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Abstract

We consider the stability of the feedback connection of a strictly proper linear time invariant (LTI)

stable system with a static nonlinearity expressed by a convex quadratic program (QP). From the

Karush-Kuhn-Tucker (KKT) conditions for the QP, we establish quadratic constraints that may be

used with a quadratic Lyapunov function to construct a stability criterion via the S-procedure. The

approach is based on existing results in the literature, but gives a more parsimonious linear matrix

inequality (LMI) criterion and is much easier to implement. Our approach can be extended to model

predictive control (MPC), and gives equivalent results to those in the literature but with a much

lower dimension LMI criterion.
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1 Introduction

The stability analysis of a closed loop system consisting of an LTI system in feedback with a static

nonlinearity has been studied for a long time (see, e.g. [1–5] for general analysis; [6–8] for saturation

analysis and [9–11] for anti-windup design). Primbs [12] and Primbs and Giannelli [13] observed that

an important subclass of such nonlinearities can be represented as the solution of a convex QP — see

Fig. 1. Examples include saturation, deadzone, combination of saturation and deadzone, as well as the

piecewise affine mapping between state estimate and control input obtained with MPC (see, e.g., [14–16]).

They developed a new approach to derive stability by showing that a candidate Lyapunov function is

decreasing subject to the system dynamics and constraints determined by the KKT conditions for the QP.

This approach is implemented by applying the S-procedure [17,18], which leads to the stability criterion

in terms of an LMI [19].
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One acknowledged drawback of the method is that “a priori, it is not clear how effective a constraint

will be” [13]. The inclusion of redundant constraints leads to an LMI with large dimension, which both

increases the computational burden and reduces the numerical accuracy. For example, in the case of a

saturation, ten constraints are required to establish the stability criterion using Primbs’ method.

In this paper we are concerned with a strictly proper stable LTI system interconnected with a non-

linearity, which is expressed by a convex QP with linear constraints

Lu + My ¹ b (1)

for some fixed L, M and b º 0 with appropriate dimensions — see Fig. 1. Here “¹” and “º” signify term

by term inequality. We first derive from the KKT conditions the essential linear and quadratic constraints

that are useful to establish stability using Primbs’ method. Then we show that these constraints can be

replaced by three constraints concisely. When we can set M = LN , for some fixed N with appropriate

dimensions, the three constraints can be simplified further, and only involve terms in u, y, u̇ and ẏ (where

u̇ exists) for continuous case.

Furthermore, we specifically focus on the QP with symmetric constraints. This case is important,

because it involves almost all the nonlinearities presented by Primbs et al. and many MPC controllers.

In this case, to guarantee global stability, the relation M = LN in (1) is required as a necessary and

sufficient condition for all y ∈ Rm to be feasible for the corresponding QP. It can be shown that we can

use the three constraints proposed in this paper instead of the original ten by Primbs et al. to establish

stability, which leads to a much lower dimension LMI criterion while not increasing the conservatism in

stability.

All of these results have their counterparts for the discrete time case. In the numerical example

investigated in this paper, we apply the results to the robustness and stability analysis of MPC. The

reduction of the LMI dimension is particularly significant when the MPC has a long prediction horizon,

which results in an LMI criterion with an immense dimension.

The paper is structured as follows. In section 2, the continuous time case is considered. In section 3

we derive results for the discrete time case that correspond to those of section 2. In section 4 we use three

examples: saturation, deadzone and MPC [13] to illustrate the benefits of the new approach. Section 5

concludes the paper. Some of the proofs are given in the appendix.

We use the following notations of M ∈ Rm×n:

• M†: If rank(M) = n, then the pseudoinverse of M is defined as M† = (MT M)−1MT .

• M⊥: If m < n and rank(M) = m, then M⊥ ∈ Rn×(n−m) and the rows of MT
⊥ span the null space

of the subspace spanned by the rows of M , such that MM⊥ = 0; if m > n and rank(M) = n, then

M⊥ ∈ R(m−n)×m and the columns of (M⊥)T span the null space of the subspace spanned by the

columns of M , such that M⊥M = 0.

