added a linear
component to the radial velocity model in the same way we did for WASP-5 in
Section 5.3 and we set t0 = 2454762 (to allow the MCMC to explore values of γ̇
more efficiently) and reran the MCMC twice: once for a circular orbit and once
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Figure 5.6: HARPS measurements of WASP-4 plotted against time (left) and
phase with respect to the mid-transit time Ttr (right). In each case, a solid line
is overplotted to represent a circular orbit and the residuals are plotted for this
circular orbit. It is clear that a signal is present in the residuals (see text). An
eccentric orbit with the best-fit value of e = 0.005 is overplotted in both panels
with a dotted line, but it is indistinguishable from the circular solution at this
scale. Note the trend that is apparent in the residuals (second panel from the
top on both images). We attempt to correct for this by repeating our calculations
with a linear acceleration term in the model (see Section 5.4 and Figure 5.7).
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Figure 5.7: HARPS measurements of WASP-4 plotted against time (left) and
phase with respect to the mid-transit time Ttr (right). In each case, a solid line
is overplotted to represent a circular orbit and the residuals are plotted for this
circular orbit. It is clear that a signal is present in the residuals (see text). An
eccentric orbit with the best-fit value of e = 0.004 is overplotted in both panels
with a dotted line, but it is indistinguishable from the circular solution at this
scale. The linear trend from Figure 5.6 has now been included in the model.

for an eccentric orbit. We set τ = 1.5 d and σr = 11 m s−1 for the HARPS dataset.
The best fit result is shown in Figure 5.7. The residuals for a circular orbit

are plotted, and a signal is clearly present in the residuals. The linear trend for
a circular orbit results in γ̇ = 1023± 490 m s−1 yr−1 and that for an eccentric
orbit is γ̇ = 919± 500 m s−1 yr−1.

The value of χ2 for the circular orbit is 9.83 and that for an eccentric orbit is
7.51. This leads to a value of BICc = 92.02 for the circular orbit and BICe = 95.26
for the eccentric orbit, given 14 measurements, 2 constraints from photometry
and 3 and 5 free parameters respectively for each model.

We repeated the calculations, setting τ = 1.5 d, σr = 10.05 m s−1 for the
HARPS dataset. The value of χ2 for the circular orbit is 10.30 and that for an
eccentric orbit is 8.07. This leads to a value of BICc = 91.18 for the circular orbit
and BICe = 94.49. In all cases, the circular orbit is not excluded. The results for
both models, one including the linear trend but excluding the CORALIE data,
and one including the CORALIE data but excluding the linear trend are shown
in Table 5.3. In both cases, we give results for the case where σr is chosen to yield
a reduced χ2 of unity for the circular orbit. We reject the possibility that e > 0.1.

HAT-P-7 (new SOPHIE data)
HAT-P-7b is a 1.8 Mj planet on a 2.20 day orbit around an F6 star (V=10.5),
first reported by Pál et al. (2008). We use 13 new SOPHIE radial velocity mea-
surements and 16 out of the 17 HIRES measurements in Winn et al. (2009a) (we
drop one in-transit measurement) to work out the orbital parameters of HAT-
P-7b. We impose the period P = 2.204733(10) d as given from photometry in
Welsh et al. (2010) and mid-transit time Ttr = 2454731.67929(43) BJD as given
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Parameter Wilson et al. (2008) HARPS only HARPS & CORALIE
this work this work

(with linear trend) (no linear trend)
Centre-of-mass velocity V0 [m s−1] 57733±2 57773±10 57790.8±5.7
Orbital eccentricity e 0 (adopted) 0.004± 0.003 (<0.011) 0.005± 0.003 (<0.011)
Argument of periastron ω [o] 0 (unconstrained) 0 (unconstrained) 0 (unconstrained)
e cos ω – 0.004±0.003 0.003±0.003
e sin ω – −0.002±0.004 −0.004±0.004
Velocity semi-amplitude K [m s−1] 240±10 233.1±2.1 233.7±2.0

Table 5.3: System parameters for WASP-4. Left: Wilson et al. (2008). Right:
Results from our HARPS radial velocity data alone, and results from using both
our HARPS data and the original CORALIE data in Wilson et al. (2008). Median
values for V0 and K are quoted for the circular orbits, as well as 68.3% confidence
limits obtained from the eccentric solution (see section Analysis).

Parameter HIRES, Winn et al. (2009a) HIRES+SOPHIE, this work
Centre-of-mass velocity V0 [m s−1] −51.2±3.6 −49.96±6.0 (HIRES)

−10510±10 (SOPHIE)
Orbital eccentricity e e99% <0.039 0.014±0.010 (e < 0.038)
Argument of periastron ω [o] – 0 (unconstrained)
e cos ω −0.0019±0.0077 −0.007±0.004
e sin ω 0.0037±0.0124 −0.011±0.015
Velocity semi-amplitude K [m s−1] 211.8±2.6 213.8±1.2
Constant radial acceleration γ̇ [m s−1yr−1] 21.5±2.6 21.1±4.2

Table 5.4: System parameters for HAT-P-7. Left: Winn et al. (2009a). Right:
Results from our SOPHIE radial velocity data. Median values for V0 and K are
quoted for the circular orbits, as well as 68.3% confidence limits obtained from
the eccentric solution. The upper 95% limit is also given for the eccentricity from
our analysis.

from photometry in Winn et al. (2009a). We set τ = 1.5 d, σr = 9.41 m s−1 for
HIRES and σr = 12.9 m s−1 for SOPHIE to obtain a reduced χ2 of unity for
the best-fit circular orbit for each dataset separately. We used 29 measurements
in all, and count the two constraints from photometry as two additional data
points to obtain N = 31, and used k = 4 for the circular orbit (two V0, one
for each dataset, the semi-amplitude K and a constant drift term γ̇, since Winn
et al. (2009a) found evidence for a distant companion in the system and we set
t0 = 2454342). We repeated this analysis with an eccentric orbit k = 6 (4 degrees
of freedom for the circular orbit with two datasets and a linear acceleration, and
2 additional degrees of freedom for the eccentricity, e cos ω and e sin ω). The or-
bital parameters are given in Table 5.4, and the radial velocity dataset is plotted
in Figure 5.8, with residuals shown for a circular orbit. The Figure also shows
models of a circular and an eccentric orbit (with e = 0.014), but they are almost
undistinguishable. For the circular orbit, we obtained χ2 = 26.94, and a value of
BICc = 222.81 and for the eccentric orbit, we obtained χ2 = 23.98 and a value of
BICe = 226.72. We repeated the calculations and set τ = 1.5 d, σr = 8.2 m s−1

for HIRES and σr = 8.2 m s−1 for SOPHIE to obtain a reduced χ2 of unity for the
best-fit eccentric orbit. For the circular orbit, we obtained χ2 = 35.65 and a value
of BICc = 224.14 and for the eccentric orbit, we obtained χ2 = 31.89 and a value
of BICe = 227.25. We therefore find that the circular orbit cannot be excluded
for HAT-P-7b. Further, we exclude the possibility that e > 0.1.
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Figure 5.8: Plot showing our new SOPHIE radial velocity data for HAT-P-7,
plotted against time (left), and orbital phase (right) with respect to Ttr. A circular
orbit (solid line) and an orbit with the best-fit eccentricity (dotted line, but almost
undistinguishable from the circular solution since e = 0.014) are overplotted.
The residuals relative to the circular orbit are shown in the bottom panels.

TrES-2 (new SOPHIE data)
TrES-2b is a 1.3 Mj planet on a 2.47 day orbit around a G0 star (V=11.4), first re-
ported by O’Donovan et al. (2006). We use 10 new SOPHIE radial velocity mea-
surements and the 11 HIRES measurements in O’Donovan et al. (2006) to work
out the orbital parameters of TrES-2b. We impose the period P = 2.470614(1) d
and mid-transit time Ttr = 2453957.63492(13) BJD as given from photometry in
Raetz et al. (2009).

