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ABSTRACT

Collagen hydroxyproline is an important posttranslational modification activity because of
its close relationship with various diseases and signaling activities. However, there is no
study to date for constructing models for predicting collagen hydroxyproline sites. Support
vector machines with two kernel functions (the identity kernel function and the bio-kernel
function) have been used for constructing models for predicting collagen hydroxyproline
sites in this study. The models are constructed based on 37 sequences collected from NCBI.
Peptide data are generated using a sliding window with various sizes to scan the sequences.
Fivefold cross-validation is used for model evaluation. The best model has specificity of 70%
and sensitivity of 90%.
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1. INTRODUCTION

Hydroxyl groups (�OH) is an important chemical in nature for introducing a hydroxyl into a com-

pound. This chemical process is called hydroxylation and is completed by enzymes called hydroxy-

lases. Hydroxylation is a posttranslational modification activety that is oxygen-dependent. Hydroxylation can

take place in proteins hydroxylating prolines and lysines. A hydroxylated proline happens to CI3 atom and

results in a hydroxyproline. The enzyme that makes hydroxyproline is called prolyl hydroxylase.

One of the hydroxyprolines is in collagens, which are long and fibrous proteins. Collagens have tough

bundles which are the major components of the extracellular matrix proteins based on which most tissues are

formed. Collagens are the basis for bones and teeth. The degradation of them therefore causes skin wrinkles

and aging. They also play a very important role in blood vessels, the cornea, and the lens of the eye.

Hyrdoxyproline is the key to the stability of collagens (Improta et al., 2008; Krane, 2008; Palfi and

Perczel, 2008). The stability of a collagen is made through hydroxylation at the b residue of a triad structure

(a-b-G). In terms of biochemistry, it has been recognized that, during a hydroxylation process, a hydrogen

bond is formed with water molecules, and the hydration restricts the peptide molecules surrounded by water

molecules (Bella et al., 1995; Miles and Bailey, 2001; Kawahara et al., 2005).

Abnormal activity of lung collagen hydroxyproline has been found being linked with lung cancer (Sunila

and Kuttan, 2006; Guruvayoorappan and Kuttan, 2008). Collagen turnover has been linked with stomach

cancer (Guszczyn and Sobolewski, 2004). The high turnover of collagens was also found associated with

pancreatic cancer (Palka et al., 2002). Because collagens have tensile strength, they are important for cell
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adhesion and malignant tumor invasion. This has been found in colon cancer where Type I and II collagens

show different patterns in healthy and malignant tissues (Bode et al., 2000). In human tumor cell line (HT-

1080), the reasons for the high extent of intracellular posttranslational modifications in type IV collagens

were investigated, and it was found that 4-hydroxyproline activity is higher in this cell line compared with

normal human skin fibroblasts (Pihlajaniemi et al., 1981).

In studying how collagen receptor glycoprotein VI plays a role in phosphatidylinositol 3-kinase signaling,

it was found that collagen-related peptide with hydroxyproline selectively induces phosphatidylinositol

3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate in platelets (Pasquet et al., 1999). It has also

been shown that synthetic collagen-like peptides in the structure of Gly-Pro-HyP can induce various sig-

naling pathways that regulate human platelet function (Achison et al., 1996).

Despite the importance of collagen hydroxyproline, there is no report of constructing machine learning

models for predicting hydroxyproline sites in novel collagen proteins. One report predicts aromatic hy-

droxylation sites of cytochrome P450 substrates using structural information (Kharchevnikova et al., 2005),

which may not be easily generalized to a wide range of hydroxyproline site prediction when structural

information is not available.

The support vector machine (SVM) (Vapnik, 1995) has been shown to be a powerful tool in machine

learning and has been successfully applied to various bioinformatics projects; therefore, it is employed in

this study. In using SVM, a proper kernel function needs to be designed for a specific application. A kernel

function is normally associated with a distance or similarity metric by which an input vector (or an input

peptide in peptide classification) is compared with a support vector (or a support peptide in peptide clas-

sification). It outputs a similarity measure between an input vector and a support vector. The prediction made

by a SVM model is a weighted similarity between an input vector and all the support vectors. Note that, in

most applications, the training input vectors are the candidate support vectors. Through learning, a subset of

training input vectors (candidate support vectors) are automatically selected for testing. An identity kernel

and a bio-kernel are proposed for using SVM in this study.