• He(M): If M is a square matrix, then He(M) := M + MT .
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2 Continuous time case

2.1 Problem setup

Consider a stable continuous time multivariable system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (2)

with x(t) ∈ Rn, u(t), y(t) ∈ Rm. This system has a feedback connection with a nonlinearity expressed

by a QP

u = φ(y) = arg min
ũ

1
2
ũT Hũ + ũT Fy (3)

s.t. Lũ + My ¹ b (4)

with Hessian matrix H = HT > 0. Here the dimensions of the fixed terms are H ∈ Rm×m, F ∈ Rm×m,

L ∈ Rl×m, M ∈ Rl×m and b ∈ Rl. We assume that φ(0) = 0, hence the constant vector b º 0.

We can also include equality constraints

Kũ + Gy = d

with K ∈ Rg×m, G ∈ Rg×m and d ∈ Rg in the QP. Since the assumption φ(0) = 0 requires d = 0, the

equality constraints can be expressed by two inequality constraints

Kũ + Gy ¹ 0

−Kũ−Gy ¹ 0

which can be included in (4). Hence in this paper, we only consider the case when the objective function

is subject to inequality constraints.

2.2 Stability establishment

From the KKT conditions for the QP describing the saturation or deadzone function, Primbs and Giannelli

[13, 20] develop equality and inequality constraints that involve y, ẏ, u, u̇, λ and λ̇ (where λ is the

Lagrangian multiplier corresponding to the constraints). Using the S-procedure, these constraints with

a Lyapunov function are employed to establish the stability criterion. This method is also generalized

to multivariable discrete time cases in [12]. However, exactly what kind of constraints are useful to

establish the stability criterion is not pointed out [12]. In the following Proposition we summarize five

constraints that are useful for establishing stability using the S-procedure, and show their equivalent

three constraints.

Proposition 1 Consider the QP with objective function (3) subject to (4)
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1) The following constraints can be derived from KKT conditions

Hu + Fy + LT λ = 0 (5)

Hu̇ + F ẏ + LT λ̇ = 0 where u̇ and λ̇ exist (6)

λT Lu + λT My ≥ 0 (7)

λT Lu̇ + λT Mẏ = 0 where u̇ exists (8)

λ̇T Lu̇ + λ̇T Mẏ = 0 where u̇ and λ̇ exist (9)

where λ ∈ Rl is the Lagrangian multiplier corresponding to the inequality constraints in the KKT

conditions.

2) When rank(L) = m, we have:

2.1) The following three constraints also hold (with the usual caveats about the existence of u̇ and λ̇):

(u + L†My)T (Hu + Fy)− ((I − LL†)My)T λ ≤ 0 (10)

(u̇ + L†Mẏ)T (Hu + Fy)− ((I − LL†)Mẏ)T λ = 0 (11)

(u̇ + L†Mẏ)T (Hu̇ + F ẏ)− ((I − LL†)Mẏ)T λ̇ = 0 (12)

2.2) Suppose that the Lyapunov function is V (x, u) = [xT , uT ]P [xT , uT ]T . Then when establishing

stability by the S-procedure, the LMI derived from the constraints (5)-(9) and the LMI from the

three constraints (10)-(12) are equivalent.

Proof: See Appendix.

In this proposition, we note two points: First, in the reduction in 2.2), it can also be shown that

when the candidate Lyapunov function is chosen as V (x) = xT Px, the LMI derived from the constraints

(5)-(9) are equivalent to the LMI from (10). However, it has been shown that the stability criterion

based on the quadratic Lyapunov function V (x, u) is usually less conservative than the one based on

V (x) = xT Px (see [20] and [21]). Hence in this paper we are mainly concerned with the Lyapunov

function V (x, u). Second, although we can use a less number of constraints to establish stability, the

resulting LMI dimension is not reduced because the three constraints (10)-(12) have the same number of

variables as the original five constraints (5)-(9).

