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Abstract

Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their response
regulators (RRs) are widely used to control bacterial responses to environmental challenges. Some bacteria have over
150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is
tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is
the chemotaxis pathway. Here, we present the 1.40 Å crystal structure of the histidine-containing phosphotransfer
domain of the chemotaxis HPK, CheA3, in complex with its cognate RR, CheY6. A methionine finger on CheY6 that
nestles in a hydrophobic pocket in CheA3 was shown to be important for the interaction and was found to only occur in
the cognate RRs of CheA3, CheY6, and CheB2. Site-directed mutagenesis of this methionine in combination with two
adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from
CheA3-P to CheY6. Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs,
dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA3-P. The
structure presented here has allowed us to identify specificity determinants for the CheA–CheY interaction and
subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight
into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal
transduction.
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Introduction

Bacteria, Archaea, and some eukaryotes use two-component

signalling pathways to detect environmental conditions and bring

about appropriate changes in cellular behaviour [1,2]. Two-

component pathways comprise sensor histidine kinases (HPK) and

response regulators (RRs). Environmental stimuli control the rate at

which the HPK autophosphorylates on a conserved histidine

residue. Once phosphorylated, the HPK transfers the phosphoryl

group to an aspartate residue within the receiver domain of the

cognate RR. The phosphorylated RR (RR-P), often a transcrip-

tional regulator, then effects a response appropriate to the original

stimulus. Some bacteria have over 150 different HPK and RR pairs,

and the specificity of the phosphorylation reactions between them

needs to be tightly controlled to prevent HPKs from inappropriately

phosphorylating and activating noncognate RRs. A number of

mechanisms contribute to this specificity [3,4], although the primary

one is molecular recognition, in which a HPK shows a strong kinetic

preference for its cognate RRs [5,6]. Understanding the mecha-

nisms involved in molecular recognition will not only allow

prediction of interacting pairs, but potentially allow the rewiring

of bacterial sensory pathways for use in synthetic biology.

Many two-component systems utilize an additional element, the

Hpt (histidine-containing phosphotransfer) domain in phospho-

transfer; these include multistep phosphorelays and chemotaxis

signalling pathways. In multistep phosphorelays, the Hpt domain

serves as an intermediate in the transfer of phosphoryl groups from

the receiver domain phosphorylated by the HPK and the output

RR. In contrast, the histidine within the Hpt domain is the initial

site of phosphorylation in the chemotaxis HPK, CheA, and is

phosphorylated using ATP as the phosphodonor [7]. Subsequent-

ly, the phosphoryl group is transferred from the histidine residue in

the Hpt (P1) domain of CheA to an aspartate residue on either of

two RRs, CheY or CheB [8]. In this study, we present the

structure of the Hpt (P1) domain of CheA3 from R. sphaeroides in

complex with its cognate RR CheY6, which, to our knowledge, is

the first structure of a Hpt domain of a CheA protein in complex

with its RR.
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The chemotaxis pathway of Escherichia coli has been

extensively characterized [9–12]. However, many bacteria

have more complicated chemosensory pathways, employing

multiple homologues of each of the chemosensory proteins

[13–15]. R. sphaeroides has four CheA homologues and eight

chemotaxis RR proteins (six CheYs and two CheBs) plus

multiple homologues of the other E. coli chemotaxis proteins

[13,16–18]. Interestingly, the different CheAs show different

phosphotransfer specificities for the CheY and CheB homo-

logues [19–22]. CheA3 and CheA4 form a cluster with the

soluble chemoreceptors in the cytoplasm, which is believed to

sense the metabolic state of the cell [13,23,24]. CheA3 and

CheA4 are unusual CheAs that lack some of the domains found

in E. coli CheA [20,25]. CheA4 has a P3 (dimerization) domain,

a P4 (kinase) domain, and a P5 (regulatory) domain, whereas

CheA3 has a P1 (Hpt) domain and a P5 (regulatory) domain

separated by a 794-amino acid sequence that encodes a novel

CheY-P phosphatase activity [26]. Neither CheA3 nor CheA4 is

capable of autophosphorylation; instead, CheA4 phosphorylates

CheA3 on H51 of the P1 (Hpt) domain. Once phosphorylated,

CheA3-P serves as a specific phosphodonor for the chemotaxis

RRs, CheY1, CheY6, and CheB2. However, it is unable to

phosphorylate the other chemotaxis RRs, CheY2, CheY3,

CheY4, CheY5, and CheB1 [20,21,27]. This phosphotransfer

specificity must be determined by the interactions between the

RRs and the P1 domain of CheA3 since the isolated P1 domain

of CheA3 (CheA3P1) shows the same phosphotransfer specific-

ity as full-length CheA3 [26].

In groundbreaking work, the Laub group used a mutual

information bioinformatics approach to identify coevolving

residues in HPKs and their cognate RRs [28]. They reasoned

that many of the coevolving residues would be the specificity

determinants for the phosphotransfer reaction and went on to

show that it is possible to switch the RR substrate specificity of the

HPK EnvZ by mutating these residues [28]. In this study, we use a

structure-based approach to identify specificity determinants for

the phosphotransfer reaction between CheA3P1-P and CheY6. By

introducing these residues into the noncognate RRs, we have been

able to change their kinase specificity, allowing them to be

phosphorylated by CheA3P1-P.