The data used in this study are collected from NCBI. There are 37 sequences with 6920 prolines, of which

537 are experimentally annotated collagen hydroxyproline sites and 207 are inferred by similarity.

All the experimentally annotated collagen hydroxyproline sites are treated as positive data and treat all the

prolines which are not yet annotated and which are not inferred as collagen hydroxyprolines by similarity as

negative data. Therefore, there are two classes of data for model construction. A fivefold cross-validation

approach is used for model evaluation. Because there is a large imbalance between the positive and the

negative data, the randomized negative data are divided into size similar to the positive data, and each of

these divisions is combined with the positive data to generate a training data set. For each such training data

set, a model is built and tested. The final prediction capability of the models is assessed by the averaged

prediction accuracy of all models.

2. METHODS

All the peptides generated will have the same length (i.e., the same number of residues). Denoted by Y is a

set of 20 amino acids and by R the peptide length. Each peptide is then an R-fold chain of amino acids,

si 2 HR. A collection of all the [ peptides is denoted by X¼ {si}
N
i¼ 1.

To use SVM, a proper kernel function should be considered first. In dealing with sequence homology

alignment, there are two simple metrics to score the similarity or distance between two sequences: (1) the

Needleman-Wunsch score (Needleman and Wunsch, 1970), and (2) the Dayhoff score as well as its variants

(Dayhoff, 1978; Altschul, 1990). The Dayhoff score is also called a ‘‘mutation matrix,’’ which is a 20�20

matrix for protein sequences, where each entry measures the possibility that one amino acid is mutated to the

other. It therefore measures the similarity between two amino acids. The Needleman-Wunsch score is

binary, while the Dayhoff score is based on probability estimation. Based on these two scoring methods, two

different kernel functions can be derived for using SVM.

The kernel function based on the Needleman-Wunsch score is called an ‘‘identity kernel.’’ The core part of

the identity kernel function is the residue identity between two pair-wise residues from two peptides, defined as

d(sir, sjr)¼
0 if sir 6¼ sjr

1 if sir ¼ sjr

�
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FIG. 1. An illustration of the impact of decision boundary by removing sequences with inferred hydroxyprolines. The

filled ellipse indicates the data swarm of hydroxyproline peptides. The open ellipse means the data swarm of non-

annotated prolines from sequences which are reserved from sequence identity check. The small circle with dots

represents the data swarm of non-annotated prolines from sequences which are removed from sequence identity check.

The solid line is produced by using the non-annotated proline peptides in the open ellipse and the non-annotated proline

peptides in the circle as the negative data and the hydroxyproline peptides in the filled ellipse as the positive data. The

dashed line is produced by using the non-annotated proline peptides in the open ellipse as the negative data and the

hydroxyproline peptides in the filled ellipse as the positive data.

Table 1. Identity Matrix

A C D … Y

A 1 0 0 … 0

C 0 1 0 … 0
..
. ..

. ..
. ..

. ..
. ..

.

Y 0 0 0 … 1

Table 2. Dayhoff Mutation Matrix

A C D … Y

A 40 24 32 … 20

C 24 80 12 … 0
..
. ..

. ..
. ..

. ..
. ..

.

