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ABSTRACT
We report the statistical properties of stars, brown dwarfs and multiple systems obtained from
the largest radiation hydrodynamical simulation of star cluster formation to date that resolves
masses down to the opacity limit for fragmentation (a few Jupiter masses). The initial conditions
are identical to those of previous barotropic calculations published by Bate, but this time the
calculation is performed using a realistic equation of state and radiation hydrodynamics. The
calculation uses sink particles to model 183 stars and brown dwarfs, including 28 binaries and
12 higher-order multiple systems, the properties of which are compared to the results from
observational surveys.

We find that the radiation hydrodynamical/sink particle simulation reproduces many ob-
served stellar properties very well. In particular, whereas using a barotropic equation of state
produces more brown dwarfs than stars, the inclusion of radiative feedback results in a stellar
mass function and a ratio of brown dwarfs to stars in good agreement with observations of
Galactic star-forming regions. In addition, many of the other statistical properties of the stars
and brown dwarfs are in reasonable agreement with observations, including multiplicity as a
function of primary mass, the frequency of very low mass binaries, and general trends for the
mass ratio and separation distributions of binaries. We also examine the velocity dispersion
of the stars, the distributions of disc truncation radii due to dynamical interactions, and copla-
narity of orbits and sink particle spins in multiple systems. Overall, the calculation produces a
cluster of stars whose statistical properties are difficult to distinguish from observed systems,
implying that gravity, hydrodynamics and radiative feedback are the primary ingredients for
determining the origin of the statistical properties of low-mass stars.

Key words: hydrodynamics – radiative transfer – binaries: general – stars: formation – stars:
low-mass – stars: luminosity function, mass function.

1 IN T RO D U C T I O N

Understanding the origin of the statistical properties of stellar sys-
tems is the fundamental goal of a complete theory of star formation.
Much attention has been paid to the origin of the stellar initial mass
function (IMF), and there are many models that have been pro-
posed for its origin (see the review of Bonnell, Larson & Zinnecker
2007). However, the statistical properties of stellar systems include
much more than just the IMF. A non-exhaustive list also includes
the star formation rate and efficiency, the structure and kinematics
of stellar groups and clusters, the properties of multiple stellar sys-
tems, jets, and protoplanetary discs, and the rotation rates of stars.
A complete model must be able to explain the origin of all the
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statistical properties of stellar systems, and how these depend on
variations in environment and initial conditions. While simplified
analytic or semi-analytic models may be useful for understanding
the role that different processes play in the origin of some stel-
lar properties, numerical simulations are almost certainly necessary
to help us understand the full complexity of the star formation
process.

To investigate the origin of the statistical properties of stellar
systems through numerical simulations of star formation is difficult
because it is necessary to use sufficient resolution to ensure that the
processes involved are accurately modelled while simultaneously
producing a large number of stars from which statistical properties
can be derived. One approach is to perform a large number of hydro-
dynamical calculations of star formation in small molecular cloud
cores (e.g. Delgado-Donate, Clarke & Bate 2004a; Delgado-Donate
et al. 2004b; Goodwin, Whitworth & Ward-Thompson 2004a,b,c,

C© 2011 The Author
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12827811?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3116 M. R. Bate

2006; Stamatellos, Hubber & Whitworth 2007; Stamatellos &
Whitworth 2009). Each calculation may only produce a few stars,
but from the large ensemble of simulations the statistical properties
can be studied. However, such calculations begin with an arbitrary
population of dense cores for their initial conditions, which may
or may not be a good representation of real dense cores. They also
neglect evolution of the cores due to external processes such as
growth of the cores by accretion, interactions with the turbulent
environment in which they are embedded, and interactions between
cores and protostellar systems which may be particularly important
in dense star-forming regions.

An alternative is to perform single large-scale hydrodynamical
calculations of molecular clouds that each produce large numbers
of stars. In these calculations, dense cores may form and evolve
self-consistently from hydrodynamical flows on larger scales, and
interactions between dense cores and protostellar systems can occur
naturally. Such calculations can be divided into two types: those
that resolve small (�5 au) scales to capture the opacity limit for
fragmentation (Low & Lynden-Bell 1976; Rees 1976) and those
that do not.

Hydrodynamical calculations that do not resolve small scales
miss some of the star formation and most binaries and discs. They
usually seek to investigate the origin of the IMF and/or other large-
scale properties such as the star formation rate. Early simulations
of this type (Klessen, Burkert & Bate 1998; Klessen & Burkert
2000, 2001; Bonnell et al. 2001; Klessen 2001; Bonnell & Bate
2002; Bonnell, Bate & Vine 2003) used isothermal equations of
state and produced large numbers of stars, but used sink particles
(Bate, Bonnell & Price 1995) with radii of hundreds of au. More
recent calculations have the investigated effects of additional phys-
ical processes on the origin of the IMF such as radiative transfer
(Offner et al. 2009; Urban, Martel & Evans 2010; Krumholz, Klein
& McKee 2011), but these calculations also employ sink particles
with accretion radii of greater than 100 au.

The first hydrodynamical calculation to resolve the opacity limit
for fragmentation and begin to probe the statistical properties of
stars and brown dwarfs used a barotropic equation of state and sink
particles with accretion radii of 5 au, thus resolving many discs
and binary and multiple systems (Bate, Bonnell & Bromm 2002a,b,
2003). This calculation was followed by other similar calculations
that probed the dependence of stellar properties on the mean ther-
mal Jeans mass in the molecular cloud, the thermal behaviour of
the gas and the initial turbulent motions (Bate 2005, 2009b; Bate
& Bonnell 2005). For example, these calculations showed that,
when using a barotropic equation of state, the characteristic stellar
mass depends primarily on the initial mean thermal Jeans mass in
the cloud and not, for example, the initial turbulent power spec-
trum. These calculations were followed by those of other groups
that also modelled the formation of stellar groups while simultane-
ously resolving discs and binaries (Li et al. 2004; Offner, Klein &
McKee 2008). Most recently, calculations that resolve these small
scales and produce stellar groups have also begun to include the
effects of additional physical processes such as magnetic fields
(Price & Bate 2008), radiative transfer (Bate 2009c) and both of
these combined (Price & Bate 2009). Using radiative transfer is
found to dramatically decrease the amount of fragmentation, in-
crease the characteristic stellar mass, decrease the proportion of
brown dwarfs (Bate 2009c; Offner et al. 2009) and weaken the de-
pendence of the characteristic mass of the IMF on the initial Jeans
mass (Bate 2009c). The latter effect may help to explain why the
IMF is not observed to be strongly dependent on initial conditions,
at least in our Galaxy (Bastian, Covey & Meyer 2010). Stronger

magnetic fields are found to decrease the star formation rate (Price
& Bate 2008, 2009). However, in each of these calculations, only
a few dozen stars and brown dwarfs were produced, making it
difficult to compare statistical properties with observations in any
detail.

Currently, the only published hydrodynamical calculations that
resolve the opacity limit for fragmentation and produce large num-
bers of stars, brown dwarfs (>100) are those of Bate (2009a). Two
calculations were performed of 500 M� molecular clouds, one us-
ing sink particle accretion radii of 5 au, and an identical calculation
using accretion radii of 0.5 au that was not followed as far. The
calculations used a barotropic equation of state to model the opac-
ity limit for fragmentation. The former calculation produced more
than 1250 stars and brown dwarfs, including well over 100 multiple
systems, that for the first time allowed a detailed comparison of
a wide range of stellar properties with observations. It was found
that many of the stellar properties were in good agreement with
observed properties. For example, multiplicity was found to be a
strongly increasing function of primary mass, the median separa-
tion of multiple systems was found to decrease with primary mass,
the mass ratios of very low mass (VLM) binaries (primary masses
<0.1 M�) were found to favour near-equal masses, and the relative
orbital orientations of triple systems were found to be somewhat
aligned. The good agreement with the observed properties of mul-
tiple stellar systems implies that such properties may originate pri-
marily from dissipative N -body dynamics, and that other physical
processes such as radiative transfer and magnetic fields may play
less of a role. However, the calculations produced far too many
brown dwarfs relative to stars compared with a typical Galactic
IMF.

In this paper, we repeat the 500 M� calculations of Bate (2009a),
but we use a realistic equation of state and include radiative trans-
fer as implemented in the smaller calculations of Bate (2009c) and
Price & Bate (2009). Our aim is to investigate the effect of the real-
istic equation of state and radiative feedback on the star formation
process in more detail than was possible with the earlier smaller cal-
culations. In particular, we wish to determine whether the inclusion
of radiative feedback can produce a more realistic IMF than that
obtained by Bate (2009a), but retain the good agreement that was
found when comparing the statistical properties of multiple stellar
systems with observations.

2 C O M P U TAT I O NA L M E T H O D

The calculations presented here were performed using a three-
dimensional smoothed particle hydrodynamics (SPH) code based
on the original version of Benz (1990; Benz et al. 1990), but sub-
stantially modified as described in Bate et al. (1995), Whitehouse,
Bate & Monaghan (2005), Whitehouse & Bate (2006), Price & Bate
(2007), and parallelized using both OpenMP and MPI.

Gravitational forces between particles and a particle’s nearest
neighbours are calculated using a binary tree. The smoothing
lengths of particles are variable in time and space, set iteratively
such that the smoothing length of each particle h = 1.2(m/ρ)1/3

where m and ρ are the SPH particle’s mass and density, re-
spectively (see Price & Monaghan 2007, for further details). The
SPH equations are integrated using a second-order Runge–Kutta–
Fehlberg integrator with individual time-steps for each particle
(Bate et al. 1995). To reduce numerical shear viscosity, we use the
Morris & Monaghan (1997) artificial viscosity with αv varying be-
tween 0.1 and 1 while βv = 2αv (see also Price & Monaghan
2005).
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2.1 Equation of state and radiative transfer

The calculations presented in this paper were performed using radi-
ation hydrodynamics with an ideal gas equation of state for the gas
pressure p = ρTgR/μ, where Tg is the gas temperature, μ is the
mean molecular weight of the gas and R is the gas constant. The
thermal evolution takes into account the translational, rotational and
vibrational degrees of freedom of molecular hydrogen (assuming a
3:1 mix of ortho- and para-hydrogen; see Boley et al. 2007). It also
includes molecular hydrogen dissociation, and the ionizations of
hydrogen and helium. The hydrogen and helium mass fractions are
X = 0.70 and Y = 0.28, respectively. The contribution of metals
to the equation of state is neglected.

For this composition, the mean molecular weight of the gas is
initially μ = 2.38. The original calculation of Bate (2009a) was
performed using a barotropic equation of state which took the mean
molecular weight of the gas to be μ = 2.46 and the initial temper-
ature to be 10 K. To keep the same initial conditions (i.e. the same
initial thermal energy of the gas), we set the initial temperature of
the radiation hydrodynamical calculation to be 10.3 K.

Two temperature (gas and radiation) radiative transfer in the flux-
limited diffusion approximation is implemented as described by
Whitehouse et al. (2005) and Whitehouse & Bate (2006), except
that the standard explicit SPH contributions to the gas energy equa-
tion due to the work and artificial viscosity are used when solving the
(semi-)implicit energy equations to provide better energy conserva-
tion. Energy is generated when work is done on the gas or radiation
fields, radiation is transported via flux-limited diffusion and energy
is transferred between the gas and radiation fields depending on
their relative temperatures, and the gas density and opacity. The
gas and dust temperatures are assumed to be the same. Taking solar
metallicity gas, the opacity is set to be the maximum of the interstel-
lar grain opacity tables of Pollack, McKay & Christofferson (1985)
and, at higher temperatures when the dust has been destroyed, the
gas opacity tables of Alexander (1975) (the IVa King model) (see
Whitehouse & Bate 2006, for further details).

The cloud has a free boundary. To provide a boundary condition
for the radiative transfer we use the same method as Bate (2009c).
All particles with densities less than 10−21 g cm−3 have their gas
and radiation temperatures set to the initial values of 10.3 K. This
gas is two orders of magnitude less dense than the initial cloud (see
Section 2.4) and, thus, these boundary particles surround the region
of interest in which the star cluster forms.

2.2 Sink particles

Using the above realistic equation of state and radiation hydro-
dynamics means that as the gas collapses, each of the phases of
protostar formation are captured (Larson 1969). The initial collapse
of a dense core proceeds almost isothermally, until the compres-
sional heating rate of the gas exceeds the rate at which the gas
can cool. At this point the collapse stalls, and a pressure supported
fragment forms which Larson termed the ‘first hydrostatic core’.
The typical initial size and mass of this object is ≈5 au in radius
and a few Jupiter masses (MJ). This first core accretes gas from the
infalling envelope and if it is rotating rapidly it may undergo rota-
tional dynamical instabilities to form a disc (Bate 1998). Eventually,
due to mass accretion (Larson 1969), dynamical instability (Bate
1998) and/or cooling (Tomida et al. 2010b) the central temperature
exceeds ≈2000 K and molecular hydrogen begins to dissociate, ab-
sorbing thermal energy and resulting in a second collapse (Larson
1969) within the first core/disc. This collapse is halted when the

dissociation is complete and the ‘second’ or ‘stellar core’ forms
(Larson 1969). This object initially has a radius of ≈2 R� and a
mass of ≈1–2 MJ. Subsequently it accretes to higher masses from
the surrounding first core/disc and envelope.

The calculations presented here include the physics necessary
to follow each of these stages of protostar formation and evolution.
Indeed, the same code has been used to study the formation and evo-
lution of first cores, pre-stellar discs and stellar cores (Bate 2010a,
2011). However, as the collapse proceeds, the time-steps required to
obey the Courant–Friedrichs–Levy (CFL) criterion become smaller
and smaller. Because we wish to evolve the large scales over time-
scales of ∼105 years, we cannot afford to follow the small scales
(e.g. the stellar cores themselves).

Instead, we follow the evolution of each protostar through the
first core phase and into the second collapse (which begins at den-
sities of ∼10−7 g cm−3), but we insert a sink particle (Bate et al.
1995) when the density exceeds 10−5 g cm−3. The time-steps re-
quired to follow this evolution get very short, but the duration of
the second collapse phase is quite brief and the use of individual
particle time-steps means that the calculation does not get slowed
down for long. This density is just two orders of magnitude be-
fore the stellar core begins to form (density ∼10−3 g cm−3), and a
considerable improvement over previous similar barotropic calcu-
lations. For example, Bate et al. (2003) and Bate (2009a) inserted
sink particles well before the onset of second collapse at densities
of 10−11 and 10−10 g cm−3, respectively. At these densities, sink
particles might have been inserted before two fragments merged or
before a fragment was disrupted. However, the time taken for a pro-
tostar to evolve from 10−5 g cm−3 to the formation of a stellar core
is much less than a year (the free-fall time at this density is only one
week!), so there is no chance of protostellar fragments merging or
becoming disrupted between sink particle insertion and stellar core
formation.

In the main calculation discussed in this paper, a sink particle is
formed by replacing the SPH gas particles contained within racc =
0.5 au of the densest gas particle in region undergoing second
collapse by a point mass with the same mass and momentum. Any
gas that later falls within this radius is accreted by the point mass
if it is bound and its specific angular momentum is less than that
required to form a circular orbit at radius racc from the sink particle.
Thus, gaseous discs around sink particles can only be resolved if
they have radii �1 au. Sink particles interact with the gas only via
gravity and accretion. There is no gravitational softening between
sink particles. The angular momentum accreted by a sink particle
is recorded but plays no further role in the calculation.

Since all sink particles are created within pressure-supported
fragments, their initial masses are several MJ, as given by the opacity
limit for fragmentation (Low & Lynden-Bell 1976; Rees 1976).
Subsequently, they may accrete large amounts of material to become
higher-mass brown dwarfs (�75 MJ) or stars (�75 MJ), but all the
stars and brown dwarfs begin as these low-mass pressure-supported
fragments.

Sink particles are permitted to merge in the calculation if they
passed within 0.01 au of each other (i.e. ≈2 R�). However, no
mergers occurred during the calculation.

2.3 Limitations of the sink particle approximation

The benefits and potential problems associated with introducing
sink particles into barotropic star formation calculations performed
using SPH have been discussed by Bate et al. (1995, 2003) and
Bate (2009a). Some of these problems are avoided in the calculation
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presented here. As mentioned above, it is no longer possible that
a fragment which has been replaced by a sink particle might have
merged or been disrupted before stellar core formation if it had not
been replaced by a sink particle. Another problem, found by Bate
(2009a), was that the eccentricities of binary stellar systems with
separations 1–20 au were too high if sink particles with radii racc = 5
au were used due to the absence of small-scale dissipation, but that
this was corrected if the radius was reduced to 0.5 au. Therefore,
for the calculation presented here we use racc = 0.5 au. However,
other problems with using sink particles remain. For example, using
racc = 0.5 au, dissipative interactions between protostars on length-
scales �1 au are still neglected. Similarly, discs smaller than ≈1 au
in radius cannot be resolved.

When using radiation hydrodynamics, there is a new problem
– how to handle radiative feedback. If each stellar core itself was
resolved (e.g. Whitehouse & Bate 2006; Bate 2010a, 2011), the full
radiative feedback from the protostars would be naturally modelled.
However, introducing sink particles means that the evolution inside
the sink particle radius is neglected. In the simplest form where a
sink particle consists only of a point mass and a hole, there is no
radiative feedback from the stellar core and the inner part of an
accretion disc on the rest of the calculation. This is the case for the
calculations presented by Bate (2009c) and also for the calculations
presented in this paper.

However, this means that the luminosity of the material inside the
sink particle radius is omitted. There are three main sources of lumi-
nosity that may be inside the sink radius: the intrinsic luminosity of
the protostar (or protostars), the luminosity generated by accretion
on to the protostar(s) and the luminosity of any other matter (e.g. an
accretion disc). If the protostar accretes from a steady-state accre-
tion disc, the accretion luminosity on to the protostar will dominate
the luminosity of the disc itself. However, trying to determine the
intrinsic luminosity of the protostar(s) and accretion luminosity is
far from easy and we discuss the many problems below.

2.3.1 Intrinsic protostellar luminosity

For a young low- or intermediate-mass (�3 M�) protostar that
is accreting at a significant rate (>10−6 M� yr−1), the accretion
luminosity dominates and the intrinsic luminosity of the stellar
object is negligible (e.g. Offner et al. 2009; Hosokawa & Omukai
2009). For example, the accretion luminosity

Lacc ≈ GM∗Ṁ∗
R∗

, (1)

of a star of mass M∗ = 1 M� with a radius of R∗ = 2R� (e.g.
Hosokawa & Omukai 2009), accreting at Ṁ∗ = 1×10−6 M� yr−1 is
≈15 L� whereas the luminosity of the stellar object itself is ≈1 L�
(Hosokawa & Omukai 2009). As will be seen in Section 3.2.1, the
typical accretion rates in the calculation presented here are an order
of magnitude higher than this (≈10−5 M� yr−1). Therefore, for the
vast majority of the stars and brown dwarfs produced, the accretion
luminosity dominates over stellar luminosity unless the accretion
rate drops to very low levels. Very low accretion rates are usually
obtained only after a star has had a dynamical interaction and been
ejected from the dense star-forming cores, where upon its radiative
feedback is no longer important for the subsequent star formation.
Indeed, we define a star or brown dwarf whose accretion rate drops
below 10−7 M� yr−1 to have stopped accreting.