Results

Structure of the CheA3P1.CheY6 Complex
In order to elucidate the molecular details of the interaction

between CheA3 and CheY6, the complex structure of CheY6 and

the unphosphorylated Hpt domain of CheA3 (residues 1–135) has

been solved to 1.40 Å using Seleno single-wavelength anomalous

dispersion (SAD) for phasing. Data collection and refinement

statistics can be found in Table 1.

CheY6 has the typical (a/b)5 topology seen for E. coli CheY [29]

and other structurally characterized RRs (Figure 1). Comparison

with E. coli CheY reveals a high degree of structural conservation

with a root mean square deviation (rmsd) of 1.4 Å over 115 Ca
atoms (26% sequence identity). Although crystallized in the

presence of Mn2+, there was no additional density in the CheY6

divalent cation binding site. However, the conformation of the

metal coordinating residues Asp56, Asp9, and Asp10 is most

similar to that found in the structure of Mg2+ bound CheY [30].

Only the backbone carbonyl of Glu58 is facing away rather than

pointing towards the potential metal binding site (Figure S1).

CheY6 has an elongated loop region connecting b5 and a5

(Figure 1). This loop comprises 13 residues (residues 107–119) in

CheY6 compared to only three residues (109–111) in E. coli CheY.

In the crystal, this loop is only partially ordered, suggesting that it

is highly flexible. Residues 113–118 could not be traced and were

omitted from the final model. The N-terminal region of this b5-a5

loop in combination with a1 of CheY6 form the vast majority of

contacts to CheA3P1 (Figure 1).

CheA3P1 forms a four-helix bundle (aA–aD) with an additional

C-terminal helix (aE) (Figure 1). Despite low sequence identity, it is

structurally very similar to previously determined CheA P1

structures [31–33]. Comparison with CheA P1 from Salmonella

enterica serovar Typhimurium [32] and Thermotoga maritima [33]

gives an rmsd of 1.2 Å over 116 Ca atoms (21% sequence identity)

and 1.5 Å over 101 Ca (18% sequence identity), respectively. The

site of phosphorylation, His51 in CheA3P1, is located on aB, in

close proximity to the active site of the RR (Figure 1) with the

phosphoacceptor Asp56 on CheY6 being 7.5Å from His51 on

CheA3P1. Helices aA and aB face the RR and together with the

aB–aC loop form the interface with CheY6 (Figure 1).

Structure of Phosphorylated CheA3P1 in Complex with
CheY6(D56N, S83A)

To show that the conclusions drawn from the unphosphorylated

structure are also valid for the physiologically relevant, phosphor-

ylated complex, we solved the structure of phosphorylated

CheA3P1 in complex with CheY6. Since the rapid rate of

phosphotransfer between CheA3P1-P and CheY6 does not allow

crystallization of the wild-type, phosphorylated complex, we

formed a stable, complex by introducing two substitutions,

D56N and S83A, in the active site of CheY6 (see Materials and

Methods for details). These substitutions have previously been

shown to abolish phosphotransfer from CheA3P1-P [19]. The

structure was solved to 2.8 Å by molecular replacement using the

unphosphorylated structure as model. Data collection and

refinement statistics can be found in Table 1. The structure shows

clear additional density adjacent to Ne2 of His51 of CheA3P1 in

agreement with phosphorylation of this residue (Figure S2). Due to

the moderate resolution of the analysis, residues 60–65, 85–97,

and 111–121 on CheY6 could not be traced and were not included

in the final model.

Author Summary

The ability to respond to environmental stimuli is a
universal feature of living cells. Evolution has created a vast
array of signalling mechanisms that enable cells to react in
many ways to extracellular changes. In bacteria, two-
component signalling mechanisms, comprising a sensor
protein kinase paired with its a cognate response
regulator, are used widely to sense and respond to
environmental changes. Some species of bacteria have
over 150 different two-component pairs in a single cell, so
the specificity between these pairs has to be tightly
controlled to prevent ‘‘crossed wires’’ between signalling
pathways. In this study, we have identified the determi-
nants of this specificity in a two-component complex that
controls the movement of Rhodobacter sphaeroides along
a chemical gradient. By solving and analysing the crystal
structure of this complex, we were able to pinpoint the
amino acid residues that are crucially involved in formation
of the complex. Knowledge of these crucial residues
allowed us to convert noncognate response regulators
into cognate response regulators simply by changing two
amino acids. This reengineering of two-component
signalling pathways paves the way for producing cus-
tom-designed circuits for applications in synthetic biology.

Changing Phosphotransfer Specificity in Chemotaxis

PLoS Biology | www.plosbiology.org 2 February 2010 | Volume 8 | Issue 2 | e1000306



Compared to the unphosphorylated complex, CheA3P1-P

undergoes a rigid body translation of 2.1 Å relative to the RR

(Figure 2A). This realignment of CheA3P1-P positions the

phosphorylated His51 closer to the phosphoacceptor on CheY6,

Asp56 (Figure 2B). The phosphorylated His51 is facing away from

the active site of CheY6; however, a 180u flip of this side chain

would put it in near linear geometry and place the phosphoryl

group within 4.5 Å of Asp56 of CheY6 (Figure 2B). The orientation

of the phosphorylated His51 seen in the crystal structure is likely

caused by the lack of a divalent cation in the metal binding site of

the RR leading to electrostatic repulsion from the CheY6 active site.

