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Abstract

Dynamically substructured systems (DSS) are increasingly used by the dynamics testing

community. DSS involves the physical testing of full size critical components in parallel

with numerical testing of the remaining components. This has certain advantages over other

testing methods [24]. However, the synchronization of the signals at the interface between the

physical and numerical substructures of DSS requires a high fidelity controller. In practice,

the performance of the DSS testing can be significantly degraded by input saturation of

the actuators. In this paper, we use model predictive control (MPC) to cope with the

saturation problem in DSS. To facilitate the MPC and observer design for DSS, a modified

DSS framework based on an existing one is proposed [22]. As a case study, a quasi-motorcycle

(QM) system is converted into the modified DSS framework and a traditional on-line MPC

control strategy is implemented in real-time.

Key words: Predictive control; Dynamically substructured systems; Multivariable con-

trol.

1 Introduction

In real-time dynamic testing of a system, some critical components can be either too complicated

to be numerically modelled, due to the presence of uncertainties and nonlinearities, or too
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difficult to be tested in a laboratory environment due to the cost or size (for example, the

testing of large-scale engineering structures such as bridges and dams). To circumvent these

problems, the use of the dynamic substructuring concept in real-time experimental testing has

become an appealing strategy in recent years [13]. The principal idea of substructuring is to

simultaneously test the complex critical components of the system (represented as a physical

substructure) in real-time and the remainder of the system as a numerical model (represented as

a numerical substructure). This leads to a dynamically substructured system (DSS). The DSS

testing can be more advantageous than the existing testing methods such as full-size testing

of the entire system, scale-model testing, pseudo-dynamic testing and purely numerical testing,

etc. (see [24,27] and the references therein).

The main feature of DSS testing is that its physical and numerical substructures are tested

separately, but not independently. The two substructures are linked to each other by the inter-

action constraints at their interfaces. Hence an important issue of the substructuring method is

the synchronization of the substructures, which significantly affects the testing accuracy of the

entire system. This demands a high fidelity of control to reduce the error of the output variables

of the substructures at the interface, while satisfying the constraint signals, so that the DSS

responds as close as possible to the original emulated system.

Successful existing control strategies for DSS include Linear Substructuring Control (LSC)

and the adaptive Minimal Control Synthesis (MCS) algorithm [14, 21–24, 26]. Dynamic inter-

action between the substructures, together with the dynamics of the transfer system (and its

associated actuators), will normally cause problems with synchronization. These problems can

be from the dynamic uncertainties, measurement noise and nonlinearities. In addition, one com-

mon and important problem is caused by saturation of the actuators in the transfer systems.

Actuator saturation is a fundamental problem in control and significant theoretical work and

practical investigations of this issue have been presented in the literature (see, e.g. [4], [6], [7] and

the references therein). However, the problem of coping with actuator saturation within DSS

has received scant attention. One approach to control the multivariable DSS, while explicitly

considering the actuator constraints, is an anti-windup compensator developed in [9]. In that

work, based on a pre-designed linear controller, e.g. an LQR or H∞ controller, an anti-windup

compensator was synthesized by directly minimizing the L2 gain from the testing signal to the

DSS substructuring error.

In this paper we apply another control strategy to DSS, Model Predictive Control (MPC),
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as an alternative approach to dealing with actuator constraints. The main motivation is that

MPC can lead to an optimal solution, compared with the anti-windup approach in [9]. MPC is

also easier to tune, since it can inherently handle constraints present in multivariable systems.