For stars with masses �3 M�, whether accretion luminosity
or stellar luminosity dominates is more complex. Hosokawa &
Omukai (2009) find that for accretion rates of 1 × 10−5 M� yr−1,

accretion luminosity dominates for �3 M�, but with accretion
rates of 1 × 10−3 M� yr−1, accretion luminosity dominates for
�9 M�. There are only two stars with masses >3 M� produced
by the main calculation presented here: a 3.84 M� star and a
3.38 M� star. However, these two stars have average accretion
rates >5 × 10−5 M� yr−1, so the accretion luminosity is expected
to dominate over stellar luminosity.

We conclude that for low- and intermediate-mass star formation
like that considered in this paper, the intrinsic stellar luminosity can
be confidently neglected.

2.3.2 Accretion luminosity and sink particle accretion radii

However, the accretion luminosity is a different issue. Because
accretion luminosity scales ∝1/R (equation 1), excluding the ra-
diation coming from inside a sink particle accretion radius means
that the luminosity of an accreting stellar object is potentially un-
derestimated by a factor of ≈R∗/racc. Taking a protostellar radius of
R∗ ≈ 3–5 R� (typical for protostars of mass 0.1–2 M� accreting
at a rate of 10−5 M� yr−1; Hosokawa & Omukai 2009), this is a
factor of ≈200–300 when using an accretion radius of racc = 5 au
and a factor of ≈20–30 when using racc = 0.5 au.

Bate (2009c) performed radiation hydrodynamical calculations
of star formation that were similar to the calculation presented in
this paper, but for smaller 50 M� clouds. He performed calculations
using sink particle accretion radii of 5 and 0.5 au (and, therefore, dif-
ferent fractions of the accretion luminosity) to determine the effect
on the fragmentation. The initial conditions for these calculations
were identical to the original barotropic calculation of Bate et al.
(2003) which used racc = 5 au. To investigate this issue further for
this paper, we performed another calculation, identical to those of
Bate (2009c), but using accretion radii of just 0.05 au (i.e. only
≈2–3 times larger than a rapidly accreting low-mass star). In Fig. 1,
we plot the total stellar mass (i.e. the mass in sink particles) and the
number of sink particles as functions of time. We also plot the num-
ber of sink particles versus the total stellar mass. It is clear that the
main effect of including radiative feedback is captured when going
from a barotropic equation of state to radiation hydrodynamics and
racc = 5 au which reduces the number of objects formed by more
than a factor of 3. Decreasing the accretion radii from 5 to 0.5 to
0.05 au has a progressively smaller and smaller effect. Although
at t = 1.38 tff the calculation with racc = 0.05 au had formed 11
objects while the calculation with racc = 0.5 au had formed eight
objects, the time evolution of the total stellar mass is almost identi-
cal for the two smallest accretion radii and until t = 1.35 tff (before
the onset of the second burst of star formation; Bate et al. 2003) the
number of stars only differs by one.

Why should increasing the accretion luminosity by a factor of 100
have such little effect compared to switching from a barotropic to ra-
diation hydrodynamical calculation? There are three main reasons.
First, although the barotropic equation of state models the evolution
of the maximum temperature/density during the collapse to form a
protostar reasonably well, the temperature surrounding the object
even before stellar core formation may be underestimated by up to an
order of magnitude, particularly in a protostellar disc (Whitehouse
& Bate 2006). Thus, using radiation hydrodynamics rather than
a barotropic equation of state dramatically decreases the propen-
sity for massive discs to fragment even without stellar feedback.
In Bate et al. (2003), three-quarters of the brown dwarfs formed
by disc fragmentation (Bate et al. 2002a), so this has a particularly
important effect on the formation of low-mass objects. Secondly,
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Figure 1. The dependence of the star formation rate on the sink particle accretion radius, racc. For previously published barotropic and radiation hydrodynamical
calculations of star formation in a turbulence 50 M� cloud we plot: the total stellar mass (i.e. the mass contained in sink particles) versus time (left-hand
panel), the number of stars and brown dwarfs (i.e. the number of sink particles) versus time (centre panel), and the number of stars and brown dwarfs versus
the total stellar mass (right-hand panel). The different line types are for: a barotropic calculation using racc = 5 au (dotted line; Bate et al. 2003); and radiation
hydrodynamical calculations with racc = 5 au (short-dashed line; Bate 2009c), racc = 0.5 au (solid line; Bate 2009c), and racc = 0.05 au (long-dashed line;
performed for this paper). Time is measured from the beginning of the calculations in terms of the free-fall time (1.90 × 105 yr). It can be seen that the main
change in the star formation is captured when changing from a barotropic equation of state to a radiation hydrodynamical calculation (both with racc = 5 au).
Reducing the accretion radius used for the radiation hydrodynamical calculations has a smaller effect each time the accretion radius is reduced.

in the envelope surrounding a protostar, the gas temperature de-
pends on luminosity roughly as L1/4

∗ . Therefore, a large change in
the luminosity does not actually translate into a large change in
temperature. The Jeans mass scales with temperature as T 3/2

g , so
this translates into a change in the Jeans mass of L3/8

∗ . Therefore,
changing the accretion radii from 5 to 0.5 to 0.05 au only decreases
the Jeans mass near an existing protostar by factors of ≈8, 3.4 and
1.4 compared to that expected from including the full accretion lu-
minosity. Finally, protostars that form near each other usually form
in a short period of time. Since when a new stellar core first forms
most of the mass is still in the disc (Bate 1998, 2010a; Machida &
Matsumoto 2011), the accretion luminosity of the stellar core does
not exceed the luminosity of the accreting first core/disc for some
time. If the nearby fragmentation occurs before the stellar lumi-
nosity becomes significant (e.g. Bate 2011), the luminosity of the
nearby protostar will be a good approximation despite the use of a
sink particle.

2.3.3 Problems with estimating sink particle luminosity

Some studies have elected to try to include radiative feedback from
inside the sink particle radius (e.g. Offner et al. 2009; Urban et al.
2010; Krumholz et al. 2011). These investigations employ sink par-
ticles with accretion radii in excess of 100 au, so if nothing was
done the radiative feedback from within this radius would be under-
estimated by a factor of �104. However, such attempts to include
the missing radiative feedback rely on many approximations and
assumptions. Problems include: deciding on the mass distribution
within the accretion radius (e.g. how much mass is in a disc versus a
stellar object, or whether there is a single or multiple stellar system
inside the accretion radius); deciding how much energy comes out
in other forms of feedback (e.g. kinetic feedback from jets, outflows
and winds); deciding how much energy is advected into the stellar
object rather than radiated away; and deciding whether accretion
is continuous or occurs in bursts. This list is not exhaustive, but
it gives an indication of the difficulties associated with trying to
accurately estimate the level of radiative feedback coming from in-
side the sink particle accretion radius. We now briefly discuss each

of these problems and conclude that, generally, the calculations of
Offner et al. (2009), Urban et al. (2010) and Krumholz et al. (2011)
likely overestimate the effects of radiative feedback.

The simplest assumption is that all of the mass that enters a sink
particle is immediately incorporated into a stellar object (e.g. Offner
et al. 2009; Urban et al. 2010; Krumholz et al. 2011). However, when
using sink particles with sizes >100 au a considerable fraction of
the sink particle mass will still be in a protostellar disc. In fact,
early in the star formation process, the vast majority of the mass
will be in a disc rather than the stellar object. Bate (1998) showed
that the first cores formed from the collapse of rotating molecular
cloud cores can in fact be pre-stellar discs (e.g. 50 au in radius) that
may last thousands of years before a stellar core forms. Soon after
stellar core formation, the disc mass can exceed the stellar mass
by up to two orders of magnitude (Bate 1998, 2010a; Machida,
Inutsuka & Matsumoto 2010; Machida & Matsumoto 2011; Bate
2011). Thus, allocating all of the mass of a sink particle to the stellar
object can overestimate the level of radiative feedback soon after
star formation by up to two orders of magnitude.

Before stellar core formation, this overestimate can be even
worse. During the thousands of years between first core/pre-stellar
disc formation and the formation of a stellar core, the typical lumi-
nosity of a first core/disc ranges from ≈0.004 to 0.1 L� depending
on its rotation rate (Saigo & Tomisaka 2006, 2011). However, the
mass within 100 au can be substantial (e.g. up to 0.2 M�; Bate
2011). Assuming that all of this mass is in a stellar core with a
radius ≈3 R� and accreting at a rate of 1 × 10−5 solar masses
per year (a typical accretion rate of a young object) gives an ac-
cretion luminosity of 20 L� (i.e. 200–5000 times greater than the
true value). This is particularly important because if fragmentation
occurs near to an existing protostar it often occurs shortly after the
first protostar formed.

Later in the star formation process, it may perhaps be assumed
that the mass of the disc is less than that of the stellar object (i.e.
the stellar mass should be wrong by less than a factor of 2; Kratter
& Matzner 2006; Kratter, Matzner & Krumholz 2008; Kratter et al.
2010). However, even at this stage significant uncertainties remain.
Another potentially big problem is that of multiple systems. For
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a low-mass sink particle, whether a sink particle contains a sin-
gle object or a binary is not very important because, as mentioned
above, the intrinsic stellar luminosity is usually negligible com-
pared to the accretion luminosity and, for a given accretion rate,
all low-mass protostars are expected to have similar radii. How-
ever, for more massive protostars the intrinsic stellar luminosity is
expected to dominate over the accretion luminosity. For zero-age
main-sequence stars with masses between 4–9 M� (depending on
accretion rate) and 20 M� the intrinsic stellar luminosity scales as
∝M7/2

∗ . Furthermore, observations show that massive stars prefer-
entially have massive companions (e.g. Kobulnicky & Fryer 2007).
Therefore, if a high-mass sink particle actually contains an equal-
mass binary rather than a single object, its luminosity will be over-
estimated by a factor of 27/2−1 ≈ 5.7 or, for an equal-mass triple
system, a factor of 16. This problem does not occur in the simula-
tions presented in this paper because they resolve the opacity limit
for fragmentation and, thus, are expected to capture the formation
of all stars and brown dwarfs. Furthermore, no massive protostars
are formed. However, if sink particles with large accretion radii are
used in calculations that do not resolve the opacity limit for frag-
mentation, then some massive sink particles may contain multiple
systems.

Another problem with estimating the radiative feedback is de-
termining the fraction of gravitational energy which is liberated as
radiation rather than other forms of energy or retained within the
accretion radius. In reality, some fraction of the energy will exit
the sink particle accretion radius as kinetic energy of jets, outflows
and winds. Offner & McKee (2011) estimate that 1/4 of the gravi-
tational energy may exit in kinetic form rather than as radiation for
low-mass stars. For high-mass stars, the fraction is unknown.

During the process of mass accretion on to a stellar object from a
circumstellar disc, some of the energy will be advected into the star
rather than all of it being radiated away. This efficiency factor is not
at all well understood. It is usually assumed that this fraction is very
small (e.g. Baraffe, Chabrier & Gallardo 2009); however if it is sub-
stantial this can lead to very different evolutionary paths of the stellar
object (e.g. Hartmann, Zhu & Calvet 2011). Hosokawa, Offner &
Krumholz (2011) performed pre-main-sequence stellar evolution
calculations with either ‘hot’ or ‘cold’ accretion and found that the
protostellar radius could be factors of 2–4 larger with ‘hot’ accre-
tion. Although, as mentioned above, the stellar luminosity itself is
unimportant for low-mass protostars, the accretion luminosity in a
‘hot’ accretion model can be two to four times lower than that pre-
dicted by ‘cold’ accretion. Offner et al. (2009) and Krumholz et al.
(2011) employ ‘hot’ accretion models when modelling radiative
feedback from their sink particles.

The final problem we discuss here is one that was identified more
than two decades ago from observations of protostars. Kenyon et al.
(1990) found that low-mass protostars are underluminous by two or-
ders of magnitude when compared to simple estimates of protostel-
lar accretion. The survey of Evans et al. (2009) recently confirmed
this discrepancy, which is known as the ‘protostellar luminosity
problem’. Several solutions or partial solutions have been proposed
to solve the problem (see Offner & McKee 2011). As mentioned
above, some of the gravitational potential energy may be released in
non-radiative forms (e.g. kinetic energy) and some may be advected
into the stellar object leading to larger radii than usually assumed.
Another possibility, first raised in the discovery paper (Kenyon et al.
1990) is that protostars do not accrete steadily, but that most of their
mass is accreted in short bursts of accretion. During this time, the
accretion luminosity would be very high, but most of the time they
would be in a low-luminosity state. Studies of such bursty accretion

have become quite popular recently (e.g. Vorobyov & Basu 2005;
Zhu, Hartmann & Gammie 2009; Baraffe et al. 2009). In terms of the
effects of radiative feedback on star formation, if protostars spent
the vast majority of their time in a low-luminosity state, this would
be similar to reducing the radiative feedback from the protostar to
that emitted during the low-luminosity state and ignoring the brief
periods of high luminosity. Recently, this argument has been used
by Stamatellos, Whitworth & Hubber (2011) to argue that those
calculations that include continuous radiative feedback from sink
particles may overestimate the effects of radiative feedback and,
therefore, underestimate the amount of disc fragmentation and the
formation of low-mass objects.

2.3.4 Summary for sink particle luminosity

In summary, there is no easy way to accurately include the radiative
feedback from a sink particle on the rest of a radiation hydrody-
namical calculation. It is often assumed that including radiative
feedback from inside the sink particle radius will be more accurate
than excluding it (Offner et al. 2009; Urban et al. 2010; Krumholz
et al. 2011). However, as the examples above show, this is far from
certain. Indeed, as implemented in the literature, radiative feedback
from sink particles almost certainly overestimates the effects of ra-
diative feedback. Usually this overestimate is expected to be at the
level of factors of ≈2–4, but at the earliest stages of protostar for-
mation the overestimate may be as much as 3 orders of magnitude.
This early radiative feedback would eventually be emitted by the
source, but using a simple prescription it is emitted too early and
may affect fragmentation at early times. Thus, all that can really be
said at the present time is that the actual effect of radiative feedback
probably lies somewhere between the results obtained by excluding
radiative feedback and the results that attempt to include radiative
feedback.

The choice made in this paper is to neglect radiative feedback
coming from inside the sink particle radius, but to use as small
an accretion radius as is computationally feasible. This model is
elegant in that the results depend on a single parameter — the sink
particle accretion radius. The effect of the missing radiation on the
degree of fragmentation is tested by using smaller calculations with
different accretion radii (Fig. 1). By decreasing the accretion radius
by an order of magnitude (from 0.5 to 0.05 au) we find that using
sink particles with accretion radii of 0.5 au may overestimate the
degree of fragmentation by up to a factor of ≈11/8 = 1.4. To put
this in context, Krumholz et al. (2011), who attempt to include sink
particle luminosity, reduce their accretion radius by only a factor of
2 (from 400 to 200 au) and produce 70 per cent more stars.

Naively, the calculations discussed in the remainder of this paper
using sink particles with accretion radii of 0.5 au underestimate
the accretion luminosity by factors of 20–30 (taking protostellar
accretion radii of 3–5 M�; Hosokawa & Omukai 2009). However,
it has been pointed out (P. André, private communication) that
because protostars are observed to be underluminous by 1–2 orders
of magnitude (Kenyon et al. 1990; Evans et al. 2009), neglecting
the radiative feedback from inside sink particles with accretion radii
of ≈0.5 au might be more accurate than including the ‘missing’
luminosity. If this is the case, then the level of radiative feedback
in calculation discussed in the rest of this paper may be close to
reality.

2.4 Initial conditions

The initial conditions for the calculation presented in this paper
are identical to those of Bate (2009a). We followed the collapse of
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an initially uniform-density molecular cloud containing 500 M� of
molecular gas. The cloud’s radius was 0.404 pc (83300 au), giving
an initial density of 1.2×10−19 g cm−3. At the initial temperature of
10.3 K, the mean thermal Jeans mass was 1 M� (i.e. the cloud con-
tained 500 thermal Jeans masses). Although the cloud was uniform
in density, we imposed an initial supersonic ‘turbulent’ velocity
field in the same manner as Ostriker, Stone & Gammie (2001) and
Bate et al. (2003). We generated a divergence-free random Gaus-
sian velocity field with a power spectrum P (k) ∝ k−4, where k

is the wavenumber. In three dimensions, this results in a velocity
dispersion that varies with distance, λ, as σ (λ) ∝ λ1/2 in agreement
with the observed Larson scaling relations for molecular clouds
(Larson 1981). The velocity field was generated on a 1283 uniform
grid and the velocities of the particles were interpolated from the
grid. The velocity field was normalized so that the kinetic energy
of the turbulence was equal to the magnitude of the gravitational
potential energy of the cloud. Thus, the initial rms Mach number
of the turbulence was M = 13.7. The initial free-fall time of the
cloud was tff = 6.0 × 1012 s or 1.90 × 105 yr.

Since the initial conditions for the calculation are identical to
those of Bate (2009a) and including radiative transfer does not alter
the temperature of the gas significantly until just before the first
protostar forms, the early evolution of the cloud was not repeated.
Instead, the radiation hydrodynamical calculation was begun from
a dump file from the original calculation just before the maxi-
mum density exceeded 10−15 g cm−3. This method was also used
for the radiation hydrodynamical calculations presented by Bate
(2009c), which were radiation hydrodynamical versions of the ear-
lier barotropic calculations published by Bate et al. (2003) and Bate
& Bonnell (2005).

2.5 Resolution

The local Jeans mass must be resolved throughout the calculation
to model fragmentation correctly (Bate & Burkert 1997; Truelove
et al. 1997; Whitworth 1998; Boss et al. 2000; Hubber, Goodwin
& Whitworth 2006). The original barotropic calculation of Bate
(2009a) used 3.5 × 107 particles to model the 500 M� cloud and
resolve the Jeans mass down to its minimum value of ≈0.0011 M�
(1.1 MJ) at the maximum density during the isothermal phase of
the collapse, ρcrit = 10−13 g cm−3. Using radiation hydrodynamics
results in temperatures at a given density no less than those given
by the original barotropic equation of state (e.g. Whitehouse & Bate

2006) and, thus, the Jeans mass is also resolved in the calculations
presented here.

The calculation was performed on the University of Exeter Su-
percomputer, an SGI Altix ICE 8200. Using 256 compute cores, it
required 6.3 million CPU hours (i.e. 34 months of wall time).

3 R ESULTS

The calculation presented here is a radiation hydrodynamical ver-
sion of the barotropic calculations presented by Bate (2009a). Bate
presented the results from two calculations that differed only in the
value of the sink particle accretion radius used and the gravitational
softening between sink particles. The main calculation with racc = 5
au produced 1254 stars and brown dwarfs in 1.50tff (285 350 yr) and
the rerun calculation used racc = 0.5 au and produced 258 objects
in 1.038tff (197 460 yr). See Table 1 for a summary of the statistics,
including the numbers of stars and brown dwarfs produced by the
two calculations, the total mass that had been converted to stars
and brown dwarfs, and the mean and median stellar masses. Bate
(2009a) compared a large number of statistical properties of the
stars and brown dwarfs formed in the calculations with observa-
tions, finding that many were in good agreement with observations
(see the Introduction). In this paper, we use the same analysis meth-
ods as those used by Bate (2009a), and we compare and contrast the
results both with the results from the earlier barotropic calculations
and with the results of observational surveys.

