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PRESSURE-DRIVEN DEMAND AND LEAKAGE SIMULATION FOR 

WATER DISTRIBUTION NETWORKS 

  

 

ABSTRACT 

Increasingly, water loss via leakage is acknowledged as one of the main challenges facing water 

distribution system operation. The consideration of water loss over time, as systems age, physical 

networks grow and consumption patterns mature, should form an integral part of effective asset 

management, rendering any simulation model capable of quantifying pressure-driven leakage in-

dispensable. To this end, a novel steady-state network simulation model that fully integrates, into 

a classical hydraulic representation, pressure-driven demand and leakage at the pipe level is de-

veloped and presented here. After presenting a brief literature review about leakage modelling, 

the importance of a more realistic simulation model allowing for leakage analysis is demon-

strated. Then, the algorithm is tested from a numerical standpoint and subjected to a convergence 

analysis. These analyses are performed on a case study involving two networks derived from real 

systems. Experimentally observed convergence/error statistics demonstrate the high robustness 

of the proposed pressure-driven demand and leakage simulation model. 
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INTRODUCTION 

Water loss via leakage constitutes a major challenge to the effective operation of municipal dis-

tribution networks since it represents not only diminished revenue for utilities, but also under-

mined service quality (Almadoz et al., 2005) and wasted energy resources (Colombo and Kar-

ney, 2002). A typical leakage control program usually starts with a water audit based on avail-

able flow measurements. Although this is an important first step, most practical studies do not go 

beyond it. In order to assist in leakage reduction and conduct more accurate analysis, a hydraulic 

model capable of accounting for pressure-driven (also known as head-driven) demand and leak-

age flow at pipe level should prove invaluable, and extended period simulation should be in-

volved.  

 

In fact, an integral part of any medium to long term rehabilitation planning for a water distribu-

tion system should be the analysis of pipe deterioration and the corresponding increase in water 

loss. In order to obtain a better estimate of flow through the network (with respect to both satis-

fied demand and losses through leakage), a pressure-driven hydraulic model is needed. Several 

models have been developed to incorporate pressure-driven demand analysis into network reli-

ability evaluation (Chandapillai, 1991; Gupta and Bhave, 1996; Ackley et al., 2001; Kalungi and 

Tanyimboh, 2003; Wu et al., 2006). This paper introduces a new simulation model that fully in-

tegrates a classic hydraulic simulation algorithm, such as that of Todini and Pilati (1988) found 

in EPANET 2 (Rossman, 2000), with a pressure-driven model that entails a more realistic repre-

sentation of leakage (Germanopoulos, 1985; Germanopoulos and Jowitt, 1989). The novel pres-

sure-driven algorithm uses the framework of Todini’s simulation model (Todini, 2003) in order 

to account for pressure-driven leakage at the pipe level and offer a more realistic representation. 
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PRESSURE-DRIVEN DEMAND/LEAKAGE NETWORK SIMULATION MODEL 

The pressure-driven simulation of a network comprising np pipes with unknown discharges (i.e., 

flow rates), nn nodes with unknown heads (internal nodes or junctions in the EPANET terminol-

ogy) and n0 nodes with known heads (tank levels, for example) can be described as in Todini 

(2003). Therefore, assuming the elements of the diagonal matrix App of order np equal to Rk|Qk|
n-

1
, the pressure-driven simulation of a network can be described by the following system of equa-

tions based on energy and mass balance conservation: 

0 0pp pn p

np nn

−     
=     

    

A A Q A H

A A H 0
 (1) 

where: 

Q=[Q1, Q2, …, Qnp]
T
 is the [np,1] column vector of unknown pipe flow rates; 

H=[H1, H2, …, Hnn]
T
 is the [nn,1] column vector of unknown nodal heads; 

H0=[H01, H02, …, H0n0]
T
 is the [no,1] column vector of known nodal heads; 

 

In the system of Equations (1), Apn=AT
np and Ap0 are topological incidence sub-matrices of size 

(np, nn) and (np, n0), respectively, derived from the general topological matrix Āpn=[Apn ¦ Ap0] of 

size [np, nn+ n0], as defined in (Todini, 2003). 

 

In order to account for leakage flow rates in model (1), Ann can be cast as a diagonal matrix 

whose elements are the scalar product (i.e. element by element product) -(qact+ql)H
-1
. 

qact(H)=[q1-act(H1), q2-act(H2), …, qnn-act(Hnn)]
T
 is the column vector of pressure/head-driven nodal 

demands and ql is the column vector of nodal leakage flow rates (assuming positive sign for 

node discharge). Actually, leakage occurs at pipe level and is just reported at the nodes as will be 

explained subsequently. The column vector 0 in the system (1) is related to the fact that the ma-
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trix Ann (by means of the vectors qact and ql) contains the pressure-driven demands and leakage 

flows. 

 

For reasons of simplicity, while still preserving generality, elements such as pumps, valves and 

other dissipation devices have not been considered in the simulation model (1). Furthermore, the 

single expression is used to define the head loss along the k-th
 
pipe in the network, regardless of 

the flow regime assumed and the head loss relationship used. Therefore, Rk is the head loss coef-

ficient that is a function of a pipe’s roughness, diameter and length, while n is an exponent which 

takes into account the actual flow regime and the head loss relationship used (1.85 for the Hazen-

Williams and 2 for the Darcy-Weisbach models). 