The difference in binding affinity for CheY6 between CheA3 and

CheA3-P is not known. In E. coli, the difference in Kd values for

CheY between CheA and CheA-P is relatively small, with both

values being in the low micromolar range [34]. Consistent with this,

we find very little change in the total buried surface area between

the phosphorylated (605 Å2) and unphosphorylated (530 Å2)

structures of CheA3P1 complexed with CheY6. The only difference

is a hydrogen bond formed between Glu58 of CheY6 and His51 of

CheA3P1 in the unphosphorylated complex that is released in the

phosphorylated complex. As this is not contributing to the interface

of the physiologically important complex, it is therefore not

Figure 1. Structure of the CheA3P1.CheY6 complex. CheA3P1 is shown in light blue whereas CheY6 is in pale green. The phosphorylatable
residue of CheA3P1, His51, and the phosphoacceptor on CheY6, Asp56, are shown in stick representation. Secondary structure elements are labelled
in black. Residues 113–118 of CheY6 could not be traced and are depicted as a dotted line. (A) Side view onto the CheA3P1.CheY6 complex with the
interaction between b5 and a5 in CheY6 and aB, and the following loop connecting aB and aC on CheA3P1, marked with an asterisk. (B) Top view
showing the major site of interaction between the N-terminal end of a1 on CheY6 and aA/aB on CheA3P1 marked by an asterisk.
doi:10.1371/journal.pbio.1000306.g001

Table 1. Data collection and refinement statistics.

Data Collection and Refinement Statistics Subcategory SeMet Unphosphorylated Phosphorylated

Data collection Resolution (Å) 2.3 (2.38–2.30)a 1.40 (1.45–1.40) 2.80 (2.90–2.80)

Space group P21 P21 P1

Cell dimension a, b, c (Å) 43.8, 62.7, 49.1 43.7, 62.0, 48.9 33.2, 43.4, 48.7

a, b, c (u) 90, 101.1, 90 90, 101.3, 90 78.8, 86.6, 80.9

Redundancy 9.5 (10.1) 6.3 (3.7) 1.8 (1.8)

Completeness (%) 99.2 (99.0) 99.7 (98.9) 96.1 (94.5)

Rsym (%) 8.9 (19.7) 5.3 (14.8) 12.0 (61.6)

Avg I/s 18.4 (12.9) 31.6 (9.8) 6.3 (1.2)

Refinement Resolution 38–1.40 42–2.80

No. reflections 50287 6232

Rwork/Rfree 17.0/20.7 24.1b/28.4b

No. atoms Protein 2040 1743

Water 272 —

B-factors (Å2) Protein 28.5 86.5c

Water 38.9 —

r.m.s. deviations Bond lengths (Å) 0.010 0.008

Bond angles (u) 1.220 0.950

aNumbers in parenthesis are for the highest resolution shell.
bRxpct, as described elsewhere [43].
cStandard deviation of 618 Å2.
doi:10.1371/journal.pbio.1000306.t001
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discussed further. Because the interfaces in the phosphorylated and

unphosphorylated complex are highly similar, the following

discussion of the interactions between CheA3P1 and CheY6 are

based on the high-resolution, unphosphorylated structure.

Interactions between CheA3P1 and CheY6

The interface between CheA3P1 and CheY6 is dominated by

hydrophobic interactions with only one hydrogen bond and no salt

bridges formed between the two proteins. The buried surface area

of the interface is small (530 Å2), indicative of a weak interaction,

consistent with the transient nature of the complexes [35]. A

continuous interface is formed by two sites of interaction

complemented by a hydrogen bond formed between Ser83 on

CheY6 and Arg58 on CheA3P1. One of these sites lies between the

elongated loop region between b5 and a5 in CheY6 and aB and

the following loop connecting aB and aC on CheA3P1 (Figure 1A).

The other site lies between the N-terminal end of a1 on CheY6

and aA/aB on CheA3P1 (Figure 1B). The latter is the major

binding site including ,70% of the total buried surface area

(358 Å2).

In this region, helices aA and aB of CheA3P1 form a

hydrophobic pocket comprising Ile11, Leu14, and Tyr15 on aA,

and Asn56, Val59, and Leu60 on aB (Figure 3A and 3B). This

pocket is situated adjacent to a1 on CheY6 and in ideal position to

accommodate Met13 on the N-terminal region of this helix. This

Met finger is protruding from a1, and its side chain fits snugly into

the hydrophobic pocket, with 99.7% of its accessible surface area

being buried (Figure 3B). The hydrophobic interaction is

complemented by Ala12, Leu16, and Tyr17 of a1 on CheY6, all

facing the same side on CheA3P1 as Met13 (Figure 3A). Ala12 of

CheY6 extends the hydrophobic interface by interaction with

Leu14 of CheA3P1, whereas Leu16 of CheY6 interacts with Ile11

and the aliphatic part of Glu10 on aA of CheA3P1. Tyr17 extends

the binding surface towards the b5-a5 loop by interacting with

Val59 at the C-terminus of aB. The elongated loop between b5

and a5 of CheY6 forms van der Waals interactions with Ser109,

Gly110, and Thr111 of CheY6 contacting Ile59, Gly61, and Ser63

on aB and the following loop region on CheA3P1 (Figure 3C). A

main chain hydrogen bond is formed between Gly110 and Val59.

