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Abstract—A straightforward method for the radical-based α-allylation of proteinogenic α-amino acids is described in which the key step 
involves 1,5-hydrogen atom transfer from the C-4 position of an oxazolidin-5-one.  © 2013 Elsevier Science. All rights reserved 

——— 
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 The development of general synthetic methodologies for 
the preparation of highly substituted, in particular, α,α-
disubstituted α-amino acids still represents a formidable 
synthetic challenge. The majority of approaches reported to 
date involve the alkylation, often asymmetric, of enolate 
derivatives of existing proteinogenic amino acids.1 The 
inherent limitations of using such methodology for the 
generation of quaternary centres in systems containing 
reactive functional groups however, often results in alanine 
being the most complex amino acid that can be further 
functionalised. We have recently shown that the use of a 
radical-based methodology facilitates the stereocontrolled 
generation of quaternary centres  α-to nitrogen in β-amino 
alcohols, leading to a short synthetic route to protected 
α,α-disubstituted, α-amino acids.2 The need to oxidise the 
functionalised β-amino alcohols to amino acids however, 
still limits the applicability of this approach and hence, 

related methods for the direct α-functionalisation of 
proteinogenic amino acids were investigated. Radical 1,5-
hydrogen atom transfer represents a powerful method for 
carbon-centred radical generation at remote sites and prior 
to our studies described below, Giraud and Renaud3 
showed that pendant glycine and alanine derivatives, built 

into oxazolidin-4-ones containing a C-2 2-bromobenzyl 
protecting-radical-translocating (PRT) group,4 could be 
stereoselectively α-allylated. The introduction of the amino 
acid functionality into this system via an α-bromoester, 
however, still restricted the scope of this process and so our 
attention turned to the direct allylation of a variety of α-
amino acids incorporated into the ring of oxazolidin-5-ones 
1 bearing an N-(2-iodobenzoyl) PRT group (Figure 1). 

In forming these substrates 1, it was expected that the α-
stereocentre in the original amino acid 2 would exert some 
control over the C-2 stereochemistry. Aryl radical 3 
generation from the iodide would then be followed by 
hydrogen atom transfer from the C-4 position of the 
oxazolidin-5-ones to generate the key α-aminoalkyl radical 
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Figure 1. General structure of N-(2-iodobenzoyl)oxazolidin-5-ones.
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Scheme 1. General scheme for radical-based !-functionalisation of !-amino acids via 1,5-hydrogen atom transfer.
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intermediate 4 which would subsequently be trapped to 
give the required quaternary centre in product 5 with 
stereoselectivity being controlled by the C-2 stereocentre, 
following Seebach's principle of "self-regeneration of 
stereocentres"5 (Scheme 1). From previous studies,2 it was 
anticipated that there would not be a problem with 
regioselectivity in the hydrogen atom transfer step. 

The required oxazolidin-5-ones 1 were prepared by 
treatment of the sodium salts of the pivaldehyde-derived 
imines of the appropriate amino acids 2 with 2-iodobenzoyl 
chloride (Scheme 2), a modification of an existing literature 
procedure for the preparation of such compounds.6 

Scheme 2. Reagents and conditions: i. NaOH, H2O, EtOH; ii. tBuCHO, 
pentane, reflux; iii. 2-iodobenzoyl chloride, CHCl3, reflux.
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Table 1. Results of the preparation of N-(2-iodobenzoyl)oxazolidin-5-ones 

Entry R Ratio 1a:1b % Yield 

1 H - 48 

2 Me 1.2:1 50 

3 iPr 1:0 53 

4 Bn 6:1 34 

 

Table 1 summarises the results obtained using glycine, L-
alanine, L-valine and L-phenylalanine (entries 1 to 4, 
respectively). In all cases where appropriate, it was 
assumed that the stereochemistry of the original amino acid 
(C-4 in the products 1) remained intact and the major 
diastereoisomer of the product 1 was the one in which the 
C-2 and C-4 substituents were in a  cis-relationship, in line 
with previous reports for similar systems.5 The degree of 
stereocontrol for the heterocycle synthesis followed, as 
expected, the steric bulk of the amino acid 2 side-chain, 
with only a single diastereoisomer being produced with L-
valine (entry 3). The diastereoisomeric products (entries 2 
and 4) proved to be inseparable using conventional silica 
gel chromatography and they were therefore, used as a 
mixture in subsequent experiments.7 (Note: No further 
experiments were attempted with the L-phenylalanine 
derived oxazolidin-5-one 1, R=Bn.) 