We set τ = 1.5 d and σr = 6.8 m s−1 for SOPHIE to obtain a reduced χ2

of unity for the best-fit circular orbit (using the SOPHIE data alone), and set
σr = 0m s−1 for the HIRES data since a circular orbit for that dataset alone yields
a reduced χ2 of 0.72, indicating over-fitting. We used 21 measurements in all,
and count the two constraints from photometry as two additional datapoints to
obtain N = 23, and used k = 3 for the circular orbit (two V0, one for each dataset,
and the semi-amplitude K). We repeated this analysis with an eccentric orbit k =
5 (three degrees of freedom for the circular orbit, and two additional degrees of
freedom for the eccentricity, e cos ω and e sin ω). The orbital parameters are given
in Table 5.5, and the radial velocity dataset is plotted in Figure 5.9, with residuals
shown for a circular orbit. The Figure also shows models of a circular and an
eccentric orbit (with e = 0.023), but they are almost undistinguishable. For the
circular orbit, we obtained χ2 = 18.00, yielding a value of BICc = 160.30 and for
the eccentric orbit, we obtained χ2 = 15.91 and a value of BICe = 164.48. We
repeated the calculations and set σr = 8.45 m s−1 for SOPHIE to obtain a reduced
χ2 of unity for the best-fit circular orbit (using the SOPHIE data alone), while
we set σr = 0m s−1 for the HIRES data since an eccentric orbit for that dataset
alone yields a reduced χ2 of 0.56, indicating over-fitting. For a circular orbit, we
obtained χ2 = 15.97, resulting in a value of BICc = 159.38 and for an eccentric
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Parameter HIRES, O’Donovan et al. (2006) HIRES, SOPHIE, this work
Centre-of-mass velocity V0 [m s−1] – −29.8±2.4 (HIRES)

−315.5±5.0 (SOPHIE)
Orbital eccentricity e 0 (adopted) 0.023±0.014, e < 0.051
Argument of periastron ω [o] 0 (unconstrained) 0 (unconstrained)
e cos ω – 0.002±0.009
e sin ω – −0.022±0.016
Velocity semi-amplitude K [m s−1] 181.3±2.6 181.1±2.5

Table 5.5: System parameters for TrES-2. Left: O’Donovan et al. (2006). Right:
Results from our HARPS radial velocity data. Median values for V0 and K are
quoted for the circular orbits, as well as 68.3% confidence limits obtained from
the eccentric solution. The 95% limit on the eccentricity is also given.
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Figure 5.9: Plot showing our new SOPHIE radial velocity data for TrES-2, plotted
against time (left) and orbital phase with respect to Ttr (right). A circular orbit
(solid line) and an orbit with the best-fit eccentricity (dotted line, but almost
undistinguishable from the circular solution since e = 0.023) are overplotted.
The residuals relative to the circular orbit are shown in the bottom panel.

orbit, we obtained χ2 = 13.88 and a value of BICe = 163.56. We therefore find
that the circular orbit cannot be excluded for TrES-2b. Furthermore, we exclude
the possibility that e > 0.1.

WASP-2 (new HARPS data)
WASP-2b is a 0.85 Mj planet on a 2.15 day orbit around a K1 star (V=12), first
reported by Collier Cameron et al. (2007). We use 8 new HARPS radial velocity
measurements and 7 of the original 9 SOPHIE measurements (we drop the first
measurement, which has an uncertainty about 15 times larger than the rest, and
the fifth, which shows a 3-σ deviation at a phase close to the transit) in Collier
Cameron et al. (2007) to work out the orbital parameters of WASP-2b. We impose
the period P = 2.15222144(39) d and mid-transit time Ttr = 2453991.51455(17)
BJD as given from photometry in Southworth et al. (2010). We used 15 measure-
ments in all, and count the two constraints from photometry as two additional
datapoints (N = 17) and used k = 3 for the circular orbit (two V0, one for each
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Parameter SOPHIE, Collier Cameron et al. (2007) SOPHIE and HARPS, this work
Centre-of-mass velocity V0 [m s−1] −27863±7 −27862±7.4 (SOPHIE)

−27739.81±4.1 (HARPS)
Orbital eccentricity e 0 (adopted) 0.027±0.023 (<0.072)
Argument of periastron ω [o] 0 (unconstrained) 0 (unconstrained)
e cos ω – −0.003±0.003
e sin ω – −0.027±0.027
Velocity semi-amplitude K [m s−1] 155±7 156.3±2.1

Table 5.6: System parameters for WASP-2. Left: Collier Cameron et al. (2007).
Right: Results from our HARPS radial velocity data. Median values for V0 and
K are quoted for the circular orbits, as well as 68.3% confidence limits obtained
from the eccentric solution (see section Analysis) and 95% limit on eccentricity.

dataset, and the semi-amplitude K).
We estimated the timescale of correlated noise for both the HARPS and SO-

PHIE data to be τ = 1.5 d, and we estimated σr = 10.4 m s−1 for the SOPHIE
data and σr = 6.45 m s−1 for the HARPS data to obtain a reduced χ2 of unity
for the circular orbit. We repeated this analysis with an eccentric orbit k = 5 (3
degrees of freedom for the circular orbit, and 2 additional degrees of freedom
for the eccentricity, e cos ω and e sin ω). The orbital parameters are given in Ta-
ble 5.6, and the radial velocity dataset is plotted in Figure 5.10, with residuals
shown for a circular orbit. The Figure also shows models of a circular and an
eccentric orbit (with e = 0.027), but they are almost undistinguishable. For the
circular orbit, we obtained χ2 = 15.60, giving a value of BICc = 115.08 and for
the eccentric orbit, we obtained χ2 = 13.88 giving a value of BICe = 119.02.
We repeated these calculations to obtain a reduced χ2 of unity for the eccentric
orbit and estimated σr = 10.4 m s−1 for the SOPHIE data (the SOPHIE dataset
did not allow the MCMC to converge and yield a reduced χ2 of unity with an
eccentric orbit) and σr = 7.05 m s−1 for the HARPS data. For the circular orbit,
we obtained χ2 = 15.16, and a value of BICc = 115.47 and for the eccentric orbit,
we obtained χ2 = 13.49 and a value of BICe = 119.47. We therefore find that
the circular orbit cannot be excluded for WASP-2. Furthermore, we exclude the
possibility that e > 0.1.

5.5 Planets on eccentric orbits

In contrast to Section 5.3, in this Section, we confirm the eccentricities of 10
planets. We verify the eccentricities of CoRoT-9b, GJ-436b and HAT-P-2b as a
test for our procedures and we also confirm the eccentricities of HAT-P-16b and
WASP-14b, with the former being the planet on a short period orbit with the
smallest confirmed eccentricity, and the latter being the planet with the shortest
period orbit having a confirmed eccentricity. Finally we note the confirmed
orbital eccentricities of CoRoT-10b, HAT-P-15b, HD17156b, HD80606b and XO-
3b.

CoRoT-9
CoRoT-9b is a 0.84 Mj planet on a 95.3 day orbit around a G3 star (V=13.5), first
reported by Deeg et al. (2010), who found an eccentricity of e = 0.11 ± 0.04.
We used the 14 HARPS measurements from Deeg et al. (2010), setting τ = 1.5
d and σr = 3.7 m s−1 to obtain a value of reduced χ2 of unity for the circular
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Figure 5.10: Plot showing our new HARPS radial velocity data for WASP-2,
plotted against time (left) and orbital phase with respect to Ttr (right). A circular
orbit (solid line) and an orbit with the best-fit eccentricity (dotted line, but almost
undistinguishable from the circular solution since e = 0.027) are overplotted.
The residuals relative to the circular orbit are shown in the bottom panel.

orbit. We imposed the prior information from photometry P = 95.2738(14) and
Ttr = 2454603.3447(1) from Deeg et al. (2010) and obtained a value of χ2

c = 14.05
and χ2

e = 7.90. Using N = 16, kc = 2 and ke = 4, we obtain BICc = 106.17
and BICe = 105.57, which provides marginal support for an eccentric orbit at
e = 0.111± 0.046, with the 95% limit at e < 0.20. We repeated the caculations,
setting σr = 0 m s−1 since this results in a reduced χ2 of less than unity for the
eccentric orbit. This time, we obtained a value of χ2

c = 16.65 and χ2
e = 9.63.

Using N = 16, kc = 2 and ke = 4, we obtain BICc = 105.66 and BICe = 104.18,
which supports an eccentric orbit at e = 0.111± 0.039.

GJ-436
GJ-436b is a 0.071 Mj planet on a 2.64 day eccentric orbit around a M2.5 star
(V=10.7), first reported by Butler et al. (2004). Deming et al. (2007) detected the
secondary eclipse using Spitzer, placing a constraint on the secondary eclipse
phase φocc = 0.587± 0.005. This translates into e cos ω = 0.1367± 0.0012, which
we apply as a Bayesian prior in the calculation of our merit function.

