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Abstract

Every day we recognize a numerous objects and human brain can recog-

nize objects under many conditions. The way in which humans are able

to identify an object is remarkably fast even in different size, colours or

other factors. Computers or robots need computational tools to identify

objects. Shape descriptors are one of the tools commonly used in image

processing applications. Shape descriptors are regarded as mathematical

functions employed for investigating image shape information. Various

shape descriptors have been studied in the literature. The aim of this

thesis is to develop new shape descriptors which provides a reasonable

alternative to the existing methods or modified to improve them.

Generally speaking shape descriptors can be categorized into various

taxonomies based on the information they use to compute their mea-

sures. However, some descriptors may use a combination of boundary

and interior points to compute their measures. A new shape descrip-

tor, which uses both region and contour information, called centeredness

measure has been defined. A new alternative ellipticity measure and

sensitive family ellipticity measures are introduced. Lastly familiy of

ellipticity measures, which can distinguish between ellipses whose ratio

between the length of the major and minor axis differs, have been pre-

sented. These measures can be combined and applied in different image

processing applications such as image retrieval and classification. This

simple basis is demonstrated through several examples.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

It is a common saying that “a picture is worth a thousand words”. It is true that

visual information is very useful in communicating ideas and certainly humans rely

heavily on sight to perceive information regarding the physical world surrounding

us. The way in which the human brain processes visual information has been a topic

of study for many years.

Every day we recognize numerous objects and object recognition is one of the

most fascinating abilities that human brain easily possess, despite the fact that these

objects may vary in size, color, orientation, lighting conditions and other factors.

The way in which humans are able to process complex visual information and identify

an object is remarkably fast. It would be good for robotic applications or cameras

to be able to imitate these capabilities.

While it may be obvious that people are capable of recognizing objects with

little effort under many variations in conditions, it is one of the hardest challenges

for computer vision systems today. Imitating human vision into machine ability has

been studied and worked on for more than four decades Jain et al. (1995). There

have been significant efforts made to develop representation schemes and algorithms

aimed at collecting information and learning about the world around them. In this

way computers can eventually understand their surroundings in a very similar way

as humans do. The fields of application for computer vision are diverse: any human

activity could potentially benefit from it.
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1.1. Background

1.1 Background

For a digital computer to be able to process an image, it is first necessary to reduce

the image to a series of discrete values that can be manipulated by the computer.

The image is then a discrete grid of picture elements (pixels) which also have discrete

values. This is known as a digital image. The digital images which are captured

from digital camera, scanner, etc. must be quantized for digital processing. The

necessary quantization step inescapably causes a loss of information. A typical

digitized image may have 512 × 512 or roughly 250,000 pixels and high resolution

images are becoming common which is acquired by high quality instruments (e.g.

High resolution cameras). This high quality instruments may help avoid the error

produced by the quantisation process. A wide research in the literature has been

done to reduce the loss of information. There are other alternatives to pixel based

representation, like region-based representations, which created by merging similar

pixels, and vector graphics which use geometrical primitives. (e.g. curves, lines,

points). Several image representation techniques are available in the literature to

represent visual data. The represented data should be processed to use for specific

tasks. This is what we call image processing application. Generally speaking most

image processing applications consist of most of the following components:

• Acquisition - The first process is to capture an image. This can be done

by equipments which have the ability to digitize the signal produced by the

sensor. The sensor can be digital cameras, scanners or other types of sen-

sors. Moreover, the digital image can be constructed by using photo editing

programs.

• Pre-processing - The digital image must be prepared before a computer vision

method can be applied. The ultimate goal of this step is to modify the image

in order to discard unimportant information and extract some specific piece

of information which can be useful for further tasks. The steps of the pre-

processing includes: Normalisation, smoothing, Noise reduction, boundary

extraction, colour format conversions, binarization, object segmentation, etc.

16
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Figure 1.2.1: Structure of a typical image matching system.

• Feature extraction - This is the process of obtaining information from the

object in question, highlighting its features of interest. These features or

descriptors may be obtained from the objects boundary, surface, texture, or

any other characteristic. The features of an object are typically represented

in a quantitative form which allows for comparison between objects. Such

features can also be extracted by using computational methods called shape

descriptors.

• Further processing - Once the relevant information has been extracted the

derived information may be used to perform further tasks which depend on the

aim of application, for example, recognition, classification, similarity search,

etc.

1.2 Shape descriptors

Shape descriptors are considered as mathematical functions employed for investigat-

ing image shape information. When applied this function to an image, it is creating

numerical values. In general, descriptors are some sets of numerical values that are

produced to describe a given shape. Usually, the descriptors are in the form of a

vector. After shape features have been extracted, they can be used for further tasks.

For example, for a shape matching task, the distance between the vectors of shape

descriptors can be measured, or for classification task, a vector of shape descriptor

can be entered to a classifier to determine the class of the given shape. A model re-

lated to the matching process has been given in Fig.1.2.1 and a detailed information

about shape descriptor applications is given later in this section (see page 31).

17



1.2. Shape descriptors

Generally speaking shape descriptors can be categorized into various taxonomies

based on the information they use to compute their measures. Descriptors that use

the points on the boundary of the shape, ignoring the shape interior content are

called contour based descriptors. On the other hand, descriptors that exploit the

interior of the object are called region based descriptors. However it is important

to point out that some descriptors may use a combination of boundary and interior

points to compute their measures.

Depending on the type of the application, contour based descriptors can be

considered advantageous over region based descriptors or vice versa.

Contour based methods are generally sensitive to noise and variations as they

only use boundary of the shape; this usually causes these methods to be sensitive

to small differences and produce different results when the shape boundary changes

slightly. Besides, in many cases, the shape boundary is not available. Moreover,

they are not suitable for disjoint shapes or shapes with holes inside. Lastly, in some

applications, shape content is more important than the contour features.

On the contrary, region based shape descriptors are not sensitive to small changes

on the shape for example big changes on the boundary does not affect the area of

the shape thus they do not produce different results which make them robust with

respect to noise. Moreover, they are applicable to generic shapes and are more

robust to noise and shape distortions.

The descriptors should have certain desirable properties. Below is a short list of

these desirable properties:

• Rotation invariance - Rotating an object does not affect its shape but it can

cause the change of the pixel positions. However, it is expected that, for

a shape S and for the same shape rotated by θ degrees, R(S, θ), a shape

descriptor should produce the same measure

• Translation invariance - Translating an object is going to cause changes on the

coordinate of the object pixels. But, it would be expected that the produced

measure for the shape S should remain unchanged when transformations are

applied to the shape S.

18
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• Scale invariance - When the size of shapes are increased or decreased, the

pixels of images will be changed as well. In this case, changing the size of the

object should not affect the measure produced by a shape descriptor.

• Affine invariance - Affine invariance is an important property of shape descrip-

tors. Applying an affine transformation (e.g., shearing) to an image is going

to cause the pixels to be transformed from one coordinates to another. In this

case, applying an affine transformation to the shape S should not affect the

measure.

1.3 Existing shape descriptors

Over the years there has been a continuous interest in shape descriptors. Many

different approaches have been taken and there is a large existing body of available

literature.

As mentioned previously, shape descriptors can be broadly categorized as region-

based and contour-based descriptors. This section provides the reader with a brief

survey of some of the methods considered most relevant to this thesis. Section

1.3.1 presents a brief overview of the area based shape descriptors and section 1.3.2

presents a brief overview of the boundary based shape descriptors.

1.3.1 Area Based Shape Descriptors

1.3.1.1 Region Based Moments

One of the most well-known shape descriptors are moment invariants introduced

by Hu (1962) which have been used extensively in the literature on their own and

as basis to construct other shape descriptors. The basic definition of geometric

moments of (p+ q)-th order is as follows:

Mpq =

∫ ∞

−∞

∫ ∞

−∞
xp yq f(x, y) dx dy (1.3.1)

19



1.3. Existing shape descriptors

where p, q = 0, 1, 2, 3, ...,∞ and f(x, y) is the intensity function of the image. If the

given image is a binary image representing a shape S, we can simplify the definition

of moments to the following expression:

Mpq(S) =

∫ ∞

−∞

∫ ∞

−∞
xp yq dx dy (1.3.2)

Properties of Geometric Moments

The lower order moments represent some well known fundamental geometric

properties of the underlying image functions.

Central Moments

In order to attain translation invariance, moments are translated to the centroid

of the shape. These are called central moments µp,q and are defined as:

µpq =

∫ ∞

−∞

∫ ∞

−∞
(x− x)p (y − y)q f(x, y) dx dy (1.3.3)

where x and y are the centroid of the shape defined as in (1.3.7).

Mass and Area

The zeroth order of the geometric moments, M00,

M00 =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy (1.3.4)

represents the total mass of the given function or image f(x, y). When we work

on a binary image, the zeroth moment (1.3.4) represent the total area of the image.

Centre of Mass

The two first order moments can be used

M10 =

∫ ∞

−∞

∫ ∞

−∞
x f(x, y) dx dy (1.3.5)

and

M01 =

∫ ∞

−∞

∫ ∞

−∞
y f(x, y) dx dy (1.3.6)

20



CHAPTER 1. INTRODUCTION

to represent the centre of mass of the image f(x, y). In terms of moment values,

the coordinates of the centre of mass are

x =
M10

M00

, y =
M01

M00

. (1.3.7)

Scale invariant moments

It is possible to constract moments ηij where i + j ≤ 2 to be invariant to both

translation and changes in scale. To do that, the corresponding central moment

should be divided by the properly scaled (00)-th moment.

ηij =
µij

µ
(1+ i+j

2
)

00

(1.3.8)

Rotation invariant moments

The centralised moments are invariant with respect to translation and can be

normalised to be invariant with respect to changes in scale. However, to enable

invariance to rotation they require reformulation. Hu derived a set of invariants

from algebraic invariants applied to the moment generating function under a rotation

transformation. They are computed from normalised centralised moments. The first

7 In n-th Hu invariant moment which have been widely used in the literature are

defined as:

I1 = η20 + η02 (1.3.9)

I2 = (η20 − η02)
2 + (2η11)

2 (1.3.10)

I3 = (η30 − 3η12)
2 + (3η21 − η30)

2 (1.3.11)

I4 = (η30 + η12)
2 + (η21 + η30)

2 (1.3.12)

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3 (η21 + η30)

2]+

(3η21 − η30)(η21 + η30) [3(η30 + η12)
2 − (η21 + η30)] (1.3.13)

I6 = (η20 − η02) [(η30 + η12)
2 − (η21 + η30)

2] + 4η11(η30 + η12)(η12 + η30) (1.3.14)

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3 (η21 + η03)

2]−

(η30 − η12)(η21 + η03) [3(η30 + η12)
2 − (η21 + η03)] (1.3.15)
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1.3. Existing shape descriptors

1.3.1.2 Shape Orientation.

The second order moments, {M11,M02,M20}, known as the moments of intertia, are

also used to determine the shape orientation which is a necessary part of an image

normalisation procedure. The most standard method for the computation of the

shape orientation is defined as an angle between x axis and principal axis. This

method of orientation says that the orientation of an object is given by the line

which minimises the sum of squared distance of points belonging to the shape to

the line.

In terms of moments, the orientations of the principal axes, θ, are given by Jain

et al. (1995).

θ =
1

2
tan−1(

2µ11

µ20 − µ02

) (1.3.16)

1.3.1.3 Shape Elongation.

Elongation is a very common shape descriptor. Because of its clear meaning and

applicability, it is used in many shape classification tasks. The standard elongation

is consider the ratio of the height and width of a rotated minimum area bounding

rectangle for the measured shape (Jenkin and Harris, 1997). In other words, rotate

a rectangle so that it is the smallest rectangle in which the shape fits then compare

its height to its width (see Fig.1.3.1).

Elongation =
Widthbounding−box
Lengthbounding−box

(1.3.17)

H

e

i

g

h

t

Width

Figure 1.3.1: Illustration of the elongation measure.
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It is also possible to compute the ellongation by using central moments as defined

in Sonka et al. (2007).

El(S) =
µ2,0(S) + µ0,2(S)−

√
4µ1,1(S)2 + (µ2,0(S)− µ0,2(S))2

µ2,0(S) + µ0,2(S) +
√

4µ1,1(S)2 + (µ2,0(S)− µ0,2(S))2
. (1.3.18)

where µp,q are centralised moments of the shape S defined as in Eq.1.3.3

1.3.1.4 Shape Circularity.

Moments are widely used in literature, for different applications and for the creation

of shape descriptors. An example of shape descriptors derived from moment invari-

ants is the circularity descriptor developed by Žunić et al. (2010). They use second

order centralised moments to derive their measure, by showing that the quantity

µ2,0(S) + µ0,2(S)

µ0,0(S)2
(1.3.19)

reaches its minimum if and only if the given shape S is a circle. This shape

descriptor gives a measure of similarity between a given shape and a perfect circle

and it ranges over (0, 1]. This is also referred to as compactness.

The circularity measure introduced by Žunić et al. (2010) is defined as follows:

Kstd(S) =
1

2π
.

µ0,0(S)
2

µ2,0(S) + µ0,2(S)
(1.3.20)

The descriptor is modified by an additional tuning parameter β which modifies

the behaviour of the descriptor. The modified circularity measure is defined as

follows:

Kβ(S) =



1

β + 1πβ
.

µ00(S)
β+1∫∫

S

(x2 + y2)βdxdy
β > 0,

β + 1πβ

1
.

∫∫
S

(x2 + y2)βdxdy

µ00(S)β+1
β ∈ (−1, 0).

(1.3.21)
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The other approache to the same problem is calculating the intersection and

union of the shape area S with the area of the circle K that best fits to the shape.

Then the final circularity measure is the ratio of the areas of the intersection and

union of S and K.

Kfit(S) =
S ∩K
S ∪K

(1.3.22)

This approache is used in the literature to define other shape descriptors such

as: ellipticity, rectangularity, triangularity, etc. (Lee and Sallee, 1970).

1.3.1.5 Shape Rectangularity.

The rectangularity measure defined in Rosin (1999) considers fitting a rectangle

R(S) to the shape S based on moments. Then the rectangularity is defined as the

normalised discrepancies between the areas of the R(S) and S. More precisely, given

the following quantities: R – the area of difference between the fitting rectangle

R(S) and the shape S; D – the area of difference between the shape S and the

fitting rectangle R(S); and B – the area of the fitting rectangle R(S), then the

rectangularity measure is:

R′
D(S) = 1− R +D

B
(1.3.23)

The illustration of the R′
D(S) rectangularity measure is in Fig.1.3.2. Fig.1.3.2(a)

is the shape S, Fig.1.3.2(b) shows the constructed fitting rectangle (R(S)), and

Fig.1.3.2(c) shows the R +D.

(a) (b) (c)

Figure 1.3.2: Illustration of the R′D measure.
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The other rectangularity measure defined in the same paper is similar to the

previous measure. It introduces I – the area of intersection of the shape S and the

fitting rectangle R(S) rather than the area of the fitting rectangle (denoted above

by B).

RR(S) = 1− R +D

I
(1.3.24)

The illustration of the RR rectangularity measure is in Fig.1.3.3. Fig.1.3.3(a) is

the shape S, Fig.1.3.2(b) shows the constructed fitting rectangle (R(S)), Fig.1.3.3(c)

shows the R +D, and Fig.1.3.3(d) shows the I.

(a) (b) (c) (d)

Figure 1.3.3: Illustration of the RR measure.

1.3.2 Boundary Based Shape Descriptors

1.3.2.1 Contour Based Moments

Moments as defined in Eq.(1.3.2) are computed from shape area information. How-

ever moments can also be computed from shape boundary information (Lambert

and Gao, 1995). These are referred to as line moments. In order to compute line

moments, the boundary of any given shape S has to be expressed in parametric

form.

First let us introduce the parametric representation of a given shapes contour.

Let B be the boundary of a given shape S and let us start by assuming that B is

an open curve. Also let P be the length of B. We then can refer to the coordinates

of any point of B(s) = (x(s), y(s)) for 0 ≤ s ≤ P. Of course if B is a closed curve it

only means that B(0) = B(P ).

Line moments can be calculated for open curve segments and partially extracted

boundaries. Line moments are defined as follows:

m(l)
pq (B) =

∫
B

x(s)p y(s)qds (1.3.25)
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where the shape boundary B is given in parametric form and s ∈ [0, length(B)].

It is possible to derive central moments using the boundary information:

m(l)
pq (B) =

∫
B

(x(s)− x(l))
p
(y(s)− y(l))

q
ds (1.3.26)

In this case in terms of boundary moments, the coordinates of the centroid are:

x(l) =
m

(l)
10(B)

m
(l)
00(B)

, y(l) =
m

(l)
01(B)

m
(l)
00(B)

. (1.3.27)

1.3.2.2 Convexity Measure.

One of the mostly used shape descriptors is the shape convexity. Convexity is an

important shape descriptor and several convexity measures have been developed

(Rahtu et al., 2006; Padraig Corcoran and Winstanley, 2011) and used for many

image processing tasks such as: image segmentation (Pao et al., 1999), shape de-

composition (Latecki and Lakmper, 1999; Rosin, 2000) etc. The most standard

convexity is defined as the ratio between the convex hull perimeter of an object

and its perimeter (Sonka et al., 2007). For a given shape S, its convexity measure

Convexity(S) is defined as:

Convexity(S) =
Perimeter of ConvexHull(S)

Perimeter(S)
(1.3.28)

1.3.2.3 Fourier Descriptors

As stated previously, shape descriptors are classified mainly into two classes. Area

based and contour based. In some applications contour content can be more impor-

tant than the internal content (chromosome classification, identification of aircraft

and identification of particles). Contour based techniques can be more efficient for

the shapes which are describable by their object boundary (Mokhtarian and Bober,

2003). Several contour-based shape descriptors have been studied in the literature,

including Fourier descriptors [13].

The idea is to represent the contour as a function, transform the function in its

Fourier series, and use the coefficients of the series as Fourier descriptors (FDs).
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In other words, to derive the Fourier descriptors of an image, the considered shape

should be converted to 1-D signature.

Let x[n] and y[n] be the coordinates of the n-th pixel on the boundary of a given

shape and let z[n] be a shape signature which is generated by using the boundary

points (x[n] y[n]), then a complex number can be formed as z[n] = x[n] + jy[n] and

the Fourier Descriptor (FD) of this shape is defined as:

am = FDT (z[n]) =
1

N

N−1∑
n=0

z[n]exp(−j2πmn/N) (m = 0, 1, 2, 3, ..., N − 1) (1.3.29)

where N is the total number of pixels in the boundary.

Many signatures have been proposed in the literature such as: Radial distance,

triangular centroid area, polar coordinates, farthest point distance signature etc.

(Zhang and Lu, 2002, 2005; El-ghazal et al., 2009). A short overview related to the

existing shape signitures has been given below.

– Centroid Distance

The centroid distance considers the distance between the boundary points (x(n) y(n))

and the centoid ((x(c) y(c))) of the shape and defined as in Zhang and Lu (2002,

2005):

cd(n) =
√
(x(n)− x(c))2 + (y(n)− y(c))2

The centoids ((x(c) y(c))) can be computed as in Eq.1.3.7. They used the cen-

toids to make the measure to be invariant with respect to translation.

Figure 1.3.4: Illustration of the cd(n) signature.
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– Triangular centroid area

Triangular centroid area considers the area of the triangle between the two

boundary points (x(n), y(n)), (x(n+1), y(n+1)) and the centroid ((x(c) y(c))) of

the shape (see Fig.1.3.5). This area is used as a shape signature and can be calcu-

lated with the following equation:

TCA(n) = 1
2
|x(n) y(n+1)− x(n+1) y(n) |

Figure 1.3.5: Illustration of the TCA(n) signature.

– Farthest point distance

In El-ghazal et al. (2009) they defined this signature as the sum of the Euclidean

distance between the boundary point (x(n), y(n)) to the centroid (x(c), y(c)) and the

Euclidean distance between the centroid (x(c), y(c)) to the farthest point (x(f), y(f))

(see Fig.1.3.6 for illustration). It is possible to compute this signature as:

FPD(n) =
√
([x(n)− x(c)]2 + [y(n)− y(c)]2)+

√
([x(f)− x(c)]2 + [y(f)− y(c)]2)

x

y

cd(n)

x(n), y(n)

x(f), y(f)

x(c), y(c)

Figure 1.3.6: Illustration of the FPD(n) signature.
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– Polar coordinates

Polar coordinates are defined by combining the centrdoid distance cd(n) and the

polar angle θ as illustrated in Fig.1.3.7 and can be computed as:

PC(n) = cd(n) + j θ(n)

x

y

cd(n)

x(c), y(c)

θ

Figure 1.3.7: Illustration of the PC(n) signature.