As for our previously reported radical experiments using 
1,3-oxazolidines,8,9 the efficiency of 1,5-hydrogen atom 
transfer from C-4 was examined by reduction of the 
glycine-derived oxazolidin-5-one (1, R=H) with tributyltin 
deuteride (Scheme 3). The expected mixture of deuterated 
reduction products was obtained in an overall yield of 94%, 

the predominant product being the required C-4 deuterated 
material 6. Direct reduction accounted for only 20% of the 
product mixture (compound 7) and only a very small level 
of hydrogen atom transfer from C-2 (compound 8) was 
observed, suggesting that generation of the required C-4 α-
aminoalkyl radical intermediate 4 (R=H) was the major 
reaction pathway. 

Scheme 3. Reagents and conditions: Bu3SnD (1.5 equiv), AIBN, C6H6, 
reflux; overall yield 74%.
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Attempts to trap the same glycine-derived C-4 α-
aminoalkyl radical intermediate 4 (R=H) using methyl 
acrylate and acrylonitrile in the presence of tributyltin 
hydride and AIBN failed to give any of the desired C-4 
alkylated oxazolidin-5-one product with the reduced 
starting material being the major product obtained in each 
case. Given the more electrophilic nature of amino acid α-
radicals compared with those obtained from amino 
alcohols10 and the electrophilic nature of these 
radicalphiles, these results were not surprising and 
subsequent experiments focussed on the use of electron-
rich allyltin reagents as nucleophilic radicalphiles. 

Photochemical radical generating conditions at room 
temperature (using a standard medium pressure mercury 
vapour lamp) were found to give the best results for the C-4 
allylation of the glycine-derived oxazolidin-5-one 1 (R=H) 
with an equimolar quantity of allyltributyltin, at a relatively 
high substrate concentration of 130 mM in benzene 
(Scheme 4). It was found to be necessary to use an 
equimolar quantity of AIBN, although slow addition of 
allyltributyltin proved to be unnecessary, the reaction being 
complete in 8 h.11 The desired, racemic allylated product 9 
was obtained in a single disatereoisomeric form in 42% 
yield, the trans-relative stereochemistry between the C-2 
tert-butyl and C-4 allyl substituents being established by X-
ray crystallography (Figure 2).12 This stereochemical 
outcome is consistent with those obtained in enolate 
alkylations using related oxazolidin-5-one substrates5,6 and 
suggests that the bulky C-2 tert-butyl substituent confers 
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facial selectivity on trapping of the intermediate α-
aminoalkyl radical 4 (R=H). 

Scheme 4. Reagents and conditions: allyltributyltin (1 equiv), AIBN (1 
equiv), C6H6, h!, rt, 8 h.
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Figure 2. ORTEP representation of 9; ellipsoids drawn at 30% probability 
level. 

Identical radical allylations were carried out with the L-
alanine 1 (R=CH3) and L-valine 1 (R=iPr) derived 
oxazolidin-5-ones. The expected products 10a/b and 11a 
were obtained in 64% and 5% yields, respectively, a 4:1 
ratio of inseparable diastereoisomers (presumed by analogy 
to 9 to be trans:cis with respect to the C-4 allyl and C-2 
tert-butyl substituents, 10a:10b) being obtained in the 
former case and only a single diastereoisomer (presumed to 
be trans, 11a) in the latter (Scheme 5 - only the major 
diastereoisomer of 1, R=CH3 shown, Table 2). Clearly, the 
yield of product 11a was disappointingly low but this result 
does demonstrate the fact that remarkably hindered 
quaternary centres can be constructed using this radical-
based methodology. 

Scheme 5. Reagents and conditions: allyltributyltin (1 equiv), AIBN (1 
equiv), C6H6, h!, rt, 8 h.
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Table 2. Results of the radical allylation of C-4 alkyl N-(2-
iodobenzoyl)oxazolidin-5-ones. 