We used the 59 HIRES measurements from Maness et al. (2007), setting τ =
1.5 d and σr = 5.5 m s−1 to obtain a value of reduced χ2 of unity for the circular
orbit. We imposed the prior information from photometry P = 2.64385(9) from
Maness et al. (2007)and Ttr = 2454280.78149(16) from Deming et al. (2007) and
obtained a value of χ2

c = 59.74 and χ2
e = 38.86. Using N = 61 (59 measurements

and 2 priors from photometry) and kc = 2 for the circular orbit, we obtain
BICc = 371.38. Using N = 62 (59 measurements and 3 priors from photometry)
and ke = 3 (V0, K, e sin ω) for the eccentric orbit, we obtain BICe = 354.67, which
supports an eccentric orbit at e = 0.157± 0.024, with the 95% limit at e < 0.21.
We repeated the caculations, setting σr = 3.95 m s−1 to obtain a reduced χ2

of unity for the eccentric orbit. This time, we obtained a value of χ2
c = 88.20
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and χ2
e = 59.39. This time, we obtain BICc = 372.67 and BICe = 348.03, which

supports an eccentric orbit at e = 0.153 ± 0.017, which is in agreement with
Deming et al. (2007), who reported e = 0.150± 0.012.

HAT-P-16
HAT-P-16b is a 4.19 Mj planet on a 2.78 day orbit around a F8 star (V=10.7), first
reported by Buchhave et al. (2010). The original authors found an eccentricity of
e = 0.036± 0.004. We re-analysed the 7 high resolution FIES measurements, 14
medium resolution FIES measurements and 6 HIRES measurements, with two
priors from photometry on the period and mid-transit time. We set τ = 1.5
d for all instruments and set σr = 115, 185, and 28 m s−1 respectively for the
three instruments to obtain a reduced χ2 of unity for each individually. We then
analysed them together using both a circular (χ2 = 28.83) and an eccentric orbit
(χ2 = 3.81). Using N = 29, kc = 4 and ke = 6, we obtain BICc = 314.74 and
BICe = 296.45, which supports an eccentric orbit at e = 0.034± 0.010. Figure 5.11
(left) shows the data from Buchhave et al. (2010), with a circular orbit overplotted
with a solid line and an eccentric orbit with the dotted line. The residuals are
plotted for the circular solution and they show a clear periodic signal.

We repeated the analysis, this time setting σr = 0 (reduced χ2 = 0.62, indicat-
ing over-fitting), 16 (reduced χ2 = 33), and 4.7 m s−1 respectively and separately
for the three datasets (i.e. aiming for a reduced χ2 of unity for each dataset indi-
vidually, with an eccentric orbit). We then analysed them together using both a
circular (χ2 = 347.86) and an eccentric orbit (χ2 = 44.62). Using N = 29, kc = 4
and ke = 6, we obtain BICc = 541.64 and BICe = 245.14, which supports an ec-
centric orbit at e = 0.034± 0.003. We thus confirm the eccentricity of HAT-P-16b,
which means this is the planet with the smallest eccentricity that is reliably mea-
sured. This is in part helped by the fact that HAT-P-16b is a very massive planet,
making the radial velocity signal for an eccentric orbit very clear. Figure 5.11
(right) shows the data from Buchhave et al. (2010) again, with an eccentric orbit
overplotted with the dotted line.

WASP-14
WASP-14b is a 7.3 Mj planet on a 2.24 day orbit around a F5 star (V=9.8), first
reported by Joshi et al. (2009), who found an eccentricity of e = 0.091± 0.003.
Husnoo et al. (2011) confirmed the eccentricity of the orbit and updated the
precise value to e = 0.088 ± 0.003. This makes WASP-14b the planet that is
closest to its host star but still has an eccentric orbit, taking the place of WASP-
12b.

CoRoT-10, HAT-P-2, HAT-P-15, HD17156, HD80606 and XO-3
The orbits of the planets CoRoT-10b (e = 0.110± 0.039), HAT-P-2b (e = 0.517±
0.003), HAT-P-15b (e = 0.190± 0.019), HD17156b (e = 0.677± 0.003), HD80606b
(e = 0.934 ± 0.001) and XO-3b (e = 0.287 ± 0.005) are clearly eccentric from
existing literature — see Bonomo et al., 2010; Hébrard et al., 2008, 2010; Kovács
et al., 2010; Loeillet et al., 2008; Nutzman et al., 2011, respectively.
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Figure 5.11: Plot showing radial velocity data from Buchhave et al. (2010) for
HAT-P-16, plotted against orbital phase with respect to Ttr. Left: A circular
orbit is overplotted with a solid line and an eccentric orbit (e = 0.034) is plotted
with a dotted line. The bottom panel shows the residuals for a circular orbit:
these show a clear periodic signal, indicating the possibility of an eccentric orbit.
Right: An eccentric orbit (e = 0.034) is plotted with a solid line. The residuals
are shown for the eccentric orbit.

5.6 Poorly constrained eccentricities

For 26 of the transiting planets that we attempted to place upper limits on their
eccentricities, we obtained limits that were larger than 0.1. We considered these
eccentricities to be poorly determined. We discuss the cases of HAT-P-4b, WASP-
7, XO-2b and Kepler-4b below.

HAT-P-4 (new SOPHIE data)
HAT-P-4b is a 0.68 Mj planet on a 3.06 day orbit around an F star (V=11.2),
first reported by Kovacs et al. (2007). We use 13 new SOPHIE radial velocity
measurements and the 9 HIRES measurements in Kovacs et al. (2007) to work
out the orbital parameters of HAT-P-4b. We impose the period P = 3.056536(57)
d and mid-transit time Ttr = 2454248.8716(6) BJD as given from photometry in
Kovacs et al. (2007). We set τ = 1.5 d and σr = 3.35 m s−1 for SOPHIE and
σr = 3.75m s−1 for HIRES, to obtain a reduced χ2 of unity for each dataset
separately for the best-fit circular orbit. We used 22 measurements in all, and
count the two constraints from photometry as two additional datapoints (N=24),
and used k = 3 for the circular orbit (two V0, one for each dataset, and the semi-
amplitude K). We repeated this analysis with an eccentric orbit k = 5 (three
degrees of freedom for the circular orbit, and two additional degrees of freedom
for the eccentricity, e cos ω and e sin ω). The orbital parameters are given in Table
5.7, and the radial velocity dataset is plotted in Figure 5.12, with residuals shown
for a circular orbit. The Figure also shows models of a circular and an eccentric
orbit (with e = 0.064). For the circular orbit, we obtained χ2 = 22.05, giving a
value of BICc = 161.96 and for the eccentric orbit, we obtained χ2 = 16.77 giving
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Parameter HIRES, Kovacs et al. (2007) HIRES+SOPHIE
this work

Centre-of-mass velocity V0 [m s−1] 12.1±0.9 20.3± 2.6 (HIRES)
−1402.0 ±4.0 (SOPHIE)

Orbital eccentricity e 0 (adopted) 0.064±0.028, e < 0.11
Argument of periastron ω [o] 0 (unconstrained) 0 (unconstrained)
e cos ω – −0.018±0.012
e sin ω – −0.061±0.027
Velocity semi-amplitude K [m s−1] 81.1±1.9 81.3±2.6

Table 5.7: System parameters for HAT-P-4. Left: Kovacs et al. (2007). Right:
Results from our new SOPHIE radial velocity data and the original HIRES data.
Median values for V0 and K are quoted for the circular orbits, as well as 68.3%
confidence limits obtained from the eccentric solution. The 95% upper limit on
eccentricity is also given.

a value of BICe = 163.04. We repeated these calculations by setting τ = 1.5d,
σr = 1.81 m s−1 for HIRES, and kept σr = 3.35 m s−1 for SOPHIE, since we
were unable to determine a value of σr that would allow the MCMC chain to
converge and lead to a χ2 of unity for an eccentric orbit. This time, we obtained
χ2 = 25.88 for the circular orbit, giving a value of BICc = 161.96 and for the
eccentric orbit, we obtained χ2 = 20.05 giving a value of BICe = 162.49. We
find that the circular orbit cannot be excluded for HAT-P-4b, but because the
eccentricity is e = 0.064± 0.028 with an upper limit of e < 0.11, which is above
0.1, we classify HAT-P-4b as having a poorly constrained eccentricity.