1.3.2.4 Wavelets

Fourier analysis has been a traditional and efficient tool in many fields of science

and engineering, in the past two hundred years and Fourier descriptors are intro-

duced to overcome the drawbacks of existing shape representation techniques. But

they have also disadvantages such that they use the whole boundary information

of the shape and cannot extract local characteristics thus Wavelet descriptors are

defined to avoid the drawback of Fourier descriptors (Dang et al., 2006). Wavelets

are functions that satisfy certain mathematical requirements and provide a powerful

tool for image decomposition and analysis. Wavelets are a very popular tool in im-

age processing. Several extensions to wavelets have been developed over the years.

An example of these is sigmoidality descriptors introduced by Rosin (2003b) and

elongation descriptor introduced by Stojmenović and Žunić (2008). They are also

used in several applications such as: Recognition of Handprinted Characters, Char-

acterization of Dirac-Edges, Step-Edge Detection, Face Recognition, Iris Pattern

Recognition, Document Analysis, etc. (Tang, 2000)
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1.3.3 Histogram Based Shape Descriptors

1.3.3.1 Shape Context

Shape context (Belongie et al., 2000) is another way of describing shapes that allows

for measuring shape similarity. The basic idea is to pick a set P = {p1, . . . , pn},

pi ∈ R2, of n points from an image (e.g. extracted from a set of detected edge

elements) and consider the n − 1 vectors obtained by connecting pi to all other

sample points on a shape. The set of all these possible vectors is a rich description

but using them as a shape descriptor is far too detailed. Thus, the authors of the

paper (Belongie et al., 2000) used the distribution over relative positions as a robust,

compact, and highly discriminative descriptor. So, for the selected point pi from the

set of points, they computed the coarse histogram hi of the relative coordinates of

the remaining n− 1 points as:

hi(k) = #{q ̸= pi : (q − pi) ∈ bin(k) } (1.3.30)

They defined this histogram as a shape context of pi. Bins, which are normally

taken to be uniform in log-polar space, have been used to make the descriptor more

sensitive to nearest points than farthest points. To compute the cost of the matching

two points pi (from the first shape) and qi (from the second shape) they used:

Cij ≡ C(pi, qj) =
1

2

K∑
k=1

[hi(k)− hj(k)]
2

[hi(k) + hj(k)]

1.3.3.2 Histogram of Oriented Gradients

HOG features have been introduced by Dalal and Triggs (2005) who have developed

and tested several variants of HOG descriptors. The essential thought behind the

Histogram of Oriented Gradient descriptors is that they explicitly exploited the

distribution of intensity gradients or edge directions to characterize the local object

appearance (Kobayashi et al., 2008; Newell and Griffin, 2011; Huang et al., 2011;

Watanabe et al., 2009).
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The implementation of these descriptors can be achieved by dividing the image

into small connected regions, called cells, and for each cell computing a histogram

of gradient directions or edge orientations for the pixels within the cell. The combi-

nation of these histograms then represents the descriptor.

Algorithm Implementation

– Gradient Computation

In order to compute the gradient, a grayscale image should first be filtered to

obtain x and y pixel derivatives. Several gradient detectors have been used such as

[1,−1], [1, 0,−1], [1,−8, 0, 8,−1], Sobel (Sobel, 1970), etc. 1D centered point discrete

derivative mask is one of the most commonly used method to filter the gray scale

image. The mask should be applied in both the horizontal and vertical directions

by using the following kernels:

Dx = [−1 0 1 ] Dy = [−1 0 1 ]T (1.3.31)

Then, convolution operation should be applied as follows to obtain the x and y

derivatives of the given image I.

Ix = I ∗Dx Iy = I ∗Dy (1.3.32)

After calculating x, y derivatives (Ix and Iy), the magnitude and orientation of

the gradient should be computed as follows:

The magnitude of the gradient: |G| =
√
I2x + I2y

The orientation of the gradient: θ = arctan Iy
Ix
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– Orientation Binning

The next step is to compute cell histograms for later use at descriptor blocks.

Any HOG feature implementation must determine how many orientation bins to use

in the histograms.

To form an orientation histogram, for each pixels orientation in the cell, the

corresponding orientation bin should be found and the orientations magnitude |G|

should be voted to this bin.

– Descriptor Blocks

To normalize the cells orientation histograms, they should be grouped into blocks.

There are two main block geometries available: rectangular R-HOG blocks and

circular C-HOG blocks.

– Block Normalization

Gradient is affected by illumination changes thus, for better invariance to illu-

mination and shadowing, it is useful to normalize the local responses before using

them.

There are three different methods for block normalization which is defined as

follows:

L2− norm : f =
v√

||v||22 + e2

L1− norm : f =
v

||v||1 + e

L1− sqrt : f =

√
v

||v||1 + e

1.3.3.3 Spatial Pyramid Representation

In recent years, the bag-of-features (BoF) model has become popular in image pro-

cessing (Jianchao et al., 2009). The main idea of this method is to consider an image

as a set of unordered features which are extracted from local patches and then these
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features are quantized into visual words, finally a compact histogram should be

computed to represent the image for object recognition or scene categorization. The

BoF model has some descriptive limitations because it discards the spatial order of

local descriptors. Lazebnik et al. (2006) introduced one particular extension of the

BoF model, called spatial pyramid representation (SPR), to overome the limitation

of BoF model.

The SPR partitions an image into several subregions then computes the BoF

histogram within each subregions and concatenates these histograms to construct

a high dimensional vector which can be used to represent the image. First, SPR

extracts the global feature from the input image (the top level l = 0). Next, the

image is divided into a sequence of increasingly finer subregions on each pyramid

level. Features are extracted from each subregion cell on each pyramid level l.

When comparing two images, the features that fall into the same correspond-

ing cell in each image should be matched. This means that for each cell, a his-

togram should be constructed, and it should be matched to the corresponding cell’s

histogram in the other image. The number of matches at level l is given by the

histogram intersection function (Swain and Ballard, 1991):

I(H l
X , H

l
Y ) =

D∑
i=1

min(H l
X(i), H

l
Y (i)). (1.3.33)

Where D is the dimension of the cells, the histograms of X and Y have been

denoted by H l
X and H l

Y and the number of points which fall into the ith cell of the

subregion showed by H l
X(i) and H

l
Y (i).

Spatial pyramids can be matched using the pyramid kernel, which weights fea-

tures at higher levels more highly, reflecting the fact that higher levels localize the

features more precisely. Pyramid match kernel has been defined as follows:

KL(X, Y ) =
1

2L
I0 +

L∑
l=1

1

2L−l+1
IL. (1.3.34)

The histogram intersection and the pyramid matching kernel which is used in

Lazebnik et al. (2006) are defined by Grauman and Darrell (2005)
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1.4 Shape descriptor applications

As it has been mentioned before, shape descriptors are useful tools for extracting

features and it is effective for many applications. For example, (Lee et al., 2011)

have worked on an intelligent video security system and they used region-based

shape descriptor and angular radial transform to model the human shape and track

the human action.

Shape descriptors can be used in medical imaging to understand shape changes

related to illness or aid surgical planning. For instance, deformable registration of

images obtained from different modalities has been investigated by Mattias et al.

(2011) and they defined a Non-local shape descriptor to overcome this problem.

Furthermore, determining the Alzheimers disease using Teichmller Shape Descrip-

tor has been studied in (Zeng et al., 2012) and Kazhdan et al. (2009), which defines

a shape relationship descriptor for identifying similar constellations of tumor ge-

ometries from the patients database to transfer of treatment plans between patients

with similar indications.

Color and texture based shape descriptors have been used in e-commerce (Gan-

gopadhyay, 2001) to provide an efficient search system through product index where

it is difficult to use a text to perform search. For example, it is hard to describe

the style of the product by reliable words. Briefly, shape descriptors have been suc-

cessfully used in a wide range of applications. In this section, I mention a small

collection of examples where shape descriptors have been implemented.

In botany, leaf image classification is very useful for botanists. Scientists often

identify plants by examining their flowers or fruits however leaves are often useful to

identify a plant. In the study conducted by Ling and Jacobs (2007) the authors use

Fourier shape descriptors to classify 15 different Swedish tree species, with 75 leaves

per species. They achieved up to 95.33% accuracy by combining Fourier descriptors.

In (Rosin, 2003a), several methods (Ellipticity, Rectangularity, and Triangu-

larity) defined in the paper have been used to distinguish a variety of seeds and

beans. The best result (43.08%) is achieved when the combination of ellipticity

and triangularity measures have been used. In the research which is considered in
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(Zaker et al., 2012), the authors performed automatic measurement of the intensity

of spontaneous facial action. They considered three facial action units: cheek raiser

(AU6), lip corner puller (AU12), and lip stretcher (AU20) in infants, and evaluated

these experiments by using different image representation methods (shape and grey

scale texture, Histogram of Oriented Gradients (HOG), and Local Binary Patten

Histograms (LBPH)). They showed that Shape and grey scale texture proved best

for AU 12 (0.68) and AU 20 (0.69). For AU 6, they obtained similar results for grey

scale texture (0.81) and for HOG (0.83). LPBH was the least effective for all three

AUs (0.80 for AU 6, 0.24 for AU 12 and 0.63 for AU 20). Another shape descriptor

application example is face recognition which is performed by Deniz et al. (2011).

They used HOG-EBGM method and they achieved up to 95.5%.

Various classification examples can be found in Žunić et al. (2010) .They used

circularity measure to classify mammograms into two groups (circumscribed spec-

ulated) and they achieved up to 90.74% classification accuracy. They again used

circularity to classify galaxies in two groups: spiral and elliptical. When we con-

sider that they used only one circularity measure, the results obtained are good. The

last application was to measure print quality: The average correlation coefficient ob-

tained is 0.77 which is favourable according to Žunić et al. (2010). Shape descriptors

are also useful for security applications such as face recognition, fingerprint identifi-

cation etc. A Practical Automatic Face Recognition System has been implemented

by Sun et al. (1998) and the faces are identified by ellipse fitting. Fourier Descriptors

have also been used for face recognition (Dampos et al., 2000).

1.5 Thesis context

As it can be seen from Section 1.3, shape descriptors have a wide range of applica-

tions. Chapters 2 to 4 of this thesis introduce some novel shape descriptors which

can be applied to various applications in the same way as described above. The main

contribution of this thesis is the development shape descriptors suitable for imple-

mentation in image processing applications. Each chapter provides some examples

to illustrate how the developed descriptors can be applied. Notice that the examples
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provided in each chapter are meant as an illustration of the possible applications

and not as a definitive guide of application. As with all shape descriptors, these can

be applied to a variety of applications, on their own or in combination with other

descriptors.

1.5.1 Thesis structure

The rest of the thesis is structured as follows: Chapter 2 introduces a centredness

measure which use both area and boundary information of the shape. Chapter 3

introduces two shape ellipticity methods which have different features to calculate

shape ellipticity. Specific features, like setting the robustness of the measure, may

be made more or less sensitive to the noise depending on a parameter. Chapter 4

introduces a familiy of ellipticity measures which can distinguish between ellipses

whose ratio between the length of the major and minor axis differs. Chapter 5

concludes with a summary of the thesis and outlining some lines of future research.

1.5.2 List of publications

The work in this thesis has been submitted to various journals. The following is a

list of conference and journal articles already published or under review:

• Jovǐsa Žunić, Mehmet Ali Aktaş, Carlos Martinez-Ortiz, Antony Galton. (2011).

The distance between shape centroids is less than a quarter of the shape

perimeter. Pattern Recognition, 44(9):2161-2169

• Jovǐsa Žunić, Mehmet Ali Aktaş, Carlos Martinez-Ortiz, Antony Galton, Shape

Centredness Measure. X Triennial International SAUM Conference on Sys-

tems, Automatic Control and Measurements Nis, Serbia, November 10th-12th,

2010, pages 101-104.

• Mehmet Ali Aktaş, Jovǐsa Žunić, Measuring shape ellipticity. in CAIP’11:

Proceedings of the 14th international conference on Computer analysis of im-

ages and patterns, 2011, - Volume 6854 Part I of LNCS, pages 170-177, Berlin,

Heidelberg Springer-Verlag.
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• Mehmet Ali Aktaş, Jovǐsa Žunić, Sensitivity/Robustness Flexible Ellipticity

Measures. Proceedings of the 34th DAGM and 36th OAGM Symposium, Graz,

Austria, August 28-31, 2012. - Volume 7476 of LNSC, pages 307-316, Berlin,

Heidelberg. Springer-Verlag.

• Mehmet Ali Aktaş, Jovǐsa Žunić. (2013). Family of Shape Ellipticity Measures

for Galaxy Classification. SIAM J. Imaging Sci., 6(2):765-781

37



1.5. Thesis context

38



CHAPTER 2. SHAPE CENTREDNESS MEASURE

Chapter 2

Shape Centredness Measure

This chapter includes material from:

Jovǐsa Žunić, Mehmet Ali Aktaş, Carlos Martinez-Ortiz, Antony Galton. (2011).

The distance between shape centroids is less than a quarter of the shape perime-

ter. Pattern Recognition,44(9):2161-2169

and

Jovǐsa Žunić, Mehmet Ali Aktaş, Carlos Martinez-Ortiz, Antony Galton, Shape

Centredness Measure. X Triennial International SAUM Conference on Sys-

tems, Automatic Control and Measurements Nis, Serbia, November 10th-12th,

2010,pages 101-104.

2.1 Introduction

Shape descriptors (Chen, 2005) are a useful tool in the area of many computer vision

and image processing tasks (e.g. image retrieval, object classification, object recog-

nition, etc). However, the fundamental problem of shape descriptors is the accurate

extraction and representation of shape characteristics of objects regardless their size

and orientation.As previously mentioned, various shape descriptors exist in the lit-

erature, mainly categorized into two groups: contour-based shape descriptors and

region-based shape descriptors. Contour-based methods need extraction of bound-

ary information which in some cases may not available. Region-based methods,

however, do not rely on shape boundary information, but they take into account all
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the pixels within the shape region. Contour-based shape descriptors includes Fourier

descriptor (Zahn and Roskies, 1972; Bowman, 2001), wavelet descriptors (Chuang

and Kuo, 1996) and curvature scale space (CSS) (Mokhtarian and Mackworth, 1992).

Region-based shape descriptors includes moment invariants (Hu, 1962) and Zernike

moments (Khotanzad and Hong, 1990).

Of course, there are other descriptors which cannot be strictly classified as area

based or boundary based ones. Most well-known among them is the compactness,

which considers the relation between the shape perimeter and shape area (Sonka

et al., 2007).

In this chapter we introduce a new shape descriptor which also uses both the

boundary points and the interior points of the shape considered. The new descriptor

considers the distance between the shape centroids and assigns a higher value (here

called the shape centredness) if such a distance is smaller.

The shape centredness, as defined here, is easy to compute and is invariant with

respect to translation, rotation and scaling transformations. Several experiments

are provided to illustrate the behaviour of the new measure.

2.2 Shape Centroids

Computation of the shape centroid is one of initial tasks in image normalisation

processes. Often, the shape centroid is used to define the shape position. But they

are also used to compute the dominant directions and approximate diameters of a

region or they can be used to fit elliptic curve segments to extracted contours (Voss

et al., 1995). The most common definition of the shape centroid is area based – i.e.

it uses all the shape points for the computation, and informally speaking, defines the

shape centroid as the point whose coordinates are the average values of the abscissas

and ordinates of all the shape points. Let Carea(S) denote the centroid of S defined

in such a way, then Carea(S) is formally defined as follows:

Carea(S) =
(∫∫

S
x dxdy∫∫
S
dxdy

,

∫∫
S
y dxdy∫∫
S
dxdy

)
. (2.2.1)

40



CHAPTER 2. SHAPE CENTREDNESS MEASURE

However, sometimes it is reasonable and very useful to analyse shape by using

the boundary points only. Boundary based centroid is used in the literature to

define a shape descriptor and used to determine the Location of the palm print (Li

et al., 2011) or to classify the plants (Kue-Bum Lee, 2012). If the shape centroid

has to be computed from the boundary points, then such a centroid, here denoted

by Cboundary(S), is the point whose coordinates are equal to the average value of the

abscissas and to the average value of the ordinates of the shape boundary points.

Formally speaking, if the boundary B of S is given in an arc length parametrisation:

x = x(s), y = y(s), where s ∈
[
0,

∫
B
ds

]
(obviously

∫
B
ds is the perimeter of S)

then

Cboundary(S) =
(∫

B x(s) ds∫
B ds

,

∫
B y(s) ds∫

B ds

)
. (2.2.2)

As mentioned, shape centroid is used to define the shape position and, jointly

with the computation of the shape orientation, is necessary part of image normaliza-

tion procedures. Shape centroids are also used to define the translation invariants,

like Hu invariants (Hu, 1962) or their boundary based analogues (Chen, 1993).

Another example of a use of shape centroids are the shape signatures (see Section

1.5.3). A shape signature is one-dimensional representation of planar shapes. Being

one-dimensional objects, the signatures are easier for the further processing than

two-dimensional objects are. There are several shape signatures already considered

in literature which use the shape centroids as the reference points (El-ghazal et al.,

2009; El Rube et al., 2006).

Throughout the chapter the following three conditions will be assumed even not

mentioned.

(q-1) All shapes considered have a non-empty interior, i.e.,
∫∫

S
dxdy > 0, which

implies that the area based centroids Carea(S) (see (2.2.1)) are well defined.

(q-2) Boundaries of all shapes considered are continuous curves. This implies that

the boundary based centroids Cboundary(S) (see (2.2.2)) are well defined.

(q-3) Boundaries of all shapes considered have length equal to 1, i.e.

∫
B
ds = 1.
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2.3 Centeredness Measure

In this section we introduce the main result of the centeredness measure. The

distance between the centroids Carea(S) and Cboundary(S) are considered and it is

shown that this distance is upper bounded by a quarter of the perimeter of S.

Lemma 2.3.1 Let a given shape S be scaled so that its perimeter
∫
B ds is equal to

1. Also, let the boundary B of S be given in an arc length parametrisation form:

x = x(s), y = y(s), s ∈ [0, 1]. Then

||Carea(S)− Cboundary(S)|| ≤ 1

4
(2.3.1)

Proof. Without loss of generality we can assume that the shape S is translated so

that its area centroid Carea(S) coincides with the origin, i.e.

(∫∫
S
x dxdy∫∫
S
dxdy

,

∫∫
S
y dxdy∫∫
S
dxdy

)
= (0, 0) (2.3.2)

and rotated so that its boundary centroid Cboundary(S) belongs to the nonnegative

part of the x-axis, i.e. so that

∫
B
y(s) ds = 0 and

∫
B
x(s) ds ≥ 0 (2.3.3)

hold.