Y 20 32 16 … 72

Table 3. Final Data Sets for Model Construction

Window Neg Pos Pos*Pos Neg*Pos Neg*Neg Mod

8 4657 416 121 535 985 11

10 5147 433 104 390 640 11

12 5373 456 81 282 522 11

14 5523 462 75 258 396 11

16 5619 468 69 238 320 12

18 5750 478 59 183 244 12

20 5791 484 53 162 224 11

Neg, number of the non-annotated peptides; Pos, number of the annotated peptides; Pos*Pos, number of identical annotated

peptides; Neg*Pos, number of identical peptides from the opposite categories; Neg*Neg, number of identical non-annotated

peptides; Mod, number of models by the random division.
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Here, sir and sjr are the rth residues of two peptides, si and sj, respectively. The identity kernel between two

peptides is then defined as a polynomial function of the residue identities shown below

/s(si, sj)¼ [aq(si, sj)þ b]d

where a, b, and d are the parameters of the polynomial function and

q(si, sj)¼
XR

r¼ 1

d(sir, sjr)

For instance, the similarity between PRGLGPPG and LPGPGAPG is r(PRGLGPPG, LPGPGAPG)¼ 4 and

ft (PRGLGPPG, LPGPGAPG)¼ (a4þ b)d. It must be noted that, for binary data, three kernel functions are

available in SVM. They are dot product, polynomial, and sigmoid functions. In this study, it has been found

that both dot product and sigmoid function did not work, leading to very low prediction accuracy.

This identity kernel function is similar to the widely used orthogonal encoding method (Qian and

Sejnowski, 1998), which explicitly codes peptides to binary input vectors for using machine learning

approaches for modeling. The identity kernel function codes peptides implicitly using an identity matrix

(Table 1).

In fact, this identity matrix is an extreme case of many mutation matrices. The Needleman-Wunsch

algorithm, which was originally developed for molecular sequence homology alignment, has been replaced

by many advanced algorithms such as the Smith-Waterman algorithm (Smith and Waterman, 1981), as well

as some database sequence homology alignment tools such as FASTA (Wilbur and Lipman, 1993) and

BLAST (Altschul, 1990). All of these new algorithms or tools are using mutation matrices (the Dayhoff

score and its variants) rather than the identity matrix for scoring sequence similarity. The simplified Dayhoff

matrix (Dayhoff, 1978) is shown in Table 2. It can be seen that the relationship between any pair of amino

acids is not hard. Instead, it becomes softer. The residue identity using a mutation matrix is then defined as

d(sir, sjr)¼M(sir, sjr)

Here, M(sir, sjr) is a value from a mutation matrix. The bio-kernel is an exponential function defined as

below

/t(si, sj)¼ exp
q(si, sj)� q(sj, sj)

q(sj, sj)

8>>:
9>>;

where

q(si, sj)¼
XR

r¼ 1

M(sir, sjr)

The other difference between the two kernel functions is that the identity kernel function may not be

bounded within an interval between zero and one, where one means that two peptides are identical and zero

means that two peptides are completely different. However, the bio-kernel function is bounded within this

interval. For a completely identical pair of peptides with R residues, the identity kernel function will output a

value as ft(identical)¼ (aRþ b)d. If a¼ 1, b¼ 0, and d¼ 3, ft (identical)¼R3. If R¼ 30, ft (identi-

cal)¼ 27000. If two peptides are completely different, ft (distinct)¼ 0. However, in the bio-kernel function,

fu (identical)? 1 and fu (distinct)? 0.

The bio-kernel function has been used in the bio-basis function neural networks (Thomson et al., 2003;

Yang and Thomson, 2005) and has been successfully used for many peptide classification problems.

It is not intended in this study to use sequence identity check to remove sequences, because it is inap-

propriate for peptide classification. Sequence identity check was originally a technique used in sequence

homology alignment. In order to increase specificity, one of two sequences which have identity over a

certain threshold is removed. In peptide classification, peptides are the sole data and are normally much

shorter than whole sequences. What it is needed is to avoid identical peptides in model construction. Two

sequences may have one or more identical conserved segments, but they still have some non-conserved areas
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FIG. 2. The logo of 20-mer non-annotated peptides.

FIG. 3. The logo of 20-mer annotated peptides. X means unknown amino acid, which occurs when peptides are

generated at two terminals of sequences.