WASP-7 (new HARPS data)
WASP-7b is a 1.0 Mj planet on a 4.95 day orbit around a F5 star (V=9.5), first
reported by Hellier et al. (2009). We analysed our 11 new HARPS measure-
ments for WASP-7 as well as 11 measurements from Hellier et al. (2009) us-
ing CORALIE, and used the photometric constraints on the orbital period P =
4.954658(55) and mid-transit time Ttr = 2453985.0149(12) from the same paper.
For both instruments, we set τ = 1.5 d and for CORALIE, we set σr = 28.3 m s−1

while for HARPS, we set σr = 210 m s−1 in order to get a value of reduced χ2

equal to unity for the circular orbit. We performed the MCMC analysis twice:
the first time fitting for the systemic velocity v0 and semi-amplitude K, and the
second time adding two parameters e cos ω and e sin ω to allow for an eccentric
orbit. The best-fit parameters are given in Table 5.8). We plot the radial veloc-
ity data against time (Figure 5.13, left) and phase (Figure 5.13, right). When
the residuals for a circular orbit are plotted, and a scatter of about 30 m s−1 is
clearly seen, which is much larger than the median uncertainties of σ = 2.21
m s−1 on the radial velocity measurements. This is similar to that found by Hel-
lier et al. (2009) from their CORALIE data. An eccentric orbit does not reduce
the scatter. The value of χ2 for the circular orbit is 22.37 and that for an eccen-
tric orbit is 18.11. This leads to a value of BICc = 250.62 and BICe = 252.72,
respectively, for 22 measurements, 2 constraints from photometry and 3 and 5
free parameters respectively (Keplerian orbits, but with two V0 to account for a
possible offset between the two instruments). This shows that the circular orbit
is still preferred, and an eccentric orbit does not explain the scatter. We repeated
this using σr = 33.8 m s−1 for CORALIE while for HARPS, we set σr = 158.5
m s−1 in order to get a value of reduced χ2 equal to unity for the eccentric or-
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Figure 5.12: Plot showing our new HARPS radial velocity data for HAT-P-4,
plotted against time (left) and orbital phase with respect to Ttr (right). A circular
orbit (solid line) and an orbit with the best-fit eccentricity (dotted line, e = 0.064)
are overplotted. The residuals relative to the circular orbit are shown in the
bottom panel.

bit. We performed the MCMC analysis both for a circular and eccentric orbit.
The value of χ2 for the circular orbit is 146.95 and that for an eccentric orbit is
146.86. This leads to a value of BICc = 367.47 and BICe = 373.91, respectively,
for 22 measurements, 2 constraints from photometry and 3 and 5 free param-
eters respectively (Keplerian orbits, but with two V0 to account for a possible
offset between the two instruments). This shows that the circular orbit is still
preferred, and an eccentric orbit does not explain the scatter. WASP-7 is an F5V
star, with a temperature of Teff = 6400± 100 K. Despite the result of the original
paper that WASP-7 is not chromospherically active above the 0.02 mag level, La-
grange et al. (2009) found evidence for other F5V stars showing radial velocity
variability with a scatter at this level, for example HD 111998, HD 197692 or
HD 205289, with scatters of 40 m s−1 30 m s−1 and 29 m s−1 respectively. Our
derived value of eccentricity is e = 0.103± 0.061, with the 95% upper limit is at
e < 0.25. We therefore classify the eccentricity of the orbit of WASP-7b as poorly
constrained

In Figure 5.13, we have also plotted the bisector span, the signal to noise at
order 49, the contrast and full width at half maximum for the cross-correlation
function against the same time axis. The large scatter in radial velocity residuals
can be seen to be correlated with both the bisector span and the full width at
half maximum of the cross correlation function.

XO-2 (new SOPHIE data)
XO-2 is a 0.6 Mj planet on a 2.62 day orbit around a K0 star (V=11.2), first
reported by Burke et al. (2007). We use 9 new SOPHIE radial velocity measure-
ments and the 10 HJS measurements in Burke et al. (2007) to work out the orbital
parameters of XO-2. We impose the period P = 2.6158640(21) d and mid-transit
time Ttr = 2454466.88467(17) BJD as given from photometry in Fernandez et al.
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Figure 5.13: HARPS measurements of WASP-7 plotted against time (left) and
phase with respect to the mid-transit time Ttr (right). In each case, a solid line
is overplotted to represent a circular orbit and the residuals are plotted for this
circular orbit. It is clear that a signal is present in the residuals (see text). An
eccentric orbit with the best-fit value of e = 0.103 is overplotted in both panels
with a dotted line, but it is almost indistinguishable from the circular solution at
this scale.

Parameter Hellier et al. (2009) HARPS, this work
Centre-of-mass velocity V0 [m s−1] −29850.6±1.7 −29455±103
Orbital eccentricity e 0 (adopted) 0.103± 0.061 (<0.25)
Argument of periastron ω [o] 0 (unconstrained) 0 (unconstrained)
e cos ω – 0.021±0.068
e sin ω – 0.101±0.074
Velocity semi-amplitude K [m s−1] 97±13 96±14

Table 5.8: System parameters for WASP-7. Left: Hellier et al. (2009). Right:
Results from our HARPS radial velocity data. Median values for V0 and K are
quoted for the circular orbits, as well as 68.3% confidence limits obtained from
the eccentric solution (see section Analysis).
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Parameter HJS, Burke et al. (2007) HJS, SOPHIE, this work
Centre-of-mass velocity V0 [m s−1] – −1.3± 6.3 (HJS), 46860.1±4.1 (SOPHIE)
Orbital eccentricity e 0 (adopted) 0.064±0.041 (e < 0.14)
Argument of periastron ω [o] 0 (unconstrained) 0 (unconstrained)
e cos ω – 0.007±0.017
e sin ω – −0.063±0.047
Velocity semi-amplitude K [m s−1] 85±8 98.0±4.0

Table 5.9: System parameters for XO-2. Left: Burke et al. (2007). Right: Results
from our SOPHIE radial velocity data. Median values for V0 and K are quoted for
the circular orbits, as well as 68.3% confidence limits obtained from the eccentric
solution. The 95% upper limit on eccentricity is also given.

(2009). We set τ = 1.5 d and σr = 5.3 m s−1 for SOPHIE and σr = 0 m s−1 for HJS
(because the HJS data alone, with a circular orbit, yield a reduced χ2 of 0.78, in-
dicating overfitting) to obtain a reduced χ2 of unity for the best-fit circular orbit.
We used 19 measurements in all, and count the two constraints from photometry
as two additional datapoints (N = 21), and used k = 3 for the circular orbit (two
V0, one for each dataset, and the semi-amplitude K). We repeated this analy-
sis with an eccentric orbit k = 5 (two degrees of freedom for the circular orbit,
and two additional degrees of freedom for the eccentricity, e cos ω and e sin ω).
The orbital parameters are given in Table 5.9, and the radial velocity dataset is
plotted in Figure 5.14, with residuals shown for a circular orbit. The Figure also
shows models of a circular and an eccentric orbit (with e = 0.064). For the cir-
cular orbit, we obtained χ2 = 19.65, giving a value of BICc = 165.55 and for
the eccentric orbit, we obtained χ2 = 17.57 giving a value of BICe = 169.55. We
repeated the calculations using σr = 7.05 m s−1 for SOPHIE and σr = 0 m s−1

for HJS (because the HJS data alone, with an eccentric orbit, yield a reduced
χ2 of 0.56, indicating overfitting) to obtain a reduced χ2 of unity for the best-fit
eccentric orbit. For the circular orbit, we obtained χ2 = 18.02, giving a value of
BICc = 165.21 and for the eccentric orbit, we obtained χ2 = 16.01 giving a value
of BICe = 169.29. In both cases, i.e. using the optimal value of σr for a circular
orbit and using the optimal value of σr for an eccentric orbit, a circular orbit is
favoured. The 95% upper limit is e < 0.14, which is above 0.1, so we classify the
orbital eccentricity of XO-2 as poorly constrained.
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Figure 5.14: Plot showing our new SOPHIE radial velocity data for XO-2, plotted
against orbital phase with respect to Ttr. A circular orbit (solid line) and an orbit
with the best-fit eccentricity (dotted line, but almost undistinguishable from the
circular solution since e = nnnn) are overplotted. The residuals relative to the
circular orbit are shown in the bottom panel.
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Kepler-4
Kepler-4b has a derived eccentricity of e = 0.25+0.11

−0.12, with a 95% upper limit
of e < 0.43 Kipping and Bakos (2011), so we classify it as “poorly constrained
eccentricity”.