Of these interactions, the Met13 finger has the largest

contribution towards the binding interface on CheY6, accounting

for almost a third (156 Å2) of the total buried surface area.

Together with Ala12, Leu16, and Tyr17, it is accounting for over

60% (321 Å2) of the interface. On CheA3P1, the residues involved

in the interaction with CheY6 are slightly less clustered and

spatially farther apart. Yet the three residues with the biggest

contribution towards the total buried surface area, Val59 (103 Å2,

20% of total buried surface area), Leu14 (64 Å2, 12%), and Ile11

(48 Å2, 9%), together account for almost half of the overall binding

surface.

This analysis shows that only a small number of residues are

necessary to form the majority of interactions within the complex.

On CheY6, these are all located on a1. Within this helix, Met13

has the most crucial role in the hydrophobic interaction. A

sequence alignment of all identified RRs in R. sphaeroides shows that

only CheY6 and CheB2 have a Met residue at position 13, whereas

all others either have a Ser, Thr, or Ala at this position (Figure 4).

As CheA3-P serves as a phosphodonor for both CheY6 and CheB2

this suggests that Met13 has an important role in determining the

specificity for binding to CheA3P1.

Substitution of M13 in CheY6 Reduces Interaction and
the Rate of Phosphotransfer from CheA3P1-P

Residues 11–17 of CheY6 collectively account for ,67% of the

buried surface area of CheY6 in the CheA3P1-CheY6 complex,

with M13, L16, and Y17 each contributing ,30%, ,16%, and

,8%, respectively. To confirm that this surface of CheY6 is

involved in the interactions with CheA3P1-P that lead to

phosphotransfer in solution, we substituted residues at this surface

to mimic those found in the noncognate RRs, CheY3 and CheY4.

M13 was changed to S, and Y17 was changed to M as found in

both CheY3 and CheY4. CheY3 and CheY4 both have C at

position 16; however, it has previously been shown that

CheY3(C16S) and CheY4(C16S) behave indistinguishably from

CheY3 and CheY4 in phosphotransfer assays (S. L. Porter,

unpublished data), and therefore, to avoid any potential problems

from disulphide bond formation during the purification, we

Figure 2. Superposition of the CheA3P1.CheY6 complex in the phosphorylated and unphosphorylated conformations. Structures
were aligned onto the RR. Colour coding for the unphosphorylated conformation as in Figure 1; for the phosphorylated conformation, CheY6 is
shown in yellow and CheA3 P1 in teal. The active site residues His51 (CheA3 P1) and Asp56/Asn56 (CheY6 unphosphorylated/phosphorylated complex
conformation) are shown in stick representation. (A) Overview highlighting the 2.1 Å rigid body translation of CheA3 P1 towards CheY6. (B) Close-up
view onto the active site showing the movement of His51 towards Asp56/Asn56.
doi:10.1371/journal.pbio.1000306.g002
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changed L16 to S rather than C. Two mutant proteins were

produced, CheY6(M13S) and CheY6(M13S,L16S,Y17M).

Surface plasmon resonance (SPR) assays showed that wild-type

CheY6 binds to CheA3P1 with an affinity of 218 mM (Figure 5).

This weak interaction is in agreement with the transient nature of

the complex and the small buried surface area between the two

proteins as observed in the crystal structure. Both the single-

mutant protein, CheY6(M13S), and the triple-mutant protein

CheY6(M13S,L16S,Y17M) showed a remarkable decrease in

affinity, with a Kd of more than 1 mM (Figure 5 and Figure S3).

Consistent with the SPR binding assays, the rate of phospho-

transfer from CheA3P1-P to each of the two mutant CheY6

proteins was much slower than to wild-type CheY6 (Figure

6A–6C), with phosphotransfer to the triple-mutant protein

CheY6(M13S,L16S,Y17M) being slowest. These results underline

the conclusions drawn from the structural characterization of the

complex and stress the importance of the Met finger at position 13

for binding of CheY6 to CheA3P1. In addition, the hydrophobic

interaction mediated by Leu16 and Tyr17 also adds significantly

to recognition of CheY6 by CheA3P1.

Reengineering CheY4 into a Cognate RR of CheA3P1-P
The sequence of CheY4 is 36% identical to CheY6; however,

unlike CheY6, CheY4 is not a cognate RR of CheA3P1-P

(Figure 6D). Consistent with this, SPR assays failed to detect a

significant interaction between CheA3P1 and CheY4 (Figure 5).

Figure 3. Close-up view of the two binding sites between CheA3P1 and CheY6. Colour coding as in Figure 1. Residues that are involved in
the interaction are shown in stick representation. (A) Detailed view onto the major binding site between CheY6 and CheA3P1. Orientation as in
Figure 1B, residues 19–53 of CheA3 P1 are omitted for clarity. (B) Solvent accessible surface of CheY6 coloured by electrostatic potential contoured at
610 kT. Met13 fits snugly into the hydrophobic pocket on CheA3P1. (C) Close-up view onto the second binding site. Orientation as in Figure 1A. The
solvent-accessible surface area is coloured by electrostatic potential contoured at 610 kT. The hydrogen bond between Gly110 of CheY6 and Val59 of
CheA3P1 is marked with a dotted line.
doi:10.1371/journal.pbio.1000306.g003