Now we consider an important special case of the constraint (4): When M = LN with N ∈ Rm×m

and rank(L) = m, (4) takes the form of

Lũ + LNy ¹ b (13)

In this case, the variables λ and λ̇ in the three constraints (10)-(12) are eliminated so that the three

constraints can be further reduced:
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Lemma 1 For the QP with objective function (3) subject to (13), the following three conditions hold

(with the usual caveats about the existence of u̇ and λ̇):

(u + Ny)T (Hu + Fy) ≤ 0 (14)

(u̇ + Nẏ)T (Hu + Fy) = 0 (15)

(u̇ + Nẏ)T (Hu̇ + F ẏ) = 0 (16)

Proof: (14)-(16) can be derived by substituting M = LN into (10)-(12) and the fact that L†L = I.

Remark: When N = 0 or F = 0, the first condition corresponds to the sector bound condition long

established for saturation and deadzone. More recently Heath, et al. [15,22,23] established such a sector

bound in the context of MPC, and used it in a stability criterion. This lemma gives two extra slope rate

conditions, which are expected to yield less conservative stability result.

The three quadratic constraints (14), (15) and (16) may be used in the manner proposed by Primbs

and Giannelli [13, 20] to establish stability by the S-procedure:

Theorem 1 (stability criterion): The system (2) with a nonlinear feedback expressed by a QP (3)

subject to (13) is stable if there is a symmetric positive definite matrix

P =


P11 PT

21

P21 P22


 (17)

such that the following LMI is satisfied:

He(Π0 +
3∑

i=1

riΠi) < 0 (18)

with scalars r1 ≥ 0, r2, r3 ∈ R. Here Πi with i = 0, 1, 2, 3 are

Π0 =


I 0 0

0 I 0




T

P


A B 0

0 0 I


 (19)

Π1 = −
[
NC I 0

]T [
FC H 0

]
(20)

Π2 =
[
NCA NCB I

]T [
FC H 0

]
(21)

Π3 =
[
NCA NCB I

]T [
FCA FCB H

]
(22)

Remark: From the LMI (18), it is obvious that the assumption A is Hurwitz must hold.

Remark: The LMI dimension reduction is obvious by comparing the LMI (18) established by (14) -

(16) with the LMI (72) established by (10) - (12) (or equivalently (5) - (9)): the LMI (72) has the

dimension corresponding to the vector ϕ = [xT , uT , u̇T , λT , λ̇T ]T ; while the LMI (18) has the dimension

corresponding to φ = [xT , uT , u̇T ]T .

In the following subsection, the three conditions in Lemma 1 and the stability criterion in Theorem 1

will be used for the symmetric constraints.
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2.3 Symmetric constraints

In this subsection we consider particularly the case when the QP is subject to symmetric constraints

with guaranteed feasibility. The results in this subsection can be extended to the discrete time case. We

show that the extra conditions introduced by the symmetry (in Primbs’ method) do not take any effect

in reducing the conservatism when establishing stability by the S-procedure. Hence all the constraints

derived from (23) by following Primbs’ method can be reduced to the three properties (14)- (16), and

stability can be established as Theorem 1.

We consider the following constraint

 L

−L


 ũ +


 L

−L


 Ny ¹


b

b


 (23)

where L ∈ Rl×m with l ≥ m, N ∈ Rm×m and b º 0 with b ∈ Rl.

Remark: The relation u(t) = −Ny(t) is always feasible for the QP with objective function (3) and

subject to (23).

The following Lemma shows that to achieve global stability, the QP must have the constraint form

as (23).

Lemma 2 Consider the QP with objective function (3) and subject to the general symmetric constraint

 L

−L


 ũ +


 M

−M


 y ¹


b

b


 (24)

where u, y ∈ Rm, L ∈ Rl×m with l ≥ m, M ∈ Rl×m and b º 0 with b ∈ Rl. Then the only constraint

form for the QP having guaranteed feasibility for all y ∈ Rm is (23).

Remark: Suppose the objective function (3) is expressed as J(u, y), then it is obvious that J(u, y) =

J(−u,−y). Furthermore, if (u, y) is feasible, then (−u,−y) must also be feasible. Therefore the function

u = φ(y) is odd.