FIG. 4. Binary glycine image patterns in the non-annotated peptides and the annotated hydroxyproline peptides.
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that may contain dramatic differences from each other. This means that, in a removed sequence, there

might be some valuable short peptides with prolines for good discrimination. In fact, what is wanted is to

look at a short peptide composed of flanking residues of a proline to predict if it is a hydroxyproline. Losing

some valuable non-hydroxyprolines may bias the decision boundary of a model and therefore lead to more

false positives. If the data do distribute, as shown in Figure 1, it can be seen that by removing non-annotated

proline peptides from the sequences, which are removed in sequence identity check (the peptides in the

circle in Fig. 1), the decision boundary will be biased (the dashed line in Fig. 1). By using this biased

decision boundary, more false positives will be generated because the decision boundary at the bottom-left

corner has been heavily pulled towards the area of non-annotated proline peptides. Any novel non-

hydroxyprolines at this corner will be misclassified as hydroxyprolines. In Figure 1, some possible increase

of misclassified hydroxyprolines is found. Because the decision boundary also has a small bias towards the

area of hydroxyprolines (the top-right corner in Fig. 1), any novel hydroxyprolines in this area will also be

misclassified.

3. RESULTS

3.1. Data

Sequences with hydroxyproline sites were collected from NCBI. The search keyword was ‘‘hydro-

xyproline.’’ The search resulted in 295 sequences, with 10,789 prolines. Among these prolines, 980 (9%)

are experimentally verified (annotated) hydroxyproline sites, and 684 (6%) are inferred by similarity. The

rest, 9135 (85%), are non-annotated prolines. Among 295 sequences, only 37 (13%) were collagens.

Therefore, the rest of the 258 sequences were discarded without consideration in this study. Within these 37

sequences, there are 6920 prolines. The density of prolines in collagens was 187 compared with the 15 that

appeared in the rest of the 258 non-collagen sequences. Among 980 experimentally determined hydro-

xyproline residues, 537 (55%) were found in 37 collagens. There were 207 inferred hydroxyprolines in these

37 collagens. In 37 collagens, the ratio of experimentally verified hydroxyprolines over the inferred ones is

2.6, while it is 0.5 in the rest of the 258 non-collagen sequences. All the inferred hydroxyprolines were

removed from the study, but not the whole sequences. The Supplementary Tables show all the proteins and

their sites used in this study (see supplementary material online at www.liebertonline.com).

Among 37 sequences, 21 have no inferred hydroxyproline sites, while 16 have no experimentally verified

hydroxyproline sites. Table S1 (see supplementary material online at www.liebertonline.com) gives the

details of these sequences.

3.2. Experimental design

An odd-sized sliding window is used to scan the whole protein sequences to generate peptides with a

proline in the middle residue. A peptide is denoted by

PR / 2�PR / 2� 1� � � � �P1�P0�P1
0 � � � � �PR / 2� 1

0 �PR / 2

where P0 is a hydroxyproline. Because hydroxyproline always uses a proline, the middle residue is there-

fore removed for computational efficiency. The peptide used for modeling is then defined as follows (N for

the N-terminal and C for the C-terminal):

NR / 2�NR / 2� 1� � � � �N1�C1� � � � �CR / 2� 1�CR / 2

The sliding window size varies from 8 to 20, with a gap of 2 for this revised peptide structure.

It is obvious that there will be some identical peptides when applying the sliding window techniques to

scan the sequences to generate peptides. If two identical peptides are in the same category (both are

annotated collagen hydroxyproline peptides or both are non-annotated proline peptides), either one is

removed. However, it is nearly impossible to avoid having two peptides from opposite categories sharing

completely identical amino acids. This will happen for two reasons.

The first reason is the size of the sliding window. In the absence of proper knowledge of substrate

specificity for proper binding between an enzyme and a substrate, it is hard to judge the proper size of a
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FIG. 5. The comparison between three models.

FIG. 6. Sensitivity comparison between two SVM models.