3.1 The evolution of the star-forming cloud

As mentioned in Section 2.4, the radiation hydrodynamical calcu-
lation was not re-run from the initial conditions, but was started
from the last dump file of the original barotropic calculation be-
fore the density exceeded 10−15 g cm−3. Before this point the initial
‘turbulent’ velocity field had generated density structure in the gas,
some of which was collected into dense cores which had begun to
collapse. Those readers interested in this early phase should refer
to Bate (2009a) for figures and further details.

The radiation hydrodynamical calculation was started from t =
0.700tff . In the barotropic calculation, the first sink particle was
inserted at t = 0.715tff , some 2.9 × 103 yr later. Using radiation
hydrodynamics, the first sink particle is inserted at t = 0.727tff . The
slightly later time (2.2 × 103 yr) is primarily because in the original
calculation sink particles were inserted when the density exceeded

Table 1. The parameters and overall statistical results for the two calculations of Bate (2009a) and the calculation presented here. The initial conditions for all
calculations were identical. The Bate (2009a) calculations used a barotropic equation of state and the main calculation used sink particles with racc = 5 au and
gravitational softening inside 4 au, while the rerun calculation used racc = 0.5 au and no gravitational softening. The calculation presented here was identical
to the rerun calculation, except that it used a realistic equation of state with radiation hydrodynamics. The calculations were run for different numbers of initial
cloud free-fall times due to computational limitations. Brown dwarfs are defined as having final masses less than 0.075 M�. The numbers of stars (brown
dwarfs) are lower (upper) limits because some brown dwarfs were still accreting when the calculations were stopped. Including radiative feedback decreases
the number of objects formed at the same time by a factor of ≈3.2–3.7, and increases the mean and median masses of the objects by factors of ≈3 and ≈4,
respectively. The amount of gas converted into stars only decreases by 4–11 per cent compared to the barotropic calculations at the same times.

Calculation Initial gas Initial Accretion Gravity Time No. stars No. brown Mass of stars and Mean Median
mass radius radii softening formed dwarfs formed brown dwarfs mass mass
(M�) (pc) (au) (au) (tff ) (M�) (M�) (M�)

B2009a Main 500 0.404 5 4 1.04 ≥102 ≤119 32.6 0.15 0.06
1.20 ≥235 ≤355 92.1 0.16 0.05
1.50 ≥459 ≤795 191 0.15 0.06

B2009a Rerun 500 0.404 0.5 0 1.04 ≥94 ≤164 32.0 0.12 0.05
Radiation Hydro 500 0.404 0.5 0 1.04 ≥50 ≤19 28.4 0.41 0.24

1.20 ≥147 ≤36 88.2 0.48 0.21
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10−10 g cm−3 (when the fragment was in the ‘first hydrostatic core’
stage of evolution) whereas with the radiation hydrodynamics we do
not insert sink particles until halfway through the second collapse
phase at a density of 10−5 g cm−3 (see Section 2.2 for further de-
tails). The first core phase typically lasts several thousand of years,
depending on the amount of rotation (Bate 1998, 2010a, 2011; Saigo
& Tomisaka 2006; Saigo, Tomisaka & Matsumoto 2008; Machida
et al. 2010; Machida & Matsumoto 2011) and accretion rate
(Tomida et al. 2010b).

In the panels of Figs 2 and 3, we present snapshots of the global
evolution of the calculation. Fig. 2 displays the column density
(using a red–yellow–white colour scale), while Fig. 3 displays the
mass-weighted temperature in the cloud (using a blue–red–yellow–
white colour scale). The column-density snapshots may be com-
pared with the figures in Bate (2009a) that show the barotropic
evolution. Animations of both the main barotropic calculation and
the radiation hydrodynamical calculation can be downloaded from
http://www.astro.ex.ac.uk/people/mbate/.

Bate (2009c) found that barotropic and radiation hydrodynam-
ical calculations diverge quickly on small scales. In particular, it
was found that many massive circumstellar discs that quickly frag-
mented in barotropic calculations did not fragment, or took much
longer to fragment, when using radiation hydrodynamics. The ac-
cretion luminosity released as gas falls on to a disc and then spirals
in towards the central protostar is often sufficient to heat a disc
and prevent its fragmentation. An individual low-mass protostar
can also produce substantial heating of the surrounding cloud out
to thousands of au (depending on the protostar’s accretion rate)
which can inhibit the fragmentation of nearby collapsing filaments.
Bate (2009c) found that the temperature field around rapidly accret-
ing protostars could vary significantly on time-scales of hundreds
to thousands of years due to variations in the accretion rates of
the protostars and their discs, particularly when protostars undergo
dynamical interactions that perturb their discs. The same effects
are found in the calculation presented here, though with an order
of magnitude more objects it is impossible for us to compare and
contrast the barotropic and radiation hydrodynamical evolutions of
individual objects as was done by Bate (2009c). The temperature
variability is best seen in an animation.

The large-scale influence of the radiative feedback from the
young protostars can be seen in Fig. 3. Each panel in this fig-
ure measures 0.6 pc (123 500 au) across. As in the calculations of
Bonnell et al. (2003) and Bate (2009a), the star formation in the
cloud occurs in small groups, often formed within larger-scale fil-
aments. Initially, each group contains only a few low-mass objects
and the heating of the surrounding gas is limited to their immediate
vicinity (a few thousand au). However, as the stellar groups grow in
number and some of the stars grow to greater masses, the heating
can be seen to extend to larger and larger scales. At t ≈ 1.15tff , the
merger of several stellar groups occurs near the centre of the cloud
and the protostellar accretion rates also increase. This produces a
burst of radiation that heats the centre of the cloud out to distances
of ≈0.2 pc (≈80 000 au). Several bursts between this time and the
end of the calculation (t = 1.20tff ) continuously heat the centre of
the cloud.

Bate (2009a) followed the main barotropic calculation to 1.50tff
(285 350 yr) at which time 38 per cent of the gas had been converted
into 1254 stars and brown dwarfs. Unfortunately, due to the extra
computational expense of resolving the gas near sink particles to
0.5 au and the implicit radiative transfer we are only able to follow
the radiation hydrodynamical case to 1.20tff (228 280 yr) which is

9.0×104 years after the star formation began. At this stage 88.2 M�
of gas (18 per cent) has been converted into 183 stars and brown
dwarfs. Table 1 gives the numbers of stars and brown dwarfs and
their mean and median masses for the radiation hydrodynamical
calculation, and for the barotropic calculations. The information
is given at the end points of each of the calculations and, where
possible, at the same times to allow direct comparison between the
different calculations.

As was found by Bate (2009c) for smaller 50 M� clouds (see
also Fig. 1), the radiative feedback dramatically reduces the number
of objects formed. Comparing the main barotropic calculation and
the radiation hydrodynamical calculation at t = 1.20tff , the former
had produced 590 objects while the latter has only produced 183
(less than 1/3). However, this reduction in the number of objects is
not the same for all stellar masses. The main barotropic calculation
produced 235 stars and 355 brown dwarfs in the same time that
the radiation hydrodynamical calculation produced 147 stars and
36 brown dwarfs. Thus, the number of stars has only been reduced
to 63 per cent of the barotropic value, but the number of brown
dwarfs has been slashed to just 10 per cent! This change in the
stellar mass distribution is also reflected in the mean and median
masses (Table 1) with the mean mass increasing by a factor of 3 from
0.16 M� to 0.48 M� and the median mass increasing by a factor of
4.2 from 0.05 M� to 0.21 M� (measured at 1.20tff ). The maximum
stellar mass is 3.84 M�, whereas the main barotropic calculation
had produced a star of mass 3.13 M� at the same time and went
on to produce a star of 5.4 M� by the end of the calculation. We
investigate the change in the distribution of stellar masses further in
the next section. Before that, in Fig. 4 we examine the star formation
rate in terms of mass and number of stars and brown dwarfs. In the
left-hand panel, we plot the total stellar mass as a function of time
for the barotropic calculations of Bate (2009a) and the radiation
hydrodynamical calculation. It can be seen that in terms of stellar
mass, there is a slow star formation rate of ≈5 × 10−4 M� yr−1

from ≈0.8 to 1.0tff followed by an increase to ≈2 × 10−3 M� yr−1

after ≈1.0tff . The star formation rate is quite constant after this
transition and, despite the dramatic effect of the radiative feedback
in heating the cloud (Fig. 3), there is no evidence of a decreasing
rate near the end of the radiation hydrodynamical calculation. In
the main barotropic calculation, there is a hint of a decrease after
1.40tff . This is not surprising since after this point more than a third
of the gas has been converted to stars and some of the remaining
gas is drifting off to large distances.

Comparing the barotropic and radiation hydrodynamical calcula-
tions, the star formation rate in terms of M� yr−1 is almost entirely
unaffected by the inclusion of radiative feedback. At the end of
the radiation hydrodynamical calculation, 88.2 M� of gas has been
converted to stars while, at the same time, 92.1 M� of gas had been
converted to stars in the main barotropic calculation (a difference
of only 4 per cent). Bate (2009c) also found that radiative feedback
had little effect on the rate at which gas was converted to stars –
with one type of initial condition the rate decreased by 4 per cent,
while in the other it increased by 15 per cent. Similarly, Krumholz
et al. (2011) recently modelled star formation in a 1000 M� cloud
and found very similar star formation rates in terms of M� yr−1

with and without radiative feedback.
We note that a general problem with hydrodynamical models of

star formation in bound molecular clouds (whether they include
radiative feedback or not) is that the star formation rate is much
quicker than observed. The observed star formation efficiency per
free-fall time is 3–6 per cent (Evans et al. 2009), whereas the peak
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Figure 2. The global evolution of column density in the radiation hydrodynamical calculation. Shocks lead to the dissipation of the turbulent energy that
initially supports the cloud, allowing parts of the cloud to collapse. Star formation begins at t = 0.727tff in a collapsing dense core. By t = 1.10tff the cloud
has produced six main sub-clusters, and by the end of the calculation these sub-clusters started to merge and dissolve. Each panel is 0.6 pc (123 500 au) across.
Time is given in units of the initial free-fall time, tff = 1.90 × 105 yr. The panels show the logarithm of column density, N , through the cloud, with the scale
covering −1.4 < log N < 1.0 with N measured in g cm−2. White dots represent the stars and brown dwarfs.
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Figure 3. The global evolution of gas temperature in the radiation hydrodynamical calculation. Initially, the gas is almost isothermal on large scales, but as
groups of stars begin to form they locally heat the gas. Soon after t = 1.15tff , the merger of two stellar groups at the centre of the cluster and increased
accretion rates on to the stars heat the inner 0.2 pc of the cluster. Each panel is 0.6 pc (123 500 au) across. Time is given in units of the initial free-fall time,
tff = 1.90 × 105 yr. The panels show the logarithm of mass weighted gas temperature, Tg, through the cloud, with the scale covering 9–50 K. White dots
represent the stars and brown dwarfs.

rate in the calculation presented here is 76 per cent (i.e. an order
of magnitude greater). The solution(s) to this problem may be that
star formation occurs in globally unbound molecular clouds (Clark
& Bonnell 2004; Clark et al. 2005), or that magnetic support (Price
& Bate 2008, 2009), kinetic feedback (Matzner & McKee 2000;
Krumholz, Matzner & McKee 2006; Nakamura & Li 2007) or a
combination (e.g. Wang et al. 2010) reduces the star formation rate.
Investigating these effects is beyond the scope of this paper, but
they certainly warrant future investigation.

Rather than altering the rate at which gas is converted into stars,
the effect of radiative feedback is to convert mass into fewer stars
and brown dwarfs by inhibiting fragmentation of the gas. The re-
duction in the rate of production of new protostars is clear from the

centre and right-hand panels of Fig. 4. Throughout the evolution,
the radiation hydrodynamical calculation consistently produces new
objects at about 1/3 the rate of the barotropic calculations. However,
as with the rate at which mass is converted into stars, there is no
evidence that the radiative heating of the central regions of the cloud
is reducing the rate at which new stars are being formed. This is
in contrast to the results obtained by Krumholz et al. (2011), who
found that the initial rate of protostar formation was similar with and
without radiative feedback, but that as the calculation progressed the
rate of protostar formation dropped off much faster with radiative
feedback than without. Part of this difference between the results
here and those of Krumholz et al. is certainly due to the different
initial conditions. The initial conditions of Krumholz et al. are more
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Figure 4. The star formation rate obtained using a barotropic equation of state or radiation hydrodynamics for the 500 M� turbulent molecular cloud. We
plot: the total stellar mass (i.e. the mass contained in sink particles) versus time (left-hand panel), the number of stars and brown dwarfs (i.e. the number of
sink particles) versus time (centre panel), and the number of stars and brown dwarfs versus the total stellar mass (right-hand panel). The different line types are
for: the main barotropic calculation using racc = 5 au (dotted line; Bate 2009a); the rerun barotropic calculation using racc = 0.5 au (dashed line; Bate 2009a);
and the radiation hydrodynamical calculation with racc = 0.5 au (solid line). Time is measured from the beginning of the calculation in terms of the free-fall
time of the initial cloud (bottom) or years (top). The rate at which mass is converted into stars is almost unaltered by the introduction of radiative feedback, but
the number of stars and brown dwarfs is decreased by a factor of 3.

than seven times denser (twice the mass within a cloud radius of
0.26 pc rather than 0.4 pc) and they are centrally condensed rather
than uniform in density. This produces qualitatively different pro-
tostar formation even without radiative feedback: Krumholz et al.
find a monotonically decreasing protostar formation rate as a func-
tion of mass without feedback, whereas we obtain a constant rate
(dotted line, right-hand panel of Fig. 4). The centrally condensed
initial conditions of Krumholz et al. also favour the formation of
massive stars (Girichidis et al. 2011), while uniform initial con-
ditions result in the formation of many sub-clusters (Bonnell et al.
2003) which only later merge into a single cluster (Bate 2009a). The
higher density cloud of Krumholz et al. gives a star formation rate
of 2.4 × 10−2 M� yr−1, more than an order of magnitude greater
than obtained here. The combination of a higher star formation rate
and a bias towards massive star formation mean that when radiative
feedback is included it has a much greater effect. Finally, as dis-
cussed in Section 2.3, Krumholz et al. include radiative feedback
from sink particles which may be overestimated in contrast to our
feedback which may be underestimated.

If the radiation hydrodynamical calculation presented here was
followed further then, as shown by Bate (2009a), the eventual re-
sult would be that most of the small groups and sub-clusters would
merge into a single cluster surrounded by a halo of ejected objects.
Unfortunately, the calculation cannot be followed that far due to
computational limitations. However, it is already clear by compar-
ing the main barotropic calculation with the radiation hydrodynam-
ical calculation at the same time that the number of ejected objects
is substantially lower with radiative feedback. This is because of
the reduction in small-scale fragmentation. The ejected objects in
the barotropic calculations primarily come from small dense multi-
ple systems. With radiative heating, each multiple system or stellar
group contains fewer objects so there are fewer dynamical interac-
tions and ejections.

3.2 The initial mass function

In past barotropic calculations of the formation of stellar groups
and clusters, the number of brown dwarfs produced has consis-

tently been greater than the number of stars, in disagreement with
observations of Galactic star-forming regions (Bate et al. 2003; Bate
& Bonnell 2005; Bate 2005, 2009a,b). The radiation hydrodynam-
ical calculations of Bate (2009c) showed that radiative feedback
provides a potential solution to this over production of low-mass
objects. Although the clouds studied were an order of magnitude
less massive than the calculation presented here, Bate (2009c) found
that the number of objects formed when including radiative feed-
back was reduced by a factor of ≈3.8 compared to the barotropic
calculation of Bate et al. (2003) and the mean and median masses
of the objects increased by factors of ≈4. The effects of radiative
feedback found here are very similar: a reduction in the number of
objects by a factor of 590/183 = 3.2 and increases of the mean
and median masses by factors of ≈3 and ≈4, respectively (Table 1).
However, with an order of magnitude more objects we are able to
examine the change in the mass function in more detail.

In Fig. 5, we compare the cumulative IMF at the end of the
radiation hydrodynamical calculation (solid line) with the IMFs
of the main and rerun barotropic calculations (Bate 2009a). With
radiative feedback there is a clear increase of the median stellar
mass and a huge decrease in the fraction of brown dwarfs. Thus,
in agreement with earlier works (Bate 2009c; Offner et al. 2009;
Urban et al. 2010; Krumholz et al. 2011), we find radiative feedback
is crucial for determining the IMF even for low-mass star formation.

Note that, in fact, the calculation produces a protostellar mass
function (PMF) rather than an IMF (Fletcher & Stahler 1994a,b;
McKee & Offner 2010) because some of the objects are still accret-
ing when the calculation is stopped. In this paper, we refer to the
mass function as an ‘IMF’ because we compare it to the observed
IMF since the PMF cannot yet be determined observationally. How-
ever, it should be noted that how a PMF transforms into the IMF
depends on the accretion history of the protostars and how the star
formation process is terminated. One issue that can be studied from
the calculation presented here is whether the distribution of stellar
masses evolves in form during the formation of the stellar cluster
or whether the mass distribution is ‘fully formed’ so that no matter
when the distribution is examined it is always consistent with be-
ing drawn from a constant underlying mass function. From Fig. 5,
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Figure 5. The cumulative IMF produced at the end (t = 1.20tff ) of the
radiation hydrodynamical calculation (solid line), compared to the IMF ob-
tained from the main barotropic calculation by Bate (2009a) at t = 1.20tff
(long-dashed line) and t = 1.50tff (dotted line), and the rerun barotropic cal-
culation at t = 1.04tff (short-dashed line). We also plot using the dot–long-
dashed line the cumulative IMF from the parametrization of the observed
IMF by Chabrier (2005). The vertical dashed line marks the stellar/brown
dwarf boundary. The form of the barotropic IMF does not change substan-
tially from 1.04 to 1.50tff (Kolmogorov–Smirnov tests show the three dis-
tributions to be indistinguishable.), but introducing radiative feedback sub-
stantially increases the median stellar mass and changes the IMF from being
dominated by brown dwarfs to being dominated by stars. A Kolmogorov–
Smirnov test gives less than one chance in 1019 that the barotropic and
radiation hydrodynamic IMFs at t = 1.20tff are drawn from the same un-
derlying distribution. On the other hand, a Kolmogorov–Smirnov test gives
a 50.5 per cent probability that the radiation hydrodynamic IMF could have
been drawn from Chabrier’s fit to the observed IMF (i.e. the two mass
functions are indistinguishable).

the median stellar mass and the overall shape of the distribution
obtained using a barotropic equation of state do not change with
time, except that the maximum mass increases with time. This is
in contrast to the isothermal calculation of Krumholz et al. (2011),
who find that the median mass increases by a factor of 2 during their
calculation without radiative feedback. This difference is probably
due to the very different initial conditions, but the fact their sink
particles are 400–800 times larger than those used here so that they
cannot capture small-scale fragmentation may also play a role.