Proof: We can write the constraint (24) as

 L

−L


 ũ +


 L

−L


 N1y +


 (L⊥)T

−(L⊥)T


 N2y ¹


b

b


 (25)

where N1 ∈ Rm×m and N2 ∈ R(l−m)×m, then the function u = φ(y) is not feasible ∀y ∈ Rm if (L⊥)T N2 6=
0 1. This can be shown as follows: by row transformations we can make sure that at least one column

of (L⊥)T , denoted as (L⊥)T (:, j), has the property that (L⊥)T (i, j) ≥ 0 and not all (L⊥)T (i, j) = 0 for

i = 1, . . . , l. Premultiplying (25) by
[
L⊥(j, :) 01×l

]
, we have

L⊥(j, :)(L⊥)T N2y ≤ L⊥(j, :)b (26)

Suppose L⊥(j, k) 6= 0 with 1 ≤ k ≤ l and there is at least one entry at the kth row of (L⊥)T N2 not

equal to zero (otherwise the corresponding constraint would degenerate to (23)). Then (26) defines a half

hyperplane, which can not guarantee ∀y ∈ Rm satisfy the constraint (25).
1Here “ 6=” denotes not all entries are equal to zeros.
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Proposition 2 (reduction for symmetric constraints): Consider the QP with objective function

(3) subject to (23).

1) The following constraints can be derived from KKT conditions (with the usual caveats about the

existence of u̇, λ̇+ and λ̇−):

Hu + Fy + LT λ+ − LT λ− = 0 (27)

Hu̇ + F ẏ + LT λ̇+ − LT λ̇− = 0 (28)

(λ+)T Lu + (λ+)T LNy ≥ 0 (29)

−(λ−)T Lu− (λ−)T LNy ≥ 0 (30)

(λ+)T Lu̇ + (λ+)T LNẏ = 0 (31)

−(λ−)T Lu̇− (λ−)T LNẏ = 0 (32)

(λ̇+)T Lu̇ + (λ̇+)T LNẏ = 0 (33)

−(λ̇−)T Lu̇− (λ̇−)T LNẏ = 0 (34)

(λ+)T λ− = 0 (35)

(λ̇+)T λ̇− = 0 (36)

with λ+ and λ− corresponding to the constraints Lu + LNy ¹ b and −Lu− LNy ¹ b respectively.

2) Suppose that the Lyapunov function is V (x, u) = [xT , uT ]P [xT , uT ]T . Then when establishing stability

by the S-procedure, the LMI derived from the ten constraints (27)-(36) and the LMI derived from the

three constraints (14)-(16) under the condition that rank(L) = m are equivalent.

Proof: The proof of 1) is a straightforward generalization of that in Primbs and Giannelli [13, 20]; the

proof of 2) is similar to that of Proposition 1; see Li [24] for details.

3 Discrete time case

In this section, we consider the discrete time case. The stability criteria and the reduction results can be

derived in a similar manner as those proposed in the continuous time case. We only present the results

corresponding to Luk + LNyk ¹ b for conciseness, since these results can be extended for the symmetric

constraint case easily.

3.1 Problem setup

Given a discrete time multivariable system

xk+1 = Axk + Buk

yk = Cxk (37)
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with xk ∈ Rn, uk ∈ Rm and yk ∈ Rm. Suppose this system has a feedback connection with a nonlinearity

or controller expressed by a discrete quadratic program, which is represented as

uk = φ(yk) = arg min
ũ

1
2
ũT Hũ + ũT Fyk

subject to Lũ + LNyk ¹ b (38)

with Hessian matrix H = HT > 0, the constant vector b º 0. The dimensions for the fixed terms are

H ∈ Rm×m, F ∈ Rm×m, L ∈ Rl×m with l ≥ m, N ∈ Rm×m and b ∈ Rl.

3.2 Main results

Consider a discrete time system (37) in feedback with a nonlinearity expressed as a QP (38). We derive

the three constraints directly from KKT conditions in Lemma 3.

