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Abstract 

This paper presents a decision support methodology aimed at assisting Water Distribution 

System (WDS) operators in the timely location of pipe bursts. This will enable them to 

react more systematically and promptly. The information gathered from various data 

sources to help locate where a pipe burst might have occurred is frequently conflicting 

and imperfect. The methodology developed in this paper deals effectively with such 

information sources. The raw data collected in the field is first processed by means of 

several models, namely the pipe burst prediction model, the hydraulic model and the 

customer contacts model. The Dempster-Shafer Theory of Evidence is then used to 

combine the outputs of these models with the aim of increasing the certainty of 

determining the location of a pipe burst within a WDS. The new methodology has been 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12827671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

applied to several semi-real case studies. The results obtained demonstrate that the 

method is capable of locating the area of a pipe burst by capturing the varying credibility 

of the individual models based on their historical performance.  

 

Keywords: decision support, diagnostics, evidence theory, pipe burst, water distribution 

system. 

 

NOTATION 

Θ frame of discernment 

m() basic probability assignment 

Bel Belief function 

Pl Plausibility function 

BetP Pignistic probability function 

K conflicting probability mass 

 

INTRODUCTION 

The operation of Water Distribution Systems (WDS) is a complex process relying on the 

experience of operators who often have to base their decisions on scarce and incomplete 

information. Under normal operating conditions the behaviour of WDS is understood 

relatively well and can be simulated using hydraulic models. However, when pipe bursts 

occur, the lack of information makes the diagnostics task difficult. Pipe bursts cause 

water and energy losses (Colombo & Karney 2002), and can also lead to flooding of 

properties (Cooper et al. 2000) and intrusion of contaminants into the WDS (Sadiq et al. 
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2006). Timely detection and location of pipe bursts is therefore of primary interest to 

water utilities worldwide in order to improve their customer service, minimise leakage, 

preserve resources and thus minimise impact on the environment.  

 

Pipe burst prediction models have been developed in order to model the deterioration of 

underground assets (Kleiner & Rajani 2001). However, such models are more suitable for 

strategic planning and cannot be utilised on their own to support operational decisions, 

e.g., to locate a pipe burst in the system in real-time. With recent advances in sensor 

technologies, “intelligent”, wireless and inexpensive pressure and flow sensors have been 

widely deployed to monitor the state of the WDS in real-time. Their data have been used 

in combination with model-based methodologies attempting to detect and locate leakage 

or pipe bursts within a WDS. Andersen & Powell (2000) presented an implicit state 

estimation technique to locate a burst and demonstrated the methodology on a simple 

looped network without explicitly taking into account uncertainty and measurement 

errors. Poulakis et al. (2003) developed a Bayesian probabilistic framework for pipe burst 

detection and showed the capability of the methodology to identify the most likely burst 

location on a synthetic case study. Wu et al. (2008) used genetic algorithms to optimise 

the pressure-dependent emitter locations and coefficients as possible leakage and 

illustrated the methodology on a real-life network. Misiunas et al. (2006) used the 

EPANET (Rossman 2000) hydraulic solver to find a burst location by comparing the fit 

between the modelled and measured pressures in a WDS. Despite the progress achieved 

there is little evidence that these methods, when used on their own, are ready to be 

applied in real-life conditions for near real-time decision support of WDS operation.  
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In this paper, a methodology for combining the outputs of several models (including a 

Pipe Burst Prediction Model (PBPM), a Hydraulic Model (HM) and a Customer Contacts 

Model (CCM)) is proposed, to improve the potential for reliable and rapid identification 

of the possible locations of a pipe burst. This is essential to water companies, reflecting a 

proactive approach that attempts to detect and resolve failures in the WDS before they 

start affecting customers. This is not always possible and in some situations the water 

company reacts only after a problem is first reported by customers. In the proposed 

methodology, information provided by individual models is fused together, using the 

Dempster-Shafer (D-S) theory of Evidence (Shafer 1976). The combined output, which 

encapsulates the varying credibility of the individual models, provides the spatial 

distribution of Belief and Plausibility (e.g., Figure 4e and Figure 4f) of failure of any pipe 

in the studied WDS to support the decision making process by an operator. This 

evidential reasoning approach further reduces the information load faced by operators 

and increases confidence in the results that are supported by several models. 