 

In the system of Equations (1), qact is the column vector characterizing demand-pressure depend-

ence whose elements are defined for the i-th node of the network by the function qi-act(Hi) or qi-

act(Pi) (see below). For qi-act(Pi) the following relationship will be used here (Wagner et al., 

1988): 

1 2

for 

for 

0 for 

i design i i ser

i i min
i act i design i min i i ser

i ser i min

i i min

q P P

P P
q q P P P

P P

P P

− −

−
− − − −

− −

−


>




 −
= ≤ ≤  − 


 <



  (2) 

where Pi-ser is the minimum service pressure required for supplying demand qi-design (those used 

for network design purposes, for example) and Pi-min denotes the range of the intermediate work-
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ing condition when the actual demand is given as qi-act. For demands that are not pressure-driven, 

Equations (2) become qi-act=qi-design. 

 

At the scale of individual pipes, the pressure-leakage relationship is defined in ql, a column vec-

tor whose elements are nodal leakages qi-leak that is computed from the pipe leakage model qk-leak. 

In order to avoid confusion among variables, the index i will be used for nodal-level variables 

and k for pipe-level variables. Thus, assuming a uniform distribution of leakage qk-leak along pipe 

k, the background leakage model can be expressed as (Germanopoulos, 1985; Germanopoulos 

and Jowitt, 1989): 

( ) if 0

0 if 0

k

k k k k
k leak

k

l P P
q

P

αβ
−

 >
= 

≤
 (3) 

where Pk is the average pressure in the pipe computed as the mean of the pressure values at the 

end nodes i and j of the k-th pipe, and lk is the length of that pipe. Variables αk and βk denote the 

two leakage model parameters (explained and discussed later in the text). The average pressure 

vector Ppipes can be computed from the general topological matrix and nodal pressure as: 

( )¦

2

nodes nodes

pn 0pipes
  =

A P P
P  (4) 

where Pnodes is the pressure vector of unknown nodal heads and P0
nodes

 is the pressure vector of 

known nodal heads (|Āpn| is the absolute value of the topological matrix).
 

 

The allocation of leakage to the two end nodes can be performed in a number of ways. The sim-

plest approach assumes that half of total leakage from the pipe element occurs at each of the end 

nodes. A more realistic approach, however, divides the total leakage in proportion with the mag-

nitude of the two nodal pressures (Ainola et al., 2000). With either of these two approaches, the 
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nodal leakage flow qi-leak is computed as the sum of qk-leak flows of all pipes connected to node i 

as follows: 

( )

( ) 1

1 1

2 2

2

where
2

k

k

i leak k leak k k kk k

i i
i leak k leak k k kk k

i j

i j

k

q q l P

or

P P
q q l P

P P

P P
P

α

α

β

β

− −

−

− −

= =

= =
+

+
=

∑ ∑

∑ ∑   (5) 

Thus, the elements of the vector ql can be computed from the topological matrices as follows: 

( )

( ) ( )

1

1

0
1
or

2 2
0

or if 0

0 if 0

k k

leak

i
k leakl np

np leak

k k k k k k k
k leak

k

q

P
qabs

q

l P l P P
q

P

α α
β β

−

−

−

−

−

 
 
    =  

   
 
  

 >
= 

≤

q A

 (6) 

where diag stands for the diagonal elements of the matrix. Thus, the ql elements are from the ma-

trix product involving topological matrix Anp (i.e. Apn). The solution to the system of Equations 

(1) for the pressure-driven demands defined in (2) was first given by Todini (2003). Here, the 

procedure is further expanded to account for pressure-driven leakage and consider large net-

works. The procedure involves the initialisation phase followed by the iteration phase as speci-

fied in the following equations: 

 

 

 

Initialisation phase 
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( )

0

0

0

1
0

iter

pp pp

iter

nn nn

iter

ser

iter

pp

=

=

=

−=

=

=

= +

=

Λ I

Λ I

H P HL

Q R

 (7a) 

where Inn and Ipp are identity matrices; ΛΛΛΛnn and ΛΛΛΛpp are diagonal matrices of over-relaxation coef-

ficients for nodal heads and pipe flow updating; Rpp is a diagonal matrix whose elements are Rk;  

HL is the vector of nodal elevations; Pser is a vector whose elements are Pi-ser. The initialisation 

part of the algorithm shown in Equation (7a) ensures that flows Qiter=0
 make Dpp=Ipp for iter=0. 