Lemma 3 (QP properties — discrete time case):

The QP (38) satisfies the following properties

(uk + Nyk)T (Huk + Fyk) ≤ 0 (39)

(∆uk+1 + N∆yk+1)T (Huk + Fyk) ≥ 0 (40)

(∆uk+1 + N∆yk+1)T (Huk+1 + Fyk+1) ≤ 0 (41)

with ∆uk+1 = uk+1 − uk and ∆yk+1 = yk+1 − yk.

Proof: See Appendix A.

Since the derivations of the reduction result and stability criterion for discrete time case are similar

to those of continuous time case, they are given below without proofs (see Li [24] for details).

Theorem 2 (Stability criterion — discrete time case):

The system is stable if there is a symmetric positive definite matrix P with the same structure as

(17), such that the LMI (42) is satisfied:

Π0 + He

(
3∑

i=1

riΠi

)
≤ 0 (42)

with r1 ≥ 0, r2 ≥ 0 and r3 ≥ 0. Here Πi with i = 0, . . . , 3 are

Π0 =


A B 0

0 I I




T

P


A B 0

0 I I


−


P 0

0 0


 (43)

Π1 =−
[
NC I 0

]T [
FC H 0

]
(44)

Π2 =
[
N(CA− C) NCB I

]T [
FC H 0

]
(45)

Π3 =−
[
N(CA− C) NCB I

]T

×
[
FCA FCB + H H

]
(46)
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Note that the LMI (42) corresponds to the vector ϕk = [xT
k , uT

k , ∆uT
k+1].

We also have the reduction result:

Proposition 3: Consider the QP (38). We have

1) The following constraints can be derived from KKT conditions:

Huk + Fyk + LT λk = 0 (47)

Huk+1 + Fyk+1 + LT λk+1 = 0 (48)

λT
k Luk + λT

k LNyk ≥ 0 (49)

λT
k L∆uk+1 + λT

k LN∆yk+1 ≤ 0 (50)

λT
k+1L∆uk+1 + λT

k+1LN∆yk+1 ≥ 0 (51)

2) Suppose that the candidate Lyapunov function is V (xk, uk) = [xT
k , uT

k ]T P [xT
k , uT

k ]. Then when

establishing stability by the S-procedure, the LMI derived from the five constraints (47)-(51) and the

LMI from the three constraints (39)-(41) under the condition that rank(L) = m are equivalent.

Remark: For the symmetric constraint corresponding to (23) in discrete time case, ten conditions

corresponding to (27)-(36) can be derived and further reduced to the same stability criterion in Theorem

2 established by the three conditions (39)-(41) in a similar way as the continuous case.

4 Examples

4.1 Examples of Symmetric Constraints

The benefits of the reduction for symmetric constraints are best illustrated by two examples.

Example 1–Saturation nonlinearities:

Primbs and Giannelli [13] consider the stability analysis of a strictly proper SISO system intercon-

nected with a saturation nonlinearity (see Fig. 2):

u =





−1 for y < −1

y for − 1 ≤ y ≤ 1

1 for y > 1

(52)

which can be expressed by an optimization problem as

u = arg min
ũ

1
2

(ũ− y)2

s.t. |ũ| ≤ 1

It is straightforward to see that this saturation function falls into the QP with objective function (3)

subject to (23) when we set H = 1, F = −1, L = 1, N = 0 and b = 1. With these values, the conditions

(27)-(36) correspond to the conditions derived by Primbs and Giannelli [13].
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For this particular case, we have the following corollary by applying Proposition 2.

Corollary 1 (reduction for a saturation): Given a SISO system interconnected with a saturation

function (52). Suppose that the candidate Lyapunov function is V (x, u) = [xT , u]P [xT , u]T . Then when

using the S-procedure to establish stability, the LMI derived from the ten conditions by Primbs [13] is

equivalent to the LMI from the following three conditions:

u(u− y) ≤ 0

u̇(u− y) = 0 where u̇ exists

u̇(u̇− ẏ) = 0 where u̇ exists

(53)

Example 2–Deadzone nonlinearities:

Primbs and Giannelli [20] also consider a system connected with a deadzone (see Fig. 3)

u =





y + 1 for y < −1

0 for − 1 ≤ y ≤ 1

y − 1 for y > 1

(54)

This may be expressed as

u = arg min
ũ

1
2
ũ2

subject to |ũ− y| ≤ 1

It is straightforward to see that this deadzone function falls into the general case when we set H = 1,

F = 0, L = 1, N = −1 and b = 1 in (3). The conditions (27)-(36) correspond to the conditions derived

by Primbs and Giannelli [20]. In parallel with Corollary 1, we have the following corollary by applying

Proposition 2.