 

DEMPSTER-SHAFER THEORY 

The D-S theory, also known as Evidence Theory, was first formulated in the late 1970’s 

by Dempster (1967) and later on extended and formalised by Shafer (1976). D-S theory 

can be used for inference in the presence of incomplete and uncertain information, 

provided by different, independent, sources. A significant advantage of D-S theory is its 

ability to deal with missing information and to estimate the imprecision and conflict 

between different information sources.  
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Sentz & Ferson (2002) provided a review of applications of D-S theory in various 

disciplines including classification and recognition, decision making, engineering and 

optimization, fault detection and failure diagnostics, etc. Evidence theory has also been 

used in water related applications. Démotier et al. (2003) applied D-S theory to risk 

analysis of water treatment processes. Sadiq and Rodriguez (2005) and Sadiq et al. 

(2006) used D-S theory to interpret water quality data. Li (2007) used D-S theory to 

aggregate risk levels in a hierarchical risk assessment of components, subsystems, and the 

overall water supply system. Bai et al. (2008) used Dempster’s combination rule in a 

hierarchical aggregation of evidence for condition assessment of buried pipes.  

 

The D-S theory operates on a “frame of discernment” Θ, which is a finite set of mutually 

exclusive and exhaustive propositions. Unlike traditional Bayesian models (Bayes 1763), 

probability mass can be assigned to subsets of the frame of discernment Θ using a Basic 

Probability Assignment (BPA), typically denoted m(A), where A is a non-empty subset of 

Θ. D-S theory defines two fundamental functions: Belief (Bel) and Plausibility (Pl):  

∑
⊆

Θ =→
AB

BmABelandBel )()(]1,0[2:  (1) 

∑
/≠∩

Θ =→
0

)()(]1,0[2:
AB

BmAPlandPl  (2) 

where: B is a non-empty subset of Θ. 

Bel corresponds to the total mass of evidence, which supports a proposition and all of its 

subsets, whereas Pl corresponds to the total mass of evidence, which is not in 

contradiction with a proposition (Shafer 1976).  
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In this study, a Binary Frame of Discernment (BFOD) Θ (Safranek et al. 1990), is used, 

comprising two propositions (“Burst” and “NoBurst”) representing the likelihood of 

occurrence / non-occurrence of a burst. The power set 2Θ is thus formed by the following 

subsets: (Ø,{Burst},{NoBurst},{Burst, NoBurst}), where the subset {Burst, NoBurst} 

represents the whole frame of discernment Θ and any probability mass assigned to this 

subset corresponds to a lack of knowledge (i.e., ignorance). The chosen definition of the 

BFOD implies that the process of identifying the location of a burst pipe is similar to a 

classification problem where a value of belief is calculated for every pipe in the WDS 

indicating the likelihood of that pipe being the true (i.e., {Burst}) or false (i.e., 

{NoBurst}) burst location. 

Dempster’s rule of combination (Shafer 1976) is an inherent part of D-S theory which 

allows combining information from different, independent sources of evidence. It is 

defined as follows: 
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where: m1,2 is the combined BPA, m1, m2 are the BPAs of independent sources of 

evidence, K represents the level of conflict amongst the evidence and A, B and C are non-

empty subsets of Θ. 
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Since the introduction of Dempster’s rule various other combination rules have been 

developed (Sentz & Ferson 2002). In this work, Yager’s combination rule (Yager 1987) 

and the PCR5 combination rule (Smarandache & Dezert 2006) were used, in addition to 

Dempster’s rule, to observe their different behaviour and performance in the process of 

information fusion. These rules differ in the way they distribute conflicting probability 

mass K amongst the propositions of Θ. Dempster’s rule distributes the conflicting mass 

equally amongst all propositions of Θ, Yager’s rule attributes all conflicting mass to Θ 

and the PCR5 rule proportionally redistributes partial conflicting masses amongst 

propositions involved in the partial conflict. 