In Fig. 6, we plot the cumulative stellar mass distributions at four
different times during the radiation hydrodynamical calculation.
Performing Kolmogorov–Smirnov tests comparing the final distri-
bution to each of the early distributions shows that each intermediate
distribution is consistent with being drawn randomly from the same
distribution as the final distribution. Of course, the intermediate and
final distributions are not statistically independent, but the test still
shows that the stellar mass distribution keeps the same form as it
evolves during the formation of the cluster. This also means that
in stopping the calculation at t = 1.20tff we do not seem to have
stopped at a special point in the evolution, at least as far as the mass
function is concerned. The only thing that changes is that as the
number of stars increases with time, so the maximum stellar mass
increases. Again, this is in contrast to Krumholz et al. (2011), who
find that with radiative feedback their median stellar mass increases
by almost a factor of 4 from 0.55 M� when 10 per cent of the
cloud’s mass has been converted to stars to 2 M� when 50 per cent
the stars contain 50 per cent of the total mass. As mentioned above,

Figure 6. The cumulative stellar mass distributions produced at various
times during the radiation hydrodynamical calculation. The times are t =
0.90tff (dotted line), t = 1.00tff (short-dashed line), t = 1.10tff (long-
dashed line) and t = 1.20tff (solid line). The vertical dashed line marks the
stellar/brown dwarf boundary. The form of the stellar mass distribution does
not change significantly during the radiation hydrodynamical calculation,
though as more stars are formed the maximum stellar mass increases.

this difference is probably due to a combination of the denser, cen-
trally condensed initial conditions, the radiative feedback from sink
particles and the use of much larger sink particles.

The differential form of the IMF at the end of the radiation hy-
drodynamical calculation is shown in the right-hand panel of Fig. 7
and is compared with the parametrizations of the observed IMF
given by Chabrier (2005), Kroupa (2001) and Salpeter (1955). In
the left-hand panel of the figure, we provide the IMF from the
main barotropic calculation of Bate (2009a) at the same time for
comparison. In agreement with the smaller radiation hydrodynam-
ical calculations of Bate (2009c), the introduction of the radiative
feedback has clearly addressed the problem of the overproduc-
tion of brown dwarfs and low-mass stars that occurs when using
a barotropic equation of state (Bate 2009a). In fact, comparing the
histogram of objects with the parametrization of the observed IMF
by Chabrier (2005), the agreement is almost too good to be true.
The cumulative mass distribution from the calculation (solid line)
is compared with that of Chabrier (2005) (dot-long-dashed line) in
Fig. 5. A Kolmogorov–Smirnov test gives a 50.5 per cent probabil-
ity that the radiation hydrodynamical IMF could have been drawn
from Chabrier’s fit to the observed IMF (i.e. the two mass functions
are indistinguishable).

However, despite more than a decade of observational work,
the form of the IMF in the sub-stellar regime is still quite un-
certain. Although it is now generally accepted that the number
of stars is larger than the number of brown dwarfs in Galactic
star-forming regions (Chabrier 2003; Greissl et al. 2007; Andersen
et al. 2008), considerable uncertainty remains. Rather than try-
ing to determine the exact form or slope of the substellar IMF, a
popular method is to compare the number of brown dwarfs in an
observed region to the number of stars with masses less than that
of the Sun. Andersen et al. (2008) find that the ratio of stars with
masses 0.08–1.0 M� to brown dwarfs with masses 0.03–0.08 M�
is N (0.08–1.0)/N (0.03–0.08) ≈ 5 ± 2. By combining the results
of two radiation hydrodynamical calculations of star formation in
50 M� molecular clouds, Bate (2009c) found a ratio of stars to
brown dwarfs of 25/5 ≈ 5. This number is in agreement with
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Figure 7. Histograms giving the IMF of the 590 stars and brown dwarfs at t = 1.20tff from the main barotropic calculation of Bate (2009a) (left), and the
183 objects formed at the same time in the radiation hydrodynamical calculation (right). The double hatched histograms are used to denote those objects that
have stopped accreting, while those objects that are still accreting are plotted using single hatching. The radiation hydrodynamical calculation produces far
fewer brown dwarfs and low-mass stars and more stars with masses �1.5 M� and is in good agreement with the Chabrier (2005) fit to the observed IMF for
individual objects. Two other parametrizations of the IMF are also plotted: Salpeter (1955) and Kroupa (2001).

observational constraints, but the statistical uncertainty is large.
Here we obtain a ratio of N (0.08–1.0)/N (0.03–0.08) = 117/31 ≈
3.8. Eight of the 31 low-mass objects and 84 of the 117 stars
were still accreting when the calculation was stopped, so there
is some uncertainty in this figure due to unknown future evolution.
But the value is well within observational uncertainties. For the
main barotropic calculation of Bate (2009a), this ratio was much
lower: 212/146 ≈ 1.45 at t = 1.20tff and 408/326 = 1.25 at
t = 1.50tff .

Below 0.03 M�, the IMF is very poorly constrained, both obser-
vationally and from the calculation presented here. The radiation
hydrodynamical calculation produced six objects with masses in
this range, with a minimum mass of 17.6 MJ. All of these objects
had stopped accreting when the calculation was stopped. This is
very different to the main barotropic calculation. At the same time
(1.20tff ), the barotropic calculation had produced 217 brown dwarfs
(40 still accreting) with masses less than 30 MJ with a minimum
mass of only 5.6 MJ. Even discounting objects that were still ac-
creting, the inclusion of radiative feedback has cut the production
of these VLM brown dwarfs by a factor of ≈30 and significantly in-
creased the minimum mass. It is interesting to note that the minimum
mass is substantially higher than the opacity limit for fragmenta-
tion (Low & Lynden-Bell 1976; Rees 1976; Silk 1977a,b; Boyd &
Whitworth 2005). This is because the opacity limit provides a min-
imum mass, but generally objects will accrete from their surround-
ings to greater masses. Perhaps more importantly, the minimum
mass is also greater than the estimated masses of some objects ob-
served in star-forming regions (Zapatero Osorio et al. 2000, 2002;
Kirkpatrick et al. 2001, 2006; Lodieu et al. 2008; Luhman et al.
2008, 2009b; Bihain et al. 2009; Burgess et al. 2009; Weights et al.
2009; Quanz et al. 2010). While an exact cut-off is difficult to
determine from either numerical simulations or observations, the
results of the radiation hydrodynamical calculation presented here
do imply that brown dwarfs with masses �15 MJ should be very
rare.

3.2.1 The origin of the initial mass function

Bate & Bonnell (2005) analysed two barotropic star cluster for-
mation simulations that began with clouds of different densities to
determine the origin of the IMF in those calculations (see also Bate
2005). They found that the IMF resulted from competition between

accretion and ‘ejection’. There was no significant dependence of
the mean accretion rate of an object on its final mass. Rather, there
was a roughly linear correlation between an object’s final mass and
the time between its formation and the termination of its accretion.
Furthermore, the accretion on to an object was usually terminated
by a dynamical interaction between the object and another system.
Note that such an interaction does not necessarily require that the
object is ejected from the cluster. Many times this is the case, but
moving an object into a lower density part of the cloud (e.g. out of
its natal core) or substantially increasing the object’s speed without
it becoming unbound can also dramatically reduce its accretion rate
[cf. the Bondi–Hoyle accretion formula Ṁ ∝ ρ/(c2

s +v2)3/2, where
v is the velocity of the object relative to the gas]. Thus, Bate & Bon-
nell found that objects formed with very low masses (a few Jupiter
masses) and accreted to higher masses until their accretion was
terminated, usually, by a dynamical encounter. This combination
of competitive accretion and stochastic dynamical interactions pro-
duced the mass distributions, and Bate & Bonnell (2005) presented
a simple semi-analytic model which could describe the numerical
results in which the characteristic stellar mass was given by the
product of the typical accretion rate and the typical time between an
object forming and having a dynamical interaction that terminated
its accretion. Bate (2009a) found the IMF in their larger barotropic
calculations also originated in this manner. They found the mean
accretion rate of a low-mass star did not depend on its final mass, but
that objects that accreted for longer ended up with greater masses
and that protostellar accretion was usually terminated by dynam-
ical interactions. Here we analyse the radiation hydrodynamical
calculation using the same methods.

In Fig. 8, we plot the final mass of an object versus the time
at which it formed (i.e. the time of insertion of a sink particle). It
is clear that the most massive stars at the end of the calculation
were some of the first to begin forming. During the calculation,
as other lower-mass stars have formed and some have had their
accretion terminated, these stars have continued to grow to higher
and higher masses. Maschberger et al. (2010) have argued that such
a cluster formation process naturally produces a relation between
cluster mass and maximum stellar mass similar to that which is
observed (Weidner & Kroupa 2006; Weidner, Kroupa & Bonnell
2010), although others argue that the observations are also consistent
with random sampling from a universal IMF (Lamb et al. 2010;
Fumagalli, da Silva & Krumholz 2011).
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Figure 8. Time of formation and mass of each star and brown dwarf at the
end of the radiation hydrodynamical calculation. It is clear that the objects
that are the most massive at the end of the calculation are actually some of the
first sink particles to form. Objects that are still accreting significantly at the
end of the calculation are represented with vertical arrows. The horizontal
dashed line marks the star/brown dwarf boundary. Time is measured from
the beginning of the calculation in terms of the free-fall time of the initial
cloud (top) or years (bottom).

In Figs 9–11, we plot similar figures to those found in Bate &
Bonnell (2005) and Bate (2005, 2009a,b). These figures display the
same trends as found in the barotropic calculations. Fig. 9 gives
the time-averaged accretion rates of all the objects formed in the

Figure 9. The time-averaged accretion rates of the objects formed in the
radiation hydrodynamical calculation versus their final masses. The accre-
tion rates are calculated as the final mass of an object divided by the time
between its formation and the termination of its accretion or the end of the
calculation. Objects that are still accreting significantly at the end of the
calculation are represented with horizontal arrows. There is no dependence
of mean accretion rate on final mass for objects with less than ∼0.5 M�
(just a dispersion). However, there is a low-accretion rate region of exclusion
for the most massive objects since only objects with mean accretion rates
greater than their mass divided by their age can reach these high masses dur-
ing the calculation. The horizontal solid line gives the mean of the accretion
rates: 1.54 × 10−5 M� yr−1. The accretion rates are given in M�/tff on the
left-hand axes and M� yr−1 on the right-hand axes. The vertical dashed line
marks the star/brown dwarf boundary.

Figure 10. The time between the formation of each object and the termina-
tion of its accretion or the end of the radiation hydrodynamical calculation
versus its final mass. Objects that are still accreting significantly at the end
of the calculation are represented with arrows. As in past barotropic calcu-
lations, there is a clear linear correlation between the time an object spends
accreting and its final mass. The solid line gives the curve that the objects
would lie on if each object accreted at the mean of the time-averaged accre-
tion rates. The accretion times are given in units of the tff on the left-hand
axes and years on the right-hand axes. The vertical dashed line marks the
star/brown dwarf boundary.

Figure 11. For each single object that has stopped accreting by the end of
the main calculation, we plot the time of the ejection of the object from
a multiple system versus the time at which its accretion is terminated. As
in past barotropic calculations, these times are correlated, showing that the
termination of accretion on to an object is usually associated with dynam-
ical ejection of the object. Open circles give those objects where multiple
‘ejections’ are detected by the ejection detection algorithm and, hence, the
ejection time is ambiguous (see the main text). Binaries have been excluded
from the plot because it is difficult to determine when a binary has been
ejected.

radiation hydrodynamical calculation versus the object’s final mass.
The time-averaged accretion rate is the object’s final mass divided
by the time between its formation (i.e. the insertion of a sink particle)
and the end of its accretion (defined as the last time its accretion rate
drops below 10−7 M� yr−1) or the end of the calculation. As in the
barotropic calculations, there is no dependence of the time-averaged
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accretion rate on an object’s final mass, except that objects need to
accrete at a rate at least as quickly as their final mass divided by their
age (i.e. the lower-right potion of Fig. 9 cannot have any objects
lying in it). This means that the most massive stars have higher
time-averaged accretion rates than the bulk of the stars and VLM
objects. But, on the other hand, if the calculation were continued
longer, objects that accrete with lower time-averaged accretion rates
could also reach high masses. Note that these results should not be
used to infer that the typical accretion rate remains independent of
mass above 3 M�. The calculation presented here does not produce
any high-mass protostars, but other studies have reported that the
accretion rates of protostars with masses �3 M� do increase with
mass (e.g. Urban et al. 2010; Krumholz et al. 2011).

The mean of the accretion rates is 1.5 × 10−5 M� yr−1, which is
within a factor of ≈2 of the mean accretion rates of the barotropic
calculations in all of the above papers. Thus, the mean accretion
rate does not depend significantly on cloud density (Bate & Bonnell
2005), the equation of state of high-density gas (Bate 2005), the
total mass of the gas cloud (Bate 2009a) or whether the calculation
is performed using a barotropic equation of state or radiation hy-
drodynamics. It only depends on the mean temperature of the initial
cloud (Bate 2005), in that it scales roughly as T 3/2

g (or, equivalently,
c3

s /G, where cs is the mean sound speed on large scales; Shu 1977).
The dispersion in the accretion rates is about 0.37 dex, also similar
to the previous barotropic simulations. Thus, rather than the final
mass of a star depending on its average accretion rate, the primary
determinant of the final mass of a star or brown dwarf is the period
over which it accretes. Fig. 10 very clearly shows the linear relation
(with some dispersion) between the period of time over which an
object accretes and its final mass. This means that the higher charac-
teristic stellar mass produced when radiative feedback is included is
due to an increase in the average time over which an object accretes.

In Fig. 11, for each object that has stopped accreting by the end
of the main calculation (excluding the components of binaries), we
plot the time at which the object undergoes a dynamical ejection ver-
sus the time that its accretion is terminated. The strong correlation
shows that accretion is usually terminated by a dynamical encounter
with other objects, as seen in the barotropic calculations. We define
the time of ejection of an object as the last time the magnitude of its
acceleration drops below 2000 km s−1 Myr−1 (Bate 2009a) or the
end of the calculation. The acceleration criterion is based on the
fact that once an object is ejected from a stellar multiple system,
sub-cluster, or cluster through a dynamical encounter, its accelera-
tion will drop to a low value. We exclude binaries because they have
large accelerations throughout the calculation which frequently re-
sults in false detections of ejections. Also, in Fig. 11, we use two
different symbols (filled circles and open circles). For the former
we are confident of the ejection time. However, for those objects de-
noted by the open circles, we find that at least two ‘ejections’ more
than 2000 years apart have occurred. These are usually objects that
have had a close dynamical encounter with a multiple system that
has put them into long-period orbits rather than ejecting them. In
these cases, we chose the ‘ejection’ time closest to the accretion ter-
mination time but we use an open symbol to denote our uncertainty
in whether or not we have identified the best time for the dynamical
encounter.

We find that, excluding binaries, for 40 objects out of 47 (85
per cent) the accretion termination time and the ejection time are
within 2000 years of each other. If we also exclude those objects
for which we are uncertain in our identifications of the ejection
times as described above, we find 33 objects out of 40 (83 per cent)

are consistent with ejection terminating their accretion. These are
probably lower limits in the sense that it is difficult to determine
in an automated way the time at which an ejection occurs and an
erroneous value is much more likely to differ from the accretion
termination time by more than 2000 years than coincide with it.
In any case, it is clear that for the majority of objects their ac-
cretion is terminated by dynamical encounters with other stellar
systems.

In Fig. 12, we compare the IMF obtained from the radiation hy-
drodynamical calculation with the semi-analytic accretion/ejection
IMF model of Bate & Bonnell (2005) using parameters deter-
mined from the radiation hydrodynamical calculation (see also Bate
2009b). The parameters are: the mean accretion rate and its dis-
persion (given above), period of time over which stars form (i.e.
90 000 yr), the characteristic ejection time and the minimum stellar
mass. The characteristic ejection time, τeject = 62 400 yr, is chosen
such that the mean number of objects that have finished accreting
over the time period equals that from the radiation hydrodynami-
cal calculation (64 objects). The minimum stellar mass primarily
determines the minimum mass cut-off to the IMF, rather than the
shape of the rest of the IMF. For the semi-analytic IMF in Fig. 12
we choose five Jupiter-masses, but 10–15 Jupiter-masses result in
similarly good fits. A Kolmogorov–Smirnov test comparing the
semi-analytic IMF to the IMF obtained from the radiation hydro-
dynamical calculation shows that the latter is consistent with being
randomly drawn from the former (probability 19 per cent).

In conclusion, the origin of the IMF in the radiation hydrodynam-
ical calculation is the same as in the past barotropic calculations: the
IMF originates from the competition between accretion and dynam-
ical encounters. Objects end up with low masses if their accretion is
terminated (by a dynamical encounter) soon after they form. Objects
end up with high masses by accreting for an extended period. The
reason the characteristic stellar mass is larger when radiative feed-
back is included is that objects typically accrete for longer before
their accretion is terminated. This is because the radiative feedback
increases the typical distance between objects (Bate 2009c), and so
dynamical interactions take longer to occur.

Figure 12. The IMFs produced by the radiation hydrodynamical calculation
(histogram) and a comparison with the fit using the simple accretion/ejection
IMF model (thick curve) of Bate & Bonnell (2005). Statistically, the hy-
drodynamical and the model IMFs are indistinguishable (a Kolmogorov–
Smirnov test gives a 19 per cent probability that the hydrodynamical IMF
could have been drawn from the model IMF). Also shown are the Salpeter
(1955) slope (solid straight line), and the Kroupa (2001) (solid broken line)
and Chabrier (2005) (thin curve) mass functions. The vertical dashed line is
the stellar–substellar boundary.
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3.3 Stellar kinematics

At the end of the main barotropic calculation, most of the sub-
clusters had merged together and the stellar distribution essentially
consisted of a single cluster surrounded by a halo of ejected stars and
brown dwarfs. Bate (2009a) analysed the radial properties of this
cluster, looking for evidence of mass segregation and for radial vari-
ations of the stellar velocity dispersion and binarity. Unfortunately,
we are not able to follow the radiation hydrodynamical calculation
until all the sub-clusters and filaments have collapsed into a single
cluster and we have a lot fewer stars and brown dwarfs, so we re-
strict ourselves only to discussing the kinematics of the population
as a whole without attempting to look for spatial variations.

In Fig. 13, we plot the magnitude of the velocity of every star or
brown dwarf relative to the centre of mass of the stellar system at
the end of the radiation hydrodynamical calculation. For binaries
(including those that are sub-components of triples and quadru-
ples), we plot the two components with the centre of mass velocity
of the binary using filled squares connected by a dotted line. The
overall rms velocity dispersion (counting each binary only once)
is 5.5 km s−1 (3D) or 3.2 km s−1 (1D). This is almost identical to
the velocity dispersion found by Bate (2009a) at the end of the
main barotropic calculation, and larger than the velocity disper-
sions found from calculations of star formation in small 50 M�
clouds (Bate et al. 2003; Bate & Bonnell 2005; Bate 2005, 2009b).
The velocity dispersion is 40 per cent higher than the 1D velocity
dispersion of 2.3 km s−1 seen in the Orion Nebula Cluster (Jones
& Walker 1988; Tian et al. 1996), consistent with the fact that the
system formed here is lower in mass, but denser.