Corollary 2 (reduction for a deadzone): Given a SISO system interconnected with a deadzone

function (54). Suppose that the candidate Lyapunov function is V (x, u) = [xT , u]P [xT , u]T . Then when

using the S-procedure to establish stability, the LMI derived from the ten conditions by Primbs [20] is

equivalent to the LMI from the following three conditions:

u(u− y) ≤ 0

u(u̇− ẏ) = 0 where u̇ exists

u̇(u̇− ẏ) = 0 where u̇ exists

(55)

Remark: Using (53) or (55) to establish the stability criterion requires an LMI with the same dimension

as the vector [xT , u, u̇]T and with three multipliers; using the conditions proposed by Primbs requires an

LMI with the same dimension as the vector ϕ = [xT , u, u̇, λ+, λ−, λ̇+, λ̇−]T and with ten multipliers.
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4.2 MPC example

Since MPC controller can be expressed by a QP [25], a branch of studying stability of MPC is conducted

by investigating the QP properties, which always leads to direct approaches to stability analysis (see,

e.g., [15,16,22,26] by Heath et al.) and synthesis (see, e.g., [14] by Bemporad et al.). Primbs’ approach for

its MPC extension [12] also fall into this branch. The approach developed in this paper greatly extends

the implementability of Primbs’ by reducing redundant constraints used in Primbs’ approach.

For a comparison, we consider the MPC example used by Primbs [12] with 2-norm bounded unstruc-

tured uncertainty. The extension to the structured uncertainty is obvious and the extension to two-stage

MPC can be found in [24].

4.2.1 Extension to MPC

The plant with the unstructured uncertainty is expressed as

xk+1 = Axk + Buuk + Bwwk

pk = Cxk + Duuk + Dwwk

wk = ∆kpk

with xk ∈ Rnx , uk ∈ Rnu , pk ∈ Rnp and wk ∈ Rnw . Here the memoryless operator ∆k satisfies

‖∆k‖2 ≤ 1 (56)

so that wT
k wk ≤ pT

k pk holds.

Suppose the MPC controller is

Jk = xT
k+Np

Pxk+Np +
Np−1∑

i=0

[
xT

k+iQxk+i + uT
k+iRuk+i

]

subject to Lkuk ¹ bk with bk º 0

(57)

with Lk ∈ Rnc×nu and bk ∈ Rnc . In a standard way, the MPC controller (57) can be converted to a QP, so

that the results proposed in this paper can be applied. We consider two cases: 1) the candidate Lyapunov

function is Vk = xT
k Pxk, and the sector bound constraint (39) together with the disturbance constraint

(56) are used to establish stability; 2) the candidate Lyapunov function is Vk = [xT
k , UT

k ]P [xT
k , UT

k ]T

with Uk = [uT
k , uT

k+1, . . . , u
T
k+Np−1], and the three constraints (39)-(41) together with the disturbance

constraint (56) are used to establish stability. We mainly focus on case 2) for the discussion of LMI

dimension reduction.

In the second case, the LMI stability criterion corresponds to the vector [xT
k , UT

k , uT
k+Np

, wT
k ]T , while

the LMI of Primbs corresponds to the vector [xT
k , UT

k , λT
k , wT

k , UT
k+1, λT

k+1, wT
k+1, 1]T , where λk, λk+1 ∈

RNpnc are Lagrangian Multipliers associated with the input constraints for the whole prediction horizon.