FIG. 7. MCC comparison for the two SVM models.
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sliding window. It is necessary to vary the size of the sliding window to optimize the model prediction

capability. When a small sliding window size is used, two peptides from the opposite categories will very

likely share completely identical amino acids.

The second reason is that it is well known that some non-annotated prolines may be hydroxyprolines if

more experiments can be done. Because of this, some identical peptides from different categories may imply

that the non-annotated proline in the non-annotated peptide would be a hydroxyproline if two peptides are

completely identical.

Removing both is not reasonable, as the experimentally annotated hydroxyprolines have already been in a

small percentage. The non-annotated peptide is therefore removed, and the annotated peptide remains if two

are identical. Table 3 details the organized data sets for model construction and evaluation (see supple-

mentary material online at www.liebertonline.com).

This study aimed to test all the randomly selected non-annotated peptide data sets (i.e., each non-

annotated peptide must take part in model construction and evaluation). The annotated and non-annotated

peptides are first randomly divided into five folds separately. One fold of annotated peptides and one fold

of non-annotated peptides are then pulled together to form one testing data set. Next, the remaining four

folds of non-annotated peptides are pulled together. These non-annotated peptides are then randomly

divided into 11 subsets based on the rough ratio between the non-annotated and the annotated peptides

(Table 3). Each of these 11 subsets of non-annotated peptides is combined with the remaining four folds

of annotated peptides to generate one training data set. There will be 11 such training data sets and 11

models in each run fivefold cross-validation. Each of these 11 models will be evaluated on the testing

data set independently. This process is repeated for five times for fivefold cross-validation. It is under-

stood that the Jackknife test is the most robust one for model evaluation, as indicated in Chou and Shan

(2007) and Shan and Chou (2007). Cross-validation rather than the Jackknife test was chosen bared solely

on computation burden. For fivefold cross-validation, it took 1 week to complete all simulation in a PC

with 4-GC RAM and 3-GHz speed. Using the Jackknife test for this data set would have been approx-

imately 1100 times more demanding in terms of CPU time. This work could not have been completed

affordably.

Sensitivity, specificity, total accuracy, Matthews’ correlation coefficient (Matthews, 1975), and receiver

operating characteristics (Metz, 1978) are used for the evaluation.

SVMlight is used ( Joachims, 1998), and two optional parameters (C and J) of SVM are varied. The C

optional parameter is a trade-off between the training error and the testing error. The J optional parameter is

for handling the imbalance of two categories of peptides in a data set. Through large trail-and-error simu-

lations, it was determined to use 100 for both optional parameters of SVMlight. For C4.5, there is nearly no

optional parameter like those in SVMlight that can be tuned.

3.3. Simulation results

Figure 2 shows the logo using WebLogos (Schneider and Stephens, 1990) for all the non-annotated

peptides. Although glycine and proline have high frequencies compared with the other 18 amino acids, the

difference between these two frequencies and the frequencies of other 18 amino acids is not significant. This

means that the background information is generally random, as expected.

Figure 3 shows the logo for all the annotated hydroxyproline peptides. Glycine has a very high frequency,

compared with the frequencies of the other 19 amino acids. Glycine is the dominating amino acid, partic-

ularly for N8, N5, N2, C1, C4, C7, and C10. It is indicated in Krane (2008) that a collagen needs glycine at

every third residue for the stability.

All the non-annotated and all the annotated peptides are then scanned. If a residue is glycine, a one is

recorded; otherwise, a zero is recorded. This has resulted in the two glycine images shown in Figure 4. It can

be seen that the annotated peptides show a quite symmetrical pattern regarding glycine. However, it is hard

to see such a pattern in the non-annotated peptide glycine image.

Figure 5 shows the comparison of the total accuracy among three the models: one C4.5 and two SVM

models with different kernel functions. It can be seen that the SVM models much outperformed the C4.5

model. The C4.5 model produced biased prediction accyracy, where the mean specificity was about 65%,

whereas the sensitivity was about 92%. Both SVM models had specificity of about 70% and sensitivity over

85%.
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FIG. 8. The ROC curves of the two SVM models. (Left) ROC curves for the identity kernel SVM model. (Right)

ROC curves for the bio-kernel SVM model.