Reipurth & Clarke (2001) suggested that a greater velocity dis-
persion for brown dwarfs than stars may be a possible signature that
brown dwarfs form as ejected stellar embryos. Past N -body simu-
lations of the breakup of small-N clusters with N > 3 (Sterzik &
Durisen 1998) and SPH calculations of N = 5 clusters embedded

Figure 13. The magnitudes of the velocities of each star and brown dwarf
relative to the centre-of-mass velocity of the stellar system at the end of
the radiation hydrodynamical calculation. For binaries, the centre-of-mass
velocity of the binary is given, and the two stars are connected by dotted
lines and plotted as squares rather than circles. Objects still accreting at the
end of the calculation are denoted by horizontal arrows. The rms velocity
dispersion for the association (counting each binary once) is 5.5 km s−1

(3D) or 3.2 km s−1 (1D). There is a dependence of the velocity dispersion
on mass with VLM objects having a lower velocity dispersion than stars
(see the main text). Binaries are found to have a slightly lower velocity
dispersion than single objects of only 4.6 km s−1 (3D). The vertical dashed
line marks the star/brown dwarf boundary.

in gas (Delgado-Donate, Clarke & Bate 2003) found that there was
no strong dependence of the velocity of an object on its mass, but
both found that binaries should have a smaller velocity dispersion
than single objects due to the recoil velocities of binaries being
lower. On the other hand, Delgado-Donate et al. (2004b) performed
simulations of star formation in small turbulent clouds and found
that the velocity dispersions of singles and binaries were indistin-
guishable, but that higher-order multiples had significantly lower
velocity dispersions.

From the large barotropic calculations of Bate (2009a), it was
found that stars tend to have a slightly higher dispersion than VLM
objects and that binaries have a lower velocity dispersion than single
objects. These same relations are also found from the radiation
hydrodynamical calculation. The rms velocity dispersion of VLM
systems is 4.1 km s−1 (3D) while for the stars (masses ≥0.1 M�) the
rms velocity dispersion is 6.5 km s−1 (3D). Binaries (most of which
have stellar primaries) have a velocity dispersion of 4.6 km s−1 (3D),
lower than both the velocity dispersion of all stars and the overall
velocity dispersion.

Observationally, while there is no strong evidence for VLM ob-
jects having a different velocity dispersion to stars, or binaries hav-
ing a different velocity dispersion to single objects, studies of the
radial velocities of stars and brown dwarfs in the Chamaeleon I
dark cloud do find that brown dwarfs have a marginally lower ve-
locity dispersion than the T Tauri stars (Joergens & Guenther 2001;
Joergens 2006), in qualitative agreement with the results from both
the barotropic calculations of Bate (2009a) and radiation hydrody-
namical calculation discussed here.

3.4 Stellar encounters and disc sizes

Reipurth & Clarke (2001) also speculated that if brown dwarfs
formed via ejection, they might have smaller, lower-mass discs
than stars. As mentioned in Section 3.2.1, the IMF in the radiation
hydrodynamical calculation presented here and in the many past
barotropic star cluster formation calculations originates through
competition between accretion and ejection, but this applies both to
stars and brown dwarfs. The only difference is that brown dwarfs are
ejected soon after they form, before they have accreted much mass,
while stellar ejections occur after a longer period of accretion. Discs
around both stars and brown dwarfs may be truncated by dynamical
encounters and ejections.

In Fig. 14, we plot the distance of the closest encounter that every
star and brown dwarf has had by the end of the radiation hydrody-
namical calculation. As in past barotropic calculations, there is a
wide range of closest encounter distances (including two objects
that almost merged), but the closest encounters tend to have oc-
curred for stars rather than brown dwarfs. Dynamical encounters
between objects will truncate any circumstellar discs. However,
this plot cannot be taken to mean that many stars have small discs
because of several reasons. First, as will be seen in Section 3.6, mul-
tiplicity is a strong function of primary mass. In Fig. 14 it is clear
that binaries are responsible for many of the ‘closest encounters’.
Secondly, objects that are still accreting at the end of the calculation
are still evolving and, since the mass of an object depends on its
‘age’, more massive accreting objects are more likely to have had
close encounters. Finally, as noted by Bate et al. (2003), many stars
that have close encounters have new discs formed from accretion
subsequent to their closest dynamical encounter.

Despite these difficulties, if an object suffers a dynamical en-
counter that terminates its accretion this encounter will truncate
any disc that is larger than approximately 1/2 of the periastron
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Figure 14. The closest encounter distances of each star or brown dwarf
during the radiation hydrodynamical calculation versus the final mass of
each object. Objects that are still accreting significantly at the end of the
calculation are denoted with arrows indicating that they are still evolving
and that their masses are lower limits. Binaries are plotted with the two
components connected by dotted lines and squares are used as opposed
to circles. The horizontal dotted line marks the size of the sink particle
accretion radii, within which there is no gas. The vertical dashed line marks
the star/brown dwarf boundary. Note that two objects almost merged with
one another during the calculation (the merger radius was set to be 0.01 au).

distance during the encounter (Hall, Clarke & Pringle 1996). There-
fore, excluding binaries and objects that are still accreting, determin-
ing the distribution of 1/2 of the closest encounter distance should
give us an indication of the disc size distribution around single ob-
jects that have reached their final masses. Note that formally we have
still included the wide components of triple and quadruple systems,
but these constitute only 13 objects out of the 94 ‘single’ non-
accreting objects and all but one are in orbits with semimajor axes
greater than 10 au so their inclusion should not adversely affect our
conclusions.

In Fig. 15, we plot the cumulative distributions of disc trunca-
tion radii (taken to be 1/2 of the closest encounter distance) for
these objects. The solid line gives the cumulative distribution for
all 94 objects, while in the other distributions we break the sam-
ple into mass bins of M∗ < 0.1 M�, 0.1 M� ≤ M∗ < 0.3 M�,
and 0.3 M� ≤ M∗ < 1.0 M�. Bate (2009a) found that in the main
barotropic calculation there was a clear relation such that more mas-
sive stars tended to have had closer encounters. Here, the statistics
are not as good, but the stars in the highest mass bin have clearly
typically had closer encounters.

For VLM objects, 20 per cent have truncation radii greater than
40 au, while 1/2 have truncation radii greater than 10 au. It has been
known for a decade from infrared excess that young brown dwarfs
have discs (Muench et al. 2001; Natta & Testi 2001; Apai et al.
2002; Natta et al. 2002; Jayawardhana et al. 2003; Luhman et al.
2005; Monin et al. 2010), some of which also display evidence for
accretion (Jayawardhana, Mohanty & Basri 2002). At least some
of these discs are inferred to have radii of 20–40 au (e.g. Luhman
et al. 2007), while Scholz, Jayawardhana & Wood (2006) estimate
that at least 25 per cent of the brown dwarfs they survey in Taurus
have discs larger than 10 au in radius. The cumulative distribution
of truncation radii in Fig. 15 is consistent with these observations,
but it should be used with caution. First, the simulation presented
here produces a dense stellar cluster. Disc truncation may be less

Figure 15. Due to dynamical interactions, stars and brown dwarfs poten-
tially have their discs truncated to approximately 1/2 of the periastron sep-
aration during the encounter (see also Fig. 14). At the end of the radiation
hydrodynamical calculation, we plot the cumulative fraction objects as a
function of the potential truncation radius. We exclude binaries and any
objects that are still accreting at the end of the calculation. The solid line
gives the result for all stars and brown dwarfs, while the dotted, short-dashed
and long-dashed lines give the cumulative distributions for the mass ranges
M < 0.1, 0.1 ≤ M < 0.3 and 0.3 ≤ M < 1.0, respectively. There are no
stars with masses M ≥ 1.0 M� that are not either accreting or in multiple
systems at the end of the calculation.

important for setting disc sizes in a lower-density star-forming re-
gion like Taurus. Secondly, Fig. 15 does not give a disc size dis-
tribution. At best, it is a distribution of lower limits to disc sizes
because of the fact that stars can suffer a close dynamical encounter,
but then accrete more material from the molecular cloud and form
a new disc. This happens frequently in the simulation, especially
for the higher-mass stars. However, the distribution may be more
useful for VLM objects because they tend to have their accretion
terminated soon after they form by dynamical encounters and gen-
erally will not subsequently accrete significantly from the molecular
cloud.

3.5 The formation of multiple systems

The opacity limit for fragmentation sets a minimum initial binary
separation of ≈10 au since the size of a slowly rotating first hy-
drostatic core is ≈5 au (Larson 1969; Masunaga & Inutsuka 2000;
Tomida et al. 2010a; Commerçon et al. 2010, 2011; Bate 2011).
In Fig. 16, we plot the distance to the closest other star or brown
dwarf when each star or brown dwarf forms and the distance to this
object at the end of the calculation (open circles). Also plotted is
the initial separation and final semimajor axis of all binaries at the
end of the calculation (filled circles). No object forms closer than
10 au from an existing object, consistent with the expectations from
opacity limited for fragmentation.

Examining Fig. 16, we find that some objects that begin with close
separations end up well separated. Such situations occur when one
of the objects is involved in a dynamical interaction (e.g. ejection
from a group or multiple system). Alternately, objects that are ini-
tially widely separated (100–104 au) can end up in close bound
systems (separations <100 au). In fact, most of the close binaries
at the end of the calculation are composed of mutual nearest neigh-
bours at the time of formation (i.e. in the figure the filled circles are
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Figure 16. We find the closest object to each star or brown dwarf when it
forms and plot their final versus initial separation (open circles). We also
plot the final semimajor axes versus the initial separations of all binaries at
the end of the calculation (small filled circles). Note that the closest object
when a star or brown dwarf forms often does not remain close. Also, many
of the close multiple systems at the end of the calculation are composed
of objects that formed at large distances from each other. These results
indicate the importance of dynamical interactions and orbital decay during
the calculation.

inside the open circles), but the separations of these objects may
have been reduced by up to 3 orders of magnitude during the evolu-
tion. In particular, despite the fact that no objects form closer than
≈10 au from each other, at the end of the calculation there exist 21
binary systems and one triple system with separations <10 au.

The mechanisms by which close binaries form have been dis-
cussed in detail by Bate et al. (2002b). Briefly, Bate et al. found
that, rather than forming directly via fragmentation, the close bi-
nary systems form from the orbital decay of wider systems through
a combination of dynamical interactions, accretion, and the interac-
tion of binaries and triples with circumbinary and circumtriple discs.
Dynamical interactions can harden existing wide binaries by re-
moving angular momentum and energy from their orbits. They also
produce exchange interactions in which a temporary unstable multi-
ple system decays by ejecting one of the components of the original
binary (usually the lowest-mass object). However, dynamical in-
teractions alone cannot produce the observed frequency of close
binary systems, either beginning with stellar clusters (Kroupa &
Burkert 2001) or during the dissolution of small-N clusters (Sterzik
& Durisen 1998). The key is to have dissipative dynamical inter-
actions, where the presence of gas allows dynamical encounters
to dissipate energy and transport angular momentum (Bate et al.
2002b). A good example is a star–disc encounter (Larson 1990;
Clarke & Pringle 1991a,b; Heller 1995; McDonald & Clarke 1995;
Hall et al. 1996). In addition to dynamical interactions, accretion
on to a binary from an envelope decreases the binary’s separation
unless the specific angular momentum of the accreted material is
significantly greater than that of the binary (Artymowicz 1983; Bate
1997, 2000; Bate & Bonnell 1997). It can also change the relative
separations of a triple system, destabilizing it and forcing dynami-
cal interactions (Smith, Bonnell & Bate 1997). Circumbinary discs

can remove large amounts of orbital angular momentum from an
embedded binary system via gravitational torques, thus tightening
its orbit (Artymowicz et al. 1991; Pringle 1991).

These mechanisms work in the calculation here to produce the
close systems. They also reduce the separations of wide ∼1000 au
systems to systems with intermediate separations ∼10–100 au.

3.6 Multiplicity as a function of primary mass

We turn now to the properties of the binary and higher-order mul-
tiple stars and brown dwarfs produced by the simulation. Observa-
tionally, it is clear that the fraction of stars or brown dwarfs that
are in multiple systems increases with stellar mass (massive stars:
Mason et al. 1998; Preibisch et al. 1999; Shatsky & Tokovinin
2002; Kobulnicky & Fryer 2007; Kouwenhoven et al. 2007b; Mason
et al. 2009; intermediate-mass stars: Patience et al. 2002; solar-type
stars: Duquennoy & Mayor 1991; Raghavan et al. 2010; M-dwarfs:
Fischer & Marcy 1992; and VLM stars and brown dwarfs: Close
et al. 2003; Siegler et al. 2005; Basri & Reiners 2006). It also seems
that the multiplicity of young stars in low-density star-forming re-
gions is somewhat higher than that of field stars (Ghez, Neugebauer
& Matthews 1993; Leinert et al. 1993; Simon et al. 1995; Duchêne
et al. 2007). However, IC348 has a similar binary frequency to the
field (Duchêne, Bouvier & Simon 1999). In the Orion Nebula Clus-
ter, Köhler et al. (2006) find that the binary frequency of low-mass
stars is similar to that of field M dwarfs and lower than that of field
solar-type stars, but that stars with masses M > 2 M� have a higher
binarity than stars with 0.1 < M < 2 M� by a factor of 2.4 to 4.

To quantify the fraction of stars and brown dwarfs that are in
multiple systems we use the multiplicity fraction, mf , defined as a
function of stellar mass. We define this as

mf = B + T + Q

S + B + T + Q
, (2)

where S is the number of single stars within a given mass range
and, B, T and Q are the numbers of binary, triple and quadruple
systems, respectively, for which the primary has a mass in the
same mass range. Note that this differs from the companion star
fraction, csf , that is also often used and where the numerator has the
form B + 2T + 3Q. We choose the multiplicity fraction following
Hubber & Whitworth (2005) who point out that this measure is
more robust observationally in the sense that if a new member of
a multiple system is found (e.g. a binary is found to be a triple)
the quantity remains unchanged. We also note that it is more robust
for simulations too in the sense that if a high-order system decays
because it is unstable the numerator only changes if a quadruple
decays into two binaries (which is quite rare). Furthermore, if the
denominator is much larger than the numerator (e.g. for brown
dwarfs where the multiplicity fraction is low) the production of a
few single objects does not result in a large change to the value
of mf . This is useful because many of the systems in existence
at the end of the calculations presented here may undergo further
dynamical evolution. By using the multiplicity fraction our statistics
are less sensitive to this later evolution.

The method we use for identifying multiple systems is the same
as that used by Bate (2009a), and a full description of the algo-
rithm is given in the Method section of that paper. When analysing
the simulations, some subtleties arise. For example, many ‘bina-
ries’ are in fact members of triple or quadruple systems and some
‘triple’ systems are components of quadruple or higher-order sys-
tems. From this point on, unless otherwise stated, we define the
numbers of multiple systems as follows. The number of binaries
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Table 2. The numbers of single and multiple systems for dif-
ferent primary mass ranges at the end of the radiation hydrody-
namical calculation.

Mass range (M�) Single Binary Triple Quadruple

M < 0.03 7 0 0 0
0.03 ≤ M < 0.07 20 0 0 0
0.07 ≤ M < 0.10 8 3 0 0
0.10 ≤ M < 0.20 17 7 1 0
0.20 ≤ M < 0.50 21 9 2 2
0.50 ≤ M < 0.80 5 2 0 1
0.80 ≤ M < 1.2 2 1 1 0

M > 1.2 4 6 1 4

All masses 84 28 5 7

excludes those that are components of triples or quadruples. The
number of triples excludes those that are members of quadruples.
However, higher-order systems are ignored (e.g. a quintuple system
may consist of a triple and a binary in orbit around each other, but
this would be counted as one binary and one triple). We choose
quadruple systems as a convenient point to stop as it is likely that
most higher order systems will not be stable in the long term and
would decay if the cluster was evolved for many millions of years.
The numbers of single and multiple stars produced by the radiation
hydrodynamical calculation are given in Table 2 following these
definitions. In Table 3, we give the properties of the 40 multiple
systems.

In the left-hand panel of Fig. 17, we compare the multiplicity
fraction of the stars and brown dwarfs as a function of stellar mass
obtained from the radiation hydrodynamical calculation with obser-
vations. The results from a variety of observational surveys (see the
figure caption) are plotted using black open boxes with associated
error bars and/or upper/lower limits. The data point from the survey
of Duquennoy & Mayor (1991) is plotted using dashed lines for the
error bars since this survey has been recently superseded by that
of Raghavan et al. (2010). The results from the radiation hydrody-
namical simulation have been plotted in two ways. First, using the
numbers given in Table 2 we compute the multiplicity in six mass
ranges: low-mass brown dwarfs (masses <0.03 M�), VLM objects
excluding the low-mass brown dwarfs (masses 0.03–0.10 M�),
low-mass M-dwarfs (masses 0.10–0.20 M�), high-mass M-dwarfs
(masses 0.20–0.50 M�), K-dwarfs and solar-type stars (masses
0.50–1.20 M�), and intermediate-mass stars (masses >1.2 M�).
The filled blue squares give the multiplicity fractions in these mass
ranges, while the surrounding blue hatched regions give the range
in stellar masses over which the fraction is calculated and the 1σ

(68 per cent) uncertainty on the multiplicity fraction. In addition, a
thick solid line gives the continuous multiplicity fraction computed
using a boxcar average of the results from the radiation hydrody-
namical simulation. The width of the boxcar average is one order
of magnitude in stellar mass.

The radiation hydrodynamical calculation clearly produces a
multiplicity fraction that strongly increases with increasing primary
mass. Furthermore, the values in each mass range are in agreement
with observation. In the right-hand panel of Fig. 17, we provide the
equivalent quantities obtained from the main barotropic calculation
of Bate (2009a) at the same time as the end of the radiation hy-
drodynamical calculation. Those readers who wish to examine the
multiplicity at the end of the barotropic calculation can find this
in Bate (2009a). The barotropic calculations also produce a mul-
tiplicity that is a strongly increasing function of mass. In fact, the

results using radiation hydrodynamics and a barotopic equation of
state are very similar. The main barotropic calculation gives mul-
tiplicities that are somewhat higher for primary masses >0.2 M�
than those given by the radiation hydrodynamical calculation, but
the results are consistent within the statistical uncertainties.

It is important to note that the surveys with which we are compar-
ing the multiplicities are primarily of field stars rather than young
stars. This is necessary because surveys of young stars either do not
sample a large range of separations and mass ratios, or the statistics
are too poor. However, there may be considerable evolution of the
multiplicities between the age of the stars when the calculations
were stopped (∼105 yr) and a field population. This question of
the subsequent evolution of the clusters produced by hydrodynam-
ical simulations was recently tackled by Moeckel & Bate (2010)
who took the end point of the main barotropic calculation of Bate
(2009a) and evolved it to an age of 107 yr using an N-body code
under a variety of assumptions regarding the dispersal of the molec-
ular cloud. Moeckel & Bate found that the multiplicity distribution
evolved very little during dispersal of the molecular cloud and was
surprisingly robust to different assumptions regarding gas dispersal.
Even under the assumption of no gas removal at 107 yr, although
the multiplicities were found to have decreased slightly compared
with those at the end of the hydrodynamical calculation, they were
still formally consistent. They concluded that when star forma-
tion occurs in a clustered environment, the multiple systems that
are produced are quite robust against dynamical disruption during
continued evolution. Therefore, we do not expect the multiplicities
presented in Fig. 17 to evolve significantly as the stars evolve into
a field population.