The dimensions of the resulting LMIs from our approach and Primbs’ approach are nx +(Np +1)nu +nw

and nx + (2Np + 1)nu + 2nw + 2Npnc + 1 respectively.
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4.2.2 Primbs’ example

The plant’s state space matrices are

A =


4/3 −2/3

1 0


 Bu =


1

0


 Bw =


θ

0




C =
[
1 0

]
Du = 0 Dw = 0

where θ is a fixed value for the size of uncertainty. This system is subject to |u| ≤ 1. The MPC controller

is (57) with the horizon Np = 3 and the parameters Q and R as

Q =


 1 −2/3

−2/3 3/2


 R = 1

In case 1), the sufficient condition of θ for the system to be stable is 0 ≤ θ ≤ 0.03. In case 2), the range

of θ for the system to be stable is 0 ≤ θ ≤ 0.19, which is the same result achieved by Primbs [12]; the

dimensions of the two LMIs derived from our approach and Primbs’ approach are 7 and 24 respectively,

with nx = 2, nu = 1, nw = 1, nc = 2. In Fig. 4, a comparison for case 2) is made between the dimensions

(denoted by square markers) of the LMIs derived from the Primbs’ approach and our new approach at

various lengths of prediction horizon. This figure shows that as the length of prediction horizon grows,

the dimension difference between the two approaches is enlarged. When the prediction horizon is 30, the

LMI dimension from Primbs’ approach is about 5.5 times of the one from the new approach.

From this numerical example we can see that our result is no worse than Primbs’, but our reduction

is much easier to implement and the LMI criterion has a much lower dimension compared with that of

Primbs. The benefits of such a reduction become especially important when a long prediction horizon is

required.

5 Conclusion

We have considered Primbs’ method for assessing the stability of a closed-loop system with a static non-

linearity that may be expressed as the solution of a class of QP. This includes simple nonlinearities, such

as saturation functions and deadzone functions; the method can also be extended to MPC applications.

We proposed three conditions that lead to a concise and parsimonious application of the S-procedure.

For continuous time systems we have shown analytically that the results are no worse than those of

Primbs for a fairly broad class of nonlinearities, and considered saturation and deadzone nonlinearities

as examples. All the results have their discrete time counterparts and we have demonstrated the result

using a numerical example.

Appendix – Proofs of Results

Proof of Proposition 1:
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Proof of 1): The KKT conditions [27] for the QP are

Hu + Fy + LT λ = 0 (58)

Lu + My + s = b (59)

λT s = 0 (60)

λ º 0 (61)

s º 0 (62)

Note that (5) and (6) are just (58) and its derivative. From (60) - (62), it can be shown that λT ṡ = 0 and

λ̇T ṡ = 0 also hold (see [20,24] for details). Then premultiplying (59) and its derivative by λT respectively

leads to (7) and (8); premultiplying the derivative of (59) by λ̇T leads to (9).

Proof of 2.1): Premultiplying (58) by uT and using (7) yields

uT (Hu + Fy)− yT MT λ ≤ 0 (63)

Premultiplying (58) by yT MT (L†)T yields

yT MT (L†)T (Hu + Fy) + yT MT (L†)T LT λ = 0 (64)

Then the sum of (64) and (63) yields (10). (11) and (12) can be derived in a similar way.

Proof of 2.2): Introducing a vector ϕ = [xT , uT , u̇T , λT , λ̇T ]T , the linear equality constraints from

(5) and (6) can be expressed as

Eϕ = 0 (65)

with E as (66)

E =


 FC H 0 LT 0

FCA FCB H 0 LT


 (66)

The candidate Lyapunov function is chosen as V (x) = [xT , uT ]P [xT , uT ]T , and V̇ ≤ 0 takes a

quadratic form as

ϕT Π̃0ϕ ≤ 0 (67)

with

Π̃0 = He






In 0 0n×(m+2l)

0 Im 0m×(m+2l)




T 
P11 PT

21

P21 P22





A B 0n×m 0n×2l

0 0 Im 0m×2l








Here 0r×c denotes r × c zero matrix; 0r and Ir denote r × r zero matrix and r × r identity matrix

respectively.