Traditionally, MPC is an on-line control strategy, which solves an optimization problem at each

sampling instant, with the current state as the initial state. However, due to the heavy on-

line computational burden, the initial applications of MPC were restricted to relatively slow

process control problems in chemical industries [15]. One approach to reduce this burden is to

replace the on-line optimization with an off-line procedure, by establishing a look-up table from

the estimated states to the control inputs [1]. This is achieved by using the piecewise affine

properties of the MPC controller. However, the computational complexity and the required

memory space can increase rapidly with the growth of the problem size (see, e.g. [29, 30], for

a detailed discussion on a comparison of the two control strategies). In recent years, with

the development of new, efficient optimization algorithms and the rapid progress of hardware

computing ability, a large number of applications of the traditional on-line MPC to fast systems

have been reported in areas such as aerospace, power plants and the automotive industry (see [16]

for a survey). These promising results motivated the implementation of the on-line MPC to DSS

for real-time testing of electro-mechanical components, which normally demand a high sampling

rate.

This paper presents the application and implementation of on-line MPC to the DSS testing

of a servohydraulically actuated mechanical system. To facilitate the MPC design for DSS,

a framework modified from [22–24] is proposed. This modified framework strictly separates

the numerical and physical substructures in DSS. One of the benefits of using this modified

framework is the ability to design a reduced order observer for DSS, which helps to reduce

the on-line computation time. In the case study, a quasi-motorcycle (QM) suspension system

developed at the University of Bristol was tested in real-time. The on-line MPC optimization

was solved by using the active set algorithm programmed in C, [28]. This code was recently

implemented successfully in the application of MPC, with a prediction horizon of 10, to an

active structure consisting of an SISO system with 18 states, using sampling rates up to 5 kHz

on a 200 MHz DSP [29]. In our implementation, the code was embedded into an S-function in

SIMULINKr, which was compiled and implemented by a dSPACE c⃝real-time control system.

In this case, the DSS of the QM suspension system has 12 states, 2 inputs and 2 outputs,

while the MPC controller can be implemented with a prediction horizon of 5 at a sampling
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rate up to 1.2 kHz (depending on different formulations of MPC controller). The experimental

results demonstrated the advantage of applying MPC over a linear unconstrained MPC controller

derived from the same cost function.

The structure of the paper is as follows. In section 2, we introduce the DSS framework

proposed by [22] and the control objective of DSS; then using this framework, a modified DSS

framework with a strict separation of the physical and numerical components is developed. Based

on the modified framework, a reduced-order DSS observer is designed and the MPC controller

formulation issue is discussed in section 3. In section 4, a QM system is studied: we first

convert the system into a two-input, two-output DSS framework in the strict separation form;

then, real-time application results show the applicability of the modified framework and the

observer/MPC controller designs based upon it. Section 5 concludes the paper with a summary

of the main achievements.

2 A DSS framework with strict separation of substructures

2.1 A brief introduction to the concise DSS framework [22,24] and its control

objective

A general and concise DSS framework, as shown in the dash-dot box of Fig. 1, was originally

proposed by [22] for SISO systems and then extended to MIMO cases [23, 24]. Based on this

framework, a DSS system can be expressed by

yN = G1d−G0u (1)

yP = G2u (2)

Here, we can assume the transfer function G1 represents the dynamics of the numerical substruc-

ture, G2 the physical substructure and G0 the interaction dynamics between the two substruc-

tures. In many cases this assumption holds, so that we can use the generalized set {ΣN ,ΣP }

to represent the numerical and physical substructures, respectively, as shown in Fig. 1, where

{yN , yP } are the interface responses from {ΣN ,ΣP } and f is the interface constraint signal. The

control objective is to use a control signal u to reduce the magnitude of the DSS substructuring

error y := yN − yP , subject to the interface constraint f , when an external testing signal d is

applied. The DSS control system design based on this framework usually contains a two degree

of freedom controller: one feed-forward controller Kd, used to shape the testing signal, and a
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feedback controller Ky, used to reduce the influence of the uncertainties and measurement noise.

Since the testing signal can be assumed to be a measured disturbance, the DSS control can be

viewed as an output regulation problem with measured disturbance rejection. The controller

designs in [9, 22–24] are all based on this two degree of freedom DSS control framework.