Other planets

For the 8 objects CoRoT-6, HAT-P-1, HAT-P-3, HAT-P-6, HD149026, Kepler-6,
WASP-10 and WASP-21, we found the BICe for an eccentric orbit was smaller
than the BICc for a circular orbit if we assume a σr that yields a reduced χ2 of
unity for an eccentric orbit, whereas the BICc for a circular orbit was smaller
than the BICe for an eccentric orbit if we assume a σr that yields a reduced χ2

of unity for a circular orbit. This suggests that the current RV datasets do not
constrain the orbit enough for us to detect a finite eccentricity. We have already
discussed the case of WASP-10b in Section 5.3 above.

HD189733b and HD209458b are both on orbits that are compatible with a
circular model: Laughlin et al. (2005) reported the 95% limits on eccentricity for
HD 209458b (e < 0.042) and we estimate the upper limit for HD189733b from
Triaud et al. (2009) assuming a Gaussian probability distribution, e < 0.008). In
both cases, the eccentricity is strongly constrained by the timing of the secondary
eclipse. No radial velocity data was found for Kepler-5 in the literature or online,
but we include the results of Kipping and Bakos (2011) in this study: Kepler-5b
has an eccentricity of e = 0.034+0.029

−0.018, with a 95% upper limit of e < 0.086. We
therefore classify Kepler-5b as having a circular orbit. We also omitted an anal-
ysis of the two-planet system HAT-P-13, choosing to estimate the 95% limits on
the orbital eccentricity of HAT-P-13b from the literature (e < 0.022) and classify
this orbit as circular.

5.7 Additional planetary systems

We now extend our sample with critical review of new literature measurements
since this study was performed. In addition to the 64 planets considered so
far, we included 17 objects in the original papers (Husnoo et al., 2012; Pont
et al., 2011). Three objects had eccentric orbits, 11 had orbits where e > 0.1 is
excluded at the 95% level and two were brown dwarves. The additional planets
on eccentric orbits were HAT-P-17b (Howard et al., 2012, e = 0.346 ± 0.007),
HAT-P-21b Bakos et al., 2011a, e = 0.228± 0.016 and HAT-P-31b (Kipping et al.,
2011, e = 0.245± 0.005).

The additional planets on orbits that are consistent with circular were:
CoRoT-18b (e < 0.08 at 3-σ, Hébrard et al., 2011),
HAT-P-20b (e < 0.023, estimated from Bakos et al., 2011a),
HAT-P-22b (e < 0.031, estimated from Bakos et al., 2011a),
HAT-P-25b (e < 0.068, estimated from Quinn et al., 2012),
HAT-P-30b (e < 0.074, estimated from Johnson et al., 2011),
WASP-23b (e < 0.062 at 3-σ, Triaud et al., 2011),
WASP-34b (e < 0.058, estimated from Smalley et al., 2011),
WASP-43b (e < 0.04 at 3-σ, Hellier et al., 2011),
WASP-45b (e < 0.095, Anderson et al., 2012),



5.7. ADDITIONAL PLANETARY SYSTEMS 103

WASP-46b (e < 0.065, Anderson et al., 2012) and
τ Boötis b (e < 0.045, estimated from Butler et al., 2006).

The two brown dwarves were OGLE-TR-122b (Pont et al., 2005a, e = 0.205±
0.008) and OGLE-TR-123b (Pont et al., 2005b, e = 0). In addition to the above,
we also considered the case of WASP-38 (Barros et al., 2011), which has an ec-
centricity of e = 0.031± 0.005, indicating it is in the process of circularisation,
just like WASP-14 and HAT-P-16.

New objects since the publication of our papers

In this thesis, we now include objects that have been announced in the meantime:
the four planets CoRoT-20b (e = 0.562± 0.013, Deleuil et al., 2012), CoRoT-23b
(e = 0.16± 0.02, Rouan et al., 2012), HAT-P-34b (e = 0.441± 0.032, Bakos et al.,
2012) and Kepler-39 (e = 0.12± 0.02, Bouchy et al., 2011) are all on eccentric
orbits.

On the other hand, the planets CoRoT-14b (Tingley et al., 2011), HAT-P-22b
(Bakos et al., 2011b), Kepler-14b (Buchhave et al., 2011), WASP-29b (Hellier et al.,
2010), WASP-32b (Maxted et al., 2010), WASP-50b (Gillon et al., 2011), WASP-52b
(Hébrard et al., 2013), WASP-60b (Hébrard et al., 2013) and WASP-80 (Triaud et
al., 2013) are all on orbits consistent with circular.

Conclusion

In this chapter, we have looked at the evidence for eccentric orbits for a large
sample of exoplanets. We have added new measurements to improve the esti-
mate for several objects, and we reanalysed existing data for several other ob-
jects. In the next chapter, we discuss the relevance of tidal evolution in these
systems we have covered here.
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Chapter 6

Orbital evolution of hot Jupiters

In the previous chapters, we looked at the orbital eccentricity of individual ob-
jects. In this chapter, we look at the global picture. The empirical distributions
of orbital eccentricities, projected spin-orbit angles, semi-major axes and stellar
spins show a clear preference for a migration mechanism that involves dynami-
cal and tidal evolution of the orbits.

6.1 The Mass-Period plane

The mass-period plane is a useful diagnostic tool for studying the effects of
tidal interactions for various regimes. Figure 6.1 shows a plot of the mass ratio
Mp/M∗ against orbital period for transiting planets with orbital period P < 20
days. The empty symbols represent orbits that are consistent with circular, and
the black symbols represent eccentric orbits, whereas grey symbols represent
objects with small (e < 0.1), but significant eccentricities. The circles represent
the G dwarfs and the squares represent F dwarfs.

As described in Chapter 2, the strength of tidal interactions between a planet
and the host star decreases with increasing semi-major axis (i.e. towards the
right in Figure 6.1). Furthermore, the tide raised on the star is larger for a
heavier planet, whereas the tide raised on the planet by the star is stronger for a
lighter planet. Hence, the planets on the lower left and upper left of the Figure
tend to be on circular orbits, whereas those in the middle of the plot tend to
be on eccentric orbits. The larger number of low mass objects on circular orbits
than heavier objects can be explained as follows.

Lighter planets are mostly circularised by tides raised in the planet by the
star, and hence the low mass planets are easier to circularise. An intriguing
feature was first pointed out by Mazeh, Zucker, and Pont (2005), who plotted the
mass of the first six exoplanets against the period, and drew a straight line (with
a negative gradient) through the measurements. In Figure 6.1, it can be seen that
the new measurements mean that the mass-period relation of Mazeh, Zucker,
and Pont (2005) is no longer a straight line, but a conglomeration in a particular
region of the mass-period plane, i.e. the lower left. We therefore conclude that
the low mass hot Jupiters on orbits that are consistent with circular around G
dwarfs are able to migrate inwards until they stop at a minimum period for a
given mass.

The heavier planets tend to raise tides on the star, but they are also harder
to circularise because of their larger inertia. In this case, the heavier planets
can move in further before they are stopped. Planets heavier than about 1.2 Mj
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Figure 6.1: Mass ratio versus period plane, for transiting planets with orbital
period P < 20 days.The labelled symbols (except for WASP-18b) represent ob-
jects on orbits that are consistent with circular where the host star rotation is
significantly faster than expected, as discussed in Section 6.3. Five objects have
been marked with a + symbol to mark objects with upper limits greater than
e < 0.05 that are described in Section 5.7. The dashed line represents α = 2 for
Rp = 1.2Rj, while the dotted lines represent a value in the range α = 2.5–4.5
in the equation a = αaR, where a is the semi-major axis, and aR is the semi-
major axis at the Roche limit (see text). The solid line represents a circularisation
isochrone at 1 Gyr for tides in the planet alone.
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can migrate inwards and raise tides on the star, leading to a spin-up of the host
star, and even synchronisation in some cases where enough angular momentum
can be transferred from the orbital motion into the stellar rotation. Only the
heaviest planets manage to raise strong enough tides on the star to circularise
their orbits without catastrophic decay of their orbits (Pont, 2009). In cases where
the planetary angular momentum is insufficient, the process can lead to a run-
away migration until the planet is destroyed inside the star.