In detail, we find the following.

Solar-type stars: Duquennoy & Mayor (1991) found an ob-
served multiplicity fraction of mf = 0.58 ± 0.1. However, the
recent larger survey carried out by Raghavan et al. (2010) revised
this downwards to 0.44 ± 0.02 and they concluded that the higher
value obtained by Duquennoy & Mayor was due to them overesti-
mating their incompleteness correction. The radiation hydrodynam-
ical calculation gives a multiplicity fraction of 0.42 ± 0.08 over the
mass range 0.5–1.2 M� which is in good agreement with the result
of Raghavan et al. (2010).

M-dwarfs: Fischer & Marcy (1992) found an observed multi-
plicity fraction of 0.42 ± 0.09. In the mass range 0.1–0.5 M� we
obtain 0.36 ± 0.05. Fischer & Marcy’s sample contains stars with
masses between 0.1 and 0.57 solar masses, but the vast majority
have masses in the range 0.2–0.5 M� whereas in the simulation
almost half of the low-mass stars have masses less than 0.2 M�. In
the 0.2–0.5 M� mass range we obtain 0.38±0.06. All these values
are consistent with the statistical uncertainties.

VLM objects: there has been much interest in the multiplicity
of VLM objects in recent years (Martı́n et al. 2000, 2003; Bouy
et al. 2003, 2006; Burgasser et al. 2003, 2006; Close et al. 2003,
2007; Gizis et al. 2003; Pinfield et al. 2003; Siegler et al. 2003, 2005;
Luhman 2004; Maxted & Jeffries 2005; Kraus, White & Hillenbrand
2005, 2006; Basri & Reiners 2006; Reid et al. 2006; Ahmic et al.
2007; Allen et al. 2007; Artigau et al. 2007; Konopacky et al. 2007;
Law, Hodgkin & Mackay 2008; Maxted et al. 2008; Reid et al. 2008;
Burgasser, Dhital & West 2009; Luhman et al. 2009a; Radigan et al.
2009; Faherty et al. 2011). For a recent review, see Burgasser et al.
(2007). Over the entire mass range of 0.018–0.10 M�, we find a
very low multiplicity of just 0.08 ± 0.05, although this is twice the
value found from the main barotropic calculation of Bate (2009a).
However, the multiplicity drops rapidly with decreasing primary
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Table 3. The properties of the 40 multiple systems at the end of the calculation. The structure of each system is described using a binary hierarchy. For each
‘binary’ we give the masses of the primary M1 and secondary M2, the mass ratio q = M2/M1, the semimajor axis a, the eccentricity e, the separation of the
components when the second one first formed, the relative spin angle, and the angles between orbit and each of the primary’s and secondary’s spins. For triples,
we give the relative angle between the inner and outer orbital planes. The combined masses of multiple systems are given in parentheses.

Object numbers M1 M2 q a e Initial Relative spin Spin1-orbit Spin2-orbit Comments
separation or orbit angle angle angle

(M�) (M�) (au) (au) (deg) (deg) (deg)

138, 117 0.29 0.29 0.97 0.39 0.61 907 91 129 64
32, 50 1.86 0.59 0.32 0.88 0.73 748 105 68 −94
20, 23 2.76 1.97 0.72 0.88 0.76 1533 13 49 62
25, 26 1.81 1.23 0.68 0.91 0.61 419 7 31 27
38, 45 1.40 1.20 0.86 1.08 0.60 88.3 4 69 73
6, 13 1.90 1.30 0.68 1.20 0.71 950 28 55 37
1, 7 1.37 1.07 0.78 1.25 0.63 366 87 96 −169
64, 79 0.84 0.10 0.12 1.95 0.24 100 48 28 57
35, 33 1.91 1.50 0.79 1.96 0.67 2833 88 97 77
87, 121 1.26 0.40 0.32 2.02 0.26 2159 73 42 −36
118, 163 0.59 0.21 0.35 2.24 0.16 210 25 43 66
3, 8 2.27 1.00 0.44 2.56 0.45 3268 21 13 17
98, 109 0.29 0.21 0.71 3.01 0.44 25.4 4 68 66
5, 16 2.53 2.49 0.98 3.27 0.26 57.3 3 23 23
116, 132 0.25 0.12 0.45 4.82 0.52 547 19 59 56
63, 154 0.29 0.14 0.50 6.44 0.62 22.1 6 1 −5
115, 183 0.52 0.04 0.08 8.40 0.45 209 32 12 42 Star/VLM triple
90, 103 0.18 0.10 0.54 8.75 0.10 63.8 10 12 10 Star/VLM binary
122, 145 0.23 0.14 0.62 8.81 0.23 158 13 21 13
102, 110 0.27 0.26 0.96 9.36 0.12 67.8 7 37 29
159, 150 0.16 0.15 0.96 9.91 0.35 1138 13 38 51
59, 68 0.08 0.05 0.61 10.6 0.46 12.6 13 17 4 VLM binary
19, 27 0.28 0.25 0.89 12.8 0.08 58.4 3 22 22
76, 83 0.25 0.21 0.84 12.8 0.42 267 9 30 22
164, 179 0.15 0.03 0.21 14.3 0.80 23.3 22 4 22 Star/VLM triple
92, 133 0.27 0.20 0.74 14.3 0.16 52.6 20 19 −2
44, 82 1.03 0.91 0.88 14.3 0.01 267 8 35 31
41, 89 0.25 0.18 0.71 14.7 0.09 324 11 31 20
94, 129 0.18 0.09 0.49 14.8 0.09 445 56 57 3 Star/VLM binary
4, 84 1.33 1.06 0.80 19.3 0.02 117 12 40 41
160, 168 0.19 0.15 0.81 19.5 0.45 902 15 29 34
104, 93 0.35 0.34 1.00 22.5 0.13 193 6 36 39
140, 147 0.09 0.09 0.94 26.1 0.01 48.7 5 23 19 VLM binary
65, 77 0.27 0.26 0.95 27.5 0.01 396 7 21 14
88, 127 0.21 0.10 0.50 29.7 0.05 443 41 24 −20
175, 181 0.09 0.08 0.98 36.4 0.06 64.8 106 53 −54 VLM binary
10, 17 3.84 0.70 0.18 165 0.16 6244 67 104 92
67, 74 0.14 0.05 0.38 356 0.35 327 74 144 77 Star/VLM binary
49, 96 0.38 0.27 0.71 406 0.74 969 44 70 46
106, 148 0.71 0.12 0.17 474 0.70 369 53 70 26
12, 105 0.88 0.04 0.04 620 0.42 1185 77 91 93 Star/VLM binary
153, 182 0.13 0.03 0.26 721 0.82 1289 44 128 93 Star/VLM binary
171, 174 0.10 0.08 0.79 8366 0.90 1743 94 36 99 Star/VLM binary

(25, 26), 37 (3.04) 1.68 0.55 5.53 0.19 – 34 – –
(64, 79), 55 (0.94) 0.86 0.91 18.1 0.10 – 4 – –
(115, 183), 149 (0.56) 0.19 0.34 19.9 0.10 – 14 – – Star/VLM triple
(5, 16), 15 (5.02) 2.95 0.59 23.5 0.16 – 36 – –
( 87, 121), 100 (1.66) 1.21 0.73 36.8 0.24 – 32 – –
(122, 145), 123 (0.37) 0.26 0.70 45.2 0.08 – 5 – –
(116, 132), 131 (0.37) 0.15 0.41 57.8 0.19 – 6 – –
(104, 93), 134 (0.69) 0.22 0.31 108 0.17 – 10 – –
(164, 179), 173 (0.18) 0.07 0.40 194 0.49 – 126 – – Star/VLM triple

((87, 121), 100), 139 (2.87) 0.06 0.02 138 0.27 – – – –
(4, 84), (44, 82) (2.39) (1.94) 0.81 139 0.03 – – – –
(38, 45), (32, 50) (2.59) (2.45) 0.94 142 0.39 – – – –
((115, 183), 149), 126 (0.75) 0.50 0.67 145 0.09 – – – –
(76, 83), (41, 89) (0.46) (0.43) 0.93 161 0.45 – – – –
((25, 26), 37), 40 (4.72) 3.38 0.72 177 0.31 – – – –
((116, 132), 131), 119 (0.52) 0.11 0.21 10575 0.92 – – – –

C© 2011 The Author, MNRAS 419, 3115–3146
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



Stellar and multiple star properties 3135

Figure 17. Multiplicity fraction as a function of primary mass. The left-hand panel gives the result at the end of the radiation hydrodynamical calculation.
On the right, we give the result from the main barotropic calculation of Bate (2009a) at the same time. The blue filled squares surrounded by shaded regions
give the results from the calculations with their statistical uncertainties. The thick solid lines give the continuous multiplicity fractions from the calculations
computed using a boxcar average. The open black squares with error bars and/or upper/lower limits give the observed multiplicity fractions from the surveys of
Close et al. (2003), Basri & Reiners (2006), Fischer & Marcy (1992), Raghavan et al. (2010), Duquennoy & Mayor (1991), Preibisch et al. (1999) and Mason
et al. (1998), from left to right. Note that the error bars of the Duquennoy & Mayor (1991) results have been plotted using dashed lines since this survey has
been superseded by Raghavan et al. (2010). The observed trend of increasing multiplicity with primary mass is well reproduced by both calculations. Note that
because the multiplicity is a steep function of primary mass it is important to ensure that similar mass ranges are used when comparing the simulation with
observations.

mass and the observed VLM objects tend to have high masses.
The calculation gives multiplicities of 0.32 ± 0.08 for the mass
range 0.1–0.2 M�, 0.27 ± 0.15 for the mass range 0.07–0.10 M�
and 0.0 ± 0.05 for the mass range 0.03–0.07 M�. Therefore, to
compare with observations it is very important to compare like with
like. The observed frequency of VLM binaries is typically found to
be ≈15 per cent (Bouy et al. 2003; Close et al. 2003, 2007; Gizis
et al. 2003; Martı́n et al. 2003; Siegler et al. 2005; Reid et al. 2008).
The surveys are most complete for binary separations greater than
a couple of au. Basri & Reiners (2006) and Allen (2007) estimated
the total frequency (including spectroscopic systems) to be ≈20–25
per cent. These surveys typically targeted primaries with masses
in the range 0.03–0.1 M�, but most of these objects in fact have
masses greater than 0.07 M�. Thus, the closest comparison with
our calculation is our frequency of 0.27 ± 0.15 for the mass range
0.07–0.10 M�. This is in good agreement with observations, but the
uncertainty is large because of the small number of objects. Taking
the average over the larger range of 0.03–0.20 M� gives 0.20±0.05
which is also in good agreement. Because the statistics from the
radiation hydrodynamical calculation are not as good as those of
the barotropic simulations it is difficult to determine whether or not
including radiative feedback has an effect on the VLM multiplicity.
However, over the range 0.03–0.20 M�, the multiplicity from the
rerun barotropic calculation of Bate (2009a), which has the same
sink particle accretion radius size as the radiation hydrodynamical
calculation, is 0.17±0.03 which is in good agreement with the value
obtained from the radiation hydrodynamical calculation. Therefore,
the use of radiation hydrodynamics rather than a barotropic equation
of state does not seem to alter the VLM multiplicity significantly,
and both are in good agreement with observations (if small sink
particle accretion radii are used; Bate 2009a).

Low-mass brown dwarfs: the frequency of low-mass binary
brown dwarfs (primary masses less than 30 Jupiter masses) is ob-
servationally unconstrained. Bate (2009a) predicted that the multi-
plicity would continue to fall as the primary mass is decreased and
that the binary frequency in the mass range 0.01–0.03 M� should
be �7 per cent. In the radiation hydrodynamical calculation, out of
27 systems with primary masses <0.07 M� there are no multiple

systems. Thus, although the statistics are not as good, the radiation
hydrodynamical calculations also predict a very low multiplicity for
low-mass brown dwarfs.

3.6.1 Star–VLM binaries

We turn now to the issue of VLM/brown dwarf companions to stars.
As in the previous section, we do not consider brown dwarf com-
panions as such, rather we consider VLM companions (<0.1 M�)
to stars (≥0.1 M�). The radiation hydrodynamical calculation pro-
duced eight stellar-VLM systems out of 86 stellar systems, a fre-
quency of 9 ± 2 per cent. This is indistinguishable from the fre-
quency given by the main barotropic calculation (9.0±1.6 per cent).
One of the eight systems is a 0.15 M� star with two VLM com-
panions with semimajor axes of 14 and 194 au (Table 3). Another
is a 0.52 M� star with a VLM companion at 8.4 au and a 0.19 M�
star at 20 au. The other six are binaries. Five of the binaries have
primary masses in the range 0.1–0.2 M� (semimajor axes of 9, 15,
356, 721 and 8366 au), and the sixth is a 0.88 M� star with a 36
MJ companion at 620 au.

Although the statistics are not as good as the main barotropic
calculation (which produced 26 stellar-VLM systems), the proper-
ties are in good agreement. In the main barotropic calculation, 14
of the primaries had masses between 0.1 and 0.2 M�, seven had
primary masses in the range 0.2–0.5 M�, and three had primary
masses between 0.5 and 0.8 M� (Bate 2009a). However, within the
statistical uncertainties, the frequency of stellar-VLM systems was
not found to vary with primary mass. Bate (2009a) found a depen-
dence of the separations of stellar-VLM binaries on primary mass.
He found a wide range of separations for primary masses <0.2 M�,
from close (<20 au) to wide (>1000 au) systems, but that the me-
dian separation increasing strongly with primary mass (<30 au for
stellar masses <0.2 M� to �1000 au for solar-type primaries).
Although we cannot confirm this trend of median separation with
primary mass from the radiation hydrodynamical simulation due to
the smaller numbers of systems, the results are consistent with the
barotropic results.
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There has been much discussion over the past decade of the ob-
served ‘brown dwarf desert’ for close brown dwarf companions
solar-type stars (frequency ≈1 per cent; Marcy & Butler 2000;
Grether & Lineweaver 2006) and how this changes for wider sep-
arations and different primary masses. McCarthy & Zuckerman
(2004) found that the frequency of wide brown dwarfs to G, K
and M stars between 75 and 300 au was 1 per cent ± 1 per cent.
The frequencies of wide brown dwarf companions to A and B stars
(Kouwenhoven, Brown & Kaper 2007a), M dwarfs (Gizis et al.
2003) and other brown dwarfs appear to be similarly low, although
the frequency of wide binary brown dwarfs may be higher when
they are very young (Close et al. 2007). Our results are consistent
with these observations in the sense that we do not find brown dwarf
companions to solar-type stars in close orbits and we find a low fre-
quency of VLM companions at larger separations. However, with
our small numbers of objects we are unable to place strong limits.

3.6.2 The frequencies of triple and quadruple systems

Consulting Table 2, we find that the radiation hydrodynamical cal-
culation produced 84 single stars/brown dwarfs, 28 binaries, five
triples and seven quadruples. This gives an overall frequency of
triple and quadruple systems of only 4 ± 2 per cent and 6 ± 2 per
cent, respectively. These are upper limits because some of these
systems may be disrupted if the calculation were followed longer.
Bate (2009a) found slightly lower values from the barotropic cal-
culations, although the radiation hydrodynamic results agree within
the uncertainties.

For the barotropic calculations, the frequencies of high-order
multiples were found to increase strongly with primary mass. Al-
though the statistics are much poorer for the radiation hydrodynam-
ical calculation, this also appears to be the case. For VLM primaries,
there are no triples or quadruples out of 38 systems. For M-dwarf
primaries (0.10–0.50 M�) the frequency of triples/quadruples is
8 ± 4 per cent, while for solar-type and intermediate-mass stars the
frequency is ≈26 ± 10 per cent.

Comparing these results with observations, Fischer & Marcy
(1992) found seven triples and one quadruple amongst 99 M-star
primaries giving a frequency of 8 ± 3 per cent, in good agreement.
Raghavan et al. (2010) found the frequency of triple and higher-
order multiple systems with solar-type primaries to be 11 ± 1 per
cent. For primaries in the mass range 0.5–1.2 M�, the radiation
hydrodynamical simulation gives a frequency of 17 ± 12 per cent.
In summary, the frequencies of triples/quadruples obtained from the
radiation hydrodynamical calculation are consistent with current
observational surveys, but the statistical uncertainties are large.

3.7 Separation distributions of multiples

The main barotropic calculation of Bate (2009a) produced the first
reasonably large sample of multiple systems from a single hydro-
dynamical calculation: 58 stellar and 32 VLM binaries, in addition
to 19 stellar and four VLM triple systems and 23 stellar and two
VLM quadruple systems. The radiation hydrodynamical calcula-
tion produces fewer multiple systems due to the effects of radiative
feedback and because we are not able to follow the evolution as
far (Table 1). However, because the characteristic stellar mass in-
creases with radiative feedback, it still provides nearly half as many
multiple stellar systems (25 binaries, five triples and seven quadru-
ples). The main difficulty is because the number of VLM objects
is more than an order of magnitude lower, so the number of VLM

multiples is very small. The calculation only produces three VLM
binaries. Despite this, it is of interest to examine the distributions
of semimajor axes.

Observationally, the median separation of binaries is found to
depend on primary mass. Duquennoy & Mayor (1991) found that
the median separation of solar-type binaries was ≈30 au. In the
recent larger survey of solar-type stars, Raghavan et al. (2010) found
≈40 au. Fischer & Marcy (1992) found indications of a smaller
median separation of ≈10 au for M-dwarf binaries. Finally, VLM
binaries are found to have a median separation of �4 au (Close
et al. 2003, 2007; Siegler et al. 2005), with few VLM binaries
found to have separations greater than 20 au, particularly in the
field (Allen et al. 2007). A list of VLM multiple systems can be
found at http://vlmbinaries.org/. Close et al. (2007) estimated that
young VLM objects have a wide (>100 au) binary frequency of ∼6
per cent ± 3 per cent for ages less than 10 Myr, but only 0.3 ± 0.1
per cent for field VLM objects.

Although we are able to follow binaries as close as 0.01 R�
before they are assumed to merge in the radiation hydrodynami-
cal calculation, the sink particle accretion radii are 0.5 au. Thus,
dissipative interactions between stars and gas are omitted on these
scales which likely affects the formation of close systems (Bate
et al. 2002a).

In Fig. 18, we present the separation (semimajor axis) distribu-
tions of the stellar (primary masses greater than 0.10 M�) multiples.
We do not plot the distribution of VLM binaries because there are
only three systems. The distribution is compared with the lognormal
distribution from the survey of solar-type stars of Raghavan et al.
(2010) (which is very similar to that of Duquennoy & Mayor 1991).
The filled histogram gives the separations of binary systems, while
the double hatched region adds the separations from triple systems

Figure 18. The distributions of separations (semimajor axes) of multiple
systems with stellar primaries (M∗ > 0.1 M�) produced by the radiation
hydrodynamical calculation. The solid, double hatched and single hatched
histograms give the orbital separations of binaries, triples and quadruples,
respectively (each triple contributes two separations, and each quadruple
contributes three separations). The curve gives the solar-type separation
distribution (scaled to match the area) from Raghavan et al. (2010). The
vertical dotted line gives the resolution limit of the calculations as determined
by the accretion radii of the sink particles.
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(two separations for each triple, determined by decomposing a triple
into a binary with a wider companion), and the single hatched region
includes the separations of quadruple systems (three separations for
each quadruple which may comprise two binary components or a
triple with a wider companion). The vertical dotted line denotes the
sink particle accretion radius.