Since the shape S is positioned as stated in (2.3.2) and (2.3.3), then the distance

||Carea(S), Cboundary(S)|| between the centroids of S can be expressed as follows

||Carea(S)− Cboundary(S)||

=

∣∣∣∣∣∣∣∣(
∫∫

S
x dxdy∫∫
S
dxdy

,

∫∫
S
y dxdy∫∫
S
dxdy

)
,

(∫
B x(s) ds∫

B ds
,

∫
B y(s) ds∫

B ds

)∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣(0, 0) , (∫
B
x(s)ds, 0

)∣∣∣∣∣∣∣∣ =
√(∫

B
x(s)ds − 0

)2

=

∫
B
x(s)ds.(2.3.4)
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Thus, it remains to prove ∫
B
x(s) ds ≤ 1

4
, (2.3.5)

but we will prove the somewhat stronger inequality

∫
B
|x(s)| ds ≤ 1

4
. (2.3.6)

Because of (2.3.2), the boundary B intersects the y-axis, else all points of S

would belong to one of two open half planes determined by the x-axis, which would

imply that the assumed equality

∫ ∫
S

x dxdy = 0 is not possible. Let A be one of

the intersection points between the boundary B and the y-axis (see Fig.2.3.1), and

let B be parametrised as follows:

B : x = x(s), y = y(s), s ∈ [0, 1], such that (x(0), y(0)) = (x(1), y(1)) = A. (2.3.7)

Now, instead of the boundary B we consider the curve ϱ which is obtained from

B by replacing each point (x(s), y(s)) ∈ B by the point (|(x(s)|, y(s)) ∈ B. In

other words, each points (x(s), y(s)) ∈ B lying on the left side of y-axis is replaced

by the point (−x(s), y(s)), while the points lying on the right side of the y-axis

and the points lying on the y-axis remain unchanged (see Fig.2.3.1). Thus, the

parametrisation of the curve ϱ is:

ϱ : x = |x(s)|, y = y(s), s ∈ [0, 1], such that (x(0), y(0)) = (x(1), y(1)) = A. (2.3.8)

Further, let a ∈ (0, 1) be determined such that

∫ a

s=0

|x(s)| ds =

∫ 1

s=a

|x(s)| ds =
1

2
·
∫ 1

s=0

|x(s)| ds. (2.3.9)

Notice that such a number a exists because F (a) =

∫ a

s=0

|x(s)| ds is a continuous

function, and consequently it reaches all values (including the value
1

2
·
∫ 1

s=0

|x(s)| ds)

between the values F (a = 0) = 0 and F (a = 1) =

∫ 1

s=0

|x(s)| ds.
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Since s denotes the length between the points A = (x(0), y(0)) and (|x(s)|, y(s))

along the curve ϱ while s varies through s = 0 to s = 1, it must be that

|x(s)| ≤ s. (2.3.10)

This further gives (together with (2.3.9))

∫
ϱ

|x(s)| ds =

∫ 1

s=0

|x(s)| ds = 2 ·
∫ a

s=0

|x(s)| ds ≤ 2 ·
∫ a

s=0

s ds = a2.(2.3.11)

. . . .Cb

. .A A

. (x(a),y(a))

aC

Figure 2.3.1: The boundary B, given as x = x(s), y = y(s), s ∈ [0, 1], is displayed
on the left. The curve ϱ, defined as x = |x(s)|, y = y(s), s ∈ [0, 1], is displayed on
the right. ϱ consist of two parts displayed as the solid and dashed line. The dashed
line is reflective symmetric to the part of B lying in the half-plane x < 0.

Similarly, 1 − s denotes the length between the points A = (x(0), y(0)) =

(x(1), y(1)) and (|x(s)|, y(s)) along the curve ϱ while s varies (this time in the

opposite direction) through s = 1 to s = 0. So, it must be

|x(1− s)| ≤ s. (2.3.12)

Further, the following analogue of (2.3.9)):

∫ 1−a

s=0

|x(1− s)| ds =

∫ 1

s=1−a
|x(1− s)| ds =

1

2
·
∫ 1

s=0

|x(s)| ds (2.3.13)
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(together with (2.3.12)) gives

∫
ϱ

|x(s)| ds =

∫ 1

s=0

|x(s)| ds = 2 ·
∫ 1−a

s=0

|x(1− s)| ds ≤ 2 ·
∫ 1−a

s=0

s ds = (1− a)2. (2.3.14)

Finally (see (2.3.11) and (2.3.14)):

∫ 1

s=0

|x(s)| ds ≤ a2, a ∈ (0, 1)

∫ 1

s=0

|x(s)| ds ≤ (1− a)2, a ∈ (0, 1)

 ⇒
∫ 1

s=0

|x(s)| ds ≤ 1

4
(2.3.15)

establishes the proof. �

The following lemma shows that the upper bound established by Lemma 2.3.1

is sharp.

Lemma 2.3.2 For each δ > 0 there is a shape S such that

∥Carea(S) − Cboundary(S)∥ ≥ 1

4
− δ. (2.3.16)

Proof. We prove the statement of the theorem by showing that the distance between

centroids of the shape S(t) (displayed in Fig.2.3.2), is arbitrary close to 1/4, for a

suitable choice of t.

The perimeter of S(t) is 1. The centroids, Carea(S(t)) and Cboundary(S(t)), S(t)

(see Fig.2.3.2 and equations (2.2.1) and (2.2.2)) are as follows:

Carea(S(t)) =

(
1

4
· 5t3 − 4t4

2t2 + t3 − 4t4
,

1

2
· 2t

3 + t6 − 4t7

2t2 + t3 − 4t4

)
,

Cboundary(S(t)) =

(
1

4
− t+ 2t2 +

t3

2
− 2t4, 2t2 +

t3

2
− t4

)
.

(2.3.17)

Obviously, when t→ 0, we obtain

lim
t→0

Carea(S(t)) = (0, 0) , lim
t→0

Cboundary(S(t)) =
(
1

4
, 0

)
. (2.3.18)
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(0,t) (t,t)

(0.5−t,0)(0,0)

(0.5−t,t  )2

Figure 2.3.2: The shape S(t) depends on the parameter t. As t→ 0, its area centroid
converges to (0, 0) while the boundary centroid converges to

(
1
4
, 0
)
.

Thus, as t → 0, the area centroid Carea(S(t)) approaches the origin (0, 0) while the

boundary centroid Cboundary(S(t)) approaches the point
(
1
4
, 0
)
. In other words, for

each δ > 0, there is t = t(δ) such that

∥Carea(S(t(δ))) − Cboundary(S(t(δ)))∥ ≥ 1

4
− δ. (2.3.19)

This establishes the proof. �

Now, based on the results of Lemma 2.3.1 and Lemma 2.3.2, we introduce a new

shape descriptor, named the shape centredness, as a quantity which should indicate

to which degree the shape centroids coincide. We also give formula to compute the

shape centredness. Such a defined shape centredness assigns a higher value to shapes

whose centroids are close together and a lower value to shapes whose centroids are

far away each other.

Definition 2.3.1 Let S be a shape with a unit perimeter. Then the shape centred-

ness C(S) of S is computed as

C(S) = 1− 4 · ∥Carea(S)− Cboundary(S)∥ . (2.3.20)

We give the following theorem which summarises the basic desirable properties

of the new measure C(S).
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Theorem 2.3.1 Let S be a shape with a unit perimeter. Then the following state-

ments hold:

(a) C(S) is well defined;

(b) C(S) ranges over (0, 1];

(c) C(S) is invariant with respect to similarity transformations (e.g. translation,

rotation and scaling transformations).

Proof. Item (a) follows easily from the assumption that S has a nonempty interior

and from the assumption that the boundary B of S is a continuous curve – i.e. all

integrals appearing in (2.2.1) and (2.2.2) exist.

To prove the item (b) notice that 0 ≤ C(S) ≤ 1 is a direct consequence of

Theorem 2.3.1 and Definition 2.3.1. To prove that C(S) ̸= 0 it is enough to notice

that C(S) = 0 (i.e. that the distance between the centroids is 1/4) would imply that

the both inequalities in (2.3.10) and (2.3.12) are equalities. Further, the equalities

in (2.3.10) and (2.3.12) would imply that ϱ degenerates in two identical lines, which

contradicts to the assumption that the shape S has a nonempty interior.

To prove the item (c), first notice that ∥Carea(S)− Cboundary(S)∥ is invariant with

respect to rotations and translations. Since all measured shapes are scaled such that

their perimeter is equal to 1, the shape centredness C(S) is scaling invariant too. �

Remark. If we do not assume that the shapes considered are scaled such that

their perimeter is equal to 1 then the formula (2.3.20) can be replaced with the

equivalent one:

C(S) = 1− 4 ·
∥∥∥∥Carea(S)− Cboundary(S)

Perimeter of S

∥∥∥∥ (2.3.21)

and the items (a), (b), and (c) would follow again. The proof is trivial.

2.3.1 Shape Descriptors Used in Our Experiments

In this section we give a short overview of the shape descriptors used in experiments

here. A particular attention is given to the descriptor introduced in Ladaga and
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Bonetto (1998) which is defined as the ration between the shape centroid distances

and shape diameter.

We start with the shape compactness, which is a very common shape descriptor.

The shape compactness K(S) taking into account that, among all shapes with the

same area, the circle has the minimal perimeter, a compactness measure can be

defined as (see Sonka et al., 2007):

K(S) =
4 · π · Area of S
(perimeter of S)2

(2.3.22)

Notice that the K(S) measure also uses both interior information (i.e. area) and

boundary information (i.e. perimeter).

Another commonly used shape measures are the Hu’s moment invariants (Hu,

1962), which are introduced almost 50 years ago, but are still a very interesting re-

search topic (Xu and Li, 2008; Žunić et al., 2010). As already been mentioned in sec-

tion 1.1 these quantities are invariant to translation and similarity transformations .

In our experiments we will use the first three moment invariants Hu1(S), Hu2(S),

and Hu3(S) as mentioned in section 1.3.1.1.

Hu1(S) = µ2,0(S) + µ0,2(S)

Hu2(S) = (µ2,0(S)− µ0,2(S))
2 + 4 · (µ1,1(S))

2

Hu3(S) = (µ3,0(S)− 3 · µ1,2(S))
2 + (3 · µ2,1(S)− µ0,3(S))

2

In addition, we will use the standard shape elongation measure, which also can be

expressed in terms of moments (Sonka et al., 2007). The shape elongation is usually

given in its ‘traditional’ form, such that it varies through the interval [1,∞). It will

be denoted by El(S), and formally (in terms of moments) is defined as Eq.1.3.18.

In our experiments we will use the 1/El(S) value of the standard elongation

measure. In this way it is preserved that the measure used is not predominant (i..e.

does not take too big values obviously El(S) ∈ (0, 1].) in shape matching and shape

classification tasks, which will be performed later on.

Finally, we will use a shape descriptor introduced in Ladaga and Bonetto (1998)

and here denoted asADR(S) (meaning asymmetries in the distribution of roughness
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index). The ADR(S) is defined as the ratio between the squared distance among

shape centroids and the squared longest distance between two shape points. More

formally,

ADR(S) =
|| Carea(S)− Cboundary(S)||2

Df (S)2
(2.3.23)

where Df (S) is the longest distance between two shape points (also known as maxi-

mum Feret diameter, or simply as the shape diameter). This measure is particularly

interesting for us because it also uses the distance between shape centroids for its

computation. The paper Ladaga and Bonetto (1998) does not give the upper bound

of ADR(S) and this remains still an open problem. The lower bound is obviously 0.

Remark. Before the experiment section it is good to mention that, although

ADR(S) uses the same centroid distance (|| Carea(S)− Cboundary(S)||) for the com-

putation of the method, it does not mean that ADR(S) is assigning lower values

for the shapes whose distance between shape centroids are small. This is simply

because, for a small value of || Carea(S) − Cboundary(S)||, the shape diameter Df (S)

can be small as well. Thus, 1−ADR(S) may not be suitable to be used as an alter-

native centredness measure. A simple example is in Fig.2.3.3. The area centroid is

marked with“ + ” while the boundary centroid is marked with “ * ”. Zig-zag section

on the boundary of the shape presented is clearly detected by C(S) (the centrednes

assigned is 0.873) while ADR(S) almost ignores this section and assigns the value

1−ADR(S) = 0.975 (very close to 1 which is the value assigned to a perfect circle).

Figure 2.3.3: 1−ADR(S) = 0.975 while C(S) = 0.873.
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2.4 Experiments

In this section we give several examples to illustrate how the new shape measure acts.

First, we conduct experiments on synthetic shape . Synthetic shape experiments

usually illustrate the behaviour of the method and their outcomes can be verified

without using a computer. We also provide experiments for standard shape analysis

tasks, as they are: shape ranking, shape matching and shape classification.

We start with a synthetic example displayed in Fig.2.4.1. Basically, from the

proof of Lemma 1 we obtain an indication of which shapes have a relatively large

distance between the centroids (i.e. which have a very small centredness). Infor-

mally, it can be said that most of the perimeter of such shapes should be concentrated

on the other side from the side where the area is concentrated. A situation like this

t

h

1

S(h,t)

100 200 300 400 500

0.2

0.4

0.6

0.8

1

h

C
(s

)

Figure 2.4.1: For a fixed and small t, the centredness measure C(S(h, t)) depends
on the spike length h. It decrease as the length of the spike h increases.

is presented in Fig.2.4.1 (in Fig.2.3.2, as well). A shape S(h, t) depends on h which

is the spike length and on t (the spike width). While the circular part of shape (the

majority of the shape area) ”carries” the area centroid to the left, the spike (the

majority of the shape boundary) ”carries” the boundary centroid to the right. How

the measured centredness behaves, as the spike length varies (while the spike width

is fixed and very small), is presented by the graph on the right, in the same figure.

As expected, if h tends to 0 and t is very small, the shape centredness increases

and in the limit case h = 0 it becomes equal to 1 (in this case the shape centroids

approach each other because S(h, t) tends to a circle, as h, t → 0). On the other
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side, if h increases, then the measured centredness C(S(h, t = 0)) decreases and in

the limit case h→ ∞ converge to 0. Indeed, if the spike width t tends to 0, we can

say that S(h, t = 0) consists of a circle C and two identical line segments L1 and L2.

Without loss of generality, we can assume the situation as presented in Fig.2.4.1:

The centroid of C coincides with the origin, i.e., C = {(x, y) | |x2 + y2 = 1}, and

L1 and L2 belong to the x-axis. i.e. L1 = L2 = {(x, 0) | x ∈ [1, h]}. Now, en-

tering: Perimeter of S(h, t = 0) = 2π + 2h − 2, Carea(S(h, t = 0)) = (0, 0)

and Cboundary(S(h, t = 0)) =
(
h+1
2
, 0
)

into (2.3.21) we obtain C(S(h, t = 0)) =

π − 2

π + h− 1
. Obviously, lim

h→∞
C(S(h, t = 0)) = 0, as shown by the graph in Fig.2.4.1.

As a second example, several shape ranking experiments have been performed.

The behaviour of C(S) is illustrated by examples displayed in Fig.2.4.2 and 2.4.3.

Two sets of shape are ranked in accordance with their centredness values. Several

shapes, which correspond to the building silhouettes, are displayed in Fig.2.4.2 ac-

cording to their increasing centredness. A lower centredness correspond to buildings

having one or several towers. In those situations the shape centroids are relatively

far away from each other. A higher centredness correspond to buildings without a

tower. The centroids are relatively close to each other, while in the case of the rect-

angular silhouette the centroids coincide and the centredness is 1. The table below

the shapes also includes the shape compactness K(S) as defined in equation 2.3.22

and ADR(S) as defined in equation 2.3.23. In the presented example, a higher

C(S) measure correspond to a higher compactness measure. The case is opposite

for ADR(S), higher ADR(S) measure correspond to a lower compactness measure.

But this is not always the situation, as it will be shown by the next shape ranking

example.

More shapes are shown in Fig.2.4.3. We could say that the centredness values

are as we expected. The lower values correspond to the lamps with a long, thin

body which makes most of the area to be located on lampshade. Higher centredness

values belong to the lamps which have circular bodies, which implies an equally

distributed area from top to bottom. Notice that while in the case of the shapes

in Fig.2.4.2 the centredness and the compactness values assigned are consistent but
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(a) (b) (c) (d) (e) (f)

Shape (a) (b) (c) (d) (e) (f)

C(S) 0.8024 0.8376 0.8607 0.9535 0.9919 1.0000
K(S) 0.2503 0.3420 0.4245 0.6571 0.7249 0.7400

ADR(S) 0.0389 0.0182 0.0113 0.0012 0.0000 0.0000

Figure 2.4.2: The displayed shapes correspond to buildings silhouettes. Their cen-
tredness, together with their compactness are given in the table below the shapes.
The area centroids are marked with ” + ” while the boundary centroids are marked
with ” ∗ ”

ADR(S) values was opposite, in the case of the shapes in Fig.2.4.3, the rankings for

the three methods are different. As a result of this experiment it is possible to say

that compactness and centredness measures are not always consistent and ADR(S)

measure is not always inverse because they give different rankings.

Obtained rankings are:

C(S) : (a), (b), (c), (d) (e), (f),

K(S) : (a), (d), (e), (c) (f), (b),

ADR(S) : (f), (e), (d), (b), (c), (a),

As a third example we perform two shape matching (retrieval) experiments. The

shapes used are from the well known Kimia database. In both figures, Fig.2.4.4 and

Fig.2.4.5, the query shape is on the left (enclosed shape).

Five standard shape descriptors are used (the first three Hu’s moment invariants

(Hu, 1962), compactness and elongation (normalised such that varies through (0, 1]))

to perform shape matching (Fig.2.4.4). The best 9 matches (form the data base)

are listed after the query shape (the first row).
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(a) (b) (c) (d) (e) (f)

Shape (a) (b) (c) (d) (e) (f)

C(S) 0.8272 0.8685 0.9156 0.9312 0.9858 0.9921
K(S) 0.2996 0.4024 0.3893 0.3498 0.3554 0.4003

ADR(S) 0.0362 0.0164 0.0214 0.0114 0.0069 0.0000

Figure 2.4.3: The displayed shapes correspond to buildings silhouettes. Their cen-
tredness, together with their compactness are given in the table below the shapes.
The area centroids are marked with ” + ” while the boundary centroids are marked
with ” ∗ ”

(a) (b) (c) (d) (e) (f) (g) (h) (i)

(j) (k) (l) (m) (n) (o) (p) (q) (r)

Figure 2.4.4: The query shape is on the left (enclosed shape). The first row: The best
9 matches, if the first three Hu’s moment invariants, elongation and compactness
are used. The second row: The best 9 matches if the centredness is added to the
set of descriptors used.

After that, the centredness has been added to the set of shape descriptors used

and shape matching is performed again. The best 9 matches obtained are in the

second row. Even that objects of different kind may have similar shapes, and vice-

versa, object of the same kind can appear as object of different shapes, our preference

is that among the best matches we obtain, as many as possible, objects of the same

king (i.e. objects from the same group/class). Adding the centredness C(S), to

the set of descriptors used, leads to an obvious improvement in both experiments.

Indeed, in the first experiment (Fig.2.4.4), the query shape was a chair and among

9 best matches there was only one chair, and, even worse, the best match was not
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a chair (see the first row). The situation is essentially improved if the centredness

is added to the set of descriptors used: Among the 9 best matches 6 of them were

chairs, and the best 2 matches were chairs (see the second row in Fig.2.4.4).

C(S) Hu1(S) Hu2(S) Hu3(S) El(S) K(S)

Query 0.8723 0.2566 0.0174 0.0015 0.3215 0.2100

M1(a) 0.9560* 0.2549 0.0175 0.0021 0.3164 0.1940
M1(b) 0.8720* 0.2583 0.0165 0.0010 0.3362 0.2221
M1(c) 0.9724* 0.2706 0.0185 0.0104 0.3311 0.2103
M1(d) 0.9143* 0.2432 0.0171 0.0039 0.3012 0.2173
M1(e) 0.9233* 0.2358 0.0155 0.0012 0.3091 0.1985
M1(f) 0.9543* 0.2832 0.0218 0.0092 0.3143 0.2230
M1(g) 0.9210* 0.2557 0.0169 0.0097 0.3265 0.2406
M1(h) 0.9552* 0.2282 0.0133 0.0019 0.3291 0.2244
M1(i) 0.9660* 0.2432 0.0154 0.0015 0.3244 0.2400
M2(j) 0.8720 0.2583 0.0165 0.0010 0.3362 0.2221
M2(k) 0.8694 0.2892 0.0228 0.0020 0.3142 0.1912
M2(l) 0.9143 0.2432 0.0171 0.0039 0.3012 0.2173
M2(m) 0.8527 0.2586 0.0178 0.0020 0.3187 0.1606
M2(n) 0.9233 0.2358 0.0155 0.0012 0.3091 0.1985
M2(o) 0.9210 0.2557 0.0169 0.0097 0.3265 0.2406
M2(p) 0.8814 0.2640 0.0169 0.0003 0.3401 0.1552
M2(q) 0.8875 0.2625 0.0222 0.0013 0.2761 0.1746
M2(r) 0.8649 0.2699 0.0224 0.0021 0.2870 0.1629

Table 2.4.1: Shape descriptor values computed for the shapes in Fig.2.4.4. Values
in M1(a)-(i) rows relate to the shapes in the first row in Fig.2.4.4. C(S) values
marked by * were not used in the first matching task. Values in M2(j)-(r) rows
relate to the shapes in the second row in Fig.2.4.4.

Table 2.4.1 is added for a better understanding of the matching results obtained.