Entry R Product ratio % Yield 

1 Me 10a:10b 4:1 64 

2 iPr 11a:11b 1:0 5 

 

The introduction of more highly functionalised allylic 
substituents was also investigated using (2-
methylallyl)tributyltin (Scheme 6 - only the major 
diastereoisomer of 1 shown where appropriate), which is 
known to show high reactivity towards electrophilic 
radicals.13 The results, summarised in Table 3, show that 
comparable yields and diastereoisomer ratios were obtained 
in comparison with the previous results found using 
allyltributyltin. Again, the L-valine derived oxazolidin-5-
one 1 (R=iPr) gave a disappointingly low yield of products 
14a and 14b, and as before, the relative stereochemistry 
between the C-2 tert-butyl and C-4 2-methylallyl 
substituents was presumed to be trans in the major 
products. Significantly, the 2-methylallyl functionality in 
the radical allylation products has the potential for 
conversion into a range of biologically important 
heterocycles,14 expanding the scope of highly substituted 
amino acids that can be accessed using this methodology. 

Scheme 6. Reagents and conditions: (2-methylallyl)tributyltin (1 
equiv), AIBN (1 equiv), C6H6, h!, rt, 8 h.
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Table 3. Results of the radical 2-methylallylation of N-(2-
iodobenzoyl)oxazolidin-5-ones 

Entry R Product ratio % Yield 

1 H 12a:12b 1:0 (±) 43 

2 Me 13a:13b 1.6:1 39 

3 iPr 14a:14b 1.6:1 3 

 

In contrast to the harsh acidic conditions required to 
hydrolyse the N-benzoyl-1,3-oxazolidines prepared in 
previous studies,2 the C-4 allylated oxazolidin-5-ones were 
readily cleaved by alkaline hydrolysis with lithium 
hydroxide. In order to facilitate the isolation of the N-
benzoylated amino acid products, the free acids thus 
obtained were converted into their methyl esters using 
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(trimethylsilyl)diazomethane and excellent yields of the 
desired, fully protected amino acids were obtained after the 
two reaction steps. Scheme 7 and Table 415 illustrate and 
summarise the results. 

Scheme 7. Reagents and conditions: i. LiOH (3 equiv), H2O, MeOH, 
40 °C, 20 h; ii. Me3SiCHN2, hexane:C6H6:MeOH (1:3:1 v/v), rt.
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Table 4. Results of the oxazolidin-5-one hydrolysis/amino acid 
esterification. 

Entry R1 R2 Product 
ratio 

ee/% Yield/% 

1 H H 15a:15b 
1:1 

0 98 

2 H Me 16a:16b 
1:1 

0 98 

3 Me Me 17a:17b 
1.6:1 

23 92 

In summary, we have shown through these preliminary 
studies, that it is possible to α-allylate proteinogenic α-
amino acids directly via 1,5-hydrogen atom transfer using 
allyltributylstannanes. This leads to the construction of 
highly substituted α,α-disubstituted (quaternary) amino 
acids in a minimal number of steps. Further work is 
required in order to improve and optimise the allylation 
step, however, the methodology should be applicable to a 
wide range of amino acid substrates. 

Acknowledgments 

We thank the EPSRC National Mass Spectrometry Service 
Centre (Swansea, UK) for mass spectra, essential to these 
studies. 

References 

1. Cativiela, C.; Díaz-de-Villegas, M. D. Tetrahedron: 
Asymmetry 1998, 9, 3517-3599; Vogt, H.; Bräse, S. Org. 
Biomol. Chem. 2007, 5, 406-430.  

2. Wood, M. E.; Penny, M. J.; Steere, J. S.; Horton, P. N.; Light, 
M. E.; Hursthouse, M. B. Chem. Commun. 2006, 2983-2985. 

3. Giraud, L.; Renaud, P. J. Org. Chem. 1998, 63, 9162-9163. 
4. Snieckus, V.; Cuevas, J.-C.; Sloan, C. P.; Liu, H.; Curran, D. 

P. J. Am. Chem. Soc. 1990, 112, 896-898. 

5. Seebach, D.; Sting, A. R.; Hoffmann, M. Angew. Chem., Int. 
Ed. Engl. 1996, 35, 2708-2748. 

6. O'Donnell, M. J.; Fang, Z.; Ma, X.; Huffman, J. C. 
Heterocycles 1997, 46, 617-630. 

7. Diastereoisomer ratios were determined by 1H NMR. 
8. Gosain, R.; Norrish, A. M.; Wood, M. E. Tetrahedron Lett. 

1999, 40, 6673-6676. 
9. Gosain, R.; Norrish, A. M.; Wood, M. E. Tetrahedron 2001, 

57, 1399-1410. 
10. Easton, C. J. Chem. Rev. 1997, 97, 53-82. 
11. Typical procedure: Allyltributyltin (440 mg, 1.33 mmol) and 