 

To make decisions based on belief functions, Smets & Kennes (1994), proposed a model 

of transformation, based on the assumption that “beliefs manifest themselves at two 

mental levels: the ‘credal’ level where beliefs are entertained and the ‘pignistic’ level 

where beliefs are used to make decisions”. Based on the principle of insufficient reason, 

Smets & Kennes (1994) defined the pignistic probability function BetP as follows:  

2

( ) ( )
A

B A
BetP B m A

AΘ∈

∩
= ∑  (6) 

The pignistic probability function (BetP) is a measure that can be used to present the 

outputs of the information fusion process to the decision maker and will be later utilised 

in performance evaluation of the information fusion methodology. 

 

INFORMATION SOURCES 

Due to the flexibility of D-S theory, any kind of information providing an indication of 

the likelihood of a particular pipe bursting in the WDS can be combined to reduce the 
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lack of knowledge about the location of the failed pipe and increase the confidence in its 

correct identification. This research utilises three information sources that are considered 

to be independent: (a) a PBPM output, (b) a CCM output and (c) a HM output. As 

discussed by Marashi et al. (2008) and Bi et al. (2008) the assumption of their 

independence is realistic. This particular set of information sources was chosen because 

of its general availability to many water utilities worldwide and does not prevent other 

information sources from being used (see conclusions for examples). The first source of 

information (i.e., based on the pipe burst prediction model output) is treated as a static 

indicator of pipe burst occurrence whereas the other two remaining sources can be 

dynamic and provide new information as it becomes available (e.g., when another 

customer complaint is received or when the HM is updated with new real-time 

measurements obtained from field sensors).  

 

Pipe Burst Prediction Model 

A regression-based PBPM is used to obtain expected burst frequencies for every pipe in 

the studied WDS during the current month. The burst frequency of a pipe is expressed as 

a function of its material, diameter, age, soil type, land use and weather conditions. The 

specific expression and the related coefficients used in this work can be found in 

(Tynemarch Systems Engineering Ltd. 2007) and will not be reported here as it falls 

outside the scope of this paper.  

 

Customer Contacts Model 
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The current methods of detection and location of pipe bursts aim to notify the control 

room personnel of any abnormal conditions before a failure starts affecting customers. 

However, frequently, large pipe bursts are first reported by customers (i.e., when leaked 

water emerges on the surface or when a partial/full interruption to supply is noticed). In 

situations where no explicit pipe burst detection mechanisms are in place, customer 

reports are the only means of (reactive) response to control leakage. Despite being a very 

strong indicator of a burst location, customer contacts are imperfect and cannot be 

entirely trusted. A CCM was developed under the assumption that customers typically 

report pipe bursts in the proximity of where they live. The coordinates of the property 

(i.e., easting and northing) from which a customer contact originated, were used in this 

work. Furthermore, the CCM used a weighted distance to reduce the influence of outliers 

(i.e., misleading customer contacts) in situations when multiple customer contacts were 

received. The mathematical formulation of the model is as follows:  

,min( )i i j j
j

CCM d w= ×  (7) 
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1
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=
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(8) 

where: i is the index of a pipe, di,j is the (shortest) distance between pipe i and customer 

contact j (CCj), wj is a weight reflecting the significance of a particular customer contact 

(i.e., the lower the value of wj the more significant a given customer contact is), NCC is 

the total number of customer contacts associated with a particular pipe burst and C is the 

centroid of all customer contacts related to the pipe burst. 