It can be seen that the matches M1(a) − (i) have similar Hu1, Hu2, Hu3, El(S)

and K(S) values to the corresponding values of the query shape (the C(S) values,

denoted by *, were not used for the matching, but they are needed for an explanation

of the matching results). The corresponding centrednes C(S) values of the shapes

M1(a), M1(c), M1(f), M1(h) and M1(i) are essentially different (all bigger than

0.9543) from the centredness (0.8723) of the query shape. But the centrednes was

not used for the matching, in the first instance. Once the centrednes was added to

the set of the descriptors (the second row in Fig.2.4.4), the situation has changed,

and shapes whose centrednes differs essentially from the centrednes of the query

shape were not among the 9 best matches. Of course, the selected shapes M2(j)-(r)

have the values of all descriptors used pretty much similar to the corresponding

values of the query shape.
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For the second matching example we compared the matching performance of

centredness measure with ADR. A building silhouette shape was the query shape

(the enclosed shape on the left in Fig.2.4.5) in the second matching task. When the

descriptors: Hu1, Hu2, Hu3, were used, four building shape was among the 9 best

matches (the first row). Once the centredness is added to the shape descriptors used,

the situations is again essentially improved. Seven building shapes were among the

9 best matches (the second row). When the ADR is added to the shape descriptors

used, the situations is not very much improved. Five building shapes were among

the 9 best matches (the third row). Centredness performed better for this matching

experiment.

(a)

(b)

(c)

Figure 2.4.5: The query shape is on the left (enclosed shape). The first row: The
best 9 matches, if the first three Hu’s moment invariants are used. The second row:
The best 9 matches if the centredness is added to the set of descriptors used. The
second row: The best 9 matches if the ADR is added to the set of descriptors used.

For the other example in this section, we perform a number of classification

tasks. Several combinations of descriptors Hu1, Hu2, Hu3, El(S), K(S), ADR(S)

and C(S) were used for the classification. Classification tasks were performed on

a shape set consisting of 150 shapes belonging to 5 classes: buildings, chairs, can-

delabrum, stars and trousers (taken from the Kimia database). Figure 2.4.6 shows

one sample image from each of these classes. The classification was made using a k

nearest neighbour classifier (kNN), with the value of k arbitrarily set to k = 5. The

classification results obtained are in Table 2.4.2.
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An explanation of the classification results follow.

Figure 2.4.6: Sample shapes from each class used in the classification experiment.

1.) In the first classification task, the initial set of descriptors:

Hu1(S), Hu2(S), Hu3(S), El(S), and K(S) (2.4.1)

where used. The classification rate 62.96% was obtained.

2.) In the next experiment, ADR(S) has been added to the initial set (2.4.1)

of shape descriptors. The classification rate has been improved to 68.89%.

3.) In the third classification experiment, the centredness C(S) has been added

to the set of initial descriptors (2.4.1) and classification rate has been further im-

proved to 73.33%. This experiments also demonstrates that C(S) are ADR(S)

essentially different (otherwise the classification rate in the second and the third

experiment would not differ essentially).

Descriptor set Class. rate

1.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) 62.96%
2.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and ADR(S) 68.89%
3.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S) 73.33%
4.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S), ADR(S) 73.33%

5.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and
√

ADR(S) 75.56%

6.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S),
√

ADR(S) 77.78%

Table 2.4.2: Classification accuracy: Different descriptor sets and kNN (k=5) are
used.

4.) Interestingly, by adding both C(S) and ADR(S) to the initial set of de-

scriptors, the classification rate has not changed – it remains 73.33%, as in the third

experiment. Looking for the reason why an improvement did not happen (or, at

least, why the classification rate has not been changed), we come to a conclusion

that this is because ADR(S) varies through a short interval [0, 0.0428], for shapes

from the selected data set. Because the interval [0, 0.0428] is so short, the measure

ADR(S) is not expected to distinguish well among the shapes classified.
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Thus, in the next two experiments,
√
ADR(S) was used instead of ADR(S).

There were two reasons for such replacement:

• Since
√
ADR(S) varies through the interval [0, 0.207], which is a wider inter-

val than the interval [0, 0428], it is expected that the replacement of ADR(S)

with
√
ADR(S) will increase the classification rate.

• The definition of ADR(S) considers the squared distance of among the shape

centroids (see (2.3.23)). If we consider
√

ADR(S) then the distance among

the shape centroids (divided by the diameter of the shape considered) will

be involved, what is our preference since we are studying a measure which is

linearly dependent on the distance between centroids.

5.) In the fifth classification experiment,
√
ADR(S) has been used with the

initial set (2.4.1) of shape descriptors. The ADR(S) measure performed better than√
ADR(S) and C(S) measure. The classification rate 75.56% was obtained.

6.) Finally, once both
√
ADR(S) and C(S) are added to the initial set of

descriptors, the highest classification rate 77.78% was reached. Since the classifi-

cation accuracy has increased, with respect to the fourth classification experiment

performed here, we conclude that
√

ADR(S) and C(S) are clearly correlated.

Two more examples have been performed. In Table 2.4.3 Z-score normalization

has been applied to the same data which is used in experiment illustrated in Table

2.4.2. The same classification tasks were performed and the results of the classifi-

cation accuracies are listed in Table 2.4.3. In this experiment the three measures

C(S), ADR(S) and
√

ADR(S) performed identically. Moreover, using the C(S)

and ADR(S) together with the other shape descriptors did not improve the re-

sult but using the C(S) and
√
ADR(S) together with the other shape descriptors

slightly improved the classification accuracy.

In Table 2.4.4 Min-Max normalization has been applied to the same data which

is used in experiment illustrated in Table 2.4.2. All the measures have been scaled

to be between 0 and 1. The same classification tasks were performed and the results
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of the classification accuracies are listed in Table 2.4.4. In this experiment C(S)

performed better than the ADR(S) measure but
√

ADR(S) gave the best classif-

ciation accuracy. Moreover, this time, using the C(S) and ADR(S) together with

the other shape descriptors improved the result but using the C(S) and
√

ADR(S)

together with the other shape descriptors caused the classifcaiton accuracy to de-

crease.

Descriptor set Class. rate

1.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) 66.67%
2.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and ADR(S) 77.33%
3.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S) 77.33%
4.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S), ADR(S) 77.33%

5.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and
√

ADR(S) 77.33%

6.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S),
√

ADR(S) 78.67%

Table 2.4.3: Classification accuracy results for the Z-score normalized data: Different
descriptor sets and kNN (k=5) are used.

Descriptor set Class. rate

1.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) 68.00%
2.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and ADR(S) 76.00%
3.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S) 78.67%
4.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S), ADR(S) 80.00%

5.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and
√

ADR(S) 80.00%

6.) K(S), Hu1(S), Hu2(S), Hu3(S), El(S) and C(S),
√

ADR(S) 78.67%

Table 2.4.4: Classification accuracy results for the Min-Max normalized data: Dif-
ferent descriptor sets and kNN (k=5) are used.

2.5 Conclusion

In this section we have considered the distance between the area centroid and bound-

ary centroid of a given shape. It has been shown that this distance is upper bounded

by a quarter of the shape perimeter, i.e. by 1/4 if the considered shape is scaled

so that its perimeter is equal to 1. We have also proved that this upper bound is

sharp and it cannot be improved. In other words, for arbitrarily small δ > 0 there

is always a shape whose centroids are at a distance bigger than 1
4
− δ. Trivially, the

58



CHAPTER 2. SHAPE CENTREDNESS MEASURE

minimum distance between a shape’s centroids is 0 and many shapes achieve this

value: circles, squares, etc, but also many irregular shapes.

We exploit such a sharp upper bound to define a new shape descriptor. We

named it shape centredness and intended it to be an indicator of the degree to

which the shape centroids coincide or informally, to which degree a shape has the

uniquely defined centre (centroid is sometimes called centre of gravity or centre of

mass). The centredness C(S) of a given shape S (scaled such that it has perimeter

equal to 1) is computed by the formula

C(S) = 1− 4 · ||Carea(S)− Cboundary(S)||

which provides that the measured centredness varies through the interval (0, 1] and

reaches a higher value if the shape centroids are closer to each other. We also showed

that the new measure is invariant with respect to translation, rotation and scaling

transformations, which is always desirable when dealing with problems which involve

the shape analysis tools.

Being theoretically well founded, the centredness behaviour can be understood

well and situations where the centredness would act well could be predicted (to the

some extent) in advance. For example, it is easy to predict that differentiating a fruit

without stalk e.g. Orange and a fruit with stalk e.g. cherry is possible. Because the

stalk of the cherry is going to cause the boundary centroid to move far from the area

based centroid on the direction of the stalk. But, for the orange, because orange is

an almost circular fruit, the both centroid of the orange shape is not going to be too

far from each other. We have used Kimia’s shape data set to verify usefulness of the

new measure. The measure has performed well and resulted in improved accuracy

in shape matching and shape classification tasks once the new descriptor is added

to a set of other shape descriptors.
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Chapter 3

Measuring shape ellipticity

This chapter includes material from:

Mehmet Ali Aktaş, Jovǐsa Žunić, Measuring shape ellipticity. in CAIP’11:

Proceedings of the 14th international conference on Computer analysis of im-

ages and patterns - Volume 6854 Part I of LNCS,pages 170-177, Berlin, Hei-

delberg Springer-Verlag.

and

Mehmet Ali Aktaş, Jovǐsa Žunić, Sensitivity/Robustness Flexible Ellipticity

Measures. Proceedings of the 34th DAGM and 36th OAGM Symposium, Graz,

Austria, August 28-31, 2012. - Volume 7476 of LNSC,pages 307-316, Berlin,

Heidelberg. Springer-Verlag

3.1 Introduction

As it was mentioned in section 1.2.1 a number of shape descriptors have been devel-

oped which can be generally divided in two groups: boundary and area based. Many

shape descriptors were created and used. Some of them are quite generic: such as,

Fourier descriptors (Bowman, 2001) and moment invariants (Hu, 1962). Alterna-

tively, there are shape descriptors which use a single characteristic of shapes: Sig-

moidality (Rosin, 2003b), linearity (Stojmenović et al., 2008), rectilinearity (Žunić

and Rosin, 2003), symmetry (Zabrodsky et al., 1995), etc.

This section introduces another global shape descriptor: shape ellipticity. Ellipse
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is a basic shape widely applied to a vast range of image processing tasks involving

not only man-made objects, but also natural forms. The problems like: Identifying

certain grains, onions, watermelons, cells, human faces and it is also used to ensure

the quality of steel coils before they are shipped out (Stojmenovic and Nayak, 2007;

Schleicher and Zagar, 2008). Moreover, how to determine the ellipse which fits

best to the data considered, or how to evaluate how much a shape given differs

from a perfect ellipse, have already been studied in literature (Fitzgibbon et al.,

1999; Peura and Iivarinen, 1997; Proffitt, 1982; Rosin, 2003a; Sonka et al., 2007).

Different techniques were employed – e.g. Discrete Fourier Transform (Proffitt,

1982), or affine moment invariants (Rosin, 2003a).

3.2 Ellipticity

Two ellipticity measures are defined in this chapter. First, an overview about the

existing ellipticity measures will be given, then basic ellipticity measure will be intro-

duced and lastly sensitive ellipticity measure will be defined. All the new ellipticity

measures introduced here indicate the degree to which a given shape differs from a

perfect ellipse. The ellipticity measure ranges over the interval (0, 1] and reaches its

maximum value 1 if and only if the measured line is a perfect ellipse. The measure

is invariant with respect to translations, rotations and scaling transformations.

3.2.1 Comparable Ellipticity Measures

As it was mentioned in the previous section several methods have already been

studied in literature. As expected, all the existing ellipticity measures have their

own strengths and weaknesses, and it is not possible to establish a strict ranking

among them. Measures which perform well in some tasks can have poor performance

in others.

We begin with a short overview, of the comparable ellipticity measures, with a

recent measure EI(S) presented by Rosin (2003a). The measure EI(S) varies through

the interval [0, 1] and picks the value 1 when the considered shape S is an ellipse.

The problem is that EI(S) = 1 does not guaranty (or at least this has not been
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proven) that the measured shape S is a perfect ellipse. Also, since EI(S) is defined

by using a projective invariant (Flusser and Suk, 1993), it does not change the

assigned ellipticity measure when an affine transformation is applied to the object

considered. Of course, in some applications this property can be an advantage,

but in some other applications it can be a disadvantage. For instance, when an

application needs to differentiate a circle and an ellipse it is not possible with EI(S)

measure because it is using affine moment invariant thus it is going to assign same

value for these two shapes (ellipse and circle). But the ellipticity measures which

are defined in this chapter can differentiate these two shapes (ellipse and circle).

For this situation, using a method, which is an affine transformation applied, is a

disadvantage.

On the other side, if the application needs to differentiate circle, ellipse and

triangle and if the circle and ellipse should be classified as the same class than

using the method which assign the same value to the shapes (ellipse and circle)

is an advantage. This time, the ellipticity measure EI(S) is more suitable for this

situation.

EI(S) uses the following affine moment invariant (Flusser and Suk, 1993):

I(S) =
µ20(S) · µ02(S)− µ2

11(S)

µ4
00(S)

(3.2.1)

and is defined as follows:

EI(S) =


16 · π2 · I(S) if I(S) ≤ 1

16π2

1

16 · π2 · I(S)
otherwise.

(3.2.2)

where, the ellipticity measure EI(S) is equal to 16 · π2 · I(S) if I(S) ≤ 1

16π2

else the ellipticity measure EI(S) is equal to 1
16·π2·I(S) .

The quantities µp,q(S) =
∫∫

S

(
x−

∫∫
S xdxdy∫∫
S dxdy

)p (
y −

∫∫
S ydxdy∫∫
S dxdy

)q
dxdy, appear-

ing in (3.2.1), are well known as the centralized moments.

There are also some standard approaches which can be used to define an el-
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lipticity measure. For example, the most common method (Sonka et al., 2007) to

determine an ellipse Ef (S) which fits with a given shape S, also uses the moments

for the computation. The axes of Ef (S) are (Sonka et al., 2007):

major − axis :

√
µ2,0(S) + µ0,2(S) +

√
4 · (µ1,1(S))2 + (µ2,0(S)− µ0,2(S))2

(3.2.3)

minor − axis :

√
µ2,0(S) + µ0,2(S)−

√
4 · (µ1,1(S))2 + (µ2,0(S)− µ0,2(S))2.

(3.2.4)

The angle φ between the major axis of Ef (S) and the x-axis is computed from

tan(2 · φ) = 2µ11(S)

µ20(S)− µ02(S)
. (3.2.5)

Now, we can define an ellipticity measure Ef (S) by comparing a given shape S and

the ellipse SEf (S), which is actually the ellipse Ef (S) scaled such that the area of

S and the area of Ef (S) coincide. A possible definition is:

Ef (S) =
Area(S ∩ SEf (S))
Area(S ∪ SEf (S))

. (3.2.6)

The angle φ, defined as in (3.2.5), is very often used to define the shape orien-

tation Sonka et al. (2007). The problem is that this method for the computation

of the shape orientation fails in many situations, but also can be very unreliable

(Žunić et al., 2006). For example, it is not possible to find a single angle φ for n-fold

rotationally symmetric shapes. Because of that, we modify the Ef (S) measure by

replacing SEf (S) in (3.2.6) by rotating SEf (S) around the centroid for an angle θ

which maximizes the area of S∩SEf (S). If such a rotated ellipse SEf (S) is denoted

by SEf (S(θ)) then we define a new ellipticity measure Efm(S) as:

Efm(S) =
Area(S ∩ SEf (S(θ)))
Area(S ∪ SEf (S(θ)))

. (3.2.7)

All three measures EI(S), Ef (S), and Efm(S),mentioned above, as well as the new

ellipticity measure, which will be defined in the next section, are area based. This

means that all the interior points are used for their computation. Because of that, we
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will say that all the shapes whose mutual set differences have the area equal to zero,

are equal. For example, the shape of an open circular disc {(x, y) | x2+ y2 < 1} and

the shape of the closed one {(x, y) | x2+ y2 ≤ 1} will be considered as equal shapes.

Obviously, this is not a restriction in image processing tasks, but will simplify our

proofs.

3.2.2 Ellipticity Measure

As it has been noticed before, the ellipticity measure should provide an indication of

how much the shape considered differs from a perfect ellipse. This section introduces

the ellipticity measure. We define a new ellipticity measure and give some desirable

properties of it. Throughout this section, it will be assumed, even not mentioned,

that all appearing shapes have the unit area.

To describe the new ellipticity measure we need an auxiliary ellipse E(S) which

is defined as

E(S) =

{
(x, y) | x

2

ψ
+ ψ · y2 ≤ 1

}
, (3.2.8)

where ψ is the ratio between the major-axis and the minor-axis of shape S, defined

as in (3.2.3) and (3.2.4)

Now, To define the new ellipticity measure, we start with a Lemma that describes

integral of the ellipse function over both the ellipse and the shape.

Lemma 3.2.1 Let a given shape S whose area is 1 and whose centroid coincides

with the origin. Let S(α) be the shape S rotated around the origin for an angle α,

and let Q(x, y) =
x2

ψ
+ ψ · y2, for a shorter notation. Then:

(a)

∫∫
S

Q(x, y) dx dy =

∫∫
E(S)

Q(x, y) dx dy ⇒ S = E(S);

(b) min
α∈(0,2π]

∫∫
S(α)

Q(x, y) dx dy =
1

2
⇔ S is an ellipse.
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Proof. (a) Since the areas of S and E(S) are the same (both equal to 1) and all

the points (x, y) satisfying Q(x, y) =
x2

ψ
+ψ · y2 ≤ 1 are inside the ellipse E(S) (see

(3.2.8)) we deduce

(x, y) ∈ E(S) and (u, v) /∈ E(S) ⇒ Q(x, y) < Q(u, v). (3.2.9)

Now, by using the above implication, we derive

∫∫
S

Q(x, y) dx dy =

∫∫
S\E(S)

Q(x, y) dx dy +

∫∫
S∩E(S)

Q(x, y) dx dy ≥

∫∫
E(S)\S

Q(x, y) dx dy +

∫∫
E(S)∩S

Q(x, y) dx dy =

∫∫
E(S)

Q(x, y) dxdy. (3.2.10)

Finally, the required implication (in (a)) follows from the fact that the equality
∫∫
S Q(x, y)dxdy =∫∫

E(S)Q(x, y)dxdy holds if and only if

∫ ∫
S\E(S)

Q(x, y) dx dy =

∫ ∫
E(S)\S

Q(x, y) dx dy = 0

(a direct consequence of (3.2.9) and (3.2.10)) – i.e., if the shapes S and E(S) are

equal.

(b) This item follows from (a), which actually says that
∫∫
S(α)

Q(x, y)dxdy reaches

the minimum possible value 1/2 (notice 1/2 =
∫∫
E(S)

Q(x, y)dxdy and see (3.2.10)) if

there is an angle α such that S(α) = E(S). �

By the arguments of Lemma 3.2.1 we define the following ellipticity measure.

Definition 3.2.1 Let a given shape S whose area is 1 and whose centroid coincides

with the origin. The ellipticity E(S) of S is defined as

E(S) =
1

2
· 1

min
α∈[0,2π]

∫∫
S(α)

x2

ψ
+ ψ · y2

(3.2.11)

where ψ is the elongation of S and S(α) denotes the shape S rotated around the

origin for an angle α where α can be found by exhaustive search.
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Now, we summarize desirable properties of E(S).

Theorem 3.2.1 The ellipticity measure E(S) has the following properties:

(a) E(S) ∈ (0, 1];

(b) E(S) = 1 if and only if S is an ellipse;

(c) E(S) is invariant with respect translation, rotation and scaling transforma-

tions.

Proof. The proof of (a) and (b) follows from Theorem 1. The proof of (c) follows

directly from the definition. Basic calculus is sufficient for a formal proof. �

3.2.3 Sensitivity/Robustness Flexible Ellipticity Measures

This section introduces a modification of definition 3.2.11 which allows the ellipticity

measure to be more sensitive or robust. As highlighted in the previous chapter, a

lot of research has been done on how to measure the shape ellipticity. Because

the existing methods and the ellipticity method which defined in section 3.2.1 are

area based, these methods are robust with respect to noise. When working with a

low quality data, the methods being robust is a desirable property. But there are

also situations where methods sensitive to the presence of noise or to small object

deformations, are more preferred.

In this section we propose a new family of ellipticity measures. The ellipticity

measures are dependent on a single parameter and by varying this parameter the

sensitivity/robustness properties of the related ellipticity measures, vary as well.