Changing Phosphotransfer Specificity in Chemotaxis
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Figure 4. Structure-guided sequence alignment of the chemotaxis RRs from E. coli and R. sphaeroides. Alignment is based on the
structures of E. coli CheY (PDB code: 3CHY), E. coli CheB (1A2O), R. sphaeroides CheY3 (C. H. Bell, unpublished data), and R. sphaeroides CheY6.
Secondary structure is shown for CheY6. Residues involved in binding of CheY6 to CheA3P1 are marked with a star (contributes .30% to total buried
surface area), square (.15%), or circle (.5%).
doi:10.1371/journal.pbio.1000306.g004

Figure 5. Binding of CheA3P1 to the response regulators. (A) Table of binding constants (Kd) measured by SPR between CheA3P1 and CheY4,
CheY6 and their mutant versions. Data are expressed as mean 6 standard error of the mean (s.e.m.). ND, not determinable. (B–D) Binding of CheA3P1
to CheY6 wild type (wt), CheY4 wt, and CheY4(P12A,S13M). Left, representative sets of experimental sensorgrams from typical equilibrium-based
binding experiments, with reference subtraction. Different concentrations of CheA3P1 were injected over surfaces coupled with the respective RR. For
all injections, the experimental traces reached equilibrium and returned to baseline after the injection. Right, plot of the equilibrium binding response
(response units [RU]) against CheA3P1 concentration ranging from 120 nM to 2 mM. Within one experiment, each concentration was measured twice.
All experiments were performed in duplicate. Best-fit binding curves corresponding with a 1:1 binding model are shown as lines.
doi:10.1371/journal.pbio.1000306.g005

Changing Phosphotransfer Specificity in Chemotaxis
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In an attempt to alter the phosphotransfer specificity of CheY4

to allow phosphotransfer from CheA3P1-P, we substituted the

CheY4 residues corresponding to the positions shown to

interact in the CheA3P1-CheY6 structure, so that they

matched CheY6. Two mutant proteins were produced:

CheY4(P12A,S13M) and CheY4(P12A,S13M,C16L,M17Y).

Ala12 was included in both mutant proteins since CheY4 has

a Pro at position 12 that might influence the orientation of a1

and thus interfere with the proper positioning of Met13 for

interaction with the hydrophobic pocket. SPR assays showed

that both mutant proteins bind CheA3P1 (Figure 5 and Figure

S3), and in phosphotransfer assays, both mutant proteins were

phosphorylated by CheA3P1-P (Figure 6E and 6F). Phospho-

transfer was fastest from CheA3P1-P to CheY4(P12A,S13M),

with most of the initial CheA3P1-P dephosphorylated within

10 s (Figure 6E).

Interestingly, although the rate of phosphotransfer from

CheA3P1-P to CheY4(P12A,S13M) was faster than to CheY4(-

P12A,S13M,C16L,M17Y), the SPR results show that CheA3P1

interacts slightly more strongly with CheY4(P12A,S13M,

C16L,M17Y) than with CheY4(P12A,S13M) (Figure 5 and Figure

S3). This apparent discrepancy could be explained by the

alignment of the phosphorylated histidine and the phosphoryla-

table aspartate in the CheY4(P12A,S13M,C16L,M17Y).CheA3P1-

P complex, which might be slightly less optimal for catalysis than

in the CheY4(P12A,S13M).CheA3P1-P complex. Nevertheless,

both methods show that mutating CheY4 so that it resembles

CheY6 at the contact sites with CheA3P1 enhances both binding

affinity and phosphotransfer rate. These results demonstrate that

substitution of just two residues is sufficient to change the

phosphotransfer specificity of CheY4.

Reengineering Other CheYs
Having successfully reengineered the phosphotransfer specificity

of CheY4 by introducing A12 and M13, we used the same

approach to change the specificity of CheY1, CheY3, CheY5, and

E. coli CheY (Figure 7). These proteins share between 30% and

33% sequence identity with CheY6. In all cases, the mutant

proteins containing the alanine and methionine substitutions were

phosphorylated more rapidly by CheA3P1-P than were their wild-

type counterparts. Although CheY1 and E. coli CheY both lack a

methionine residue at the position corresponding to M13 of

CheY6, they are both phosphorylated by CheA3P1-P (Figure 7A

and 7C); however, phosphotransfer to their corresponding alanine

and methionine substitution mutant proteins proceeded even

faster, with almost complete dephosphorylation of CheA3P1-P

within 10 s (Figure 7B and 7D). Similar to CheY4, wild-type

CheY3 and CheY5 were not phosphorylated by CheA3P1-P

Figure 6. Changing the phosphotransfer specificity of CheY6 and CheY4. Phosphorimages of SDS-PAGE gels measuring phosphotransfer
from CheA3P1-P to (A) CheY6, (B) CheY6(M13S), (C) CheY6(M13S,L16S,Y17M), (D) CheY4, (E) CheY4(P12A,S13M), and (F) CheY4(P12A,S13M,C16L,M17Y).
CheY (5 mM) was added to 1 mM CheA3P1-32P. Ten-microlitre reaction samples were taken at the time points indicated and quenched in 20 ml of 1.56
SDS/EDTA loading dye. The quenched samples were analyzed by SDS-PAGE and detected by phosphorimaging.
doi:10.1371/journal.pbio.1000306.g006
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(Figure 7E and 7G), and the effect of the alanine and methionine

substitutions was to allow rapid phosphotransfer from CheA3P1-P

(Figure 7F and 7H). These results demonstrate that the RR

residues at the positions equivalent to A12 and M13 of CheY6 play

a major role in determining phosphotransfer specificity.