 

Iteration phase 

 

( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( )

1

1

0 0

-1
1

1
1 1

0 0

iter iter iter iter

np pp pn nn nn

iter iter iter iter iter iter iter iter iter iter

np act l np pp p pp nn nn

iter iter iter

iter iter iter iter iter iter

pp pp pn p

it

−

−

+

−+ +

= − +

 = − + − + − + 

=

= − + +

A A D A D DL

F A Q q q A D A H A Q D DL H

H A F

Q Q D A Q A H A H

H ( )
( )

1 1

1 1

er iter iter iter iter

nn

iter iter iter iter iter

pp

+ +

+ +

= − +

= − +

Λ H H H

Q Λ Q Q Q

 (7b) 

 

In the iterative part of the algorithm, Dnn, DLnn and Dpp are diagonal matrices whose elements 

denote derivatives of qact, ql elements and Rk|Qk|
n-1
Qk  with respect to nodal pressure, pipe pres-

sure and pipe flow, respectively. For example, Dnn is the (nn, nn) diagonal matrix given as: 
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( ) ( )
( )

1 2

1 2

0 for 

, for 
2

0 for 

i i ser

i design i i min

nn i min i i ser

i ser i min

i i min

P P

q P P
i i P P P

P P

P P

−

−
− −

− −

− −

−


>




−
= ≤ ≤

−

 <



D  (8) 

and DLnn represents a (nn, nn) diagonal matrix whose elements can be calculated from the deriva-

tives of qk-leak with respect to Pk (see Equation (5)). Similarly to matrix ql in Equation (6), ele-

ments of matrix DLnn(i,i) can be obtained as follow: 

 

( ) ( )

( ) ( ) ( )

1

1

1 2

0

1
, or

2 2

0

or 1 if 0

0 if 0

k k

ki
nn np

k

np

np

k k
k k k k k k k k k

k k

k
k

k

dq

dP

dqP
i i abs

dP

dq

dP

dq dq
l P l P P

dP dP

dq
P

dP

α α
α β α β

− −

 
 
 
 
 

   =     
 
 
 
 
 

= = − >

= ≤

DL A

 (9) 

Note that both ql and DLnn(i,i) elements can be constructed using the scalar formulation, as done 

by Rossman (2000) for the elements of matrix A(i,i) (see page 188 in the EPANET 2 Users 

Manual) or Todini (2003). 

 



 10 

Moreover, the diagonal elements of both ΛΛΛΛ matrices are assumed equal to λiter (a real number in 

the [0,1] range) which works as a step size, or over-relaxation coefficient, for updating nodal 

heads and pipe flow rates across iterations. It is worth noting that λiter=0 is set to 1, meaning that 

the relaxation coefficient is not used initially, but its adaptation to the error surface (during the 

iterative search for the solution) is invoked if required to improve convergence behaviour. Here, 

the value of λiter is driven by the mean of squared errors or by the maximum errors in the mass 

and energy balance equations while performing the iterative search. When any of these errors 

decreases, the value of λiter increases by a factor of 5 and when any of these errors increases, the 

value of λiter is reduced by a factor of 10. If during the iterative search λiter becomes equal to or 

less than the error tolerance level (e.g., 10
-7
) or mean of squared errors (e.g., 10

-7
) the search 

process is stopped because convergence has been reached. Experiments carried out by the au-

thors have shown that model runs, described below, performed without the relaxation coefficient 

procedure can have serious convergence problems. 

Furthermore, the initialization of flows used here makes the matrix Dpp (initialized to Ipp) well 

conditioned, which is particularly useful for large networks. The maximum number of iterations 

is also used as a further threshold control.  

 

Finally, assuming separate expressions for background leakage, qk-background, and burst losses, qk-

burst, the total leakage qk along the pipe k-th can be expressed using: 

1. the classical formulae of orifice flow for bursts (exponent equal to 0.5); and  

2. the Germanoupulos (1985) expression for background losses. 

 with different meaning assigned to its constants: 
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( ) ( )0.5 if 0

0 if 0

k

k leak k k k k k k

k leak k

q l P C P P

q P

αβ−

−

 = + >


= ≤
 (10) 

where αk and βk are the two parameters of the leakage flow model related to the background 

losses only and Ck is a coefficient dependent on the sum of outflow coefficients related to bursts 

along the pipe. Therefore, Equations (5) can be rewritten as follows: 

( ) ( )

( ) ( )

0.5

1 0.5

1 1

2 2

2

k

k

i leak k leak k k k k kk k

i i
i leak k leak k k k k kk k

i j

q q l P C P

or

P P
q q l P C P

P P

α

α

β

β

− −

− −

− −

= = +

= = +
+

∑ ∑

∑ ∑

 (11) 

Note that Equations (7) and (9) can be easily modified by following the above reasoning. 

 

Leakage Model Parameters (α α α α and ββββ) 

Water distribution system losses may be classified in being due to: background losses (from 

joints, fittings and small cracks); reported bursts; and unreported bursts (Lambert, 1994). 

The main explanation for growing water loss (either due to bursts or small cracks) is the general 

deterioration of water mains, joints and service connections. Pipe degradation, pipe parameter β, 

has commonly been studied as a steady monotonic process that is modified by time-varying 

“noise” (Kleiner and Rajani, 2002). Pipe age, diameter and material have been identified as pri-

mary variables influencing the monotonic increase in the burst rate over a number of years. The 

majority of statistical methods consider pipe age as the most crucial variable describing the in-

crease in pipe failure rates over time (Shamir and Howard, 1979; Kleiner and Rajani, 2001). Fur-

thermore, Walski and Pelliccia (1982) found diameter to be a key factor, with the failure rate of 

smaller diameter pipes being higher than those experienced by larger ones. Studies of common 

metallic pipe (e.g., cast iron, ductile iron, etc.) behaviour have been conducted to establish the 
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influence of pipe material on failure rates (Kleiner and Rajani, 2002; Kettler and Goulter, 1985). 