The Roche limit for a planet is defined by Rp = 0.462aR(Mp/M∗)−3. If we
write the stopping distance as a = αaR, Ford and Rasio, 2006 argued that slow
migration on quasi-circular orbits would result in a value of α = 1, with the only
surviving planets being those that stop at their Roche limit. On the other hand,
if the planets were brought in on an eccentric orbit (e.g. dynamical interactions
within a system or capture from interstellar space), and then circularised by
tidal interaction, the value of α should be two. In Figure 6.1, the dashed line
shows this case, with α = 2. This does not appear to be a very good fit for the
hot Jupiters that are on orbits consistent with circular. The dotted lines show
the range α = 2.5–4.5. As mentioned in Pont et al. (2011), this larger value
of α could indicate the planets had larger radii at the time their orbits were
circularised. Subsequent thermal evolution of the planets would have shrunk
them (e.g. Baraffe et al., 2004), leaving them stranded further out from their
current Roche limits.

6.2 Circularisation

The process of tidal circularisation, spin-orbit alignment and synchronisation are
expected to occur roughly in this order, and over a similar timescale. For close-in
systems, this timescale is expected to be small compared to the lifetime of the
system. If we assume that the principal mechanism for tidal interaction is the
dissipation of the equilibrium tide, we can use the equations in Section 2.3.2 to
estimate a timescale for circularisation to take place.

We consider two limits, firstly the case where only the tides in the planet
dominate, and then the case where only tides in the star dominate. When tides
in the planet dominate, K∗ ∼ 0 in Equation 2.7, we can obtain a timescale

τp = −
(

1
e

de
dt

)−1

=
2

21G
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Mp

M2
∗

a8

R5
p

(6.1)

where we have assumed that Ωe = Ne ≈ 1, i.e. the equation is valid to lowest
order in e; ωp/n ∼ 1, i.e. synchronisation of the planetary rotation with the orbit
and xp ∼ 1, i.e. the planet’s equator coincides with the orbital plane.

A similar equation can be written for tides in the star, even though ω∗/n is
not typically unity. As long as ω∗/n < 18/11, for small e, the effect of tides in
the star will lead to a decrease in orbital eccentricity. We can therefore write,
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(6.2)

Of course, as explained by Jackson, Greenberg, and Barnes (2008a), the radial
and eccentricity evolution equations are coupled, and such a timescale may not
represent an accurate story of the orbital evolution of any single system. It sim-
ply gives us a first estimate that allows us to rank objects according an average
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of the strength of the interaction. We take some typical values of k2,p∆tp ∼ 0.01
s and k2,∗∆ts ∼ 1 s, which would correspond to tidal quality factors (Goldreich
and Soter, 1966) of about 106 and 104 respectively, in the constant-Q model (in
contrast to the constant ∆t model that we consider here) for an orbital period of
about 5 d.

We expect planets that are further out to be only weakly affected by tides,
whereas close-in planets will experience strong tides. Some of these close-in
planets will be heavy enough and close enough to exert their own influence
on the star by raising stellar tides. This can be seen in Figure 6.2, where we
have plotted the timescale of circularisation assuming tides inside the star alone
against the timescale of circularisation assuming tides in the planet alone.

The open symbols represent orbits that are consistent with circular, and the
black symbols represent eccentric orbits, whereas the grey symbols represent
objects with small (e < 0.1), but significant eccentricities. The dashed lines
represent lines of constant circularisation timescale, at 1 Myr, 10 Myr, 100 Myr,
1 Gyr and 10 Gyr. For the G dwarfs (circles), orbits that are consistent with
circular and eccentric orbits are cleanly segregated by the 10 Gyr isochrone,
with HAT-P-16b (e = 0.034± 0.003) caught in the process of circularisation. The
only apparent exception to this rule is GJ-436, which is an M-dwarf instead of a
G-dwarf. In this work, do not investigate this difference further.

For the F dwarfs (squares) with planets in non-circular orbits (open symbols),
WASP-14b (Teff = 6475± 100 K) has a small eccentricity e = 0.008± 0.003 and
XO-3b (Teff = 6429± 100 K) has an eccentricity of 0.287± 0.005, whereas CoRoT-
3b (Teff = 6740 ± 140 K) is on an orbit that is consistent with circular. This
suggests that in the dissipation factor in hotter stars may vary in an unknown
fashion, although the small eccentricity of WASP-14b and the moderately small
eccentricity of XO-3, together with the short timescale for stellar tides indicate
that tides in the star are clearly important even in these cases.

Since our papers (Husnoo et al., 2012, 2011; Pont et al., 2011) were published,
new objects have been discovered as described in Section 5.7. We indicate these
as diamonds in Figure 6.2, where it can be seen that they follow the same pattern
described here.

Hot Neptunes

GJ-436b is a planet on an eccentric orbit (e = 0.153± 0.017) in a region of the
mass-scale plane where tidal effects on the planet are expected to be significant.
The planet is a hot Neptune so it is likely that the structure is different enough
that the tidal quality factor Q is very much higher (Goldreich and Soter, 1966),
leading to a longer circularisation timescale. In this case, GJ-436b would simply
not have had enough time to circularise its orbit.Another possibility that was
initially suggested by Maness et al. (2007), is that a second companion may be
present in the system and is pumping up the eccentricity of GJ-436b by secular
interactions. Further measurements with radial velocity (Ribas et al., 2009) and
photometry (Ballard et al., 2010) appear to rule this possibility out.
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Figure 6.2: Timescale of circularisation assuming tides inside the star alone (ver-
tical axis) against the timescale of circularisation assuming tides in the planet
alone (horizontal axis). The dotted lines represent lines of constant circularisa-
tion timescale. The diamond symbols represent objects newly announced since
our original papers, and they follow the same pattern (see Section 6.2).
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Name Prot (d) Expected Prot (d)
CoRoT-2 4.52±0.02 36
CoRoT-18 6.3±0.9 49
HAT-P-20 11.3±2.2 57
HD 189733 12.95±0.01 57
WASP-19 10.5±0.2 42
WASP-43 7.6±0.7 57

Table 6.1: Table showing the systems with excess rotation in the left panel of
Figure 6.3. Prot is the stellar rotation period today, and ‘Expected Prot’ is the
expected rotation period of the star as estimated from the rotation isochrones of
Strassmeier & Hall (1988).

6.3 Synchronisation

Tidal dissipation in the host star exerts a torque on the star, causing an exchange
of angular momentum between the stellar spin and the orbit. If the host star
is a slow rotator, it can be spun up by the tidal interaction. This would occur
on a similar timescale as circularisation. Figure 6.3 shows the same axes as
Figure 6.2, but on the left panel, the star symbols represent objects with excess
stellar rotation. In the case of CoRoT-3b and τ Boötis b, the rotation of the host
star has been synchronised with the orbital period.

Pont (2009) also pointed out that HD 189733 and CoRoT-2b were rotating
faster than expected from the isochrones of Strassmeier & Hall (1988), even if
the stellar rotations were not synchronised. We can now confirm that four more
objects are clearly in this regime: CoRoT-18, HAT-P-20, WASP-19 and WASP-43.
The rotation periods of these stars and the expected rotation periods are shown
in Table 6.1.

From Figure 6.3, we note that the estimated timescale for orbital circular-
isation due to tidal effects in the star alone is less than 5 Gyr for the objects
WASP-19, WASP-43, CoRoT-2, CoRoT-18 and CoRoT-3. This means that tidal
dissipation in the star could lead to the excess rotation well within the lifetime
of these stars. On the other hand, the two objects τ Boötis b and HAT-P-20
have timescales τ∗ ∼ 10 Gyr, while HD 189733b has τ∗ ∼ 80 Gyr. It should be
noted that the biggest uncertainty in the tidal model, even after we include the
higher order terms in the tidal equations in Chapter 2, is the tidal quality factor,
whose estimates can vary by up to two orders of magnitude Leconte et al. (2010).
In this case, the timescales we derive should be considered to provide a useful
ranking system for the order in which the objects would evolve. In the case of
HD 189733, the tidal dissipation strength would need to be stronger by a single
order of magnitude for the tidal evolution to match the observations. Indeed,
since HD 198733 is not synchronised with the orbit of the planet, the required
variation in dissipation factor is even less. In contrast, orbital circularisation in
many of these cases may well have occurred due to dissipation in the planet
instead.