Discussion

Two-component signalling systems depend on a high level of

selectivity between histidine kinases and their cognate RRs to

prevent cross-talk between different pathways. Here, we present

structural and functional data that elucidate how this specificity is

mediated on a molecular level. We identified the key residues for

molecular recognition and thereby were able to reengineer

phosphotransfer specificity. Considering the high level of structural

homology within the receiver and Hpt domain families, the

presented structure together with complementary information,

e.g., analysis of amino acid covariation [28,36,37], is likely to

facilitate the rational reengineering of CheA-like histidine kinase–

RR pairs for use, for example, in synthetic signalling circuits.

Conserved Features of the CheA3P1.CheY6 Complex
The structure of CheA3P1 in complex with CheY6 is, to our

knowledge, the first structure of a Hpt domain of a CheA protein

in complex with a RR. To date, there are only two other structures

of a Hpt domain in complex with a RR, namely Spo0B/Spo0F

[38,39] from Bacillus subtilis and YPD1/SLN1 [40,41] from

Saccharomyces cerevisiae. Although the overall structure of the RR is

well conserved in all three complexes, there are remarkable

differences in the Hpt domains. Spo0B exists as a dimer in which

the two a-helices of the helical hairpin domain of each protomer

Figure 7. Changing the phosphotransfer specificity of other CheYs by introduction of A12 and M13. Phosphorimages of SDS-PAGE gels
measuring phosphotransfer from CheA3P1-P to (A) E. coli CheY, (B) E. coli CheY(S15A,T16M), (C) CheY1, (D) CheY1(R12A,T13M), (E) CheY3, (F)
CheY3(P12A,S13M), (G) CheY5, and (H) CheY5(P12A,S13M). CheY (5 mM) was added to 1 mM CheA3P1-32P. Ten-microlitre reaction samples were taken
at the time points indicated and quenched in 20 ml of 1.56SDS/EDTA loading dye. The quenched samples were analyzed by SDS-PAGE and detected
by phosphorimaging.
doi:10.1371/journal.pbio.1000306.g007
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associate to form a four-helix bundle. In addition, Spo0B has a C-

terminal domain with an a/b fold, which is involved in binding of

the RR. YPD1 is a monomeric Hpt protein consisting of a four-

helix bundle with an additional short helix at the N-terminus. This

N-terminal helix is involved in RR binding and complements the

interface formed by helices aB and aC. When the three complexes

were superimposed with respect to the receiver domains, CheA3P1

aligned well with YPD1 but only poorly with Spo0B (Figure S4).

Phosphotransfer Specificity Determinants
CheA3P1.CheY6 shows the smallest binding interface amongst

the three complexes solved so far, with 530 Å2 compared to

953 Å2 in YPD1/SLN1 and 1,200 Å2 in Spo0F/Spo0B. The

interface is smaller since CheA3P1 has neither the C-terminal a/b
fold domain seen in Spo0B nor the additional N-terminal helix

seen in YPD1. Despite this small interface, CheA3P1 shows

binding and efficient phosphotransfer to CheY6. It was previously

proposed that the P2 domain of CheA-like proteins might be

necessary for binding of the RR to CheA by increasing the binding

interface [40]. However, CheA3 does not have a P2 domain, and

the experimental data presented here and elsewhere [26] show

that the P1 domain alone is sufficient for binding of and specific

phosphotransfer to the cognate RR. Moreover, the structural and

mutational analysis suggests that their interaction is mediated by

very distinct residue clusters on the RR and the Hpt domain, the

former being located on the N-terminal region of a1 and the loop

region between b5 and a5, and the latter being located on the N-

and C-terminal region of aA and aB, respectively, and the loop

region connecting aB and aC. This is in good agreement with a

recently published computational analysis of amino acid coevolu-

tion of cognate histidine kinase–RR pairs [28] and the binding site

found in the YPD1/SLN1 [40,41] or Spo0B/Spo0F [38,39]

complex.

Reengineering Phosphotransfer Specificity
The specificity of protein–protein interactions is essential for

most cellular processes. Despite the vast number of these

interactions, our understanding of the molecular basis of their

specificity is limited. The structure presented here has allowed us

to identify specificity determinants for the CheA–CheY interac-

tion. We successfully used this information to redesign noncognate

RRs to allow them to be rapidly phosphorylated by CheA3P1-P

(Figures 6 and 7). Whereas the Laub group have reengineered a

HPK to specifically phosphorylate non-cognate RR substrates

[28], we have now shown that it is possible to rationally reengineer

a RR so that it can be phosphorylated by a noncognate HPK. The

changing of phosphotransfer specificity described here represents,

to our knowledge, the first example of the redesign of the

intracellular part of the chemotaxis pathway and provides valuable

insight into how cells mediate specificity in one of the most

abundant signal transduction pathways, two-component signal-

ling. The ability to reengineer phosphotransfer specificity coupled

with recent work from the Bourret group [42], which has shown

that RR autodephosphorylation rate can be manipulated, provide

a platform for the future design of synthetic two-component

circuits with customizable kinetics.