 

Hydraulic Model 
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A HM was used to locate a burst in a WDS by simulating its effects (i.e., an increase in 

flow and drop in pressure) and compare them with values obtained from pressure and 

flow sensors deployed in the field. An estimated magnitude of the burst flow is first 

provided by a detection system able to discover abnormally high inflows into a District 

Metered Area (DMA) (Mounce & Machell 2006; Romano et al. 2009). An extra demand, 

equal to the estimated burst flow, is then added to the centre of every pipe to model the 

effects of a burst in that location. The pressure boundary conditions of the HM are set 

according to the data obtained from inlet pressure sensors at the time when the burst was 

first detected. The customer demands are proportionally scaled so that they add up to the 

measured inflow into the DMA obtained from the DMA inlet flow meters data (i.e., 

customer demands = DMA inflow - burst flow). The likelihood of any pipe bursting in 

the system is then indicated by a sum of squared errors between observed and modelled 

pressures calculated as follows: 

2
1, 2,

1 1

( ( ) ( ))
SN T

i s s

s t

HM P t P t
= =

= −∑∑  (9) 

where: i is an index of the burst pipe in the HM, s is an index of a node where a pressure 

sensor is located, NS is the total number of pressure sensors in the network, T is the 

number of pressure measurements available (i.e., different times), P1,s(t) is the modelled 

pressure at time t at node s and P2,s(t) is the measured pressure at time t at node s. Flow 

measurements inside a DMA were not utilised since these are not typically available in 

real-life systems (at least not in the UK) due to the higher cost of flow meters in 

comparison to pressure sensors. 

 

INFORMATION FUSION 
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Each of the information sources described above provides a single output (i.e., criterion 

measurement) for each pipe in the WDS reflecting the likelihood (i.e., a normalised value 

of the criterion measurement) of occurrence of a burst on that pipe. The individual 

information sources used are not considered to be fully reliable and each may be 

associated with a different level of credibility. In order to improve combined confidence 

in the location of a pipe burst, the information from all available sources is fused using 

the D-S theory by applying a suitable combination rule.  

 

Before the outputs of individual models can be combined, the criterion measurements 

need to be transformed into BPAs, each representing the exact belief in the given 

proposition (i.e., {Burst}, {NoBurst}) as well as the degree of ignorance (i.e., {Burst, 

NoBurst}). For this purpose a two-step procedure was adapted from Beynon (2005). The 

criterion measurement values are first converted to confidence factors using a suitable 

normalisation function and then transformed into BPAs as shown in Figure 1. 

 

The ideal position of Figure 1 

 
Beynon (2005) used a sigmoid normalisation function to transform criterion 

measurements into confidence factors that were mapped to corresponding BPAs. 

Similarly to Safranek et al. (1990), Beynon (2005) applied simple symmetric functions 

defined by two parameters A and B to map confidence factors to BPAs. On the other 

hand, Sadiq et al. (2006) used trapezoids, typical for fuzzy sets, to obtain BPAs directly 

from criterion measurements. In this work, however, the type of normalisation functions 

(i.e., linear, sigmoid, one-sided Gaussian and logit function) as well as the shape of the 
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mapping functions (defined by 8 parameters, i.e., 4 points A1, B1, A2 and B2 as shown in 

Figure 1) were determined for each of the input models based on its historical 

performance. The mapping function describing m({Burst}) is a non-decreasing function 

whereas the function describing m({NoBurst}) is a non-increasing function. Once the 

evidence for every pipe in the network is transformed to BPAs the individual pieces can 

be combined using a combination rule. The actual rule used is determined as part of a 

calibration procedure so that the ensemble of the combination rule, the normalisation and 

mapping functions gained the maximum benefit according to the criteria outlined in the 

results and discussion section. 

 

CASE STUDY 

The proposed methodology was applied to a case study based on data from a real system 

in North Yorkshire, UK. The studied DMA (see Figure 2) was an urban, highly looped 

network with 2 inlets and no exports, supplying water to over 4,500 customers.  