Planets that are unable to spin-up their parent stars to synchronisation may
be doomed to destruction. Hellier et al. (2009) pointed out that the existence
of WASP-18 at its current position in the mass-period plane suggests that either
the tidal dissipation in the system is several orders of magnitude smaller than
expected, or that the system is caught at a very special time while it is in the last
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Figure 6.3: The axes are the same as Figure 6.2. The star symbols represent
objects where there is evidence of spin-up. These are stars that rotate faster
than predicted by the isochrones of Strassmeier & Hall (1988). In the case of
the two hot stars CoRoT-3 and τ Boötis b, the stellar rotation have even become
synchronised with the orbital period. No objects with a stellar tidal dissipation
timescale larger than about τ∗ > 1011 years show any evidence of excess rotation,
supporting the case for tidal involvement in the objects with excess rotation.
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10−4 of the estimated lifetime of the system. The latter possibility sounds more
plausible, considering the striking paucity of heavy planets at short period.

6.4 Spin-orbit alignment

Figure 6.4 shows the same axes as before (timescales), and the circles represent
G stars and the squares represent F stars. The empty symbols now represent
aligned systems (λ < 30◦), and the filled symbols represent misaligned systems
(λ > 30◦). In this case, the G dwarfs are aligned, except for CoRoT-1(Teff =
5950± 150 K), WASP-1 (Teff = 6110± 245 K) and HAT-P-32 (Teff = 6207± 88 K),
which are actually hot stars, and WASP-8 is outside the region of strong tides in
the star.

CoRoT-1, WASP-1 and the F dwarfs, display a spread in terms of aligned and
misaligned, even in cases of strong tides. Winn et al. (2010) found a link be-
tween the presence of a convective core and spin-orbit alignment by tidal effects.
Thus, exoplanets could migrate inwards by planet-planet scattering, giving rise
to orbits with a range of eccentricities and spin-orbit angles. Planets in orbit
around cooler stars (Teff < 6250 K, where the stellar convective region is signifi-
cant), can have their orbital angular momentum aligned with the stellar rotation,
while planets in orbit around hot stars (Teff > 6250 K, where the extent of the
convective region is negligible) manage to keep their initial misalignment.

Conclusion

In this chapter, we reviewed the observational constraints on the migration of
hot Jupiters. We showed that the eccentricity distribution was consistent with
tidal interactions and removed the need for extra sources of eccentricity excita-
tion. Similarly, the projected spin-orbit angle distribution matches the scenario
of Winn et al. and the evidence for excess rotation for several objects, including
stellar spin-orbit synchronisation, matches expectations from significant tidal in-
teractions.
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Figure 6.4: The circles indicate aligned systems (λ < 30◦), whereas the star
symbols represent misaligned systems (λ > 30◦). In this case, the G dwarfs are
aligned (CoRoT-1 and WASP-1 are actually hot stars, and WASP-8 is outside the
region of strong tides in the star). The F dwarfs, on the other hand, display
a spread in terms of aligned and misaligned, even in cases of strong tides, in
agreement with Winn et al. (2010).
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Chapter 7

Conclusions and future work

The discovery of exoplanets with mass and composition comparable to Jupiter,
and yet located on short period orbits was an unexpected development for
the then fledging exoplanet field (Section 1.3). Two major mechanisms were
suggested by different groups to explain the necessary migration, namely the
disk-migration scenario (Section 1.4) and the dynamical scattering scenario (Sec-
tions 1.5, 1.6 and 1.7). One thing that researchers agreed on was that tidal in-
teractions would be strong in these hot Jupiter systems (Section 1.8), and thus
the short period orbits were expected to be circular. Although the initial dis-
coveries suggested that this was indeed the case, later discoveries appeared to
show several objects on eccentric orbits at very short periods (Section 1.8). This
clashed with the theoretical expectations, leading to extensive speculations of
additional interactions with undetected companions, and a tidal explanation for
the additional energy source for inflated hot Jupiters.

In this thesis, we have used new radial velocity measurements, as well as
existing measurements in the literature to recalculate the orbital parameters of a
large sample of transiting exoplanets. We have shown that the apparent “excep-
tions” in the literature, i.e. objects with significant eccentricities at very short pe-
riods, have orbits that are consistent with circular after all. Using the timescales
for circularisation, synchronisation and alignment, we show that the ensemble
of transiting planets is consistent with a history initially involving dynamical in-
teractions followed by tidal interactions that lead to orbital circularisation, spin-
orbit alignment and synchronisation in some cases.

7.1 Main achievements

7.1.1 Modified analysis

In Sections 3.5, 3.8, 4.3.1 and 5.2, we describe how we modify the conventional
approach to parameter estimation of orbital elements in the field of exoplanets.
In particular, we take into account the presence of correlated noise by including
an extra term in the uncertainty in Section 4.3.1 and using a correlation matrix
with a correlation timescale in Section 5.2. In each case, we modify the “merit
function” of the MCMC to include this term. Previous work that ignored the
correlation in the noise of radial velocity measurements had led to spurious
detection of a finite eccentricity in several systems (Section 5.3).

The second key part of our procedure is the systematic application of a
Bayesian model selection step, where we compare the evidence for an eccentric
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orbit against that for a circular orbit (Section 3.10). This application of Occam’s
razor was well known in the study of binary stars, where the Lucy & Sweeney
F-test was used for the same purpose. The reason this step is important is be-
cause of the positive definite nature of the derived orbital eccentricity — any
noise will only push the eccentricity up in the MCMC chain, as the eccentric-
ity cannot be negative. This effect has been demonstrated to be relevant in the
field of exoplanets by other researchers by using both simulated data and radial
velocity measurements for known planets (Section 1.9).

7.1.2 Analysis of new data and reanalysis of existing data

We carried out a literature search for the existing radial velocity measurements
of 54 objects, and added 158 new measurements for 12 of these objects (Sec-
tions 4.2 and 5.1). We augmented this list with another 40 systems by critically
considering the quality of the measurements (numerous measurements, large
signal to noise, widespread phase coverage — Sections 5.1 and 5.7). We also
included any photometric constraints available on period, mid-transit time and
secondary eclipse phase.

We used the techniques described above to analyse these measurements, and
obtained updated estimates for the orbital parameters of 54 of the objects in the
sample of transiting objects. Several objects were previously believed to be on
eccentric orbits, but we showed that the available data suggested these orbits
were consistent with circular (Sections 4.3.3 and 5.3). These objects are CoRoT-
5b, WASP-6b, WASP-10b, WASP-12b, WASP-17b, WASP-18b and WASP-5b. In
all these cases, it is likely that the uncertainties in the original measurements
had been underestimated. In the case of WASP-12b, we showed that new mea-
surements made the uncertainty on the derived eccentricity grow, instead of
obtaining a more precise and significant eccentricity.

7.1.3 The story from the ensemble of transiting planets

Given that several objects that were previously tagged as “exceptions” having
a significant eccentricity at very short period in the previous literature were
actually not exceptions at all, we compared the ensemble of eccentricity mea-
surements with theoretical timescale for eccentricity damping (Section 6.2).

We revisited the work of F. Pont (Section 6.3) where it was originally shown
that the stars HD 189733 and CoRoT-2 were rotating faster than expected for
stars with their estimated masses and ages. In this work, we confirm that the
stars CoRoT-18, HAT-P-20, WASP-19 and WASP-43 are also rotating faster than
expected by comparing them to isochrones. This is a key signature of tidal
evolution, as angular momentum can be taken out of the orbit and dumped into
the stellar spin.

We also revisited the scenario suggested by the team of J. Winn, where plan-
ets in orbit around hot stars maintain their initial obliquities whereas planets in
orbit around cool stars undergo tidal interactions to damp their obliquities (Sec-
tion 6.4). We plot the projected spin-orbit measurements on the same timescales
as we did for circularisation, and show that objects around cool stars and expe-
riencing strong tidal interactions are all aligned, whereas objects that undergo
weak interactions maintain their obliquities. This is consistent with the work by
Winn’s team.
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7.2 Outlook

The overall theme of this thesis has been to demonstrate that the present data on
close-in exoplanets support the case for a prominent role for tidal interactions
between the planet and the host star in the orbital evolution of hot Jupiters.