Independently on the parameter choice, all the new ellipticity measures indicate

the degree to which a given shape differs from a perfect ellipse. The ellipticity

measures range over (0, 1] and become 1 if and only if the shape considered is an

ellipse. All the measures are invariant with respect to the translation, scaling, and

rotation transformation.
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To describe the new ellipticity measure we need an auxiliary ellipse E(S), defined

for a given shape S, in the following way :

E(S) =

{
(x, y) | π

ρ(S)
· x2 + (π · ρ(S)) · y2 ≤ 1

}
. (3.2.12)

In the above equation ρ(S) is the ratio between the major-axis and the minor-axis

of S, defined as in (3.2.3) and (3.2.4). Notice that the areas of S and E(S) are the

same and both equal to 1.

The ellipse E(S) can be expressed in many different ways. Indeed, let λ > 0 and

let the function Φλ(x, y) be defined as

Φλ(x, y) =

(
π

ρ(S)
· x2 + (π · ρ(S)) · y2

)λ

, (3.2.13)

then

E(S) = {(x, y) | Φλ(x, y) ≤ 1} for all λ > 0. (3.2.14)

It is easy to see that regions on the right side of (3.2.12) and (3.2.14) are both

bounded by the same curve given by the equation Φλ(x, y) = 1, which does not

depend on λ, i.e., the equations Φλ(x, y) = 1 and Φγ(x, y) = 1 are equivalent for all

λ, γ > 0.

Now, to define the new ellipticity measure, we start with a Lemma which gives

the theoretical foundations for our definition of the new ellipcity measures.

Lemma 3.2.2 Let a given shape S whose area is 1 and whose centroid coincides

with the origin. Let S(α) be the shape S rotated around the origin for an angle α,

and let fix λ > 0. Then:

(a)

∫∫
S

Φλ(x, y) dx dy =

∫∫
E(S)

Φλ(x, y) dx dy ⇒ S = E(S);

(b) min
α∈(0,2π]

∫∫
S(α)

Φλ(x, y) dx dy =
1

1 + λ
⇔ S is an ellipse.
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Proof. (a) Fix λ > 0. Since all the points (x, y) satisfying Φλ(x, y) ≤ 1 are inside

the ellipse E(S) (see (3.2.14)) we deduce

(x, y) ∈ E(S) and (u, v) /∈ E(S) ⇒ Φλ(x, y) ≤ 1 < Φλ(u, v). (3.2.15)

Let us assume that the shapes S and E(S) are different, i.e.

∆ = Area(S \ E(S)) = Area(E(S) \ S) > 0. (3.2.16)

The above implication (3.2.15) gives

∫∫
S\E(S)

Φλ(x, y) dx dy ≥
∫∫

E(S)\S
Φλ(x, y) dx dy (3.2.17)

and further ∫∫
S

Φλ(x, y) dx dy ≥
∫∫

E(S)

Φλ(x, y) dx dy. (3.2.18)

Finally, the required implication (in (a)) follows from the fact that the equality∫ ∫
S

ϕλ(x, y)dxdy =

∫ ∫
E(S)

Φλ(x, y)dxdy holds if and only if

∫ ∫
S\E(S)

Φλ(x, y) dx dy =

∫ ∫
E(S)\S

Φλ(x, y) dx dy = 0

(a direct consequence of (3.2.15) and (3.2.18)) – i.e., if the shapes S and E(S) are

equal.

(b) This item follows from (a), which actually says that
∫∫
S(α)

Φλ(x, y)dxdy reaches

the minimum possible value
1

1 + λ
(notice

1

1 + λ
=

∫∫
E(S)

Φλ(x, y)dxdy and see

(3.2.18)) if there is an angle α such that S(α) = E(S). �

By the arguments of Lemma 3.2.2 we define the following ellipticity measure.

Definition 3.2.2 Let a given shape S and let λ > 0. The ellipticity Eλ(S) of S is

defined as

Eλ(S) =
1

1 + λ
· Area(S)1+λ

min
α∈[0,2π]

∫∫
S(α)

Φλ(x, y) dx dy
(3.2.19)
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where Φλ(x, y) is defined as in (3.2.13) and S(α) denotes the shape S rotated around

the origin for an angle α.

Now, we summarize desirable properties of E(S).

Theorem 3.2.2 All ellipticity measures Eλ(S), λ > 0, have the following properties:

(a) Eλ(S) ∈ (0, 1]; (It tends to 0 for large λ)

(b) Eλ(S) = 1 if and only if S is an ellipse;

(c) Eλ(S) is invariant with respect to translation, rotation and scaling transforma-

tions.

Proof. The proof of (a) and (b) follows from Theorem 1. Eλ(S) is translation and

rotation invariant from the definition. Basic calculus is sufficient to prove the scaling

invariance of Eλ(S). �

Fig.3.2.1 shows how Eλ(S) changes if S is fixed and λ varies. Six shapes and

their corresponding graphs Eλ(S) for λ varing through the interval ∈ [0.1, 30] are

displayed.
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Figure 3.2.1: Six shapes and their corresponding graphs Eλ(S), for λ ∈ [0.1, 30]
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3.3 Experiments

This section provides several experiments to illustrate the behaviour of the E(S) el-

lipticity measure and to compare it with the related measures Ef (S), Efm(S), EI(S)).

This section is divided in two parts: Subsection 3.3.1 provides some examples for

the basic ellipticity measure given in Definition 3.1. Subsection 3.3.2 presents some

experiments to illustrate the behaviour of Sensitivity/Robustness Flexible Ellipticity

Measures given in Definition 3.2.

3.3.1 Ellipticity Measure

The first example in this section is noise experiment. Although all measures defined

in this chapter are area based and robust with respect to noise or to narrow intrusion,

as it has been demonstrated in Fig.3.3.1, the assigned ellipticity measures do not

change essentially. The shapes Fig.3.3.1(b),(c),(d), illustrate the noisy images with

different level of boundary noise added. Even that the last shape Fig.3.3.1(d) has a

big level of noise added, there is no big change on the assigned ellipticity measure.

(a) (b) (c) (d)

(a) (b) (c) (d)

E 0.7484 0.7565 0.7617 0.7466
Ef 0.6701 0.6786 0.6847 0.6668
Efm 0.6821 0.6969 0.7055 0.6929
EI 0.5622 0.5727 0.5813 0.5580

Figure 3.3.1: Shapes with a different noise level added and their corresponded E ,
Ef , Efm, and EI values.

The second example in this section is a ranking experiment. As shown in

Fig.3.3.2, eight random shapes are ranked in accordance with the increasing E(S)

measure. The computed measures E(S), Ef (S), Efm(S), and EI(S) are in the ta-

ble below the shapes. As a result of this experiment, it is possible to say that

all measures which is used in this experiment is essentially different because they

give different rankings. For example, if we consider the last 6 shapes the obtained

rankings are:
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3.3. Experiments

E : (c)(d)(e)(f)(g)(h);

Ef : (d)(c)(f)(e)(g)(h);

Efm : (c)(d)(f)(e)(g)(h);

EI : (c)(d)(e)(f)(h)(g) – i.e. all the rankings obtained are different.

(a) (b) (c) (d) (e) (f) (g) (h)

Shape (a) (b) (c) (d) (e) (f) (g) (h)

E(S) 0.1628 0.3011 0.6328 0.7039 0.7676 0.7691 0.9032 0.9033
Ef (S) 0.0000 −−−− 0.5324 0.4838 0.6854 0.5326 0.7641 0.7752
Efm(S) 0.0000 0.0000 0.5374 0.6346 0.7426 0.7383 0.7612 0.7801
EI(S) 0.0266 0.0907 0.4010 0.5026 0.6120 0.6120 0.8305 0.8150

Figure 3.3.2: Shapes are displayed in accordance with their increased E(S) measure.

Furthermore, the first shape in the same figure (Fig.3.3.2(a)) illustrates a big

drawback of Ef (S) and Emf (S). Both measures could assign the value 0 to the shapes

with big holes or shapes whose centroid lies outside the shape. A consequence is

that Ef (S) and Emf (S) could not distinguish among such shapes. The new measure

E(S) has no such a drawback and it does not take the value 0 for any shape.

The second shape in the same figure (Fig.3.3.2(b)) illustrates another drawback

of the Ef (S) measure, i.e., it is well-known that Ef (S) cannot be applied to the N -

fold rotationally symmetric shapes (Žunić et al., 2006), because these shapes satisfy

µ1,1(S) = µ2,0(S) − µ0,2(S) = 0 and, consequently, the orientation angle, defined

as in (3.2.5), cannot be computed. The new measure E(S) does not have such a

drawback. Notice that a big hole in the middle of the shape causes Efm(S) = 0 for

this shape (as has already been discussed).

Finally, the shapes in Fig.3.3.2(e) and Fig.3.3.2(f) cannot be distinguished by

the measure EI(S) because it assigns the same value for all the shapes which are pro-

duced by affine transformations applied to a shape (as they are shapes in Fig.3.3.2(e)

and Fig.3.3.2(f)). The new measure E(S) distinguishes among these shapes and this
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property can be an advantage in some applications. Of course, there are applications

where this property is not preferred.

As the third example in this section two shape matching experiments were per-

formed. In these matching experiments our aim is to obtain as many as possible

shapes of the same class with the query image because sometimes It can be possible

that two shapes from different classes can be similar or vice versa, shapes from the

same classes can look like different.

For the first matching experiment (see Fig.3.3.3) we used MPEG7 CE Shape-1

Part-B database. The data set was built by chosing 200 images from 10 different

classes (bat, camel, bone, crown, fork, frog, beetle, rat, horseshoe, bird) and we

selected ”camel-7” as the query image (the enclosed shape in Fig.3.3.3). For the

first task we used the first three Hu moment invariants to perform the matching

task and we diplayed the best 9 matches in the first row of the Fig.3.3.3). The 3 of

the best matches were camels.

In the next four task we chosed a single ellipticity measure form the set {E(S), Ef (S),

Efm(S), EI(S)} and used together with the first three Hu moment invariants. We

illsutrated the results of the best 9 matches in the corresponding rows. In all situ-

ation there is an improvement. For example, when we used EI(S),Ef (S) or Efm(S)

together with the first three Hu moment invariants, the number of camels inside

the 9 best matches increased to 6. But the best improvement has been achieved

once the new measure E(S) has been added to the set of the first three Hu moment

invariants. In this case 8 out of 9 best matches were camels.

For the second matching experiment (see Fig.3.3.4), a different data set was

created by using different image databases (kimia and mpeg7). For the first task

of the second matching experiment, we used only the first three Hu’s invariants

(Hu1(S), Hu2(S), Hu3(S)) to perform shape matching and the best 9 matches (from

the database) are listed after the query shape (Fig.3.3.4(a)), after that in Fig.3.3.4(b)

we added compactness and elongation (K(S), El(S)) to the first three Hu’s invari-

ants to increase the classification rate. In Fig.3.3.4(c) our ellipticity method has

been added to the listed shape descriptors (Hu1(S), Hu2(S), Hu3(S), K(S), El(S))
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(a) The first three Hu’s moment invariants are used.

(b) E(S) and the first three Hu’s moment invariants are used.

(c) EI(S) and the first three Hu’s moment invariants are used.

(d) Ef (S) and the first three Hu’s moment invariants are used.

(e) Efm(S) and the first three Hu’s moment invariants are used.

Figure 3.3.3: The enclosed query shape is in the first row. The best nine matches,
for a different choice of shape descriptors used, are displayed in the corresponding
rows.

and we performed the shape matching again. After we added our ellipticity measure

(E(S)), we could say that an improvement is obvious.

Indeed, for the first task in Fig.3.3.4(a) among 9 best matches, there are 3 fishes,

what is good, but the best match is not a fish. Moreover, in the second matching

task (Fig.3.3.4(b)) although the numbers of matched fishes are increased, the first

best match is again not fish. The situation is essentially improved if our ellipticity

(E(S)) is added to the descriptors used(see Fig.3.3.4(c)). Among the 9 best matches

7 of them are fishes, and the best 5 matches are fishes.

For the continuation of the second matching experiment we repeat the matching

tasks by removing our method and adding other ellipticity measures EI(S), Ef (S), Efm(S)

to illustrate the matching performance of all the methods. For Fig.3.3.4(e) and

Fig.3.3.4(f) we repeat the matching task by adding EI(S) and Ef (S) ellipticity meth-

ods respectively and it is possible to say that these two methods can select the 5

matches as fishes but the rest of the shapes are from the different classes. Lastly,
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in Fig.3.3.4(g), we added Efm(S) ellipticity method and we determined that our

method and Efm(S) performs similar for this query image and data set.

(a) The first three Hu’s moment invariants are used.

(b) The first three Hu’s moment invariants, elongation and compactness are used.

(c) E(S), the first three Hu’s moment invariants, elongation and compactness are used.

(d) EI(S), the first three Hu’s moment invariants, elongation and compactness are used.

(e) Ef (S), the first three Hu’s moment invariants, elongation and compactness are used.

(f) Efm(S), the first three Hu’s moment invariants, elongation and compactness are used.

Figure 3.3.4: The enclosed query shape is in the first row. The best nine matches,
for a different choice of shape descriptors used, are displayed in the corresponding
rows.

In the last example we performed two classification experiments. First one was

to classify galaxies in two groups: spiral and elliptical. The data set which are used

in this experiment consists of 104 images (100× 100 pixels) and is originally used in

Lekshmi et al. (2003). The images are thresholded before the classification, as shown

in Fig.3.3.5). Four classification tasks were performed, each time by using a single

ellipticity measure from the set {E(S), Ef (S), Efm(S), EI(S)}. The classification

rates obtained are displayed in the table in Fig.3.3.5. It can be seen that the new

ellipticity measure E(S) (75% classification rate achieved) has performed better than

the measures Ef (S) (65.48%), Efm(S) (67.31%), and EI(S) (63.46%).

For the second part of the classification experiment we create a data set consisting

of 150 shapes belonging to 5 classes: butterfly, insect, tool, furniture, vase (taken

75



3.3. Experiments

(a) (b)

Class. rate
E 75.00%
Ef 65.38%
Efm 67.31%
EI 63.46%

Figure 3.3.5: Sample galaxy images with their shapes extracted by thresholding.
The galaxy on the left (a) is spiral and the galaxy in (b) is elliptical.

from the Kimia database). Fig. 3.3.6 shows one sample image from each of these

classes. We execute several classification tasks to see the accuracy of our method

and how it performs. For each task we combined different set of descriptors such as

Hu1,Hu2,Hu3, El(S), and E(S) for the classification. We used k-nearest neighbour

classifier (kNN), with the value of k arbitrarily set to k = 5. The classification results

obtained are in table shown in Fig. 3.3.6. An explanation of the classification results

follow.

Descriptor set Classification ratio

1.) Hu1(S), Hu2(S), Hu3(S), El(S), 66.6667%
2.) Hu1(S), Hu2(S), Hu3(S), El(S), E(S) 80.0000%
3.) Hu1(S), Hu2(S), Hu3(S), El(S), Ef (S) 73.3333%
4.) Hu1(S), Hu2(S), Hu3(S), El(S), Efm(S) 77.3333%
5.) Hu1(S), Hu2(S), Hu3(S), El(S), EI(S) 78.6667%

6.)
Hu2(S), Hu3(S), El(S), E(S), 80.0000%‘Ef (S), Efm(S), EI(S)

Figure 3.3.6: Sample shapes from each class used in the classification experiment.

1. In the first classification task, the initial set of descriptors:

Hu1(S),Hu2(S),Hu3(S),El(S) (3.3.1)

were used. The classification rate 66.6667% was obtained.

2. In the next task, E(S) has been added to the initial set (3.3.1) of shape de-

scriptors. The classification rate has been improved to 80.0000%.
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3. In the third classification task , Ef (S) has been added to the set of initial

descriptors (3.3.1) and classification rate has been 73.33%.

4. In the fourth classification task, Efm(S) has been added to the set of initial

descriptors (3.3.1) and classification rate has been 77.3333%.

5. In the fourth classification task, EI(S) has been added to the set of initial

descriptors (3.3.1) and classification rate has been 78.6667%.

6. Interestingly, in the last task, by adding all ellipticity methods (E(S), Ef (S),

Efm(S), EI(S)) to the initial set of descriptors, the classification rate has not

changed it remains 80.0000%.

The second classification experiment has been extended and two more classi-

fication experiments have been performed. The same data which is used in the

experiment illustrated in 3.3.6 has been normalized by using two different method

(Z-score, Min-Max). The results of the experiments for the Z-score normalized data

are listed in Fig.3.3.7. For these experiments, our method E(S) performed best but

the classification accuracy of the measure EI(S) slightly decreased and performed

better than Ef (S) but performed worst when compared to the other shape descrip-

tors ( E(S), Efm(S)) when Z-score normalization has been used.

Descriptor set Class. ratio (Z-Score Norma.)

1.) Hu1(S), Hu2(S), Hu3(S), El(S), 66.6667%
2.) Hu1(S), Hu2(S), Hu3(S), El(S), E(S) 80.0000%
3.) Hu1(S), Hu2(S), Hu3(S), El(S), Ef (S) 73.3333%
4.) Hu1(S), Hu2(S), Hu3(S), El(S), Efm(S) 77.3333%
5.) Hu1(S), Hu2(S), Hu3(S), El(S), EI(S) 76.0000%

6.)
Hu2(S), Hu3(S), El(S), E(S), 78.6667%‘Ef (S), Efm(S), EI(S)

Figure 3.3.7: Classification experiment and classification results performed by the
Z-core normalized data
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In Fig.3.3.8 Min-Max normalization has been applied to the same data which is

used in experiment Figure 3.3.6. All the measures have been scaled to be between

0 and 1. The same classification were performed and the results are listed in 3.3.8.

Still, normalization did not make a big difference to the classifcaiton accuracies. For

this experiments our method E(S) and EI(S) performed same and gave the best

classification accuracy.

Descriptor set Class. ratio (Min-Max Norma.)

1.) Hu1(S), Hu2(S), Hu3(S), El(S), 66.6667%
2.) Hu1(S), Hu2(S), Hu3(S), El(S), E(S) 78.6667%
3.) Hu1(S), Hu2(S), Hu3(S), El(S), Ef (S) 74.6667%
4.) Hu1(S), Hu2(S), Hu3(S), El(S), Efm(S) 77.3333%
5.) Hu1(S), Hu2(S), Hu3(S), El(S), EI(S) 78.6667%

6.)
Hu2(S), Hu3(S), El(S), E(S), 80.0000%‘Ef (S), Efm(S), EI(S)

Figure 3.3.8: Classification experiment and classification results performed by the
Min-Max normalized data.

3.3.2 Sensitivity/Robustness Flexible Ellipticity Measures

This section provides examples which illustrate the behaviour of ellipticty measure

Eλ(S) and compare them with the behavior of related measures Ef (S), Efm(S), and

EI(S).

The first example in this section shows how the sensitivity of the ellipcity mea-

sures Eλ vary if λ varies. The shapes in Fig.3.3.9(b) is an ellipse with a salt and

pepper noise added. As expected, Although all measures (Ef , Efm, and EI) are area

based, They are not assigning much different ellipticity value for this ”noise shape”

than a perfect ellipse (Fig.3.3.9(a)). As intended, new measures provide a wider in-

terval of ellipcity values, and depending on setted preference it is possible to ignore

the presence of noise (e.g. by setting λ = 0.5) or it is possible to increase the noise

sensitivity of the new measures (e.g. by setting λ = 20 when the ellipticity assigned

becomes less than 0.7). Similar comments hold for the next two shapes. Shape in

Fig.3.3.9(c) is bounded by a polygonal approximation of an ellipse, and the shape

in Fig.3.3.9(d) is an ellipse with a noise added to its boundary.
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(a) (b) (c) (d)

(a) (b) (c) (d)

Eλ=0.5 0.9999 0.9915 0.9971 0.9957
Eλ=1 0.9998 0.9830 0.9943 0.9914
Eλ=1.5 0.9997 0.9746 0.9989 0.9619
Eλ=4.5 0.9992 0.9256 0.9745 0.9619
Eλ=10 0.9982 0.8422 0.9442 0.9172
Eλ=20 0.9970 0.6832 0.8915 0.8413

Ef 0.9953 0.9667 0.9449 0.9276
Efm 0.9989 0.9796 0.9462 0.9322
EI 1.0000 0.9676 0.9922 0.9849

Figure 3.3.9: Shapes similar to a perfect ellipse are is measured with Eλ, for λ ∈
{0.5, 1, 1.5, 4.5, 10, 20}, and with Ef , Efm, and EI

In the second example in this section ten arbitrary shapes are listed in accor-

dance with the increasing Eλ=2(S) measure. The computed measures Eλ=2(S), Ef (S),

Efm(S), and EI(S) are in the table below the shapes.