2,2'-azobisisobutyronitrile (220 mg, 1.34 mmol) were added 
to a degassed solution of N-(2-iodobenzoyl)-2-tert-butyl-1,3,-
oxazolidine (500 mg, 1.34 mmol) in benzene (10 cm3) in a 
quartz tube. The reaction mixture was stirred at room 
temperature and irradiated with a medium pressure mercury 
vapour lamp for 8 h. The solvent was removed in vacuo and 
the residue was dissolved in diethyl ether, the resulting 
solution being vigorously stirred with a 10% w/v aqueous 
solution of potassium fluoride for 1 h. The separated organic 
phase was evaporated in vacuo and the residue obtained was 
purified by column chromatography on silica gel containing 
10% w/w potassium fluoride,16 eluting with 75% petroleum 
ether (bp 40-60 °C): 15% ethyl acetate. This gave 9 (160 mg, 
42%) as a white, crystalline solid (found MH+ (ES+) 
288.1596, C17H22NO3 requires 288.1594); νmax(thin film)/cm-

1 3040-2765 (m) (C-H), 1788 (s) (oxazolidin-5-one C=O), 
1634 (s) (amide C=O), 1445 (m), 1338 (s), 1240 (m), 1189 
(m), 1148 (m), 1045 (m), 1015 (m), 928 (m), 871 (w), 794 
(w), 722 (m) and 651 (m); δH (400 MHz; CDCl3) 1.03 (9H, s, 
(CH3)3C), 1.99 (1H, br m, CHaHbCH=CH2), 2.47 (1H, br m, 
CHaHbCH=CH2), 4.50 (1H, dd, J = 1.2 and 5.1 Hz, 
CNHC=O), 4.96 (1H, d, J = 17.8 Hz, CH=CHaHb trans), 5.15 
(1H, d, J = 10.2 Hz, CH=CHaHb cis), 5.46 (1H, br m, 
CH=CH2), 6.16 (1H, br s, NCHO), 7.50 (2H, ca q, J = 7.5 Hz, 
phenylCH), 7.57 (1H, ca t, J = 7.5 Hz, phenylCH) and 7.64 
(2H, d, J = 7.0 Hz, phenylCH); δC (100 MHz; CDCl3; some 
resonances not resolved through line broadening) 24.7 
((CH3)3C)), 39.8 ((CH3)3C), 95.0 (NCHO), 121.7 (CH=CH2), 
127.7, 129.0, 132.1 (phenylCH and CH=CH2) and 172.6 
(oxazolidin-5-one C=O); m/z (EI) 230 ((M-tBu)+, 8%), 105 
(100), 77 (54), 57 (48), 51 (13) and 41 (49); m/z (CI) 305 
(M+NH4

+, 13%), 289 (19), 288 (M+H+, 100), 105 (15), 96 
(8), 86 (10) and 79 (4). 

12. Crystal data for 9: C17H21NO3, M = 287.35, monoclinic, space 
group P21, a = 5.9385(8) Å, b = 13.0338(19) Å, c = 10.4518 
(16) Å, β = 104.583(6)°, U = 782.9(2) Å3, Dc = 1.219 Mg m-3, 
Z = 2, Mo-Kα radiation (λ = 0.71073 Å), µ = 0.083 mm-1 T = 
120(2) K, 1880 observed reflections (Rint = 0.1014) R1 = 
0.0579 [I>2σ(I)], wR2 = 0.1537 (all data). Crystallographic 
data (excluding structure factors) have been deposited with 
the Cambridge Crystallographic Data Centre as 
supplementary publication number no. CCDC 716085. 
Copies of the data can be obtained free of charge on 
application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, 
UK (fax: +44 1223 336033 or e-mail: 
deposit@ccdc.cam.ac.uk). 

13. Renaud, P. Gerster, M.; Ribezzo, M. Chimia 1994, 48, 366-
369. 

14. Baldwin, J. E.; Fryer, A. M.; Pritchard, G. J. J. Org. Chem. 
2001, 66, 2588-2596. 

15. Enantiomer ratios were determined by HPLC using the chiral 
support Chiralcel®  ODTM with elution by appropriate 
hexane/propan-2-ol mixtures and detection at 254 nm. 

16. Harrowven, D. C.; Guy, I. L. Chem. Commun. 2004, 1968-
1969. 

 