 

The ideal position of Figure 2 

 

The available dataset contained information about main repairs from a Work 

Management System (WMS), customer contact data and asset data providing required 

inputs into the PBPM. In order to calibrate the D-S model it was necessary to obtain 

details about a number of historical pipe bursts. During the period from April 2002 to 

April 2008 54 pipe bursts were recorded in this DMA at locations shown in Figure 2. 

Customers reported 65% of the pipe bursts either 24 hours before the burst was repaired 
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or during the same day when the repair took place. Based on this, it was assumed here 

that a burst pipe was repaired the same day that an anomaly was detected. The time 

window over which customer contacts were considered to be related to a particular burst 

event was established by performing spatial analysis of customer contacts and WMS data 

of a large number of DMAs. The size of the window was chosen as the best trade-off 

maximising the number of customer contacts associated with pipe bursts and minimising 

the distance of those contacts from the location of the burst pipe. 

 

The use of the HM as a source of evidence required a relatively high number of pressure 

sensors in the network depending on its size and topology in order to achieve acceptable 

performance. Water companies in the UK typically do not monitor pressure at sufficient 

number of locations in the WDS. Ten pressure sensors were deployed in the case study 

area in 2009 at locations indicated in Figure 2. However, throughout the period from 

2002 until 2008 pressure and flow data were not collected in sufficient quantity, nor was 

an online pipe burst detection system (Mounce et al. 2009), capable of providing 

estimates of the abnormal burst flows, in place. Therefore the inputs into the HM (i.e., 

pressure and flow measurements and estimated burst flow magnitude) had to be 

synthetically generated. A large burst (between 4.5 and 5.5 l/s, i.e., around 15% of the 

peak demand) was first simulated as a fixed demand added to the centre of a pipe nearest 

to the location obtained from the WMS system. Pressures in the system obtained at 

demand nodes closest to the real location of sensors, were recorded and used as reference 

pressures representing a pipe burst situation. Uniformly distributed noise of 2% and 7.5% 

was added to the reference pressures and nodal demands, respectively, to reflect real-life 
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conditions more closely. These figures are representative of the pressure sensors used and 

real-life demand conditions in the DMA. Without adding any noise the HM would always 

find the right location of the burst and would significantly outperform the remaining 

information sources. It was assumed that the magnitude of the burst flow was known and 

no noise was added to this input parameter at this stage. 

 

The complete dataset comprising 54 historical pipe bursts was split into a calibration set 

comprising 41 cases and a validation set comprising 13 cases (approx. ratio 75% 

calibration / 25% validation). The split between calibration and validation data was done 

in such a way that both datasets had similar properties (e.g., in terms of number of 

customer contacts received and the performance of individual models). The calibration 

procedure aimed to determine the most suitable normalisation and mapping functions as 

well as the combination rule that would produce the best combined results. The resulting 

mapping function of the CCM tailored specifically for the case study DMA is shown in 

Figure 3 as an example. The most suitable normalisation function for the PBPM was the 

sigmoid function and for the HM and the CCM, was the logit function. Dempster’s rule 

yielded better results in view of the calibration objectives than Yager’s and the PCR5 

combination rules. Note that the above findings should be considered case specific and 

should not be generalised in other situations. The same methodology can, however, be 

used in other cases to identify appropriate normalisation functions and combination rules. 

 

The ideal position of Figure 3 
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As can be seen from Figure 3, the mapping function captures different behaviour of the 

analysed model. In the case of the CCM, it can be observed that in a high number of 

cases customers reporting a burst were located in close proximity to the pipe burst. 

However, a portion of customer contacts was misleading, which explains the shape of the 

mapping function in Figure 3.  

 

RESULTS AND DISCUSSION 

The main aim of information fusion applied in the context of pipe burst diagnostics is to 

identify hotspots, comprising a small number of pipes, where the burst is most likely to 

be located. Figure 4 illustrates the performance of the D-S model on a historical pipe 

burst selected from the validation dataset. In this case, the burst was reported by two 

customers and therefore all three sources of evidence were available.  