The first part of this second example illustrates that the measures Eλ(S) essen-

tially differs from Ef (S), Efm(S), and EI(S). Indeed, if we consider the rankings

Eλ=2: (b)(c)(d)(e)(f)(g)(h)(i)(j);

Ef : (b)(d)(e)(c)(f)(g)(j)(i)(h);

Efm : (b)(d)(e)(c)(f)(g)(j)(h)(i);

EI : (c)(b)(d)(e)(g)(f)(i)(j)(h);

obtained by these 4 measures, we see that the ranking obtained Eλ=2(S) differs

from the rankings obtained by Ef (S), Efm(S), and EI(S). Thus, they might be con-

sidered as essentially different and can be combined in some classification, matching

or recognition tasks.

The second part of this second example illustrates that the new measure can be

applied to the shapes which are N -fold rotationally symmetric or which have big

holes, without any restriction. As shown in Fig.3.3.10(a), Ef (S) cannot be applied to

rotationally symmetric shapes Žunić et al. (2006)(cannot assign any value) and for
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Shape (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Ee=2(S) 0.006 0.304 0.306 0.353 0.355 0.366 0.366 0.522 0.522 0.524
Ef (S) −− 0.423 0.471 0.464 0.470 0.510 0.517 0.609 0.603 0.583
Efm(S) 0.000 0.432 0.474 0.471 0.472 0.510 0.525 0.612 0.642 0.588
EI(S) 0.006 0.308 0.305 0.353 0.353 0.365 0.365 0.522 0.520 0.520

Figure 3.3.10: Shapes are displayed in accordance with their increased Eλ=2(S)
measure.

Efm, this method cannot be applied for shapes with big holes which do not intersects

with SEf (S) (gives the ellipticity value 0).

In the third example in this section two shape matching task was performed. For

first experiment of this example the MPEG7 CE Shape-1 Part-B database was used.

140 images were chosen randomly from 7 different classes: chicken, lizzard, lmfish,

rat, ray, tree, turtle – for some examples see Fig.3.3.11 . The image ”chicken-14”

was selected as the query image (the enclosed shape in Fig.3.3.12).

A very good matching result was obtained for a new ellipticity measure and

for λ = 2.5. If Eλ=2.5(S) is used for the matching 6 out of 9 best matches were

chicken. These shapes are displayed in the first row in Fig.3.3.12. The experiment

was repeated by using the measure form the set {Ef (S), Efm(S), EI(S)} and the

best 9 matches are displayed in the corresponding rows.

Figure 3.3.11: Example images from each class used in the fist matching task
(Fig.3.3.12).
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(a) Result of matching task when Eλ=2.5(S) is used.

(b) Result of matching task when Ef (S) is used.

(c) Result of matching task when Efm(S) is used.

(d) Result of matching task when EI(S) is used.

Figure 3.3.12: The enclosed query shape is in the first row. The best nine matches,
for a different choice of ellipticity measures used, are displayed in the corresponding
rows.

Figure 3.3.13: Example images from each class used in the second matching task
(Fig.3.3.14).

In this second experiment another shape matching task was performed. For this

experiment same database (MPEG7 CE Shape-1 Part-B) was used. 140 images were

chosen from 7 different classes: apple, bell, camel, cup, deer, fork, lizzard – for some

examples see Fig.3.3.13 . The image ”fork-5” was selected as the query image (the

enclosed shape in Fig.3.3.14). In the first row the best 9 matches are displayed if

Ee=2(S) are used for the matching (8 of them were forks). In the next three tasks

experiment was repeated by using measure form the set {Ef (S), Efm(S), EI(S)} and

the best 9 matches are displayed in the corresponding rows. In all matching tasks,

the best result has been achieved once the new measure Ee=2(S) has been used. In

this case 8 out of 9 best matches were forks.

For the last example in this section a classification task was performed by using
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(a) Result of matching task when Ee=2(S) is used.

(b) Result of matching task when Ef (S) is used.

(c) Result of matching task when Efm(S) is used.

(d) Result of matching task when EI(S) is used.

Figure 3.3.14: The enclosed query shape is in the first row. The best nine matches,
for a different choice of shape descriptors used, are displayed in the corresponding
rows.

the well known Lekshmi et al. (2003) data set consists of 112 galaxy images (100×

100 pixels). There are three group of galaxies: spiral,lenticular and elliptical. To

perform the classification task, images converted to binary images (i.e. images are

thresholded Otsu (1979) as shown in Fig.3.3.15).

Five classification tasks were performed. For each task we used a single ellipticty

measure from the set {Eλ=1(S), {Eλ=5(S), Ef (S), Efm(S), EI(S)}. We used k-NN

classifier, with k = 5 and the data set was devided in to two parts and ≈ 30%

of galaxy-images, from each classes were used for the training while the remaining

images were used for testing. The classification rates obtained are displayed in the

table in Fig.3.3.15. It can be seen that the achieved classification rate by using

Eλ=1(S) (74.22%) is better than the measures Ef (S) (70.10%), Efm(S) (69.07%),

and EI(S) (72.16%).

Finally, since a family of ellipcity measures was obtained, we have used the op-

portunity to combine several of them to increase the classification accuracy. We

have used Forward feature selection method (Whitney, 1971) to find the best fea-

tures since it is simple and straightforward. An increase of classification accuracy

to 78.35% was obtained by using four dimensional feature vectors for the classi-

fication. The feature vector components were the following ellipticity measures:
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(Eλ=1(S), Eλ=4(S), Eλ=5(S), and Eλ=8(S)). The same 5-NN classifier and the same

split 70%/30% of training/test images were used.

(a) (b) (c)

Eλ=1 EI Eλ=5 Ef Efm Eλ=1,4,5,8

Class. rate 74.22% 72.16% 71.13% 70.10% 69.07% 78.35%

Figure 3.3.15: Sample galaxy images with their shapes extracted by thresholding
(Otsu, 1979). The galaxy on the left (a) is spiral, the galaxy in (b) is lenticular and
the galaxy in (c) is elliptical. The classification rate obtained are in the table.

3.4 Conclusion

Two ellipticity measures are introduced in this chapter. Ellipticity measure (E(S))

is a viable alternative to the existing ellipticity measures (Ef (S), Efm(S), EI(S),

etc.) in the literature. Moreover, sensitive ellipticity measure (Eλ(S)) dependent on

a single parameter and by varying this parameter the sensitivity/robustness proper-

ties of the related ellipticity measures, vary as well. When working on high precision

inspection tasks, using a sensitive method can be a desirable property. Apart from

these properties, the two ellipticity measures (E(S), Eλ(S)) introduced in this chap-

ter are theoretically well founded and have a clear geometric meaning - they indicate

the difference between the considered shape and an ellipse. All the measures de-

fined in this chapter are invariant with respect to translation, rotation and scale

transformations, ranges over (0, 1] and gives 1 if and only if the measure shape is an

ellipse.

Experiments provided illustrate theoretical observations and demonstrate appli-

cability of the new ellipticity measure. A noise sensitivity of the measure (Eλ(S))

is given in 3.3.9. When λ = 1 selected, the assigned measure for perfect ellipse

(Fig.3.3.9(a)) is 0.9998 and measures for noisy images (Fig.3.3.9(b),(c),(d)) are

0.9830, 0.9943, 0.9914 respectively. But the situation is essentially changing when
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the parameter selected as λ = 20. While the assigned ellipticity measure for the

perfect ellipse is changing slightly (0.9970), it can be seen that the noisy images that

is most affected by lambda changes. The ellipticity measures for Fig.3.3.9(b),(c),(d)

when λ = 20 are 0.6832, 0.8915 and 0.8413 respectively.
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Chapter 4

A family of Ellipticity Measure for

galaxy classification

This chapter includes material from:

Mehmet Ali Aktaş, Jovǐsa Žunić. (2013). Family of Shape Ellipticity Measures

for Galaxy Classification. SIAM J. Imaging Sci., 6(2):765-781

4.1 Introduction

In recent years, a huge amount of image data is available, and every day, thousands

of new visual information is being generated from different domains such as medical

science, astronomy and used in many image processing applications including object

recognition, classification, image matching, etc. Matching objects by comparing all

pairwise features could be computationally expensive and inaccurate. To reduce the

computational complexity of matching, it has turned out that another idea is to

transform the image data into a set of features (also named features vector), and

perform a similarity measure in those feature vectors. To build a feature vector we

need the object characteristics which we can quantify into set of numbers easily. The

most commonly used features are colour and texture to characterize images. The

shape is also one of the object characteristics which enable a spectrum of numerical

quantifications. Shape descriptors play a fundamental role in computer vision and

pattern recognition, shape analysis, image segmentation, and classification.
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This chapter introduces a family of ellipticity measures. As mentioned in section

3.2.1 several ellipticity measures already exist in the literature. All of them use

their own way to evaluate how the shape considered differs from an ellipse. These

measures assign a highest possible ellipticity to all the ellipses, including circles.

Consequently, these measures do not distinguish among ellipses whose axis length

ratio differs. Ellipticity measures defined in this chapter distinguish between ellipses

whose ratio between the length of the major and minor axis differs.

Every ellipticity measure Eρ(S), ρ > 0, from the new family, evaluates how much

a given shape S differs from an ellipse whose major and minor axis length ratio is

ρ. The ellipticity measure ranges over the interval (0, 1] and reaches its maximum

value 1 if and only if the measured shape is a perfect ellipse whose major and minor

axis ratio is ρ. The measure is invariant with respect to translations, rotations and

scaling transformations.

The new family of ellipticity measures are used to perform a galaxy classification

task. Classification of galaxies is recognized as a difficult problem (Lekshmi et al.,

2003). Several approaches have been introduced and used to perform machine auto-

matic classification. Neural Networks approaches have been used by several experts.

The first attempt (in automated galaxy classification) has been done by Odewahn

et al. (1992). Another techniques have also been employed. For example Mhnen and

Frantti (2000) has developed a galaxy classifier based and fuzzy sets theory. Two

types of auto galaxy classifiers are described in Goderya and Lolling (2002). The

first model employs geometric shape features and the second model employs direct

pixel images for classification purposes. Galaxy classification based on the shape

squareness measure has been considered in Rosin and Žunić (2011). The compar-

ison of different galaxy classification algorithms like PCA (Principle Component

Analysis), Supervised Neural Networks or quasi-Newton algorithms can be found in

Lahav et al. (1996). Fractal Signatures were used in Lekshmi et al. (2003). Shape

symmetry analysis, for a quantitative galaxy classification, was considered in Guo

et al. (2010).

As mentioned before, in this chapter a galaxy classification task has been per-
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formed by using the new family of ellipticity measures. In experiments the elliptical

and spiral galaxies listed in the Nearby Galaxy Catalog (Frei et al., 1996) has been

used, which has been used by many others.

4.2 Family of New Ellipticity Measures

This section introduces a family of new ellipticity measures. As mentioned many

times, an ellipticity measure should provide an indication of how much an ellipse

differs from an arbitrary ellipse (not a specific one). All common approaches in

literature, consider all ellipses as same shapes, and all of them assign the maximum

possible value to all ellipses, including circles. In this chapter we use a different

approach: We assume that ellipses whose axis length ratios differ are different in

shape and, consequently, our request is that the new ellipticity measures must be

able to distinguish among differently elongated ellipses.

We shortly list the basic terms and denotations that describes some facts about

ellipses.

• E(a, b) denotes an isothetic ellipse whose axis lengths are a and b, and whose

centroid coincides with the origin. Formally,

E(a, b) =

{
(x, y) | x

2

a2
+
y2

b2
≤ 1

}
.

Just as a short reminder, the area of E(a, b) is π · a · b.

• Without loss of efficiency in shape classification tasks, prior to the performing

a classification task, all appearing shapes will be scaled such that they have

the unit area. So, if an isothetic ellipse E(ρ) has the unit area, if the ratio

among its axes length is denoted by ρ, and finally, if it is placed such that the

centroid of E(ρ) coincides with the origin, then E(ρ) can be described as

E(ρ) =

(x, y) | x2(√
ρ
π

)2 +
y2(
1√
π·ρ

)2 ≤ 1

 =

{
(x, y) | x

2

ρ
+ ρ · y2 ≤ 1

π

}
.

(4.2.1)

87



4.2. Family of New Ellipticity Measures

In other words

E(ρ) = E(a, b) with a =

√
ρ

π
and b =

1
√
π · ρ

.

• In order to avoid discussions on pathological situations, we will say that two

shapes are equal if their set differences have the area equal to zero. This

is obviously not a restriction in practical applications – e.g. a closed circle

{(x, y) | x2 + y2 ≤ 1} and the open one {(x, y) | x2 + y2 < 1} are said to

be of the same shape.

• S(ω) will denote the shape S rotated around its centroid for an angle ω. Notice

that the shape centroid, as usually, is defined as

(∫∫
S
x dx dy∫∫
S
dx dy

,

∫∫
S
y dx dy∫∫
S
dx dy

)
.

Now, we start with a Lemma that gives the arguments for the definition of the

family of ellipticity measures.

Lemma 4.2.1 Let a shape S, whose area is 1 and whose centroid coincides with the

origin, be given. Let S(ω) be the shape S rotated around the origin for an angle ω,

and let fix a parameter ρ > 0. Then:

min
ω∈(0,2π]

∫∫
S(ω)

(
x2

ρ
+ ρ · y2

)
dx dy =

1

2 · π
⇔ S = E(ρ). (4.2.2)

Proof. We prove the following implication

∫∫
S

(
x2

ρ
+ ρ · y2

)
dx dy =

∫∫
E(ρ)

(
x2

ρ
+ ρ · y2

)
dx dy ⇒ S = E(ρ)

(4.2.3)

by a contradiction.

So let us assume

– S ̸= E(ρ) (or more precisely both S \E(ρ) and E(ρ) \S have a positive area),

and

–

∫ ∫
S

(
x2

ρ
+ ρ · y2

)
dxdy =

∫ ∫
E(ρ)

(
x2

ρ
+ ρ · y2

)
dxdy.
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Since the areas of S and E(ρ) are the same (both equal to 1), the areas of S\E(ρ)

and E(ρ) \ S are also the same (and both strictly positive). Let

∆ = Area of (S \ E(ρ)) = Area of (E(ρ) \ S) > 0.

All the points (x, y) satisfying
x2

ρ
+ ρ · y2 ≤ 1

π
are inside the ellipse E(ρ) (see

(4.2.1)). Thus, we have

(x, y) ∈ E(ρ) and (u, v) /∈ E(ρ) ⇒ x2

ρ
+ ρ · y2 ≤ 1

π
<

u2

ρ
+ ρ · v2. (4.2.4)

Further, the elementary integral calculus says that there are points (x0, y0) ∈

E(ρ) \ S and (u0, v0) ∈ S \ E(ρ) such that

∫
E(ρ)\S

∫ (
x2

ρ
+ ρ · y2

)
dxdy =

(
x20
ρ

+ ρ · y20
)
·∆ > 0 (4.2.5)

∫
S\E(ρ)

∫ (
x2

ρ
+ ρ · y2

)
dxdy =

(
u20
ρ

+ ρ · v20
)
·∆ > 0. (4.2.6)

Quantities in (4.2.5) and (4.2.6) are strictly positive because both ∆ and the subin-

tegral function (for all (x, y) ̸= (0, 0)) are also strictly positive.

Taking into account (4.2.4), (4.2.5), and (4.2.6), we deduce the following strict

inequality

∫
E(ρ)\S

∫ (
x2

ρ
+ ρ · y2

)
dxdy <

∫
S\E(ρ)

∫ (
x2

ρ
+ ρ · y2

)
dxdy. (4.2.7)

Finally, by using the above implication (4.2.7), we derive

∫
S

∫ (
x2

ρ
+ ρ · y2

)
dxdy =

∫
S\E(ρ)

∫ (
x2

ρ
+ ρ · y2

)
dxdy +

∫
S∩E(ρ)

∫ (
x2

ρ
+ ρ · y2

)
dxdy >

∫
E(ρ)\S

∫ (
x2

ρ
+ ρ · y2

)
dxdy +

∫
E(ρ)∩S

∫ (
x2

ρ
+ ρ · y2

)
dxdy =

∫
E(ρ)

∫ (
x2

ρ
+ ρ · y2

)
dxdy.(4.2.8)
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Thus, the above strict inequality contradicts to the assumed:
∫∫

S

(
x2

ρ
+ ρ · y2

)
dxdy =∫∫

E(ρ)

(
x2

ρ
+ ρ · y2

)
dxdy.

To complete the proof of the theorem it remains to prove that S = E(ρ) implies

min
ω∈(0,2π]

∫∫
S(ω)

(
x2

ρ
+ ρ · y2

)
dx dy = min

ω∈(0,2π]

∫∫
E(ρ,ω)

(
x2

ρ
+ ρ · y2

)
dx dy = 1/(2π),

where E(ρ, ω) is the ellipse E(ρ) rotated around the origin for the angle θ.

Actually, by using the same reasoning as in the first part of the proof of the

theorem we can prove:

min
ω∈(0,2π]

∫∫
E(ρ,ω)

(
x2

ρ
+ ρ · y2

)
dx dy =

∫∫
E(ρ)

(
x2

ρ
+ ρ · y2

)
dx dy. (4.2.9)

Indeed, for any ω /∈ {0, π}, the strict inequality

∫∫
E(ρ,ω)

(
x2

ρ
+ ρ · y2

)
dx dy >

∫∫
E(ρ)

(
x2

ρ
+ ρ · y2

)
dx dy

follows from the facts that ∆ = Area of (E(ρ) \ E(ρ, ω)) = Area of (E(ρ, ω) \

E(ρ)) > 0 and from the following implication (see (4.2.4) and (4.2.7)):

(x, y) ∈ E(ρ)\E(ρ, ω) and (u, v) /∈ E(ρ, ω)\E(ρ) ⇒ x2

ρ
+ρ·y2 <

u2

ρ
+ρ·v2.

Finally, a trivial equality
1

2 · π
=

∫∫
E(ρ)

(
x2

ρ
+ ρ · y2

)
dxdy, together with the

equality (4.2.9), establishes the proof. �

Motivated by the results of Lemma 4.2.1 we define the following family of ellip-

ticity measures.

Definition 4.2.1 Let a given shape S whose area is 1 and whose centroid coincides

with the origin. Then for every ρ > 0, the ellipticity measure Eρ(S) of S is defined

as

Eρ(S) =
1

2 · π
· 1

min
ω∈[0,2π]

∫∫
S(ω)

(
x2

ρ
+ ρ · y2

)
dx dy

. (4.2.10)
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Now, we summarize desirable properties of the measures from the family Eρ(S),

ρ > 0.

Theorem 4.2.1 Let a real ρ > 0 be given. The ellipticity measure Eρ(S) has the

following properties:

(a) Eρ(S) ∈ (0, 1], for any shape S;

(b) Eρ(S) = 1 if and only if S is isometric to the ellipse E(ρ);

(c) Eρ(S) is invariant with respect translation, rotation and scaling transforma-

tions.

Proof. The proof of (a) and (b) follows from Lemma 4.2.1 (i.e. from (4.2.2) and

(4.2.8)). The item (c) follows directly from the definition. �

Theoretical foundations for the understanding of the behavior of the new ellip-

ticity measures Eρ are given above. The behavior of the ellipticity measures, from

Eρ(S), depends on the choice of the parameter ρ. For a fixed ρ, the measure Eρ(S)

indicates how much the considered shape S differs from a perfect ellipse E(ρ) whose

axes length ratio is ρ. The highest score, equal to 1 is given only to the ellipse E(ρ).

For shapes different from E(ρ), including the ellipses whose axes length ratio differs

from ρ, the measured Eρ(S) ellipticities are strictly less than 1. Selection of the

parameter depends on the application which is going to be performed.