Materials and Methods

Protein Overexpression and Purification
CheA3P1 (residues 1–135 of CheA3, GenBank ID 3720125),

CheY6 (GenBank ID 3720126), and CheY4 (GenBank ID

3722004) were cloned into the bacterial expression vector

pQE80 (Qiagen), which includes an N-terminal His6-tag.

Sequence verified plasmids were transformed into M15pREP4

cells (Qiagen) and cultivated in Terrific Broth to an absorbance at

600 nm (A600) of 0.8. Cultures were cooled to 20uC, induced with

0.25 mM IPTG, and then grown for ,15 h before harvesting.

The bacterial pellets were resuspended in 25 mM sodium

phosphate (pH 8.0), 500 mM NaCl, 0.5 mM b-mercaptoethanol,

and EDTA-free protease inhibitor cocktail (Roche). Cells were

lysed using a Basic Z model cell disruptor (Constant Systems) and

fractionated by centrifugation (45,000g, 4uC, 60 min). CheA3P1,

CheY6, and CheY4 were purified from the supernatant by

immobilized metal-affinity chromatography [19–21]. The samples

were dialysed against standard buffer (30 mM Hepes [pH 7.5],

150 mM NaCl, 5 mM sodium acetate, 2 mM manganese

chloride, 2 mM Tris(2-carboxyethyl)phosphine [TCEP]) and

further purified by size-exclusion chromatography. Protein purity

and concentration was measured as described [43]. Purified

proteins were stored at 280uC. Seleno-methionine (SeMet)-

labelled CheY6 was produced essentially as described [44]. The

complex between CheY6 and CheA3P1 was formed by mixing

equimolar amounts of both proteins. The sample was incubated

for 30 min at room temperature (20uC), and the complex was

purified by size-exclusion chromatography. CheA3P1 was phos-

phorylated using ATP and CheA4, and purified as described

previously [26]. The final preparation of CheA3P1-P was free of

ATP and CheA4. Phosphorylation was verified by mass spec-

trometry. Equimolar amounts of phosphorylated CheA3P1 and

CheY6(D56N,S83A) were mixed and set up for crystallization.

Site-Directed Mutagenesis
Mutations were introduced using the Quikchange Site-Directed

Mutagenesis Kit (Stratagene).

Crystallization and Data Collection
Crystal trials were set up with the purified CheA3P1.CheY6

complex at a concentration of 20 mg/ml. We set up nanoliter

crystallization trials using a Cartesian Technologies robot (100 nl

of protein solution plus 100 nl of reservoir solution) in 96-well

Greiner plates [45], placed them in a TAP (The Automation

Partnership) Homebase storage vault maintained at 295 K, and

imaged them via a Veeco visualization system. Crystals of the

phosphorylated, unphosphorylated and SeMet-labelled complex

between CheY6 and CheA3P1 could be obtained in 100 mM

Bicine (pH 9), 1 M LiCl, 20% (w/v) PEG6000. Crystals were

optimized using a dilution series of the initial condition. Crystals

reached their final size of 40061006100 mm3 after 12 h.

Diffraction data were collected at 100 K, crystals being flash-

cooled in a cryo N2 gas stream. Before flash-freezing, crystals were

cryo-protected with perfluoropolyether oil PFO-X125/03 (Lan-

caster Synthesis). The native dataset was collected at beamline I03

(l= 0.9757 Å) and the SeMet dataset at beamline I04

(l= 0.979 Å) at the Diamond Light Source. Data for the

phosphorylated complex were collected on a MAR345 detector

(Marresearch) mounted on a Miromax007 generator (Rigaku),

equipped with Varimax HR Osmic mirrors (Rigaku). X-ray data

were processed and scaled with the HKL suite [46]. Data

collection statistics are shown in Table 1.

Structure Determination and Refinement
The CheA3P1-CheY6 complex structure was determined by

SAD analysis. The positions of 12 selenium atoms were

determined by using SHELXD [47]. This solution was put into

AUTOSHARP [48] for phase calculation, improvement, and

phase extension using the high-resolution native data to 1.4 Å

resolution. The resulting map was of high quality and allowed
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tracing of the whole polypeptide chain. An initial model was built

automatically using Arp/wARP [49] and manually adjusted using

COOT [50]. The structure was refined using autoBUSTER [51],

REFMAC [52], and Phenix [53]. The phosphorylated complex

was solved by molecular replacement using Phaser [54] with the

unphosphorylated complex as model.

Refinement statistics are given in Table 1; all data within the

indicated resolution range were included. Stereochemical proper-

ties were assessed by MOLPROBITY [55] and PROCHECK

[56]. Ramachandran statistics are as follows (favored/disallowed,

%): CheA3P1-CheY6 unphosphorylated 98.8/0, CheA3P1-CheY6

phosphorylated 99.1/0. Superpositions were calculated using

lsqkab [57] implemented in the CCP4 suite and electrostatic

potentials were generated using APBS [58]. Buried surface areas of

protein–protein interactions were calculated using the PISA

Webserver (http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html).

Coordinates are deposited in RSCB Data Bank under 3KYI and

3KYJ.