The median separation (including separations from binary, triple
and quadruple systems) of the stellar systems is 15 au with a standard
deviation of 0.97 dex (i.e. 1 order of magnitude). Given the smaller
number of systems, this is in reasonable agreement with the value of
26 au with a standard deviation of 1.15 dex obtained by Bate (2009a)
for the main barotropic calculation. Both the median separation
(40 au) and the dispersion (1.52 dex) obtained by Raghavan et al.
(2010) for solar-type stars are larger. However, for the median, it is
important to note that most of the primaries from the calculation are
M-dwarfs, not solar-type stars and Fischer & Marcy (1992) found
that M-dwarf binaries have smaller separations (median ≈10 au).
For the width of the distribution, the number of close systems is
likely underestimated because of the lack of dissipation on small
scales (see Bate 2009a). The number of wide systems is low because
the stellar cluster is dense and wide binaries cannot exist within the
cluster. There appears to be a similar deficit of wide binaries in the
Orion Nebula Cluster (Bate, Clarke & McCaughrean 1998; Scally,
Clarke & McCaughrean 1999; Reipurth et al. 2007). Furthermore,
Moeckel & Bate (2010) and Kouwenhoven et al. (2010) have shown
that wide systems can be formed as a star cluster disperses (see also
Moeckel & Clarke 2011).

The three VLM binaries have semimajor axes of 10.6, 26.1 and
36.4 au. With only three systems, no firm conclusions can be drawn.
However, these semimajor axes are consistent with the fact that most
observed VLM binaries have projected separations �20 au and that
wide systems (>100 au) are rare. Furthermore, Bate (2009a), who
obtained 32 VLM multiples from the main barotropic calculation,
found that the median separation of VLM multiples decreased as
the calculation was evolved from ≈30 au at 1.04tff to ≈10 au at
1.50tff because many were still accreting gas and interacting with
other systems early on. He concluded that VLM binaries may form
with reasonably wide separations and evolve to smaller separations
(cf. Bate et al. 2002b). It is interesting to note that of the three
VLM binaries found here, only the closest (10.6 au) has stopped
accreting. Soon after the binary was formed at 1.034 tff , a third
object formed nearby making it a VLM triple. The binary’s initial
separation was 12.6 au which grew to 16.5 au while the binary was
accreting, and then was reduced to 10.8 au in a dynamical encounter
at t = 1.10tff that terminated its accretion. The triple survived until
another dynamical encounter at t = 1.17tff which striped off the
wider VLM object and reduced the separation of the binary slightly
to 10.6 au. For the other two VLM binaries which were still accreting
at the end of the simulation, the 36.4 au VLM binary was formed
at 1.194tff with a separation of 65 au which decreased continually
until the simulation was stopped. The 26.1 au binary formed at
1.13 with an initial separation of 48.6 au which quickly decreased
to 19.7 au and then grew under the action of accretion to its final
value. In addition to the theoretical evidence from Bate (2009a)
that the separation distribution of VLM binaries may evolve with
time, the observational studies of Close et al. (2007) and Burgasser
et al. (2007) suggest that young wide VLM binaries are disrupted,
leading to the observed paucity of old wide VLM systems.

In summary, the radiation hydrodynamical simulation produces a
stellar separation distribution that is broad with a median separation
that is in reasonable agreement with field systems. It lacks very close
systems (presumably due to the lack of dissipation on small scales).

It also lacks very wide systems, which may be formed as the cluster
disperses. The VLM binaries are consistent with the observation
that most VLM binaries are close, but with only three systems, two
of which are still evolving, no stronger conclusions can be drawn.

3.8 Mass ratio distributions of multiples

Along with the separation distributions of the multiple systems we
can investigate the mass ratio distributions. We begin by considering
only binaries, but we include binaries that are components of triple
and quadruple systems. A triple system composed of a binary with
a wider companion contributes the mass ratio from the binary, as
does a quadruple composed of a triple with a wider companion. A
quadruple composed of two binaries orbiting each other contributes
two mass ratios — one from each of the binaries.

Observationally, the mass ratio distribution of binaries also is
found to depend on primary mass. Duquennoy & Mayor (1991)
found that the mass ratio distribution of solar-type binaries peaked
at M2/M1 ≈ 0.2. However, the recent survey of Raghavan et al.
(2010) overturns this result. Raghavan et al. (2010) found a
flat mass ratio distribution for solar-type primaries in the range
M2/M1 = 0.2–0.95, with a drop-off at lower mass ratios and
a strong peak at nearly equal masses (so-called twins; Tokovinin
2000b). They find the mass ratios of pairs in higher-order systems
follow the same distribution. These results are consistent with the
earlier study of Halbwachs et al. (2003) who found a bi-modal
distribution for spectroscopic binaries with primary masses in the
mass range 0.6–1.9 M� and periods �10 yr with a broad peak in
the range M2/M1 = 0.2–0.7 and a peak for equal-mass systems.
Mazeh et al. (2003) found a flat mass ratio distribution for spec-
troscopic binaries with primaries in the mass range 0.6–0.85 M�.
Fischer & Marcy (1992) also found a flat mass ratio distribution in
the range M2/M1 = 0.4–1.0 for M-dwarf binaries with all periods.
In the Taurus–Auriga star-forming region, Kraus et al. (2011) report
a flat mass ratio distribution for primaries in the range 0.7–2.5 M�,
but for primaries in the mass range 0.25–0.7 M� they find a bias
towards equal-mass systems. This change becomes even more ex-
treme for VLM binaries, which are found to have a strong preference
for equal-mass systems (Close et al. 2003; Siegler et al. 2005; Reid
et al. 2006).

In Fig. 19, we present the mass ratio distributions of the stars
with masses ≥0.5 M� (left-hand panel), M-dwarfs with masses
0.1 M� ≤ M1 < 0.5 M� (centre panel), and VLM objects (right-
hand panel). We compare the M-dwarf mass ratio distribution to
that of Fischer & Marcy (1992), and the higher-mass stars to the
mass ratio distribution of pairs with solar-type primaries obtained
by Raghavan et al. (2010). The VLM mass ratio distribution is com-
pared with the listing of VLM multiples at http://vlmbinaries.org/.

We find that the ratio of near-equal-mass systems to systems
with dissimilar masses decreases going from VLM objects to solar-
type stars in a similar way to the observed mass ratio distributions,
although the statistical significance is not strong. Specifically, all
three of the VLM binaries have M2/M1 > 0.6 while for primary
masses 0.1–0.5 M� the fraction is only 63 per cent, and for solar-
type stars (>0.5 M�) the fraction is 50 per cent. The M-dwarf mass
ratio distribution is consistent with Fischer & Marcy’s distribution.
There are only three VLM binaries, but they are consistent with
the observation that most VLM systems have mass ratios greater
than 0.6. For solar-type systems, Raghavan et al. (2010) obtained
a generally flat mass ratio distribution, again consistent with the
results obtained here.
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Figure 19. The mass ratio distributions of binary systems with stellar primaries in the mass ranges M1 > 0.5 M� (left) and M1 = 0.1–0.5 M� (centre) and
VLM primaries (right; M1 < 0.1 M�) produced by the radiation hydrodynamical calculation. The solid black lines give the observed mass ratio distributions
of Raghavan et al. (2010) for pairs with solar-type primaries (left), Fischer & Marcy (1992) for M1 = 0.3–0.57 M� (centre, solid line) and M1 = 0.2–0.57 M�
(centre, dashed line), and of the known VLM binary systems from the list at http://vlmbinaries.org/ (right). The observed mass ratio distributions have been
scaled so that the areas under the distributions (M2/M1 = 0.4–1.0 only for the centre panel) match those from the simulation results. The VLM binaries
produced by the simulation are biased towards equal masses when compared with M-dwarf and solar-type binaries. All three of the VLM binaries have
M2/M1 > 0.6 while for the M-dwarf binaries the fraction is only 63 per cent and for the more massive primaries the fraction is only 50 per cent.

The barotropic calculations of Bate (2009a) also gave higher
proportions of near-equal-mass binaries for VLM binaries than
M-dwarf binaries (with greater statistical significance), but gave
similar fractions for solar-type and M-dwarf binaries. At the time,
Bate (2009a) concluded that the barotropic calculations did not pro-
duce enough unequal-mass solar-type binaries because Duquennoy
& Mayor (1991) found that the mass ratio distribution peaked at
M2/M1 ≈ 0.2. But the new mass ratio distribution obtained by
Raghavan et al. (2010) has reduced the discrepancy.

As with the VLM separation distribution, Bate (2009a) found
that the VLM binary mass ratio distribution evolved with time,
becoming more biased towards equal-mass systems. Both the ap-
parent evolution of VLM binary separations and mass ratios are
consistent with the evolution of close binaries discussed by Bate
et al. (2002b). Dynamical exchange interactions between binaries
and single objects tend to produce more equal-mass components,
as does accretion of gas from circumbinary discs or the accretion of
infalling gas with high specific angular momentum. The evolution
seen in the radiation hydrodynamical calculation is consistent with
this: the 10.6 au VLM binary had a mass ratio of 0.49 at 1.05tff which
grew to its final value of 0.61 before the binary stopped accreting at
1.10tff , while the mass ratios of the two VLM binaries which were
still accreting at the end of the calculation (M2/M1 = 0.94, 0.98)
were being equalized by this accretion.

3.8.1 Mass ratio versus separation

In Fig. 20, we plot mass ratios against separation (semimajor axis)
for the binaries, triples and quadruples at the end of the main cal-
culation. Note that for this figure we include systems that are sub-
components of higher-order systems, using filled symbols to denote
pairs that are binaries (circles), or are components of triples (trian-
gles) or quadruples (squares). We also include the mass ratios of
the wide components of triples and quadruples.

Bate (2009a) found a clear relation between mass ratio and sepa-
ration from the barotropic calculations, with closer binaries having
a preference for equal masses. He obtained median mass ratios for
binary separations in the ranges 1–10, 10–100, 100–1000 and 1000–
104 au of M2/M1 = 0.74, 0.57, 0.68, 0.17, respectively. Including

Figure 20. The mass ratios of binaries (filled circles), pairs in triples (filled
triangles), pairs in quadruples (filled squared), the wide components of
triples (open triangles) and the widest components of quadruples (open
squares) as a function of semimajor axis at the end of the radiation hy-
drodynamical calculation. For the wide components of triples, the mass
ratio compares the mass of the widest component to the sum of the masses
of the two closest components (the pair). For quadruples involving a two
binary components (pairs), the mass ratio is between the two pairs, and
for quadruples involving a triple, the mass ratio is between the mass of
the fourth component and the triple. There is a clear relationship between
mass ratio and separation with closer binaries having a greater fraction of
near-equal-mass systems.

the mass ratios of triples and quadruples (as defined in the caption
of Fig. 20), these median values became 0.74, 0.41, 0.15 and 0.07,
respectively.

In the radiation hydrodynamical calculation, we find a similar
trend (but again, with poorer statistical significance). The median
binary mass ratios in the separation ranges 1–10, 10–100 and 100–
1000 au are M2/M1 = 0.62, 0.81, 0.22, respectively. Including the
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mass ratios of triples and quadruples, the median values become
M2/M1 = 0.59, 0.74, 0.39, respectively. There is only one binary
with a separation >1000 au. Thus, there seems to be a trend for
systems with separations �100 au to have more equal masses than
for wider systems. A trend of more equal-mass binaries with de-
creasing separation is expected from the evolution of protobinary
systems accreting gas from an envelope (Bate 2000). Furthermore,
dynamical interactions between binaries and single stars tend to
tighten binaries at the same time as increasing the binary mass ratio
through exchange interactions.

In terms of the so-called twins, the radiation hydrodynamical cal-
culation produced 43 binaries (including those in triple and quadru-
ple systems), of which there are seven twins (pairs with mass ratios
M2/M1 > 0.95) and all have semimajor axes less than 40 au. Fur-
thermore, two of these twins are components of triple systems. This
is in good agreement with observations that consistently find that
closer binaries have a higher fraction of twins (Soderhjelm 1997;
Tokovinin 2000b; Halbwachs et al. 2003). Tokovinin (2000b) found
evidence for the frequency of twins falling off for orbital periods
greater than 40 d, while Halbwachs et al. (2003) found that the frac-
tion of near equal-mass systems (M2/M1 > 0.8) is always larger
for shorter period binaries than longer period binaries regardless
of the dividing value of the period (from just a few days up to
10 years). The most recent study of Raghavan et al. (2010) found
the mass ratio distribution depends on period, with less than 1/4 of
twins having periods longer than 200 years (separations ≈40 au)
and no twins having separations greater than periods of 1000 years
(separations of ≈115 au).

Finally, we note Raghavan et al. (2010) find that more than half
of the pairs with periods less than 100 d (separation ≈0.5 au) are
components of triples, suggesting that dynamical interactions may
be important for their formation (see Bate et al. 2002b). The closest
pair formed in the radiation hydrodynamical calculation is a 0.4-au
binary. However, of the 15 pairs with semimajor axes less than 5
au, eight are binaries while four are components of triples and three
are components of quadruples. Thus, the radiation hydrodynamical
calculation also results in approximately half of the closest pairs
being members of higher-order systems.

3.8.2 Mass ratios of triples and quadruples

For stellar triple and quadruple systems, Tokovinin (2008) reports
that triples are observed to have a median outer mass ratio of 0.39
independent of the outer orbital period while quadruples involv-
ing two binary sub-components have a similar median outer mass
ratio of ≈0.45, but there appears to be a dependence on the outer
orbital period with systems with shorter outer periods having higher-
mass ratios. Of nine triple systems, we obtain a median mass ra-
tio of 0.55 (0.59 excluding triples which are members of quadru-
ple systems). There are only three quadruple systems consisting
of two pairs, all with outer mass ratios > 0.8 and outer periods
5.4 < log10(Pd) < 5.9 (measured in days). Tokovinin (2008) finds
no outer mass ratios <0.6 for orbital periods log10(Pd) < 5.4 in
this orbital period range, but a wide range of mass ratios for longer
periods. Since we only have three systems and they all fall near the
apparent observed step change it is not possible to draw any firm
conclusions.

Bate (2009a) found that quadruples composed of a triple and a
wide fourth component out number quadruples composed of two
binaries by 2:1 in the main barotopic calculation. Observationally,
Tokovinin (2000a) finds roughly equal numbers of such quadruples,

and the radiation hydrodynamical calculation produces a ratio of
4:3, consistent with the observations.

In summary, there is no detectable change in the mass ratio dis-
tributions of binary and higher-order multiple systems when going
from barotropic to radiation hydrodynamical calculations. In both
cases, the calculations are consistent with observed trends such as a
preference for equal-mass binaries when moving to lower primary
masses and a preference for twins to have close separations.

3.9 Orbital eccentricities

Observationally, there is an upper envelope to binary eccentricities
at periods less than about 1 year, and binaries with periods less than
12 d are almost exclusively found to have circular orbits due to tidal
circularization (Duquennoy & Mayor 1991; Halbwachs et al. 2003;
Raghavan et al. 2010). However, the radiation hydrodynamical cal-
culation does not allow us to probe such small separations due to the
absence of dissipation on scales <0.5 au. Observations also indicate
that eccentricities e < 0.1 are rare for periods greater than ≈100 d
(separations �1 au). Raghavan et al. (2010) find no binaries with
e < 0.1 and orbital periods greater than 100 d, though they do find
that the outer orbits of two triples and one quadruple have e < 0.1.
Duquennoy & Mayor (1991) and Raghavan et al. (2010) also find
that the upper-eccentricity envelope is dominated by components of
triple systems, possibly due to the action of the Kozai mechanism
(Kozai 1962). Finally, Halbwachs et al. (2003) find that the eccen-
tricities of binaries with mass ratios M2/M1 > 0.8 with periods
greater than ≈10 d (the tidal circularisation radius) are lower than
for more unequal-mass ratio systems.

In the left-hand panel of Fig. 21 we plot the eccentricities ver-
sus orbital period for the binaries, triples and quadruples from the
radiation hydrodynamical calculation. The symbols have the same
meaning as in Fig. 20. Bate (2009a) found when using sink parti-
cle radii of 5 au in barotropic calculations, there was an excess of
high eccentricity (e > 0.7) binaries with separations <10 au. This
excess disappeared when the simulation was rerun with small ac-
cretion radii of 0.5 au. Following the gas to smaller scales allowed
dissipative interactions between closer multiple systems. Indeed,
this was part of the reason that accretion radii of only 0.5 au were
used for this paper. In the radiation hydrodynamical calculation, the
eight shortest period binaries all have eccentricities between 0.6 and
0.8. These are also the eight closest systems, with semimajor axes
ranging from 0.4 to 2.0 au. Therefore, despite the small accretion
radii, it is likely that their high eccentricities are due, at least in
part, to the lack of dissipative interactions with the gas. We do note,
however, that three of the eight systems are also binary compo-
nents of higher-order systems and, therefore, their high eccentrici-
ties may also be related to the observed upper eccentricity envelope
of binary components of higher-order systems (Raghavan et al.
2010).

The mean eccentricity of all 59 orbits is e = 0.35 ± 0.04 with a
standard deviation of 0.27. The median is e = 0.27. The mean ec-
centricity of pairs (including components of triples and quadruples)
is e = 0.38 ± 0.04 with a standard deviation of 0.27. The mean
eccentricity of the triples and quadruples is e = 0.26 ± 0.06 with a
standard deviation of 0.22. The mean eccentricity obtained by Bate
(2009a) for the rerun barotropic calculation (with accretion radii of
0.5 au) was e = 0.45. The median eccentricity from Raghavan et al.
(2010) is about e = 0.4, so there is reasonable agreement.

However, Raghavan et al. (2010) report a flat distribution of ec-
centricities for periods longer than 12 d out to e = 0.6, whereas the
radiation hydrodynamical calculation produces more than twice as
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Figure 21. The eccentricities of binaries (filled circles), pairs in triples (filled triangles), pairs in quadruples (filled squared), the wide components of triples
(open triangles), and the widest components of quadruples (open squares) as a function of orbital period (left) and mass ratio (right) at the end of the radiation
hydrodynamical calculation. The distributions look reasonable, but the eight binaries/pairs with the shortest periods all have large eccentricities which may be
due to the absence of gas dynamics inside 0.5 au of each sink particle.

many orbits with e < 0.2 compared to the intervals 0.2 ≤ e < 0.4
and 0.4 ≤ e < 0.6. In particular, there are six binaries with
e < 0.08 (along with the outer orbits of one triple and one quadru-
ple), whereas observed systems with e < 0.1 are rare. Examining
Fig. 21 it can be seen that two of the six binaries are the com-
ponents of triple systems, which may be related to the finding of
Raghavan et al. (2010) that components of higher-order multiple
systems can have low eccentricities. Furthermore, all but one of
these six binaries has a mass ratio M2/M1 > 0.8 (right-hand panel
of Fig. 21) which is in qualitative agreement with the finding of
Halbwachs et al. (2003) that near-equal-mass binaries have smaller
eccentricities than more unequal mass ratio systems. Bate (2009a)
also found evidence that near-equal-mass binaries had smaller ec-
centricities in the barotropic calculations. In the radiation hydrody-
namical calculation, the median eccentricity of binaries with mass
ratios M2/M1 < 0.8 is e = 0.45 (29 orbits) while for M2/M1 > 0.8
the median is e = 0.13 (14 orbits). Excluding the eight shortest pe-
riod systems (since they likely have high eccentricities due to the
absence of dissipation on small scales) the median eccentricity of bi-
naries with mass ratios M2/M1 < 0.8 is e = 0.42 (23 orbits) while
for M2/M1 > 0.8 the median is e = 0.10 (12 orbits). Thus, we also
find evidence for a link between mass ratio and eccentricity such that
near-equal-mass systems have lower eccentricities, as is observed.
A possible explanation for this is that accretion, which drives bina-
ries towards equal masses (Artymowicz 1983; Bate 1997; Bate &
Bonnell 1997; Bate 2000), may also provide dissipation which
damps eccentricity.