An example of two leaf shapes and their measured ellipticities are given in

Fig4.2.1 in order to illustrate the behavior of the measure. Their corresponding

graphs of Eρ(S), when ρ varies through the interval (0; 1], are displayed in the

Fig.4.2.2. Thresholded shapes (Fig.4.2.1(a),(b)) extracted from the original leaf im-

ages Fig.4.2.1(c),(d). The assigned ellipticity measures for both Fig.4.2.1(a) and

Fig.4.2.1(b) from the existing methods Ef (S), Efm(S), EI(S), E(S) are not different

enough to distinguish these leaf shapes because they are assigning similar ellipticity

values for differently elongated ellipses. On the contrary, the situation is essentially

different when we used ellipticity measure Eρ(S) with the parameter ρ = 0.85. The

assigned elllipticity measure for Fig.4.1(a) is 0.8215 and for Fig.4.1(b) is 0.5457.
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(a) (b) (c) (d)

(a) (b)
Eρ=0.85(S) 0.8215 0.5457

E(S) 0.9860 0.9896
Ef (S) 0.9014 0.9081
Efm(S) 0.9059 0.9066
EI(S) 0.9731 0.9798

Figure 4.2.1: Illustration of the ellipticity measure (Eλ(S)) on leaf images.
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Figure 4.2.2: Corresponding ellipticity graph of the leaf images (4.2.1). Straight
graph belongs to the Fig.4.2.1(a), dotted graph belongs to the 4.2.1(b)

Several more examples of random shapes and their measured ellipticities are

given in Fig.4.2.3 in order to illustrate that all the measures from the family {Eρ(S) | ρ ∈

(0, 1]} are independent. Ellipticity measures Eρ=0.2, Eρ=0.4, Eρ=0.7, and Eρ=0.9 from

the new family are used to estimate the ellipticity of the shapes displayed and to

illustrate that all the measures are indipendent and give different rankings. The

obtained results are in accordance with our theoretical considerations. Indeed, for a

small value of the parameter ρ, i.e. ρ = 0.2 the highest ellipticity Eρ=0.2, is computed

for the shape in Fig.4.2.3(c)(i)(h). These shapes, displayed in Fig.4.2.3(c)(i), and

the ellipse, displayed in Fig.4.2.3(h), are very elongated and relatively high Eρ=0.2

ellipticities are expected, because the measure Eρ=0.2, actually, estimates how much
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a shape differs from an ellipse whose axis length ratio is 0.2 (i.e. the longer axis is

5 times longer than the shorter axis). The situation is opposite for a big ρ. E.g.,

for ρ = 0.9 these shapes have a small Eρ=0.9 ellipticity. Eρ=0.9 measure assigns high

values to the shapes in Fig.4.2.3(g)(j)(f) because they can be understood as a very

robust shapes (or let say, very circular) as it is an ellipse whose axes lengths are

almost the same, i.e. their ratio is 0.9. Notice that the measures Eρ=0.2, Eρ=0.4, Eρ=0.7

Eρ=0.9 all assign different ellipticities for the ellipses in Fig.4.2.3(f)(g)(h), while the

ellipticity measure. This is in accordance with our previous discussions. It has been

pointed out that the measures from the new family assign different ellipticity values

to the ellipses whose axes length ratios differ.

(a) (b) (c) (d)
(e)

(f) (g) (h) (i) (j)

ρ a b c d e f g h i j
0.2 0.626 0.488 0.767 0.615 0.427 0.384 0.628 0.983 0.812 0.366
0.4 0.707 0.623 0.768 0.909 0.566 0.688 0.944 0.747 0.947 0.658
0.7 0.566 0.545 0.563 0.929 0.510 0.939 0.973 0.483 0.771 0.897
0.9 0.477 0.473 0.464 0.849 0.448 0.993 0.897 0.386 0.654 0.948

Figure 4.2.3: Five random shapes (first row) and five geometric shapes (second row)
and their ellipticities Eρ=0.2, Eρ=0.4, Eρ=0.7 and Eρ=0.9, (in the table below the shapes)

optained ranking are:

Eρ=0.2 : (j), (f), (e), (b), (d), (g), (a), (c), (i), (h),

Eρ=0.4 : (e), (b), (j), (f), (a), (h), (c), (d), (g), (i),

Eρ=0.7 : (h), (e), (b), (c), (a), (i), (j), (d), (f), (g),

Eρ=0.9 : (h), (e), (c), (b), (a), (i), (d), (g), (j), (f),

The illustrations of the new ellipticity measures on galaxy images are in the

next section (Fig.4.3.1-4.3.4) where galaxy classification task is performed. Graphs

of Eρ(S), when ρ varies through the interval

(
1

300
, 1

)
, for 8 different shapes are

in the second row in Fig.4.3.1-4.3.4 (each figures includes two graphs for shapes
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obtained by two different thresholding methods, applied to the original gray-level

galaxy images). All 4 graphs, of Eρ(S), in Fig.4.3.1 and Fig.4.3.2 reach their maxima

for the values of the parameter ρ close to 1, and also these maxima are very high

for shapes obtained by global thresholding applied to elliptical galaxies displayed in

Fig.4.3.1 and Fig.4.3.2. The maximal ellipticity of 0.9923 is obtained for the shape

in Fig.4.3.1(b) and the maximal ellipticity of 0.9951 is obtained for the shape in

Fig.4.3.2(b)). These high maximas are as expected because the galaxies displayed

in these figures are very circular, and consequently, their corresponding thresholding

images are nearly circular (notice that E(ρ = 1) is a circle). So, a high ellipticity

measures are expected to be reached for a high value of the parameter ρ.

The situation is different for shapes displayed in Fig.4.3.3 and Fig.4.3.4. Thresh-

olded images, corresponding to the original gray-level images, are not circular and

the maximum values of Eρ(S) are obtained for values of ρ placed close to the middle

of the interval

(
1

300
, 1

)
. Also, these maximal ellipticity measures are not close to 1,

for the shapes in Fig.4.3.4, since the deviation of these shapes from a perfect ellipse

is obvious. But also, a very high maximal ellipticity of 0.9932 is obtained for the

shape obtained by global thresholding of the spiral galaxy displayed in Fig.4.3.3(b).

A smaller maximal ellipticity of 0.6609 is obtained for the shape Fig.4.3.4(b) which is

obtained by the global thresholding from an spiral galaxy displayed in Fig.4.3.4(a).

To mention that using maximal possible ellipticity (max{Eρ(S) | ρ ∈ (0; 1]}) is

not sufficient enough to distinguish among the elliptical and spiral galaxies. Indeed,

in both cases (of global and local thresholding) there is an essential overlap for the

ranges of (max{E(S) | ρ ∈ (0; 1]}) values assigned to elliptical and spiral galaxy

shapes:

• for the galaxy shapes obtained by the global thresholding:

Eρ(S) ranges over [0.9923, 0.9980] for the elliptical galaxies, and

Eρ(S) ranges over [0.6609, 0.9975] for the spiral galaxies;

• for the galaxy shapes obtained by the local thresholding:

Eρ(S) ranges over [0.7775, 0.9809] for the elliptical galaxies, and

Eρ(S) ranges over [0.6888, 0.9419] for the spiral galaxies.
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Furthermore, an overlap is also exist for the parameters ρ for which Eρ(S) reaches

the maximum possible value. Thus, it is not possible to determine a definite ρ value

which is enough to classify the elliptical and spiral galaxies.

• for the galaxy shapes obtained by the global thresholding:

ρ ranges over [0.44, 0.90] for the elliptical galaxies, and

ρ ranges over [0.18, 0.94] for the spiral galaxies;

• for the galaxy shapes obtained by the local thresholding:

ρ ranges over [0.41, 0.96] for the elliptical galaxies, and

ρ ranges over [0.19, 0.99] for the spiral galaxies.

4.3 Galaxy Classification by Using Shape Ellip-

ticity Measures

In this section we will describe a classification system/pipeline which we used for

galaxy classification. Briefly, the system components are as follows.

– The elliptical and spiral galaxies listed in the Nearby Galaxy Catalog (NGC) Frei

et al. (1996) are used as the data set. The data set consist of 14 elliptical and 90

spiral galax images.

– We used two different thresholding methods to extract galaxy shapes from the

original images i.e. two black-white images/shapes will be assigned to each galaxy.

– We create a 6-dimensional feature vectors which assigned to each galaxy shapes

by using three ellipticity measures (two of them are from the new family and the

third one is from section 3.2.2.

– We used k-NN (k-Nearest Neighbor) classifier to perform the classification.

As mentioned, we expect that the ellipticity measures, which distinguish among

ellipses whose axis length ratio differs, could be a good choice (at least among shape

descriptors), for such a classification, because galaxy shapes could be understood as

nearly elliptical (some examples are in Fig.4.3.1-4.3.4). Of course, this does not mean

that a classification rate, bigger than targeted 95.1%, will be achieved. There are
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another factors which could limit the classification efficiency, like the quality of data

used, efficiency and suitability of the thresholding methods applied, performance of

classifier selected, etc.

(a) (b) (c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

E
ρ
(S

)

max(Eρ(S))=0.9973

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

E
ρ
(S

)

max(Eρ(S))=0.9711

Figure 4.3.1: First row: (a) Original image, NGC no.: 3379; (b) Global thresholding applied;
(c) Local thresholding applied. Second row: Graphs of Eρ(S), ρ ∈ (1/300, 1) for the shapes in (b)
and (c), respectively.
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Figure 4.3.2: First row: (a) Original image, NGC no.: 4486; (b) Global thresholding applied;
(c) Local thresholding applied. Second row: Graphs of Eρ(S), ρ ∈ (1/300, 1) for the shapes in (b)
and (c), respectively.
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Figure 4.3.3: First row: (a) Original image, NGC no.: 4258; (b) Global thresholding applied;
(c) Local thresholding applied. Second row: Graphs of Eρ(S), ρ ∈ (1/300, 1) for the shapes in (b)
and (c), respectively.
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Figure 4.3.4: First row: (a) Original image, NGC no.: 3893; (b) Global thresholding applied;
(c) Local thresholding applied. Second row: Graphs of Eρ(S), ρ ∈ (1/300, 1) for the shapes in (b)
and (c), respectively.

In fixed (or global) thresholding, the threshold value is held constant throughout

the image: Determine a single threshold value by treating each pixel independently

of its neighborhood.
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Since our classification system uses shape based object characteristics we have

to extract black and white images (from the original gray-level images) by certain

thresholding method. These black-white images actually represent the shape of the

galaxies considered. Different thresholding methods and their variants are available

in the literature (Sezgin and Sankur, 2004). In this galaxy classification system, we

will use two version of Otsu’s thresholding method (Otsu, 1979):

First we used a fixed (or global) thresholding, which determines a single thresh-

old value and hold constant throughout the all image pixels. When we use global

thresholding, we typically have to play with it, sometimes losing too much of the re-

gion and sometimes getting too many extraneous pixels. Thus as a second method

we used “local” thresholding which allows the threshold itself to vary across the

image (the original method is applied to the blocks of the original images, so the

threshold level applied varies). This means that for each original galaxy image we

will compute two binary (black and white) images and from these images we will

compute components of the feature vectors, which will be used for the classification.

Four examples of original images and pairs of their corresponding thresholded

images are in Fig.4.3.1-4.3.4. The galaxies in the images in Fig.4.3.1 and Fig.4.3.2

are elliptical while the galaxies in Fig.4.3.3 and Fig.4.3.4 are spiral. The NGC

catalog number of these galaxies are: 3379, 4486, 4258, and 3893, respectively.

In all figures (Fig.4.3.1-4.3.4) the image in the first row, on the left, is the original

image. The images labeled by (b) are the thresholded image obtained from the

original images by using Otsu’s method (global thresholding applied), while images

labeled by (c) are thresholded images obtained by using local thresholding. In the

second rows (in Fig.4.3.1-4.3.4) are the graphs of the ellipticity measure Eρ(S), of

the corresponding thresholded images S. The parameter ρ ranges from ρ = 1/300

to ρ = 1 (due to the role of the parameter ρ this is equivalent to the situation where

ρ varies through (1, 300)).

98



CHAPTER 4. A FAMILY OF ELLIPTICITY MEASURE FOR GALAXY
CLASSIFICATION

4.4 Ellipticity Measures Used

As mentioned, two thresholded images, obtained from the original galaxy images,

were used for the classification. From both of these images, three ellipticity measures

were computed and used for the classification:

• Ellipticity measure Eρ=0.7(S) =
1

2 · π
· 1

min
ω∈[0,2π]

∫∫
S(ω)

(
x2

0.7
+ 0.7 · y2

)
dx dy

(m1)

from the new family;

• Ellipticity measure Eρ=0.9(S) =
1

2 · π
· 1

min
ω∈[0,2π]

∫∫
S(ω)

(
x2

0.9
+ 0.9 · y2

)
dx dy

(m2)

from the new family;

• Ellipticity measure E(S) =
1

2
· 1

min
ω∈[0,2π]

∫∫
S(ω)

(
x2

ξ
+ ξ · y2

)
dx dy

, (m3)

from section 3.2.2 (Eq.3.2.11).

Note. The parameter ξ is the ratio between the major (3.2.3) and minor

axis (3.2.4) as defined in the formula of E(S), obviously ξ varies and depends

on the considered shape S.

Ellipticity measures Eρ=0.7(S) and Eρ=0.9(S) were used. Parameters ρ = 0.7

and ρ = 0.9 were selected by using Forward feature selection (Whitney, 1971).

Why the selected parameters ρ = 0.7 and ρ = 0.9 are performed well, can also be

explained by the graphs displayed in Fig.4.4.1. 32 shape were selected randomly and

then thresholded by both global and local method. The graphs of Eρ(S) for shapes

obtained by global thresholding method are in Fig.4.4.1(a), while the graphs Eρ(S)

for shapes obtained by the local thresholding are in Fig.4.4.1(b). Since for both ρ =

0.7 and ρ = 0.9 the values of Eρ(S) are “scattered” reasonably well, it would enable

an efficient discrimination among the galaxy shapes by using the functions/measures

Eρ=0.7(S) and Eρ=0.9(S). Also, the selected parameters are preferred to be reasonably

different.
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Figure 4.4.1: Eρ(S), ρ ∈ (1/300, 0), graphs for shapes S obtained by thresholding of 32 randomly
selected galaxy images: (a) global thresholding applied; (b) local thresholding applied.

For the classification we have used k-Nearest Neighbor Classifier (k-NN), with

k = 5. Each galaxy was represented by 6 numbers, i.e. the feature vector FV (g)

corresponding to a given galaxy g was

FV (g) =
(
Eρ=0.7(S

′
g), Eρ=0.9(S

′
g), E(S ′

g), Eρ=0.7(S
′′
g), Eρ=0.9(S

′′
g), E(S ′′

g)
)

(4.4.1)

where S ′
g and S ′′

g are binary images obtained from the original image of the galaxy

g thresholded by two selected methods (global and local one).

k-NN, with k = 5, is used as the classifier. For the training set we have used 4

elliptical galaxies, and 28 spiral ones (e.g. approximately 30% of galaxies have been

used for the training). The classification was performed on the complete data set

(galaxies selected for the training were also included).

4.5 Classification Results

The best possible classification accuracy of 100% is achieved, for several choices of

training data. So, the existing accuracies are outperformed. In order to get a more

robust impression about the efficiency of the classification “mechanism” applied we

have performed 100 mutually independent experiments – i.e. galaxies for the training

set (4 elliptical and 28 spiral galaxies) have been selected randomly. The average

classification rate was 95.6% (still better than both best rates obtained by k-NN and

neural network classifiers in Lekshmi et al. (2003)). Among these 100 experiments,

the classification rate of 100% was acheived 3 times. The minimal classification

rate of 90.2% was obtained 4 times. The classification results are displayed in
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Fig.4.5.1. Since the 100% classification accurancy was acheived and since the average

classification rate (95.6%) obtained is better than 95.1%, the highest classification

rate reported in Lekshmi et al. (2003), we evaluate the established classification

mechanism as very efficient.

A detailed classification accuracy tables have been added under the related fig-

ures. The tables include the results for the original data and the results for Z-score

and Min-Max normalized data. The numbers, which is inside the parenthesis, beside

the classification accuracies shows that how many times this classification accuracy

achieved. In experiments which are illustrated in Table 4.5.1, 4.5.2, 4.5.3 and 4.5.7

the Z-score slightly imroved the average classification accuracy, but it does not show

the same behaviour for the experiments illustrated in Table 4.5.4, 4.5.5 and 4.5.6.

The same comments hold for the results of the Min-Max normalization. It improved

the average classification accuracy for the experiments which are illustrated in Ta-

ble 4.5.2, 4.5.3 and 4.5.6, but it decreased the average classification accuracy for the

experiments illustrated in Table 4.5.1, 4.5.4, 4.5.5 and 4.5.7.
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Figure 4.5.1: Classification rates obtained for 100 galaxy classification experiments.

minimum maximum average
original data 90.2%(4) 100%(3) 95.6%
Z-score normalized data 85.2(2)% 100%(5) 95.7%
Min-Max normalized data 87.2%(4) 98.0%(2) 94.0%

Table 4.5.1: A detailed classification accuracy table for the experiment which is illustrated in
Fig.4.5.1. The table includes the minimum, maximum and average classification accuracy results
for the original data, Z-score normalized data and Min-Max normalized data.
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Even though the method uses two thresholding methods and, actually two shapes

assigned to every galaxy image, it can be understood as a very simple one. The new

ellipticity measures introduced in this paper, as well as the ellipticity measure from

section 3.2.2, are straightforward to compute (from the formulas in (m1), (m2),

and (m3)).

As expected, a use of only one of two thresholded images has led to a decrease in

the classification accuracy. The classification results obtained were as follows:

• If only black-white images/shapes obtained by the global thresholding method

are used, the feature vector FV (g) had to be replaced with a 3-dimensional

feature vector FVgt(g) defined as

FVgt(g) =
(
Eρ=0.7(S

′
g), Eρ=0.9(S

′
g), E(S ′

g)
)
. (4.5.1)

The average classification rate was 87.5%, and the maximum accuracy achieved

was 92.1% while the minimal classification rate was 82.4%.

• If only black-white images/shapes obtained by the local thresholding method

are used, a 3-dimensional feature vector FVlt(g)

FVlt(g) =
(
Eρ=0.7(S

′′
g), Eρ=0.9(S

′′
g), E(S ′′

g)
)
. (4.5.2)

was assigned to each galaxy g. The average classification accuracy was 92.2%.

The maximum accuracy achieved was 96.0% while the minimal classification

rate was 84.3%. Because of the 96.0% classification rate achieved (reached in

5 out of 100 experiments), such a simplified version of our method has the

efficiency comparable to the methods from Lekshmi et al. (2003).
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Figure 4.5.2: Classification rates obtained for 100 simplified classification experiments. On the
left: the shapes/images obtained by the global thresholding method and the feature vector (4.5.1)
used. On the right the shapes/images obtained by the local thresholding method and the feature
vector (4.5.2) used.

minimum maximum average
original data 82.4% 92.1% 87.5%
Z-score normalized data 87.8% 92.1% 89.2%
Min-Max normalized data 87.2% 92.1% 88.6%

Table 4.5.2: A detailed classification accuracy table for the experiment which is illustrated in
Fig.4.5.2 (left).

minimum maximum average
original data 84.3% 96.0% 92.2%
Z-score normalized data 85.3% 96.0% 92.5%
Min-Max normalized data 84.3% 96.0% 92.6%

Table 4.5.3: A detailed classification accuracy table for the experiment which is illustrated in
Fig.4.5.2 (right).

Several more classification experiment has been done to show that the perfor-

mance of the mechanism is not limited with the previously selected options (30%

traning 100% percent test with k = 5). In the second experiment task, approxi-

mately 30% of galaxies have been used for the training and 70% have been used

for the testing to perform classification. k-NN classifier witk k = 5 has been used.

The average classification rate was 96.0%. Among these 100 experiments, the clas-

sification rate of 100% was acheived 15 times. The minimal classification rate of

88.5% was obtained 4 times. The classification results are displayed in Fig.4.5.3.

The classification results which are displayed in Fig.4.5.3 is better than Fig.4.5.1.
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Figure 4.5.3: The experiment has been done by using 30% of the data as training
and 70% of the data as testing: Obtained results when k = 5: Maximum result that
we obtanied is 100% (15 times), Minumum results obtained is 88.5% (4 times) and
the average calssification accuracy is 96.0%

minimum maximum average
original data 88.5%(4) 100.0%(15) 96.0%
Z-score normalized data 85.0%(2) 100.0%(14) 95.0%
Min-Max normalized data 81.5%(2) 100.0%(16) 95.3%

Table 4.5.4: A detailed classification accuracy table for the experiment which is illustrated in
Fig.4.5.3. The table includes the minimum, maximum and average classification accuracy results
for the original data, Z-score normalized data and Min-Max normalized data.