It would be interesting to see how this picture merges with heavier compan-
ion objects: a number of transiting brown dwarfs have been announced in recent
years (e.g. Anderson et al., 2011; Bouchy et al., 2011; Díaz et al., 2013), and over
the next few years, it may be possible to plot a full picture with everything from
hot Jupiter systems to stellar binary systems, as the dichotomy between “tides
in the star” and “tides in the companion” would disappear. Another avenue of
research may be the recent light curves from the Kepler mission (Batalha et al.,
2013), which can provide the rotation periods of a large sample of objects, and
thus offer additional evidence for excess rotation in tidally interacting systems.
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Appendix A

Radial velocity measurements

In this Appendix, we include the radial velocity measurements we referred to
in Chapters 4 and 5. The spectra were obtained and reduced by the co-authors,
while I performed the analysis described in this thesis.
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Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4849.41844 19.2172 0.0119
4849.42764 19.2028 0.0112
4849.43654 19.1811 0.0111
4849.44552 19.1807 0.0111
4849.45469 19.1678 0.0108
4849.46419 19.1685 0.0106
4849.47405 19.1444 0.0106
4849.48469 19.1353 0.0108
4849.49611 19.0984 0.0118
4849.50751 19.0857 0.0121
4849.51895 19.0812 0.0123
4849.53036 19.0532 0.0123
4849.54177 19.0163 0.0121
4849.55319 19.0076 0.0129
4849.56461 19.0083 0.0119
4849.57603 18.9966 0.0132
4889.37950 19.1295 0.0040
4890.44193 19.0795 0.0047
4912.37616 19.1793 0.0085
4914.36671 18.9750 0.0044
4926.34294 18.9295 0.0043
4935.32914 19.2684 0.0118
4936.31657 19.1644 0.0068
5269.37102 19.3050 0.0038
5271.33688 19.0719 0.0039
5272.38229 19.0430 0.0039
5273.33965 18.8919 0.0039
5282.31904 19.1749 0.0045
5283.35164 19.1109 0.0049

Table A.1: SOPHIE radial velocity measurements for WASP-12 (errors include
random component only). For RVs for t=2454849, we find V0 = 19.113± 0.014
kms−1. This data is published in Husnoo et al. (2011)
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Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4885.65165 -5.5847 0.0107
4886.57106 -4.7678 0.0111
4886.68397 -4.4453 0.0106
4888.61655 -5.3910 0.0104
4888.68715 -5.1660 0.0107
4889.65818 -4.4914 0.0107
4890.66568 -5.8442 0.0106
4911.59331 -4.0451 0.0116
4912.55658 -5.5238 0.0114
4913.57244 -4.5271 0.0061
4915.57681 -5.2325 0.0122

Table A.2: SOPHIE radial velocity measurements for WASP-14 (errors include
random component only). This data is published in Husnoo et al. (2011)

Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4385.86631 23.4168 0.0190
4386.83809 23.6726 0.0139
4387.80863 23.3155 0.0149
4419.81749 23.5811 0.0123
4420.80300 23.3290 0.0118
4421.81461 23.6586 0.0113
4446.77797 23.3936 0.0145
4447.75517 23.4562 0.0130
4448.77217 23.6982 0.0126
4479.67146 23.3161 0.0123
4480.65370 23.6836 0.0140
4481.63818 23.5129 0.0173
4525.59523 23.6451 0.0116
4529.56406 23.3324 0.0127
4530.58002 23.5743 0.0105
4549.58179 23.5793 0.0280
4553.49391 23.3652 0.0124
4554.57636 23.6696 0.0157
4768.77120 23.7041 0.0092
4769.76601 23.4802 0.0104
4770.80872 23.3613 0.0108
4771.76514 23.6955 0.0102
4772.76824 23.4379 0.0109
4773.76896 23.3980 0.0095

Table A.3: HARPS radial velocity measurements for CoRoT-1 (errors include
random component only). This data is published in Husnoo et al. (2012)
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Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4768.52895 -56.5039 0.0036
4769.51404 -58.1970 0.0038
4770.51329 -56.1017 0.0046
4772.52655 -55.9171 0.0047
4773.52957 -58.2227 0.0042

Table A.4: HARPS radial velocity measurements for CoRoT-3 (errors include
random component only). This data is published in Husnoo et al. (2012)

Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4766.56990 -27.8402 0.0033
4767.52666 -27.6797 0.0023
4768.56373 -27.7842 0.0018
4769.54823 -27.7343 0.0017
4770.54665 -27.7131 0.0026
4771.54501 -27.8099 0.0031
4772.56012 -27.6489 0.0027
4773.56432 -27.8568 0.0019

Table A.5: HARPS radial velocity measurements for WASP-2 (errors include
random component only). This data is published in Husnoo et al. (2012)

Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4762.60256 57.6687 0.0028
4763.62220 57.5637 0.0022
4764.58386 57.9085 0.0035
4765.59031 57.9871 0.0038
4768.60378 57.9109 0.0022
4769.58081 57.9784 0.0023
4769.71186 58.0331 0.0017
4770.58784 57.6591 0.0024
4770.72474 57.7930 0.0023
4771.57892 57.6311 0.0021
4771.68481 57.5752 0.0019
4772.59125 57.9518 0.0025
4773.59429 57.9811 0.0018
4773.70377 58.0346 0.0024

Table A.6: HARPS radial velocity measurements for WASP-4 (errors include
random component only). This data is published in Husnoo et al. (2012)
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Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4768.63152 19.7967 0.0022
4768.73169 19.8696 0.0018
4769.62838 20.1047 0.0023
4770.62473 20.1231 0.0022
4770.76117 20.2255 0.0031
4771.60846 19.7737 0.0017
4771.71520 19.7446 0.0021
4772.63762 20.2588 0.0023
4772.73505 20.2071 0.0022
4773.62311 19.8540 0.0021
4773.73277 19.9582 0.0025

Table A.7: HARPS radial velocity measurements for WASP-5 (errors include
random component only). This data is published in Husnoo et al. (2012)

Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4762.53711 -29.4388 0.0024
4763.57798 -29.4994 0.0023
4764.50127 -29.5469 0.0032
4765.54456 -29.3948 0.0032
4767.54077 -29.3485 0.0031
4768.57924 -29.5636 0.0021
4769.64528 -29.5332 0.0018
4770.64161 -29.4468 0.0022
4771.62297 -29.3421 0.0019
4772.65474 -29.4212 0.0022
4773.63924 -29.5829 0.0020

Table A.8: HARPS radial velocity measurements for WASP-7 (errors include
random component only). This data is published in Husnoo et al. (2012)
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Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

5003.41234 -1.3253 0.0206
5005.47636 -1.3669 0.0122
5006.50185 -1.3244 0.0123
5007.42327 -1.4822 0.0129
5008.39084 -1.4143 0.0131
5009.38832 -1.3465 0.0132
5010.39331 -1.4711 0.0131
5011.42884 -1.4181 0.0129
5012.46735 -1.3504 0.0131
5013.45923 -1.4487 0.0128
5014.43881 -1.4106 0.0123
5015.48148 -1.3212 0.0124
5016.41444 -1.4666 0.0119

Table A.9: SOPHIE Radial velocity measurements for HAT-P-4 (uncertainties
include random component only). This data is published in Husnoo et al. (2012)

Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

5002.48517 -10.2995 0.0100
5003.52118 -10.6910 0.0103
5004.59910 -10.2681 0.0137
5005.49926 -10.6377 0.0101
5006.55335 -10.2564 0.0101
5007.53107 -10.5975 0.0101
5008.47624 -10.4027 0.0106
5010.43095 -10.5681 0.0102
5011.52259 -10.3835 0.0102
5013.60648 -10.3090 0.0093
5014.57426 -10.6862 0.0101
5015.58518 -10.2680 0.0103
5016.54123 -10.6808 0.0084

Table A.10: SOPHIE radial velocity measurements for HAT-P-7 (uncertainties
include random component only). This data is published in Husnoo et al. (2012)
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Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

5005.57207 -0.4489 0.0107
5006.57091 -0.2231 0.0100
5007.57482 -0.2619 0.0105
5008.44948 -0.4742 0.0106
5010.44234 -0.4505 0.0107
5011.51233 -0.2499 0.0110
5013.59448 -0.4207 0.0114
5014.56301 -0.1604 0.0108
5015.57356 -0.5090 0.0107
5016.55442 -0.2197 0.0110

Table A.11: SOPHIE radial velocity measurements for TrES-2 (uncertainties in-
clude random component only). This data is published in Husnoo et al. (2012)

Time RV σRV
[BJD-2450000] [km s−1] [km s−1]

4878.41245 46.7905 0.0091
4879.38681 46.9667 0.0084
4886.39349 46.7748 0.0095
4887.44867 46.9583 0.0084
4888.47514 46.7722 0.0085
4889.40965 46.8778 0.0086
4890.46546 46.8994 0.0085
4893.41643 46.8202 0.0087
4894.44335 46.8073 0.0121

Table A.12: SOPHIE radial velocity measurements for XO-2 (uncertainties in-
clude random component only). This data is published in Husnoo et al. (2012)
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