FIG. 9. AUR comparison for both the identity kernel model and the bio-kernel model for all the window sizes.

FIG. 10. The misclassified hydroxyprolines from two SVM models for the protein P30754.
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Figure 6 shows the sensitivity comparison between two SVM models. It can be seen that the bio-kernel

model outperformed the identity kernel model all the way through.

Figure 7 shows the comparison in terms of MCC, and the bio-kernel SVM model still outperformed the

identity kernel SVM model.

Both SVM models showed that model performance was the best when the peptide size was 16. Figure 8

shows the ROC curves of the two SVM models of peptide size 16, where the horizontal axis is the false

positive rate (i.e., the ratio of misclassified non-annotated peptides) and the vertical axis is the true positive

rate (i.e., the ratio of correctly classified annotated peptides). Each curve was formed by connecting all the

models with different threshold values for classification. It can be seen that the curves are close to the top-left

corner, meaning that the models are robust.

In order to have a quantitative view of model robustness, the area under the ROC curve (AUR)

was calculated for each model. It is obvious that the larger the AUR, the better the model robustness is.

Figure 9 shows the AUR values for all the models, where the bio-kernel model still outperformed the identity

kernel model. It also shows that model robustness was the best when the peptide size was 16.

The misclassified hydroxyproline sites using the identity kernel SVM model are analyzed. Among 21

sequences with full experimentally verified hydroxyproline sites, the hydroxyproline sites in H56978 and

P02467 were never misclassified, while the hydroxyproline sites in B38623, Q28084, and P12108 were

always misclassified. The hydroxyproline sites in Q25460, P85154, I56978, P85153, Q02388, P0C2W2,

P12111, P05997, P08123, and P08125 (10 sequences) were misclassified with various percentages, but were

never misclassified more than six times (from six models). Note that there are 11 or 12 models in each run of

cross-validation a (Table 3). The misclassification rate of the hydroxyproxyline sites in P30754 remained

high. It was 17% for 10 models. The details can be seen in Table S2 (see supplementary material online at

www.liebertonline.com).

In analyzing the misclassified hydroxyproline sites using the identity kernel SVM model, different pat-

terns are found. Three sequences (H56978, P08123, and P02467) never had their hydroxyproline sites

misclassified. Only one sequence (B38623) had its hydroxyproline sites always misclassified. The hydro-

xyproline sites in 11 sequences (Q25460, P85154, P25508, I56978, P85153, Q02388, P12111, P05997,

Q28084, P08125, and P12108) were never misclassified more than six times (models). Details can be seen in

Table S3 (see supplementary material online at www.liebertonline.com).

Table S4 shows 78 of 105 misclassified hydroxyproline in protein P30754 (see supplementary mate-

rial online at www.liebertonline.com). The other 27 hydroxyproline sites were never misclassified by

both. Among these 78 misclassified sites, the bio-kernel SVM model only had 36. If considering a site

as a misclassified one unless it has been misclassified 10 times, the identify SVM kernel model had

19 misclassified sites and the bio-kernel SVM model had 17 misclassified sites. Details are shown in

Figure 10.

4. DISCUSSION

This article studied the prediction capability of collagen hydroxyprolines using the SVM with two kernel

functions. For the evaluation of this prediction capability, 37 protein sequences with annotated collagen

hydroxyprolines are collected from NCBI. The peptides generated from these sequences are organized using

various sliding window sizes from eight to 20, with a gap of two. The prediction evaluation is based on the

fivefold cross-validation approach using randomly matched training data sets to ensure every peptide an-

ticipating the whole modeling process. The final prediction accuracy is averaged on these models. The result

shows that the 16-mer peptide data is able to achieve the best prediction accuracy (with up to 70% specificity

and 90% sensitivity). Further analysis has found that the bio-kernel SVM model has fewer misclassified

hydroxyproline sites compared with the identity kernel SVM model.
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