In the next two experiments we repeated classification task by using 70% of the

galaxies as training and 30% of the galaxies as testing. The classification results

are displayed in Fig.4.5.4 and Fig.4.5.5. k-NN classifier witk k = 5 (Fig.4.5.4) and

k = 6 (Fig.4.5.5) has been used. The average classification rate was 96.6% when

k = 5 is used. The classification rate of 100% was acheived 29 times. The minimal

classification rate of 90.3% was obtained 6 times. The classification performance

improved when k = 6 is used. The average classification rate was 97.1%, the clas-

sification rate of 100% was acheived 39 times and the minimal classification rate of

90.3% was obtained 2 times.
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Figure 4.5.4: The experiment has been done by using 70% of the data as training and 30% of
the data as testing: Obtained results when k = 5: Maximum result that we obtained is 100% (29
times), Minumum results obtained is 90.3% (6 times) and the average classification accuracy is
96.6%.

minimum maximum average
original data 90.3%(6) 100.0%(29) 96.6%
Z-score normalized data 84.3%(2) 100.0%(29) 96.1%
Min-Max normalized data 87.1%(3) 100.0%(31) 96.3%

Table 4.5.5: A detailed classification accuracy table for the experiment which is illustrated in
Fig.4.5.4. The table includes the minimum, maximum and average classification accuracy results
for the original data, Z-score normalized data and Min-Max normalized data.

Figure 4.5.5: The experiment has been done by using 70% of the data as training and 30% of
the data as testing: Obtained results when k = 6: Maximum result that we obtained is 100% (39
times), Minumum results obtained is 90.3% (2 times) and the average classification accuracy is
97.1%.
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minimum maximum average
original data 90.3%(2) 100.0%(39) 97.1%
Z-score normalized data 83.9%(4) 100.0%(40) 96.8%
Min-Max normalized data 87.8%(1) 100.0%(45) 97.3%

Table 4.5.6: A detailed classification accuracy table for the experiment which is illustrated in
Fig.4.5.5. The table includes the minimum, maximum and average classification accuracy results
for the original data, Z-score normalized data and Min-Max normalized data.

Lastly, we performed another classification task to show that the result of the

classiffcation results vary depending on the choice of the values of the parameter ρ.

In Fig.4.5.6, we give the classification accuracy for ρ = 0.4 and ρ = 0.5 selected.

Both highest and average accuracies were lower.
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Figure 4.5.6: The experiment has been done by using 30% of the data as training
and 100% of the data as testing with ρ = 0.4 and ρ = 0.5: Obtained results when
k = 5: Maximum result that we obtained is 98.6% (3 times), Minimum classification
obtained is 78.8% (1 times) and the average classification accuracy is 92.7%

minimum maximum average
original data 78.8%(1) 98.6%(3) 92.7%
Z-score normalized data 79.7%(3) 98.6%(5) 93.8%
Min-Max normalized data 82.3%(2) 96.3%(2) 92.4%

Table 4.5.7: A detailed classification accuracy table for the experiment which is illustrated in
Fig.4.5.6. The table includes the minimum, maximum and average classification accuracy results
for the original data, Z-score normalized data and Min-Max normalized data.
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4.6 Experiments on a common dataset

The two experiments, a matching experiment and a classification experiment were

performed to compare the method with the other ellipticity measures which are

considered in the thesis and to show the behaviour of the method on a common

dataset. For the matching experiment ”MPEG7 CE Shape-1 Part-B” database has

been used. The data set was built by choosing 120 images from 5 classes (chicken,

fly, bone, apple, horseshoe, tree) and ”chicken-12” has been selected as a query

image (the enclosed shape in Fig.4.6.1). In each task a single ellipticity measure has

been chosed form the set {E(S), Ef (S), Efm(S), EI(S)} and the results of the best

9 matches were illsutrated in the corresponding rows.

In the first and the second row the best 9 matches are displayed if Ef (S) and

Efm(S) are used respectively for the matching (5 of them were chickens). For the

third task EI(S) measure was used and the matching experiment was repeated.

EI(S) ellipticity measure performed better than either the Ef (S) measure or Efm(S)

measure and selected 6 of the best matches as chicken.

Moreover, in row four, the same matching experiment was performed by using

the ellipticity measure E(S) which is defined in section 3.2.2. The results show that

both ellipticity measures E(S) and EI performed conformable. Furthermore, E(S)

selected first two shapes from the same class and EI(S) selected only the first image

from the same class. Thus, we can say that E(S) measure performed slightly better

than EI(S). For the fifth task Eα=2(S) measure which is defined in section 3.2.2

was used and for this situation, it performs worst than EI(S) and E(S) measure (5

of them were chickens). For the next two tasks, the measure Eρ(S) was used with

different ρ. In row six the measure Eρ(S) with ρ = 8 was used for the matching and

7 of them were chicken. For the last task two measures from the Eρ(S) family were

used. When the measures Eρ=7(S) and Eρ=9(S) were used together, there was only

one shape which is selected from the different class. Thus, the best result has been

achieved once the measures Eρ=7(S) and Eρ=9(S) have been used. In this case 8 out

of 9 best matches were chicken.
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(a) Result of matching task when Ef (S) is used.

(b) Result of matching task when Efm(S) is used.

(c) Result of matching task when EI(S) is used.

(d) Result of matching task when E(S) is used.

(e) Result of matching task when Eα=2(S) is used.

(f) Result of matching task when Eρ=8(S) is used.

(g) Result of matching task when Eρ=7(S) and Eρ=9(S) are used together.

Figure 4.6.1: The enclosed query shape is in the first row. The best nine matches,
for a different choice of shape descriptors used, are displayed in the corresponding
rows.

For the classification experiment we created a data set consisting of 150 shapes

belonging to 5 classes: starbust, ancient weapon, bug, butterfly, fish (taken from the

Kimia database). The shapes selected randomly. Fig.4.6.2 shows one sample image

from each of these classes. We used k-nearest neighbour classifier (kNN), with the

value of k arbitrarily set to k = 5. The classification results obtained are in table

shown in Fig.4.6.2.

The classification rates obtained are displayed in the table in Fig.4.6.2. It can

be seen that the achieved classification rate by using the basic ellipticity measure

defined in section 3.2.2. E(S) (60.00%) is better than the measures Ef (S) (56.00%),

Efm(S) (44.00%), and EI(S) (57.33%). When the classification performed by us-

ing Eα=3(S) measure, the classifcation accuracy was 63.00% and combining two
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measures(Eα=3(S), Eα=7(S)) from the same family did not improve the result.

The most satisfactory classification accuracy was achieved when Eρ=0.9(S) mea-

sure has been used to perform the classification, the classification accuracy increased

to 73.33% which is better than all other results when a single descriptor is used.

But the highest classification accuracy was achieved when two measures (Eρ=0.7(S),

Eρ=0.9(S)) from the family have been used together, the obtained classifcation accu-

racy was 96.00%.

To summarize: the results show that the family of ellipticity measure Eρ(S)

performed better for both of the experiments. The performance of the method

depends on the ρ and when the optimum ρ selected, high results can be achieved.

Descriptor set Classification ratio

1.) Ef 56.00%
2.) Efm 44.00%
3.) EI 57.33%
4.) E(S) 60.00%
5.) Eα=3(S) 63.00%
5.) Eα=3(S), Eα=7(S) 63.00%
6.) Eρ=0.9(S) 73.33%
7.) Eρ=0.7(S), Eρ=0.9(S) 96.00%

Figure 4.6.2: Sample shapes from each class used in the classification experiment.

4.7 Conclusion

In this section we have considered a galaxy classification problem. We have used a

well known galaxy images from the Nearby Galaxy Catalog (Frei et al., 1996) (14

elliptical and 90 are spiral ones). Several approaches are already applied to solve

the problems and different classification rate were obtained. A classification rates

of 92.3% and 95.1% were reported in Lekshmi et al. (2003) (a fractal signature and

nearest neighbor and neural network classifiers were used). Here, we have used shape

based approach. Shape characteristics are very often used for shape characterization
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particularly because they allow many numerical characterization. Here we decided

to use shape ellipticity descriptors, for such numerical characterizations. Such a

choice seems to be natural since the galaxy shapes can be understood as nearly

elliptical. Also, because ellipticity measures are global descriptors – i.e. just a

single number is assigned to any object (i.e. its corresponding shape) we knew

that a single descriptor would not be enough to overcome the existing classification

accuracies (mentioned above). Because of that, we develop a family of the new

ellipticity measures. Knowing that these measure need to distinguish among shapes

which are very often nearly elliptical, we assume that a combination of the existing

ellipticity measures, which do not distinguish among differently elongated ellipses,

very likely would not lead to a high classification accuracy. The ellipticity measures

from the new family, contrary to the existing ellipticity measures, distinguish among

differently elongated ellipses (e.g. among ellipses whose axis length ratio differs).

Another issue is that we had to select a thresholding method which has to be

used to get the galaxy shape (represented by a black and white image) from the

original galaxy images. Obviously, any threshold method selected would bring some

limitations incorporated into the cumulative efficiency shown at the end of the clas-

sification process. To reduce such a limit, we decided to use two thresholded images

for each galaxy. These two images are obtained by using both, “global” and “local”

version of the Otsu thresholding method (Otsu, 1979; Sezgin and Sankur, 2004).

Finally, we have selected k-NN classifier. We have assigned a 6 dimensional

feature vector to each galaxy. Precisely, components of the feature vectors were

computed by using only two ellipticity measures Eρ=0.7(S) and Eρ=0.9(S) from the

new family, and an ellipticity measure which is defined in section 3.2.2. These three

ellipticity measures were used to obtain 3 numbers for each of two corresponding

threshold images (i.e. 6 numbers in total).

Even that we have used a relatively simple classification procedure we have

reached the maximum possible 100% classification rate. Approximately 30% of

galaxies were used as a training set and classification has been performed on the

whole data set, including galaxies from the training set. The selection of the train-
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ing set has been done randomly. Since there is always a bias of the training data

used, to the classification efficiency obtained, we have repeated the classification

task 100 times. This is in order to get a better evaluation of the efficiency of the

classification process selected. The average classification rate was very high – 95.6%

(3 out of 100 experiments had the 100% accurancy) and still beter than the results

from Lekshmi et al. (2003).
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Chapter 5

Conclusion

The aim of the research presented in this thesis was to create new shape descriptors

and showing their suitability for image processing applications. All the shape de-

scriptors are not applicable for all kind of applications and it is important to select

optimum descriptors for specific application. The shape descriptors which is defined

in this thesis is also not universal, but can be used as an additional tool which can

be implemented to meet the specific applications needs.

The experiments in this thesis were designed to illustrate the use of these de-

scriptors. More reasonable visual applications would be more complicated and needs

to combinations of several shape descriptors to achieve specific task such as galaxy

classification which was performed in last section.

Since each chapter has its own conclusion, we conclude this thesis with a sum-

mary, and with possibilities for future work.

5.1 Thesis summary and future work

The following section outlines the basic structure of this thesis, highlighting the main

points of interest in each of the previous chapters. Some suggestions for further work

are also given.

Chapter 1 gives a general introduction to shape descriptors and applications.

Some well-known descriptors from the literature are presented in this chapter. Figure

1.2 gives the basic structure of image processing applications; this basic structure is
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considered on the experiments in the rest of the chapters.

The Centeredness measure was introduced in Chapter 2. The new measure con-

siders the distance between the shape centroid computed from the shape interior

points and the shape centroid computed from the shape boundary points. In the

experiments section the measure has performed well and resulted in improved ac-

curacy in shape matching and shape classification tasks once the new descriptor is

added to a set of other shape descriptors.

A line of future research is to follow the same approach, creating a shape sig-

nature and consider the Fourier Descriptors. In the literature the triangular area

between two boundary points and the area based centroid has been studied. It can be

possible to define a new shape signature which this time considers the area between

two centroids (area based and contour based) and a boundary point. Moreover, it

is also possible to use the angle between the two lines (first line is from boundary

point to area based centroid and the second line is from the same boundary point

to the contour based centroid.) It is also possible to try further extensions.

In Chapter 3 two ellipticity methods are defined and compared with existing

ellipticity measures. The first presented ellipticity measure provides a reasonable

alternative to the existing methods found in the literature. The second ellipticity

measure which is described in the same chapter is the modified of the initially

defined ellipticity measure. The second measure is dependent on a single parameter

and by varying this parameter the sensitivity/robustness properties of the related

ellipticity measures, vary as well. In some situations methods which sensitive to the

presence of noise or to small object deformations, are more preferred. (e.g. in high

precision inspection tasks.). These measures overcome some of the shortcomings of

the existing methods. E and Eλ(S) can be applied to the shapes which are N-fold

rotationally symmetric or which have big holes, without any restriction.

Finally Chapter 4 introduces a family of ellipticity measure. Ellipticity measures

defined in this chapter distinguish between ellipses whose ratio between the length

of the major and minor axis differs. All the existing methods assign a highest

possible ellipticity to all the ellipses, including circles. This can be a disadvantage.
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For example, some leaf shapes or mirrors are nearly elliptic, and to be able to

distinguish among such elliptic shapes it is suitable to have ellipticity measures

which treat differently ellipses which have a different major and minor axis ratio. It

was illustrated in Fig.4.2.1.

In the experiment section a ranking task and galaxy classification task performed.

The ranking experiments showed that all the ellipticity measures from the family are

independent and can be used alone. And galaxy classification experiment showed

that the defined family of ellipticity measures perform well.

Another possible line of research is to divide a given shape based on their gray

levels and apply the specific shape descriptors to these individual components (Multi

Component Analaysis). A gray levels in the image will be in the range 0 − −255,

with zero being black and 255 being white. These shapes can be segmented based

on different ranges of gray level then each segment can be analayzed and computed

seperately and a single measure is going to be assigned from the considered shape

descriptor. (See Fig.5.1 for the illustration of the segmentation based on different

levels)

(a) (b) (c) (d)

Figure 5.1.1: Illustration of segmentation based on different range of gray levels.
Fig.(a)– Original image, Fig.(b) – Segmented from level 0 to 85, Fig.(c) – Segmented
from level 85 to 170, Fig.(d) – Segmented from level 170 to 255.

115



5.1. Thesis summary and future work

116



BIBLIOGRAPHY

Bibliography

Belongie, S., G. Mori, and J. Malik (2000). Matching with shape contexts. In IEEE

Workshop on Content-based access of Image and Video-Libraries, pp. 20. 30

Bowman, E. T. (2001). Particle shape characterisation using fourier descriptor

analysis. Geotechnique 51 (6), 545–554. 40, 61

Chen, C.-C. (1993). Improved moment invariants for shape discrimination. Pattern

Recognition 26 (5), 683–686. 41

Chen, C. H. (2005). Handbook Of Pattern Recognition And Computer Vision. River

Edge, NJ, USA: World Scientific Publishing Co., Inc. 39

Chuang, G. C.-H. and C. C. Kuo (1996, January). Wavelet descriptor of planar

curves: theory and applications. Trans. Img. Proc. 5 (1), 56–70. 40

Dalal, N. and B. Triggs (2005). Histograms of oriented gradients for human detec-

tion. In Proceedings of the 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05,

Washington, DC, USA, pp. 886–893. IEEE Computer Society. 30

Dampos, T. E. d., R. S. Feris, and R. M. C. Junior (2000). Improved face/spl

times/non-face discrimination using fourier descriptors through feature selection.

In Proceedings of the 13th Brazilian Symposium on Computer Graphics and Image

Processing, SIBGRAPI ’00, Washington, DC, USA, pp. 28–35. IEEE Computer

Society. 35

Dang, J., Y. Wang, and S. Zhao (2006). Face recognition based on radial basis

function neural networks using subtractive clustering algorithm. In Intelligent

117



Bibliography

Control and Automation, 2006. WCICA 2006. The Sixth World Congress on,

Volume 2, pp. 10294 –10297. 29

Deniz, O., G. Bueno, J. Salido, and F. de la Torre (2011). Face recognition using

histograms of oriented gradients. Pattern Recognition Letters 32 (12), 1598–1603.

35

El-ghazal, A., O. Basir, and S. Belkasim (2009). Farthest point distance: A new

shape signature for fourier descriptors. Signal Processing: Image Communica-

tion 24 (7), 572 – 586. 27, 28, 41

El Rube, I., N. Alajlan, M. S. Kamel, M. Ahmed, and G. H. Freeman (2006).

Mtar: A robust 2d shape representation. International Journal of Image and

Graphics 06 (03), 421–443. 41

Fitzgibbon, A., M. Pilu, and R. B. Fisher (1999, May). Direct least square fitting

of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21 (5), 476–480. 62

Flusser, J. and T. Suk (1993). Pattern recognition by affine moment invariants.

Pattern Recognition 26 (1), 167–174. 63

Frei, Z., P. Guhathakurta, J. E. Gunn, and J. A. Tyson (1996). A Catalog of Digital

Images of 113 Nearby Galaxies. Astronomical Journal 111, 174–181. 87, 95, 109

Gangopadhyay, A. (2001). An image-based system for electronic retailing. Decision

Support Systems 32 (2), 107 – 116. 34

Goderya, S. and S. Lolling (2002). Morphological classification of galaxies using

computer vision and artificial neural networks: A computational scheme. Astro-

physics and Space Science 279, 377–387. 86

Grauman, K. and T. Darrell (2005). The pyramid match kernel: Discriminative

classification with sets of image features. In Proceedings of the Tenth IEEE In-

ternational Conference on Computer Vision - Volume 2, ICCV ’05, Washington,

DC, USA, pp. 1458–1465. IEEE Computer Society. 33

118



BIBLIOGRAPHY

Guo, Q., F. Guo, and J. Shao (2010, oct.). Irregular shape symmetry analysis:

Theory and application to quantitative galaxy classification. Pattern Analysis

and Machine Intelligence, IEEE Transactions on 32 (10), 1730 –1743. 86

Hu, M. K. (1962, February). Visual Pattern Recognition by Moment Invariants.

IRE Transactions on Information Theory IT-8, 179–187. 19, 40, 41, 48, 52, 61

Huang, S.-S., H.-M. Tsai, P.-Y. Hsiao, M.-Q. Tu, and E.-L. Jian (2011). Combining

histograms of oriented gradients with global feature for human detection. In K.-

T. Lee, W.-H. Tsai, H.-Y. Liao, T. Chen, J.-W. Hsieh, and C.-C. Tseng (Eds.),

Advances in Multimedia Modeling, Volume 6524 of Lecture Notes in Computer

Science, pp. 208–218. Springer Berlin Heidelberg. 30

Jain, R. C., R. Kasturi, and B. G. Schunck (1995). Machine vision. McGraw-Hill.

15, 22

Jenkin, M. and L. Harris (1997). Computational and Psychophysical Mechanisms of

Visual Coding. Cambridge University Press. 22

Jianchao, Y., Y. Kai, G. Yihong, and S. H. Thomas (2009). Linear spatial pyramid

matching using sparse coding for image classification. In Computer Vision and

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 1794–1801. 32

Kazhdan, M., P. Simari, T. Mcnutt, B. Wu, R. Jacques, M. Chuang, and R. Taylor

(2009). A shape relationship descriptor for radiation therapy planning. In Pro-

ceedings of the 12th International Conference on Medical Image Computing and

Computer-Assisted Intervention: Part II, MICCAI ’09, Berlin, Heidelberg, pp.

100–108. Springer-Verlag. 34

Khotanzad, A. and Y. H. Hong (1990, May). Invariant image recognition by zernike

moments. IEEE Trans. Pattern Anal. Mach. Intell. 12 (5), 489–497. 40

Kobayashi, T., A. Hidaka, and T. Kurita (2008). Selection of histograms of ori-

ented gradients features for pedestrian detection. In M. Ishikawa, K. Doya,

H. Miyamoto, and T. Yamakawa (Eds.), Neural Information Processing, Volume

119



Bibliography

4985 of Lecture Notes in Computer Science, pp. 598–607. Springer Berlin Heidel-

berg. 30

Kue-Bum Lee, K.-S. H. (2012). Advanced leaf recognition based on leaf contour and

centroid for plant classification. In Information science and technology (IST),

2012 International Conference on, pp. 133 –135. Science & Engineering Research

Support soCiety. 41

Ladaga, J. and R. Bonetto (1998). Centroid, centroid from edge vectors, and shape

descriptor using only boundary information. Journal of Computer-Assisted Mi-

croscopy 10, 1–9. 10.1023/A:1023302928848. 47, 48, 49
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