Surface Plasmon Resonance Binding Studies
SPR experiments were performed using a Biacore T100

machine (GE Healthcare) at 25uC in standard buffer supple-

mented with 0.05% (v/v) Tween 20. Protein concentrations were

determined from the absorbance at 280 nm using calculated

molar extinction coefficients. Proteins for surface attachment

were enzymatically biotinylated within an engineered C-terminal

tag. These proteins were then attached to surfaces on which

3,000 response units (RU) of streptavidin were coupled via

primary amines [59] yielding a density of 200–1,500 RU of

biotinylated protein. All experiments were done in duplicates

with independently purified proteins. The signal from experi-

mental flow cells was corrected by subtraction of a blank and

reference signal from a mock or irrelevant protein-coupled flow

cell. In all experiments analyzed, the experimental trace returned

to baseline after each injection and the data fitted to a simple 1:1

Langmuir model of binding. Kd values were obtained by

nonlinear curve fitting of the Langmuir binding isotherm

(bound = Cmax/(Kd + C), where C is analyte concentration and

max is the maximum analyte binding) evaluated using the

Biacore Evaluation software (GE Healthcare).

Detection of Phosphotransfer from CheA3P1-P to the RRs
Assays were performed at 20uC in TGMNKD buffer (50 mM

Tris HCl, 10% [v/v] glycerol, 5 mM MgCl2, 150 mM NaCl,

50 mM KCl, 1 mM DTT [pH 8.0]). CheA3P1 was phosphory-

lated using [c-32P] ATP and CheA4, and purified as described

previously [26]. The final preparation of CheA3P1-32P was free of

ATP and CheA4. CheA3P1-32P (1 mM) was mixed with 5 mM RR

in a final reaction volume of 100 ml. Following the addition of RR,

reaction aliquots of 10 ml were taken at the indicated time points

and quenched immediately in 20 ml of 1.56 SDS-PAGE loading

dye (3.75% [w/v] SDS, 45 mM EDTA, 18.75 mM Tris HCl,

18.75% [v/v] glycerol, 1.5% [v/v] b-mercaptoethanol [pH 6.8]).

Quenched samples were analyzed using SDS-PAGE and phos-

phorimaging as described previously [21].

Supporting Information

Figure S1 Stereoview of a superposition of the metal
binding site of CheY6 and E. coli CheY. CheY6 is shown in

pale green, E. coli CheY with Mg2+ bound (PDB-code: 1CHN) in

yellow, and E.coli CheY without Mg2+ (3CHY) in teal. Structures

were aligned on their secondary structure elements using

secondary structure matching (SSM) implemented in COOT

[50]. Residues involved in the coordination of Mg2+ in E. coli

CheY are shown in stick representation for all three structures.

Residues in E. coli structures are only labelled for the Mg2+ bound

form. Mg2+ from the E. coli structure is shown as a grey sphere.

CheY6 resembles the Mg2+ bound form of E. coli CheY despite not

having a divalent cation bound to its metal binding site.

Found at: doi:10.1371/journal.pbio.1000306.s001 (6.24 MB TIF)

Figure S2 Electron density of phosphorylated His51 in
CheA3P1 in the active complex structure. The orientation is

similar to Figure 2B. The density represents a 2Fobs-Fcalc map

contoured at 1.5 s and calculated after initial rigid body

refinement in Phaser [54] and one round of positional refinement

in autoBUSTER [51], both omitting the phosphate group from

the model.

Found at: doi:10.1371/journal.pbio.1000306.s002 (0.64 MB TIF)

Figure S3 Binding of CheA3P1 to substitution mutants
of CheY4 and CheY6. (A–C) Binding of CheA3P1 to CheY4(-

P12A,S13M,C16L,M17Y), CheY6(M13S), and CheY6(M13S,L16S,

Y17M). Left, representative sets of experimental sensorgrams from

typical equilibrium-based binding experiments, with reference

subtraction. Different concentrations of CheA3P1 were injected over

surfaces coupled with the respective RR. For all injections, the

experimental traces reached equilibrium and returned to baseline

after the injection. Right, plot of the equilibrium binding response

(response units [RU]) against CheA3P1 concentration ranging from

120 nM to 2 mM. Within one experiment, each concentration was

measured twice. All experiments were performed in duplicate. Best-fit

binding curves corresponding with a 1:1 binding model are shown as

lines. Experiments with CheY6(M13S) and CheY6(M13S,L16-

S,Y17M) did not reach saturation due to very low affinity, thus the

Kd value is estimated.

Found at: doi:10.1371/journal.pbio.1000306.s003 (0.52 MB

TIF)

Figure S4 Superposition of the CheA3P1-CheY6 complex
structure with the Spo0B-Spo0F complex and YPD1-
SLN1 complex. (A) Superposition of CheA3P1-CheY6 with

Spo0B-Spo0F (PDB-code: 1F51). (B) Superposition of CheA3P1-

CheY6 with YPD1-SLN1 (1OXB). All structures were superim-

posed on the RRs using SSM as implemented in COOT [50].

CheY6 is shown in pale green, CheA3P1 in light blue, Spo0F in

orange, Spo0B in teal, SLN1 in purple, and YPD1 in aquamarine.

Only the four-helix bundle of the Spo0B dimer is shown; the C-

terminal domain is omitted for clarity. The orientation is similar to

Figure 1. CheA3P1 is structurally more similar to the monomeric

YPD1 than to Spo0B.

Found at: doi:10.1371/journal.pbio.1000306.s004 (2.64 MB TIF)
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