2.2 A modified DSS framework with strict separation of physical and numer-

ical components

In the original DSS framework, introduced in the last subsection, it is noted that the transfer

system G0 comprises both numerical and physical components. In this paper, the MPC design

is based on a modified DSS framework that completely separates the numerical and physical

components in the transfer system. This is motivated by the following: 1) this modified frame-

work represents engineering aspects of DSS in a more reasonable way, where the physical and

numerical substructures are usually required to be strictly separated; 2) it is convenient to per-

form system identification on the physical components only; 3) when designing an observer,

the states of the numerical substructure can be viewed as noise-free outputs, which would lead

to a reduced-order Kalman-Bucy filter; 4) it is convenient for performance analysis and robust

controller design by representing uncertainties in the physical substructure only. The last point

is beyond the scope of this paper and will be investigated in future work. Hence, we propose

a modified DSS framework as illustrated in Fig. 2, on which the observer and MPC controller

designs will be based.

In this modified DSS framework, the physical and numerical substructures are

GP =

GP0Gact

Gact

 GN =
[
GN1 −GN0

]
Note that this modified framework is equivalent to the original framework via the relationships:

G0 = GN0GP0Gact G1 = GN1 G2 = Gact (3)

In the following, we represent GP and GN by their discrete time minimal realizations:

GP ∼


xP (k + 1) = APxP (k) +BPu(k)

yI(k) = CPIxP (k) +DPIu(k) + vI(k)

yP (k) = CPPxP (k) + vP (k)

(4)

GN ∼

 xN (k + 1) = ANxN (k) +BNdd(k) +BNIyI(k)

yN (k) = CNxN (k)
(5)
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with u(k), yP (k), yN (k) ∈ Rm, d(k) ∈ Rnd , xN (k) ∈ Rnn and xP (k) ∈ Rnp . Here vI(k) and

vP (k) are the interface measurement noise and the output measurement noise of the physical

substructure respectively, and yI(k) is the constraint variable between the numerical and physical

substructures. Note that we assume GN is strictly proper and there is no direct feed-through

term from the input to output in GP . This assumption simplifies the following development

without loss of generality; the case with non-strictly proper GP and GN can be determined in

a straightforward manner.

Augmenting GN and GP , the state space realization for the whole DSS system is given by: x(k + 1) = Ax(k) +Bdd(k) +Buu(k) +BvvI(k)

y(k) = Cx(k)− vP (k)
(6)

where x(k) = [xTN (k), xTP (k)]
T ∈ Rn with n = nn + np and

A =

AN BNICPI

0 AP

 Bd =

BNd

0

 Bu =

BNIDPI

BP


C =

[
CN −CPP

]
Bv =

BNI

0


Note that the DSS model (6) is strictly proper, which results from the fact that both the actuator

model Gact and the numerical substructure model GN are themselves strictly proper.

3 DSS observer design and MPC controller formulation

3.1 DSS observer design

Based on the modified DSS framework, it is convenient to design a reduced-order observer,

which can result in less computational burden than a full-order observer designed by (6). This

is especially beneficial when the on-line computation time is large. From the modified DSS

framework, we can see that: 1) the numerical substructure model is exactly known, so that its

states can be derived directly; 2) the measurement noise only contaminates the outputs of the

physical substructure, while the states of the numerical substructure are completely noise-free.

These two features lead naturally to the classical reduced-order Kalman-Bucy observer design

problem.
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We reformulate the DSS system (6) for the observer design as follows:
x(k + 1) = Ax(k) +Bdd(k) +Buu(k) +BvvI(k)

y1(k) = y(k) = Cx(k)− vP (k)

y2(k) = xN (k)

(7)

The output of the DSS system expressed by (7) contains both noisy and noise-free observed

variables y1(k) and y2(k), which would lead to a singularity when resolving the discrete algebraic

Riccati equation (DARE). Standard results are available in the literature for this problem, see

e.g., [2] for the continuous time case and [25] for the discrete time case. Following a similar

procedure as in [2, 25] we can design a reduced order DSS observer as follows.