Moreover, age, material and diameter are usually the only, if any, information available to many 

municipalities and water companies. Recently, Berardi et al. (2005) demonstrated the depend-

ence of pipe bursts on pipe length, age and diameter using real data from UK water companies. 

 

The value of the leakage parameter α  in Equation (5) can be described using the FAVAD (fixed 

and variable area discharge) approach proposed by May (1994). In fact, May originally sug-

gested a two component model, burst losses through a constant area hole (α=0.5) and back-

ground losses through an area that changes linearly with pressure (α=1+0.5=1.5). Thus, α of the 

leakage model (5) depends on the balance between the burst (α=0.5) and background (α>0.5) 

leakage flows and can be determined by means of model calibration and/or component analysis. 

For example, Jowitt and Xu (1990) and Vairavamoorthy and Lumbers (1998) obtained the value 

of α=1.18 from field data. Later, Lambert (2001) inferred a range of α values ranging from 0.50 

to as high as 2.50, depending on the mixture of leaks and the dominant type of leaks (simple 

holes: α=0.5; longitudinal split which opens in one dimension: as in May (1994), i.e. 

α=1.5; linear-radial opening: α=2.0−2.5). Plastic pipes exhibit higher α values because of their 

propensity to have longitudinal splits. Interestingly, Lambert (2001) reported αR values around 

1.5 regardless of the pipe material. However, it is currently held that rigid pipes such as those 

comprised of metal are generally characterized by lower values of α.  

Based on the above discussion, the following functional relationships can be postulated for α and 

β: 
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( )

, 1

, , , , ,... 1

k
k k k p

k

k k k k k k k p

d
m k n

s

age d s m pr k n

α α

β β

 
= ≤ ≤ 

 
= ≤ ≤

 (12) 

where m denotes the pipe material, pr is the number of properties supplied (or connections on the 

main) and s is the pipe wall thickness. From Equation (12) that β depends, in general, on both 

pipe characteristics and various external factors (e.g., environmental conditions, traffic loading, 

external stress and corrosion, etc.). In contrast, α  is a function of pipe characteristics only (mate-

rial m and rigidity d/s). 

 

Clearly, the change in β over the years is related to average pressure (Lambert, 2001). From the 

standpoint of functional dependency, this is accounted for by the pipe age variable while, from a 

physical perspective, pressure generates a fatigue effect (i.e., enhancing deterioration) similar to 

that of traffic loading. Thus, for a specific system, escalation in the leakage rate can be described 

by pipe age.  

 

Similar to pipe breaks (Shamir and Howard 1979), an exponential formulation can be used for 

leakage proliferation (Walski, 1987). Thus, β(age) exponentially increases at a rate whose coef-

ficient in the function argument is dependent on the pressure regime since the rate of system de-

terioration is influenced by pressure management (Lambert, 2001). The value of this coefficient 

for the leakage increase rate, as reported in Walski (1987), can be assumed close to zero in sys-

tems where utilities routinely conduct leak repair activities, while the coefficient of pipe break 

growth is a reasonable estimate for a utility without an ongoing leak detection program.  
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Finally, β is more closely related to the number of leaks (or leakage area) per unit of pipe length 

while α is more strongly related to the type of leakage (therefore to the hydraulics of leakage) as 

governed by pipe material (Lambert, 2001).  

 

CASE STUDIES 

The objective of the case studies is neither to perform a water balance nor to calibrate leakage 

model parameters, but to demonstrate the effectiveness of the proposed simulation model (cou-

pling pressure-driven nodal demands and pipe leakage) in the context of both small and large 

networks. The two case studies, whose characteristics are derived from real systems (named 

“Network A” and “Network B”, respectively), serve to: 

• show that the new modelling approach provides more realistic results when applied to a 

classical optimal network design problem (base case for comparison). For this purpose, 

the hypothesis of leakage flow rates proportional to nodal demands will be discussed. 

• test the new simulation model from a numerical standpoint, by analysing convergence 

through some performance indicators.  

 

To demonstrate that the new modelling approach provides more realistic results than the de-

mand-driven analysis, the two networks were optimized to obtain the least-cost design for each 

of them (see for example, Savic and Walters (1997) for the formulation of the optimization prob-

lem) and the solutions were tested using the pressure-driven approach. The layout of the smaller 

network (“Network A”), whose characteristics were derived from a real Italian system, is de-

picted in Figure 1 with corresponding data provided in Tables 1-3. Pipe diameters in Table 2 

have been determined by minimising the total design cost subject to a minimum pressure Pser 
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(equal to 10 m for all the nodes) constraint for supplying the prescribed demand qdesign
 
(base 

case). Based on common practice where leakage is assumed to represent a percentage of nodal 

demand (e.g., 25% in Italy), the actual required demand was adopted for the design study as qde-

mand=qdesign/1.25,. The following relationship was used for the pipe roughness calculation: 

 
( )2-4

5

8.57 10 1+2
1,2,...,

k

k k p

k

d
R l k n

d

γ×
= =  (13) 

where Rk is the pipe resistance coefficient, dk is the pipe diameter, lk is the pipe length and γ=0.12 

is the Bazin friction factor. Note that the Bazin formula is commonly used in Italy and the previ-

ous study was undertaken using this expression. For the pressure-driven demand model, the 

value Pmin=0 is applied at all nodes while Equation (3) is used for the leakage model.  