 

The ideal position of Figure 4 
 

The accuracy of the PBPM was limited and a large number of pipes received the same 

confidence factor (see Figure 4a). The HM performed poorly in this particular case and 

identified two possible pipe burst hotspots, with the most likely location being far from 

the burst pipe (see Figure 4b). One of the customer contacts was received from a location 

in close proximity to the burst pipe whereas the other one was more than 250m away 

from the burst location (see Figure 4c). Based on the input of the CCM, the D-S model 

attributed higher levels of BetP(Burst) to the pipes in the second pipe burst hotspot 

previously identified by the HM, supporting the proposition that this was the true location 

of the burst (see Figure 4d). The pipes close to the second customer contact, which was 
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further away from the true location of the burst, received a lower level of BetP(Burst). 

Therefore a field investigation, based on the results of the D-S model, would focus on the 

first customer contact and thus reduce the time for repair, reducing the amount of water 

lost from the system and the possible follow-on (socio-economic) impact on customers. 

 

Performance comparison 

Table 1 shows the performance of the D-S model and of the individual models both on 

calibration and validation cases. These were further split depending on the presence of 

customer contacts (CC). The comparison was based on the ranking of the real burst pipe 

according to the output of the D-S model (i.e., the BetP(Burst)) and the ranking assigned 

by individual models (i.e., criterion measurements). The performance of any model was 

considered good if the real burst location was among the top 10 burst candidates 

identified by the respective model. As can be seen from Table 1 none of the individual 

input models, i.e., the PBPM, HM and CCM, was able to achieve the above goal in all of 

the situations (i.e., 54 historical pipe bursts) considered in the case study. The degree of 

success in identifying the location of a burst pipe varied significantly amongst the 

models. According to this assessment criterion the overall performance of the D-S model 

was on average in every scenario either equally good or better than any of the individual 

models. Similar performance can be observed in Table 1 where the number of potential 

burst candidates was increased from 10 to 50. 

 

The ideal position of Table 1 
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Evaluating the benefits of information fusion algorithms is not simple and using only the 

measure above would not reflect the additional advantages of this approach. A particular 

model might fail to identify the correct burst location according to the criteria used above 

but can, on the other hand, still identify a number of locations where the burst pipe is 

unlikely to be located. To take this fact into the account and to compare the quality of the 

output of the D-S model and the individual models, the following set of performance 

indicators was established: 

 

1. Likelihood concentration. For the method to be useful operationally, it is 

important that the likelihood of burst occurrence assigned to the pipes near the 

real burst location is higher than the likelihood assigned to pipes further away. 

This can be expressed using the ratio of the average likelihood of occurrence of 

the burst assigned to pipes close to the true burst location over the average 

likelihood of burst occurrence assigned to all remaining pipes. The higher this 

ratio is, the better the overall performance of a particular model. The set of pipes 

in the proximity of the true burst location was assumed here as the 10 

topologically nearest pipes. Given that the average length of the pipes in the case 

study area was 30m and that the network was highly looped, such resolution 

should be considered acceptable. 

2. Certainty. According to Yager (2004), Shannon entropy (Shannon 1948) was used 

to characterise the certainty of the outputs of the individual models and the D-S 

model. The entropy of an information source (i.e., output of a particular model) 
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was calculated using Eq. (10) and its certainty can be expressed using Eq. (11). 

The higher the certainty of a particular model the better was its performance. 

1

( ) ln( ( ))
PN

k k

k

H p Burst p Burst
=

= −∑  (10) 

1
ln( )P

H
Certainty

N
= −  (11) 

where: H is Shannon entropy, pk is either the normalised BetPk(Burst) or the 

normalised value of confidence factor of a potential incident (pipe) k in the case 

of the D-S model and the individual models, respectively and NP is the number of 

potential incidents (i.e., pipes) in the system 

The results of the comparison based on the two additional criteria suggested above are 

shown in Table 2, which indicates in how many calibration and validation cases was the 

D-S model better than the individual models (values above 50% indicate that the D-S 

model on average improved over the prediction of an individual model and 100% means 

that the D-S model was better in all considered cases than a particular individual model). 