The quadratic constraints (7), (8) and (9) can be expressed in quadratic forms as

ϕT Π̃1ϕ ≥ 0 ϕT Π̃2ϕ = 0 ϕT Π̃3ϕ = 0 (68)
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with

Π̃1 = He
{[

0l×(n+2m) Il 0l

]T [
MC L 0l×(m+2l)

]}

Π̃2 = He
{[

0l×(n+2m) Il 0l

]T [
MCA MCB L 0l×(2l)

]}

Π̃3 = He
{[

0l×(n+2m+l) Il

]T [
MCA MCB L 0l×(2l)

]}

The system is stable if we can show that under the constraints (65) and (68), the inequality (67)

holds. Using the S-procedure, this relation can be expressed in one LMI as

ET
⊥ΩE⊥ ≤ 0 (69)

with ET
⊥ in row echelon form as

ET
⊥ =




I 0 0 −(FC)T L† −(FCA)T L†

0 I 0 −HL† −(FCB)T L†

0 0 I 0 −HL†

0 0 0 I − LL† 0

0 0 0 0 I − LL†




(70)

such that EE⊥ = 0 (Note that LT (I − LL†)T = 0 and rank(I − LL†) = l −m.), and

Ω = Π̃0 +
3∑

i=1

riΠ̃i =


Ω11 ΩT

21

Ω21 0


 (71)

where Ω11 = He(Π0) with Π0 as (19), and

Ω21 =


r1MC + r2MCA r1L + r2MCB r2L

r3MCA r3MCB r3L




where r1 ≥ 0, r2 ∈ R and r3 ∈ R are the multipliers corresponding to the constraints (68) respectively.

After multiplication the LMI (69) can be expressed as

ET
⊥ΩE⊥ = Π̄0 + He(

3∑

i=1

riΠ̄i) (72)

with Π̄0 = Π̃0 and

Π̄1 =−
[
L†MC Im 0m×3m

]T [
FC H 0m×3m

]

+
[
(I − LL†)MC 0m×4m

]T [
0m×(n+2m) Im 0m

]

Π̄2 =
[
L†MCA L†MCB Im 0m×2m

]T [
FC H 0m×3m

]

+
[
(I − LL†)MCA (I − LL†)MCB 0m×3m

]T [
m×n+2m Im 0m

]

Π̄3 =
[
L†MCA L†MCB Im 0m×2m

]T

×
[
FCA FCB H 0m×2m

]

+
[
(I − LL†)MCA (I − LL†)MCB 0m×3m

]T [
0m×(n+3m) Im

]
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It is straightforward to show that the same LMI with (72) can be derived from the three constraints (10),

(11) and (12) directly using the S-procedure.

Proof of Lemma 3:

The KKT conditions [27] for the discrete QP at time instant k are

Huk + Fyk + LT λk = 0 (73)

Luk + LNyk + sk = b (74)

λT
k sk = 0 (75)

λk º 0 (76)

sk º 0 (77)

The KKT conditions at k + 1 follow in a similar rule. The first inequality (39) follows immediately from

(14).

Premultiplying (73) at time k by ∆uT
k+1 yields

∆uT
k+1(Huk + yk) + ∆uT

k+1L
T λk = 0

This yields

∆uT
k+1(Huk + yk)

= −∆uT
k+1L

T λk

= (yk+1 − yk)T NT LT λk + (sk+1 − sk)T λk

from (74) at times k and k + 1

≥ ∆yT
k+1N

T LT λk

from (76) at time k, (77) at time k + 1 and (75) at time k

= −∆yT
k+1N

T (Huk + Fyk) from (73) at time k

Hence (40).

Similarly premultiplying (73) at time k + 1 by ∆uT
k+1 yields

∆uT
k+1(Huk+1 + yk+1) + ∆uT

k+1L
T λk+1 = 0

This yields

∆uT
k+1(Huk+1 + yk+1)

= −∆uT
k+1L

T λk+1

= (yk+1 − yk)T NT LT λk+1 + (sk+1 − sk)T λk+1

≤ −∆yT
k+1N

T (Huk+1 + Fyk+1)

Hence (41).
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Figure 4: A comparison of the dimensions of the LMIs derived respectively from the new and Primbs’

approach at different prediction horizons.
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