 

The larger size network (“Network B”, Figure 2) was derived from a real UK system. The net-

work consists of 1991 pipes, 1461 internal nodes and 5 reservoirs (head varying from 40 to 50 

m). The diameters used for optimal pipe sizing are those in Table 1 and some statistics of the 

network are provided in Table 4. The least-cost design was performed by minimising the total 

design cost subject to a minimum pressure Pser (equal to 20 m for all the nodes) constraint for 

supplying the design demand qdesign (using qdemand=qdesign/1.25). Finally, the value Pmin was set 

equal to 10 m for all the nodes. 

 

NETWORK DESIGN WITH LEAKAGE CONSIDERATIONS 

Network designs obtained from demand-driven analysis assume leakage proportional to nodal 

demand at each node, but independent of network nodal pressure, leading to unrealistic nodal 

leakage estimates. For example, two obvious and significant drawbacks of the unrealistic as-
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sumption of a constant leakage percentage normally employed with demand-driven simulation 

(when combined with optimisation for network design) are: 

• the resultant low leakage flows for nodes experiencing low demand, even if they experi-

ence high nodal pressure (e.g., are close to a tank). 

• the fact that two nodes having equal demand will have equal leakage flow rates associ-

ated with them despite their actual hydraulic positions in the network (pressure levels) re-

lated to elevations; tank and pump locations, etc.. 

 

In order to analyse the effects of the constant-percent leakage assumption, the first step was to 

calibrate β of the leakage model for both networks. To perform this task, the value of α was set 

to 1.2 and the simulations were performed using qdemand for both networks, forcing the total leak-

age flow rate to 25% of qdemand. The results obtained were β=1.0632×10-7 and β=2.0748×10-8 for 

networks “A” and “B”, respectively. The first observation is that, because of the differing total 

pipe length and average network pressure, β differs by one order of magnitude between the net-

works. This demonstrates that a simulation model taking into account the real β is useful even if 

only used for design purposes because the value for leakage flow rates should be related to the 

total length, pressure, predicted deterioration, and other factors of the system rather than a con-

stant value (e.g., 25% used here). 

 

Therefore, the real-losses component of the water balance and/or analysis of night flows based 

on district metering data (Lambert and Hirner, 2000) can be used for determining comprehensive 

or zonal values for the leakage flow model parameters in order to plan rehabilitation/expansion 

of the network. β may be seen as a pipe parameter that requires calibration, similar to roughness, 
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using as prior information β0 from water balance or other analyses. For a new network, or a net-

work extension, the concept of unavoidable average real losses (UARL) and infrastructure leak-

age index (ILI), see Lambert and Hirner (2000), can be used for design purposes to establish a 

value for β instead of using a constant percent coefficient. 

 

Furthermore, Figures 3-6 show the pressure and leakage flow differences for both systems, as 

computed using the two approaches, demand-driven and pressure-driven simulations. Figures 3 

and 5 report the percentage difference in pressure at each node in the network computed with re-

spect to the nodal pressures of the base design case, while Figures 4 and 6 show the nodal leak-

age flow rates, normalized to the total required network demand, used during the design phase 

compared to those computed with the pressure-driven simulation. Figures 3 and 5 demonstrate 

that the majority of the nodes are characterized by a positive pressure difference. This means that 

the realistic simulation of leakage flow results in a generally higher pressure status than the de-

mand-driven simulation using a constant-percent nodal leakage. The general rise in network 

pressures is explained by the fact that overall flow throughout pipes has decreased due to greater 

leakage at nodes with high pressure (e.g., close to tanks).  

 

Figures 4 and 6 present a different outcome of nodal leakage flow computation (referred to total 

network demand) between the two simulation approaches. Results for “Network A” illustrate 

how the nodes closest to the tank are characterized by greater leakage flows (pressure-driven 

simulation), while the most downstream nodes experience lower leakage. More interesting is the 

situation depicted in Figure 6 related to “Network B”. Here, the nodes have been sorted in as-

cending order according to assigned flow rates (from the design phase) in order to better visual-
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ize the results. Figure 6 gives further evidence of the unrealistic assumption of constant-percent 

leakage used for design. In fact, there are nodes that have zero, or near zero, demand (and conse-

quently low assumed leakage flow rate), while some (see, for example, the maximum value of 

0.5% of the total network demand) experience a high flow rate as a consequence of high demand. 

The pressure-driven simulation approach shows more equally distributed nodal leakage flows 

(around a value close to 0.02 %), which is a more realistic representation of leakage in this case.  

 

CONVERGENCE AND ROBUSTNESS OF THE SIMULATION MODEL 

Here, the proposed simulation model with pressure-driven demand and leakage is tested for con-

vergence in a steady-state mode. In order to carry out the test, 1,000 simulations were performed 

for both networks simultaneously varying the following parameters: 

• the roughness values for each pipe (Rk). 