Again, cases are further split into scenarios where customer contacts were and were not 

available. 

 
The ideal position of Table 2 

 

As it can be seen from Table 2, the D-S model yields better results in terms of the 

Likelihood concentration in a higher number of cases compared to the individual models. 

The D-S model was significantly better than the PBPM and CCM in view of the 

Certainty criterion, however, in some situations, it performed worse than the HM. This 
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fact is most apparent in scenarios where no customer contacts were received and only the 

outputs of the HM and PBPM were combined. In such situation the most likely locations 

of the burst pipe typically form a number of scattered hotspots rather than a relatively 

well confined area as shown in Figure 4d. Despite this fact the use of the PBPM as an 

information source still yields certain benefits as illustrated in Table 1. 

 

Sensitivity analysis 

To investigate the sensitivity of individual model outputs as well as the D-S model output 

to the noisy inputs, global sensitivity analysis using Monte Carlo simulation (1,000 

samples) was performed on the example presented in Figure 4. The selected case 

represented a suitable scenario from the validation data set since at least two of the 

individual models (i.e., the HM and the CCM) performed acceptably and therefore the 

effect of the added noise could be observed. Various levels of uniformly distributed noise 

as indicated in Table 3 were added to the inputs of the individual models, namely the HM 

(observed pressures, demands and estimated burst flow) and the CCM (Easting and 

Northing). Adding noise to the PBPM would be problematic and given its relatively low 

credibility it would not make a significant difference in this case. 

 

The ideal position of Table 3 
 
 
As can be seen from Table 3 the combined results are to some extent less sensitive to the 

noise added to the inputs of individual models. If the performance of only one of the 

models degrades significantly, the two remaining models (the CCM in particular) would 

still influence the combined results so that they did not degrade as fast as the worst 



 20

model. However, in cases where the amount of noise added to both input models (i.e., the 

HM and the CCM) at the same time exceeded reasonable thresholds (e.g., Scenario D and 

I in Table 3), far from what was present in the calibration dataset, then the combined 

results were, in a small number of cases, worse than those of any of the two key input 

models. 

 

CONCLUSIONS 

Locating a pipe burst within a DMA using data driven or conventional model-based 

methods is a challenging problem. The main constraint of such methods is typically the 

lack of data or insufficient calibration of the models used. Under such conditions of 

uncertainty, when no single model is able to provide a satisfactory answer, it is beneficial 

to combine the outputs from several models, based on different inputs, in order to 

improve confidence in the overall result. This paper presents a methodology based on 

D-S Theory which combines evidence from several independent sources/models (i.e., a 

pipe burst prediction model, a hydraulic model and a customer contacts model) to locate 

a pipe burst within a DMA. It is argued that this methodology is able to fully exploit all 

information sources available in a WDS Control Room and reduce the information load 

that needs to be processed by a human operator. 

 

A limiting factor to a wider application of hydraulic models in near real-time burst 

diagnostics is the unavailability of pressure and flow data in sufficient quantity and 

quality. Water utilities in the UK have only recently started to collect such data and even 

now it is still difficult to find a sufficient number of pressure monitoring points. The lack 
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of field data prevented the application of the methodology to a real-life system. The 

results obtained on a number of semi-real historical pipe bursts suggest that the method 