Finally, we note that VLM binaries are observed to have a pref-
erence for low eccentricities with a median value of 0.34 (Dupuy &
Liu 2011). The barotropic calculation of Bate (2009a) with small
accretion radii also produced low-eccentricity VLM binaries (Bate
2010b), with those VLM binaries with separations less than 30 au
having a mean eccentricity of 0.23. Unfortunately, the radiation hy-
drodynamical calculation only produces three VLM binaries. Two
of the three do have small eccentricities (the 10.6-au binary has an
eccentricity of 0.46, the 26-au binary has an eccentricity of 0.013

and the 36-au binary has an eccentricity of 0.06), but they are also
still accreting so no firm conclusions can be drawn.

3.10 Relative alignment of orbital planes for triples

For a hierarchical triple system there are two orbital planes, one
corresponding to the short-period orbit and the other to the long-
period orbit. Observationally, it is difficult to determine the relative
orientation angle, 	, of the two orbits of a triple system due to the
number of quantities that must be measured to fully characterize the
orbits. However, the mean value of 	 can be measured simply from
the knowledge of the number of corotating and counter-rotating
systems (Worley 1967; Tokovinin 1993; Sterzik & Tokovinin
2002).

The first studies (Worley 1967; van Albada 1968) of the relative
orbital orientations of triple systems found a small tendency towards
alignment of the angular momentum vectors of the orbits. Of 54
systems with known directions of the relative motions, 39 showed
co-revolution and 15 counter-revolution resulting in a mean relative
inclination angle of 〈	〉 ≈ 50◦. For 10 visual systems with known
orbits, five systems were found to have 	 < 90◦, two had 	 >

90◦ and three were ambiguous. Fekel (1981) examined 20 systems
with known orbits and periods of less than 100 years (for the wide
orbit). He found that 1/3 had non-coplanar orbits. Finally, Sterzik &
Tokovinin (2002) performed the most detailed study to date. From
135 visual triple systems for which the relative directions of the
orbital motions are known they found 〈φ〉 = 67◦ ± 9◦ and this
result was also consistent with 22 systems for which the orbits were
known. They also found a tendency for the mean relative orbital
angular momentum angle to increase with increasing orbital period
ratio (i.e. systems with more similar orbital periods tend to be more
closely aligned).

The main barotropic calculation of Bate (2009a) produced 40
triple systems (17 of which were sub-components of quadruple
systems), with a mean relative orbital orientation angle of 〈	〉 =
65◦ ± 6◦, in good agreement with the observed value.
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Figure 22. The relative inclinations of the two orbital planes for the nine triple systems produced by the radiation hydrodynamical calculation. Triples that are
sub-components of quadruples are plotted as squares. We give plots of the relative orbital orientation angle versus the semimajor axis of the third component
(left) and versus the period ratio of the long and short period orbits (right). Only the widest triple has a large relative orbital angle. Note that the one system
with period ratio PL/PS ≈ 3 is likely to be dynamically unstable and to undergo further evolution.

The radiation hydrodynamical calculation only produced nine
triple systems, four of which are components of quadruple systems.
The mean relative orbital orientation angle of all these triple systems
is 〈	〉 = 30◦ ± 13◦, which is about 1.7σ lower than the observed
value. For the five pure triples, 〈	〉 = 36◦ ±26◦. The relative angles
are plotted in Fig. 22 as functions of semimajor axis and period
ratio. It can be seen that all have small relative angles, except the
widest system. We conclude that both the observed and simulated
triple systems have a tendency towards orbital coplanarity, but the
small number of systems produced by the radiation hydrodynamical
calculation prohibits us from making a stronger statement.

3.11 Relative alignment of discs and orbits

Finally, we consider the relative alignment of the spins of the sink
particles in binary systems. Unfortunately there is not a direct anal-
ogy with real binary systems in this case because the sink particles
are larger than stars and yet smaller than a typical disc. The ori-
entation of the sink particle spin thus represents the orientation of
the total angular momentum of the star and the inner part of its
surrounding disc. This distinction is important because during the
formation of an object the angular momentum usually varies with
time as gas falls on to it from the turbulent cloud. Thus, the orien-
tation of the sink particle frequently differs substantially from the
orientation of its resolved disc (if one exists) and, furthermore, the
orientations of both the sink particles and their discs change with
time while the object continues to accrete gas. The orientations may
evolve with time due to gravitational torques (Bate et al. 2000).

Observationally, Weis (1974) found a tendency for alignment
between the stellar equatorial planes and orbital planes among pri-
maries in F star binaries, but not A star binaries. The orbital sep-
arations were mainly in the 10–100 au range. Similarly, Guthrie
(1985) found no correlation for 23 A star binaries with separations
10–70 au. More recently, Hale (1994) considered 73 binary and
multiple systems containing solar-type stars and found evidence for

approximate coplanarity between the orbital plane and the stellar
equatorial planes for binary systems with separations less than ≈30
au and apparently uncorrelated stellar rotation and orbital axes for
wider systems. For higher-order multiple systems, however, non-
coplanar systems were found to exist for both wide and close orbits.
Hale found no evidence to support a difference dependent on spec-
tral type, eccentricity or age. In terms of circumstellar discs, there
is evidence for misaligned discs from observations of misaligned
jets from protostellar objects (Davis, Mundt & Eisloeffel 1994),
inferred jet precession (Eisloffel et al. 1996; Davis et al. 1997) and
direct observations (Koresko 1998; Stapelfeldt et al. 1998). How-
ever, these are not statistically useful samples. Monin, Menard &
Duchene (1998), Jensen et al. (2004), Wolf, Stecklum & Henning
(2001) and Monin, Ménard & Peretto (2006) used polarimetry to
study the relative disc alignment in T Tauri wide binary and multiple
systems and all found a preference for disc alignment in binaries.
However, Jensen et al. (2004) also found that the wide components
of triples and quadruples appear to have random orientations. For
more massive Herbig Ae/Be binaries, Baines et al. (2006) found
that the circumprimary disc was preferentially aligned with the or-
bit and the larger study of Wheelwright et al. (2011) also finds that
the discs are preferentially aligned with the orbit.

The barotropic calculations of Bate (2009a) produced ambiguous
results. The main barotropic calculation with large accretion radii
produced a strong tendency for alignment between sink particle
spins, but the rerun calculation with smaller accretion radii did not
show any tendency for alignment (Bate 2011).

At the end of the radiation hydrodynamical calculation we plot
the relative spin angles for the 43 binaries (including those that are
components of triple and quadruple systems) in Fig. 23 as functions
of semimajor axis and orbital eccentricity. There are no relative
spin angles greater than 110◦, and only four of the 43 systems have
angles greater than 90◦, indicating a strong tendency for alignment.
The mean relative spin angle is 35◦ ± 5◦, while the median angle is
20◦. For the 28 pure binaries, the mean is 40◦ ± 6◦ and the median
is 27◦, while for the binaries that are components of higher-order
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Figure 23. The relative inclinations of the rotation axes of the sink particles (modelling stars and their inner discs) of the binary systems produced by the
radiation hydrodynamical calculation as functions of the binary’s separation (left) and eccentricity (right). We include binaries that are sub-components of
triples (triangles) and quadruples (squares). All binaries for which the spins are closely aligned have semimajor axes �30 au.

systems the mean is 25◦ ± 8◦ and the median is 12◦, so there is an
indication that the spins of binaries that are components of higher-
order multiples may be more aligned.

Examining the left-hand panel of Fig. 23 it is clear that the ten-
dency for alignment depends on separation: all the binaries that have
relative spin angles less than 30◦ have separations less than ≈30 au
or orbital periods less than ≈400 yr. Taking binaries with semimajor
axes less than 30 au, the mean relative spin angle is 26◦ ± 5◦, while
those with longer periods have a mean of 70◦ ± 8◦. The right-hand
panel of Fig. 23 indicates that there may be a weak relation between
the relative spin angle and the eccentricity, with more circular sys-
tems having a stronger tendency for alignment. Such a relation may
come about through accretion on to a binary system or gravitational
torques between the stars and discs (e.g. Bate et al. 2000), either of
which would tend to align the components of the binary and may
damp eccentricity. However, we also note that the distribution of
relative spin angles seems to be independent of the total mass of the
binary.

If the spins of the components of close binaries tend to be aligned
with one another, one might also expect the spins to be aligned with
the orbital plane of the binary. Indeed, this is the case, though the
alignment is not as strong as for the individual spins. Taking the
26 binaries with relative spin angles less than 30◦, the mean spin-
orbit angle is 31◦ ± 3◦ with a standard deviation of 19◦. All of
these systems have separations less than 30 au. For the remaining
17 systems for which the spins are only weakly aligned, the mean
spin-orbit angle is 48◦ ± 11◦ and the standard deviation is much
larger (64◦).

In summary, for binaries with separations �30 au, the radiation
hydrodynamical calculation gives strong tendencies for alignment
between the spins of the components of binaries and for copla-
narity of the orbital plane and the equatorial planes of the com-
ponents for binaries. These results are in good agreement with the
observed coplanarity of observed binaries (Hale 1994) and in qual-
itative agreement with the many observational studies examining
disc alignment mentioned above.

4 C O N C L U S I O N S

We have presented results from the largest radiation hydrodynam-
ical simulation of star cluster formation to date that resolves the
opacity limit for fragmentation. It also resolves protoplanetary discs
(radii ≥ 1 au), binaries and multiple systems. The calculation uses
sink particles to model the stars and brown dwarfs. We discuss in
some detail (Section 2.3) the problems associated with trying to in-
clude the luminosity coming from inside a sink particle’s accretion
radius, concluding that attempts made in the literature to date most
likely overestimate the luminosity. Although we omit the luminosity
originating from within each sink particle, we use small accretion
radii of only 0.5 au and argue that because protostars are observed
to be underluminous (the so-called ‘luminosity problem’) the level
of radiative feedback included in the simulation presented here may
be more realistic than if the extra luminosity was included.

The calculation produced 183 stars and brown dwarfs. This num-
ber of objects is not as large as that produced from the same ini-
tial conditions using a barotropic equation of state (Bate 2009a)
because of the impact of radiative feedback. However, it is still
sufficient to allow comparison of the statistical properties of the
stars, brown dwarfs and multiple systems with the results of obser-
vational surveys. Bate (2009a) obtained good agreement between
observations and barotropic simulations for the properties of mul-
tiple stellar systems, but obtained a brown-dwarf-dominated IMF.
Overall, the radiation hydrodynamical calculation displays good
agreement with a wide range of observed stellar properties with
no obvious deficiencies. Together, the barotropic and radiation hy-
drodynamical calculations imply that the main physical processes
involved in determining the properties of multiple stellar systems
are gravity and gas dynamics (i.e. dissipative N -body dynamics),
while obtaining a realistic IMF also requires radiative feedback. We
note, however, that the star formation rate in the calculations is much
higher than observed. To solve this problem may require globally
unbound molecular clouds and/or the inclusion of magnetic fields
and kinetic feedback. Our detailed conclusions are as follows.
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(i) The calculation produces an IMF that is statistically indistin-
guishable from the parametrization of the observed IMF by Chabrier
(2005), and a ratio of brown dwarfs to stars which is also in good
agreement with observations. The use of a realistic equation of state
and radiation hydrodynamics rather than a barotropic equation of
state decreases the number of brown dwarfs formed by an order of
magnitude, while having less of an impact on the number of stars
formed. This corrects the overproduction of brown dwarfs that is
obtained when using a barotropic equation of state. We find that
the median mass and form of the IMF do not evolve significantly
during the simulation.

(ii) As in previous, smaller calculations, the IMF originates from
competition between accretion and dynamical interactions which
terminate the accretion and sets an object’s final mass. Stars and
brown dwarfs form in the same way, with similar accretion rates
from the molecular cloud, but stars accrete for longer than brown
dwarfs before undergoing the dynamical interactions that terminate
their accretion. The higher characteristic stellar mass that is obtained
when radiative feedback is included comes about because the typical
distance between objects is larger so that the time-scale between
dynamical interactions is longer and, thus, the objects typically
accrete to higher masses before their accretion is terminated.

(iii) We find that stars have a slightly higher velocity dispersion
than VLM objects, and binaries have a lower velocity dispersion
than single objects.

(iv) We examine the potential effect of dynamical interactions
on protoplanetary disc sizes. We find that more massive stars have
had closer encounters. It is difficult to directly associate the closest
encounter with the radii of protostellar discs because many stars
accrete new discs after suffering a close encounter. This is partic-
ularly true for the more massive stars. However, for VLM objects,
dynamical encounters usually occur soon after their formation and
terminate their accretion so their truncation radii may more closely
reflect their disc radii. Under this assumption we find that at least
20 per cent of VLM objects should have disc radii >40 au. In lower
density star-forming environments this fraction may be expected to
be larger.

(v) We find that multiplicity strongly increases with primary
mass. The results are in good agreement with the observed multi-
plicities of G, K and M dwarfs and VLM objects. For objects with
primary masses in the range 0.03–0.20 M� the multiplicity fraction
is 0.20±0.05. We predict that the multiplicity continues to drop for
lower-mass brown dwarfs. We find very low frequencies of VLM
companions to stars, in agreement with observations.

(vi) We examine the separation distributions of binaries, triples
and quadruples. We find a broad separation distribution for stars
with a median separation of ≈15 au and a standard deviation of
1 dex. Unfortunately, the calculation only produces three VLM
binaries, two of which are still evolving. However, all of them have
separations less than 40 au and the VLM binary that has reached its
final state has a close separation of 11 au in qualitative agreement
with observations.

(vii) The mass ratio distributions of solar-type and M-dwarf bi-
naries are roughly flat, consistent with observations. However, the
VLM binaries have near-equal masses as appears to be the case
for observed systems. We find that closer binaries tend to have a
higher proportion of equal-mass components in broad agreement
with observed trends.

(viii) The eccentricity distribution is broad with no obvious de-
pendence on period. There may be an excess of short-period highly
eccentric binaries because of the absence of dissipation on small
scales due to the use of sink particles. There may also be a weak

link between mass ratio and eccentricity such that ‘twins’ have
lower eccentricities, as is observed.

(ix) We investigate the relative orientation of the orbital planes
of triple systems. We find a tendency for orbital alignment, in qual-
itative agreement with observations.

(x) Finally, we study the relative orientations of sink particle
spins (angular momentum vectors) in binaries (analogous to the
rotation axes of stars and their inner discs). We find that binaries
with separations �30 au have a strong tendency for spin alignment,
in good agreement with observations. We also find that binaries
in which the spins are closely aligned also have a tendency for
alignment of the stellar spins with the orbit.
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Artigau É., Lafrenière D., Doyon R., Albert L., Nadeau D., Robert J., 2007,

ApJ, 659, L49
Artymowicz P., 1983, Acta Astron., 33, 223
Artymowicz P., Clarke C. J., Lubow S. H., Pringle J. E., 1991, ApJ, 370,

L35
Baines D., Oudmaijer R. D., Porter J. M., Pozzo M., 2006, MNRAS, 367,

737
Baraffe I., Chabrier G., Gallardo J., 2009, ApJ, 702, L27
Basri G., Reiners A., 2006, AJ, 132, 663
Bastian N., Covey K. R., Meyer M. R., 2010, ARA&A, 48, 339
Bate M. R., 1997, MNRAS, 285, 16
Bate M. R., 1998, ApJ, 508, L95
Bate M. R., 2000, MNRAS, 314, 33
Bate M. R., 2005, MNRAS, 363, 363
Bate M. R., 2009a, MNRAS, 392, 590
Bate M. R., 2009b, MNRAS, 397, 232
Bate M. R., 2009c, MNRAS, 392, 1363
Bate M. R., 2010a, MNRAS, 404, L79
Bate M. R., 2010b, Highlights Astron., 15, 769

C© 2011 The Author, MNRAS 419, 3115–3146
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



3144 M. R. Bate

Bate M. R., 2011, MNRAS, 417, 2036
Bate M. R., Bonnell I. A., 1997, MNRAS, 285, 33
Bate M. R., Bonnell I. A., 2005, MNRAS, 356, 1201
Bate M. R., Burkert A., 1997, MNRAS, 288, 1060
Bate M. R., Bonnell I. A., Price N. M., 1995, MNRAS, 277, 362
Bate M. R., Clarke C. J., McCaughrean M. J., 1998, MNRAS, 297, 1163
Bate M. R., Bonnell I. A., Clarke C. J., Lubow S. H., Ogilvie G. I., Pringle

J. E., Tout C. A., 2000, MNRAS, 317, 773
Bate M. R., Bonnell I. A., Bromm V., 2002a, MNRAS, 332, L65
Bate M. R., Bonnell I. A., Bromm V., 2002b, MNRAS, 336, 705
Bate M. R., Bonnell I. A., Bromm V., 2003, MNRAS, 339, 577
Benz W., 1990, in Buchler J. R., ed., Numerical Modelling of Nonlinear

Stellar Pulsations Problems and Prospects. Kluwer, Dordrecht, p. 269
Benz W., Cameron A. G. W., Press W. H., Bowers R. L., 1990, ApJ, 348,

647
Bihain G. et al., 2009, A&A, 506, 1169
Boley A. C., Hartquist T. W., Durisen R. H., Michael S., 2007, ApJ, 656,

L89
Bonnell I. A., Bate M. R., 2002, MNRAS, 336, 659
Bonnell I. A., Bate M. R., Clarke C. J., Pringle J. E., 2001, MNRAS, 323,

785
Bonnell I. A., Bate M. R., Vine S. G., 2003, MNRAS, 343, 413
Bonnell I. A., Larson R. B., Zinnecker H., 2007, in Reipurth B., Jewitt D.,

Keil K., eds, Protostars and Planets V. The Origin of the Initial Mass
Function. Univ. Arizona Press, Tucson, p. 149

Boss A. P., Fisher R. T., Klein R. I., McKee C. F., 2000, ApJ, 528, 325
Bouy H., Brandner W., Martı́n E. L., Delfosse X., Allard F., Basri G., 2003,

AJ, 126, 1526
Bouy H., Martı́n E. L., Brandner W., Zapatero-Osorio M. R., Béjar V. J. S.,
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Zapatero Osorio M. R., Béjar V. J. S., Martı́n E. L., Rebolo R., Barrado y
Navascués D., Bailer-Jones C. A. L., Mundt R., 2000, Sci, 290, 103
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