• the values of each pipe leakage coefficient (βk). 

• the value of α applied over the entire network.  

 

The simulations were performed using the values of the above parameters sampled as follows: 

• the roughness values for each pipe (Rk) were sampled uniformly from the range of +/- 

50% around those related to the optimal values obtained in the network design process 

(base case). 

• the values of each pipe leakage coefficient (βk) were sampled from the range [1×10-8, 

1×10-6] and [2×10-9, 2×10-7] for Networks “A” and “B”, respectively. The upper and 

lower boundaries of the sampling range have been selected to be an order of magnitude 
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smaller/greater than β calibrated in previously described exercise, assuming a water loss 

of 25%. 

• the value of α applied over the entire network was sampled from the range [0.5, 2.5].  

 

Sampling was performed here using Monte-Carlo methodology and, specifically, the Latin Hy-

percube (LH) technique (McKay et al., 1979) was used as the variance reduction method for lim-

iting the number of samples required for more extensive coverage of the sample space. As indi-

cated, convergence was assumed when λiter became less than 10-7 or the mean of squared errors 

was less than or equal to 10
-7
. A notebook computer with a Pentium Intel M 1.10 GHz processor 

was used for simulations. 

Furthermore, the simulation model was tested without using the over-relaxation parameter λiter 

on Network “B” (the largest one) in order to assess its effectiveness. 

 

Tables 5 and 7 report selected hydraulic parameters for both networks, including flow rates, av-

erage network pressure (Pavg) and number of critical nodes, all revealing the extent of tested con-

ditions. 

 

The first row of Tables 6 and 8 reports the average statistics of the 1,000 simulations considering 

both the maximum energy/mass balance errors (1
st
 and 2

nd
 columns), the mean energy/mass bal-

ance errors (3
rd
 and 4

th
 columns), the average number of iterations (5

th
 column) and the average 

CPU time required for each simulation (6
th
 columns). The second row indicates the worst results 

of the above statistical parameters. Furthermore, Table 8 reports the same statistics (5th and 6th 

columns) achieved without using the over-relaxation parameter λiter. They refer to simulations 
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performed on “Network B” using the same parameters (Rk, βk, α)  as in the runs with the over-

relaxation parameter (λiter) being used. The statistics were computed on 960 simulations (instead 

of the 1,000 runs performed) to avoid bias caused by runs experiencing serious convergence 

problems (10 simulations) or the complete lack of convergence (30 simulations).  

 

The statistics of “Network A” compared with those of the “Network B” (see the maximum errors 

which are not biased by the network size) prove that by increasing the network size (i.e., number 

of variables) the algorithm performance does not deteriorate significantly. Furthermore, the sta-

tistics in Table 8 for “Network B” show that the achieved maximum errors (about 6 l/s for flow 

and about 1.8 cm for pressure) and the average errors (about 0.005 l/s for flow and about 0.03 

mm for pressure) of the worst simulation (among 1,000) are, for all practical purposes, within the 

acceptable range. The average number of iterations needed for convergence was about 21, while 

the average run time was about 1.8 seconds. The maximum number of iterations was 51 and the 

maximum run time for a single simulation was about 4.5 seconds. 

 

Furthermore, Figure 7 reinforces the evidence of the algorithm’s robustness, showing the number 

of iterations for each simulation. They are clustered around the values of about 20, while for only 

about 3% of simulations more than 30 iterations were required. 

 

The beneficial influence of the over-relaxation parameter λiter on convergence of the algorithm 

was proven experimentally by eliminating problems experienced in 4% of runs (a very slow con-

vergence for 10 and absence of convergence for 30, out of 1,000 runs). Furthermore, the use of 

the over-relaxation parameter improves the algorithm run times, but the comparison of the statis-
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tics shows only a slight improvement in the average number of algorithm iterations when using 

λiter, while the CPU time decreased by approximately 10%. The observation that the single algo-

rithm iteration generally requires less CPU time when using the over-relaxation parameter could 

be explained by the fact that the solution of the linear system (based on vector F and matrix A in 

the algorithm (7b)) requires less iterations. 

 

In summary, the over-relaxation parameter has proven to be effective for providing robustness to 

the simulation model. This is explained by the fact that the over-relaxation parameter guides the 

search for H and Q vectors to the most promising regions of the search space. However, the se-

lected initialization (equation 7(a)) influences the algorithm convergence; therefore it is more 

important for larger networks because of the increase in dimensionality that makes the error sur-

face more complex during the iterative search. Finally, as a secondary effect the over-relaxation 

parameter seems to generally increase convergence of the linear system solution inside each al-

gorithm iteration (equation (7b)). 