(depending on the quality of the input evidence) is capable of identifying the most likely 

area of the pipe burst. The methodology has the potential to learn from the performance 

of individual models during the calibration stage and successfully apply this knowledge 

to unseen cases. When feedback about new pipe bursts becomes available, the D-S model 

can be recalibrated in order to better reflect the evolving performance of the input 

models. Moreover, additional models suggesting the location of a burst pipe (e.g., based 

on the information of third parties working in the system, weather information, etc.) can 

be incorporated as additional information sources, to further improve the benefits of 

information fusion. 
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Figure 1 - Transformation of measurement criteria into BPAs based on Beynon (2005) 
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Figure 2 - An overview of the case study area 
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c) Customer Contacts Model
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Figure 3 - Optimised mapping function of the CCM 
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Burst Location Customer Contacts Likelihood: 1-0.91 0.9-0.81 0.8-0.71 0.7-0.61 <0.61

a) PBMP

d) BetP(Burst)

b) HM

e) Bel(Burst)

c) CCM

f) Pl(Burst)

 
 
Figure 4 - Example output from the a) PBPM, b) HM, c) CCM and the D-S model: d) 
BetP(Burst), e) Bel(Burst) and f) Pl(Burst) 
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TABLES 

 
Table 1 - An overview of the performance of the D-S model 
 

Scenario 
Rank of real burst location < 10 Rank of real burst location < 50 
D-S Model PBPM HM CCM D-S Model PBPM HM CCM 

Calibration (No CC) 28.6% 0.0% 14.3% 0.0% 71.4% 7.1% 42.9% 0.0% 
Calibration (CC) 74.1% 0.0% 29.6% 66.7% 85.2% 11.1% 66.7% 66.7% 
Validation (No CC) 0.0% 0.0% 0.0% 0.0% 40.0% 0.0% 40.0% 0.0% 
Validation (CC) 87.5% 0.0% 62.5% 62.5% 87.5% 0.0% 75.0% 75.0% 
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Table 2 - Performance comparison of the D-S model based on spatial distribution of the 
likelihood of the potential pipe bursts 
  

Scenario 
Likelihood concentration Certainty 
PBPM HM CCM PBPM HM CCM 

Calibration (No CC) 100.0% 100.0%  85.7% 28.6%  

Calibration (CC) 96.3% 100.0% 100.0% 96.3% 44.4% 100.0% 

Validation (No CC) 80.0% 80.0%  80.0% 0.0%  

Validation (CC) 100.0% 100.0% 100.0% 100.0% 75.0% 100.0% 
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Table 3 - Results of a global sensitivity analysis 
 

Scenario Burst 

Flow 

Pressure 

Noise 

Demands 

Noise 

Burst 

Flow Noise 

CC 

Noise 

AVG D-S 

Rank 

AVG HM 

Rank 

AVG CC 

Rank 

PBP 

Rank 

A 5 1.0% 5.0% 0.5% 0.01% 6.4 4.8 10.2 742.0 
B 5 2.0% 10.0% 1.0% 0.01% 7.2 5.4 10.2 742.0 
C 3 2.0% 7.5% 1.0% 0.01% 62.6 84.0 10.2 742.0 
D 5 3.0% 10.0% 2.0% 0.02% 24.8 16.5 14.4 742.0 
E 5 4.0% 10.0% 2.0% 0.02% 42.9 52.5 14.4 742.0 
F 7 3.0% 10.0% 5.0% 0.03% 8.1 5.2 20.1 742.0 
G 5 2.0% 7.5% 2.0% 0.03% 8.4 5.5 20.1 742.0 
H 5 2.0% 7.5% 4.0% 0.03% 9.9 5.6 20.1 742.0 
I 5 3.0% 7.5% 1.0% 0.03% 26.4 16.3 20.1 742.0 
J 3 2.0% 7.5% 1.0% 0.03% 66.9 84.0 20.1 742.0 
K 5 1.0% 7.5% 0.5% 0.05% 8.1 4.8 37.5 742.0 
L 5 2.0% 10.0% 1.0% 0.05% 8.9 5.4 37.5 742.0 
M 3 2.0% 10.0% 1.0% 0.05% 78.0 84.0 37.5 742.0 
N 7 2.0% 10.0% 2.0% 0.08% 8.2 4.9 70.1 742.0 
O 7 5.0% 10.0% 2.0% 0.08% 26.5 9.8 70.1 742.0 

 
 
 
 