 

CONCLUSIONS 

A new hydraulic simulation model capable of the simultaneous quantification of pressure driven 

demands and leakage is presented. The steady-state network model was developed by fully inte-

grating system demands (both customer demands and leaks) at the pipe level into the hydraulic 

model. The importance of an improved leakage model for more realistic network simulation was 

demonstrated using pipe network design solutions. The comparison of leakage flows for net-

works designed using demand-driven simulation under the assumption of a constant-percent 

nodal leakage, shows that the realistic simulation of leakage flow results in generally higher 
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pressures across a network than for the demand-driven simulation. The general rise in network 

pressures for the specific networks (elevations, topology, nodal demands, etc.) is explained by 

the decrease in overall flow throughout pipes due to greater leakage at nodes with high pressure 

(e.g., close to tanks). From a numerical standpoint, the algorithm convergence behaviour was 

tested using one small and one large network derived from two real systems. All the observed 

convergence/error statistics reinforce the notion that the pressure-driven demand and leakage 

simulation model developed and presented herein is robust.  
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APPENDIX II. NOTATION  

The following symbols are used in the paper: 

A = temporary matrix used in simulation model algorithm; 

Ann  = diagonal matrix whose elements are from the scalar product -(qact+ ql)H
-1; 

Āpn = general topological matrix; 

Apn,Anp= topological incidence sub-matrices; 

App = diagonal matrix whose elements are Rk|Qk|
n-1
; 

age = age of the pipe in the statistical model of pipe failure; 

Ck =  coefficient for burst leakage model for k-th pipe; 

d/dk =  diameter of the k-th pipe; 

Dnn,  =  diagonal matrices whose elements are derivatives of qact elements; 

Dpp,  =  diagonal matrices whose elements are derivatives of Rk|Qk|
n-1Qk; 

DLnn  =  diagonal matrices whose elements are derivatives of ql elements. 

F = temporary matrix used in Todini’s algorithm; 

H = vector of total network heads; 

H0 = vector of total fixed (i.e. known) network heads; 

Inn, Ipp = identity matrices; 

i = matrix index for nodes; 

k = matrix index for pipes; 

l/lk = length of the k-th network pipe; 

n = head loss equation exponent and sub-matrix index; 

n0 = total number of known heads; 

np = total number of network pipes; 
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nn = total number of network nodes; 

mk = material of k-th pipe; 

prk = number of properties supplied along the k-th pipe; 

Pavg  = average pressure of the network; 

P/Pnodes=  vector of nodal pressure heads; 

P0
nodes

 = vector of known nodal pressure heads; 

Ppipes =  vector of average pressure in pipes whose components are Pk; 

Pmin = vector of minimum pressures at which demand supplied is equal to zero; 

Pser  = vector of minimum pressures required for supplying the demand qdesign; 

qi-leak = leakage flow rate in i-th node; 

qk-leak = leakage flow rate in k-th pipe; 

qk-bursts = burst component of leakage flow rate in k-th pipe; 

qk-background = background losses component of leakage flow rate in k-th pipe; 

Q = vector of pipe flows; 

qact =  vector of (actually) supplied nodal demands; 

qdemand  =  vector of actual required demand assuming 25% of leakages (qdemand=qdesign/1.25); 

qdesign =  vector of nodal demands used for pipe sizing; 

ql = vector of nodal flow rates from leakage outflow model at pipe level; 

Rk  = pipe hydraulic roughness; 

Rpp  = diagonal matrix whose elements are pipe hydraulic roughness; 

sk = thickness of the k-th pipe; 

αk,βk = coefficients of the leakage model for k-th pipe; 

γ = Bazin’s friction factor; 
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ΛΛΛΛnn, ΛΛΛΛpp= diagonal matrices of over-relaxation coefficients; 

λiter = step size or over-relaxation coefficient at iter-th iteration; 

Operators and Acronyms: 

()
T
 =  vector/matrix transpose operator; 

diag  = diagonal elements of a square matrix: 
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Table 1. Diameters used for pipe sizing of networks “A” and “B”. 

d 
(m) 

R/l 

(s
2
/m

6
) 

0.100 265.147 

0.164 18.565 

0.184 9.882 

0.204 5.629 

0.229 3.068 

0.258 1.639 

0.290 0.867 

0.327 0.460 

0.368 0.247 

0.500 0.049 

0.750 0.006 

1.000 0.001 
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Table 2. “Network A” pipe data. 

pipe 

No 

start 

node 

end 

node 

lk 

 (m) 

dk 

 (m) 

1 1 2 348.5 0.327 

2 2 3 955.7 0.290 

3 3 4 483 0.100 

4 3 9 400.7 0.290 

5 2 4 791.9 0.100 

6 1 5 404.4 0.368 

7 5 6 390.6 0.327 

8 6 4 482.3 0.100 

9 9 10 934.4 0.100 

10 11 10 431.3 0.184 

11 11 12 513.1 0.100 

12 10 13 428.4 0.184 

13 12 13 419 0.100 

14 22 13 1023.1 0.100 

15 8 22 455.1 0.164 

16 7 8 182.6 0.290 

17 6 7 221.3 0.290 

18 1 19 583.9 0.164 

19 5 18 452 0.229 

20 6 16 794.7 0.100 

21 7 15 717.7 0.100 

22 8 14 655.6 0.258 

23 15 14 165.5 0.100 

24 16 15 252.1 0.100 

25 17 16 331.5 0.100 

26 18 17 500 0.204 

27 17 21 579.9 0.164 

28 19 23 842.8 0.100 

29 21 20 792.6 0.100 

30 20 14 846.3 0.184 

31 9 11 164 0.258 

32 23 21 427.9 0.100 

33 19 18 379.2 0.100 

34 24 1 158.2 0.368 
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Table 3. “Network A” node data. 

node 

ID 

qi-design 

(l/s) 

HLi 

(m) 

Pi 
(m) 

1 10.863 6.4 26.90 

2 17.034 7 24.81 

3 14.947 6 21.30 

4 14.280 8.4 17.22 

5 10.133 7.4 23.54 

6 15.35 9 20.10 

7 9.114 9.1 18.91 

8 10.510 9.5 17.90 

9 12.182 8.4 17.85 

10 14.579 10.5 12.66 

11 9.0072 9.6 16.23 

12 7.5745 11.7 10.12 

13 15.200 12.3 10.03 

14 13.550 10.6 15.41 

15 9.226 10.1 14.00 

16 11.200 9.5 14.36 

17 11.469 10.2 15.30 

18 10.818 9.6 18.83 

19 14.675 9.1 19.35 

20 13.318 13.9 10.01 

21 14.631 11.1 11.48 

22 12.012 11.4 14.00 

23 10.326 10 10.45 

24  15 H01=21.4+15 
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Table 4. The range of some parameters of the “Network B”. 

 
lk 

(m) 
qi-design 

(l/s) 

Rk 

(s
2
/m

5
) 

Total/Mean 486927 3183.4 6155.6 

Minimum 1 0 0.0013 

Maximum 2530 63 530293.3 
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Table 5. Minimum/maximum value of some useful parameters during leakage-driven simula-

tions. NCR is the number of critical nodes (Pi<Pi-ser). 

 

“Network A” ql/qdemand NCR 
qact  

(m
3
/s) 

ql  
(m

3
/s) 

Pavg  
(m) 

Minimum among the 

1,000 simulations 
0.1501 0 0.1005 0.0339 2.78 

Average among the 

1,000 simulations 
1.1833 13 0.1803 0.2669 9.61 

Maximum among the 

1,000 simulations 
3.4701 22 0.2256 0.7829 19.81 
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Table 6. Statistics of leakage-driven simulations. 

“Network A” 

Maximum error Mean error   

Energy balance 

(m) 

Mass balance 

(m
3
/s) 

Energy balance 

(m) 

Mass balance 

(m
3
/s) 

Iteration 

number 

CPU time 

(s) 

Average among the 

1,000 simulations 
4.50×10

-4
 1.63×10

-4
 3.82×10

-5
 2.49×10

-5
 9.84 0.012 

Worst among the 

1,000 simulations 
2.24×10

-3
 1.44×10

-3
 2.11×10

-4
 1.64×10

-4
 25 0.047 
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Table 7. Minimum/maximum value of some useful parameters during leakage-driven simula-

tions. NCR is the number of critical nodes (Pi<Pi-ser). 

 

“Network B” ql/qdemand NCR 
qact  

(m
3
/s) 

ql  
(m

3
/s) 

Pavg  
(m) 

Minimum among the 

1,000 simulations 
0.1110 0 0.1381 0.2826 6.70 

Average among the 

1,000 simulations 
2.0197 708 1.5709 5.1436 19.18 

Maximum among the 

1,000 simulations 
5.5924 1225 2.5467 14.2421 33.62 
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Table 8. Statistics of leakage-driven simulations. 

 

“Network B” 

Maximum error Mean error   

Energy balance 

(m) 

Mass balance 

(m
3
/s) 

Energy 

balance 

(m) 

Mass 

balance 

(m
3
/s) 

Iteration 

number 

CPU time 

(s) 

U
si
n
g
 

λi
te
r  

Average among the 

1,000 simulations 
5.32×10

-3
 8.91×10

-5
 4.45×10

-6
 1.54×10

-7
 21.09 1.82 

Worst among the 

1,000 simulations 
1.84×10

-2
 6.32×10

-3
 2.89×10

-5
 4.81×10

-6
 51 4.53 

W
it
h
o
u
t 

U
si
n
g
 λ
it
e
r  Average among the 

960 simulations 
5.34×10

-3
 9.10×10

-5
 4.01×10

-6
 9.36×10

-8
 21.18 2.07 

Worst among the 

960 simulations 
1.85×10

-2
 1.62×10

-2
 2.23×10

-5
 1.11×10

-5
 44 5.16 
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LIST OF FIGURES 

Figure 1. Layout of “Network A”.  

Figure 2. Layout of “Network B”.  

Figure 3. Nodal pressure difference (in percentage of the nodal design pressure) between 

the two simulation approaches (“Network A”). 

 

Figure 4. Percentage (referring to total network demand) of nodal leakage flow of the two 

simulation approaches (“Network A”).  

 

Figure 5. Nodal pressure difference (in percentage of the nodal pressure of design) be-

tween the two simulation approaches (“Network B”). 

 

Figure 6. Percentage (referring to total network demand) of nodal leakage flow of the two 

simulation approaches (“Network B”).  

 

Figure 7. Number of iterations for convergence for each simulation (“Network B”).   

 

  

 