From (4) and (5), we form the observation problem from the equations:

xp(k + 1) = APxP (k) +BPu(k) (8) y(k)

xN (k + 1)

 = C̃xP (k) + D̃uu(k) + D̃dd(k) + D̃xNxN (k) + D̃vv(k) (9)

with

C̃ =

 −CPP

BNICPI

 D̃u =

 0

BNIDPI

 D̃d =

 0

BNd


D̃xN =

CN

AN

 D̃v =

 0 −I

BNI 0

 v(k) =

vI(k)

vP (k)


From (8) and (9), we can see that there is no state excitation noise and if V = E(v(k)v(k)T ) > 0,

then this observation problem is nonsingular. The observer gain isK = AT
PXC̃T (C̃TXC̃+ V )−1,

where X is the solution of the following DARE:

APXAT
P +APXC̃T (C̃XC̃T + V )−1C̃XAT

P −X = 0 (10)

Defining z(k) := x̂p(k)−K2xN (k) with x̂P (k) as the estimated value of xP (k), the observer

dynamics are given as

z(k + 1) = Aoz(k) + LxNxN (k) + Lyy(k) + Luu(k) + Ldd(k) (11a)

x̂(k) = Q1xN (k) +Q2(z(k) +K2xN (k)) (11b)

where

Ao = AP −KC̃ LxN = (AP −KC̃)K2 −KD̃xN Q1 =

Inn

0

 Q2 =

 0

Inp
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Lu = BP −KD̃u Ld = −KD̃d Ly = K1

where K is partitioned as K = [K1,K2] in accordance with the vector [y(k)T , xN (k+1)T ]T . Here

the observer output is x̂(k) := [xN (k)T , x̂P (k)
T ]T , which is comprised of the estimated states

of the physical substructure and the states of the numerical substructure. Compared with the

observer designed directly by (6), this observer has np states, which leads to less computational

burden. Furthermore, if the measurement noise on some of the DSS physical substructure

outputs can be neglected, the DSS observer order can be further reduced.

3.2 MPC controller development

The manipulated control input provided by the MPC controller is determined by

u(k) = ĒU∗(k)

where Ē = [Im, 0, . . . , 0] ∈ Rm×Hpm withHp as the prediction horizon and U∗(k) is the optimizer

of the following optimization problem:

U∗(k) = argmin
U(k)

J(k)

subject to

x(k + 1) = Ax(k) +Bdd(k) +Buu(k)

y(k) = Cx(k)

umin ≼ û(k + i|k) ≼ umax with i = 0, 1, . . . ,Hp − 1

ymin ≼ ŷ(k + i|k) ≼ ymax with i = 1, . . . , Hp

(12)

where U(k) =
[
û(k|k)T , û(k + 1|k)T , · · · , û(k +Hp − 1|k)T

]T
and “≼” denotes componentwise

inequality. J(k) is a cost function, which can take various forms. Suppose this cost function has

the following quadratic form:

J(k) = ∥ŷ(k +Hp|k)∥2P +

Hp−1∑
i=1

∥ŷ(k + i|k)∥2Q +

Hp−1∑
i=0

∥û(k + i|k)∥2R (13)

where Q, R and P are the weights for the output, input, and the terminal output ŷ(k +Hp|k),

respectively. The terminal weight P can be calculated by a solution of a discrete Lyapunov

function or a DARE [11]:

P = AT [P − PB(BTPB +R)−1BTP ]A+Q
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which is used to account for the cost function beyond the Hp horizon. The inclusion of P can

improve the performance the MPC controller (with a fixed-length horizon) to some extent and

the stability can be guaranteed when Hp is sufficiently large [3, 12,18].

To resolve the optimization problem, the cost function needs to be converted into a quadratic

programme (QP) first of all. By iterating the plant dynamic equations (6) with the measurement

noise vp = 0 and vI = 0, we have

Y (k) = Φxx(k) + ΦUU(k) + Φdd(k) (14)

with

Φx =


CA

CA2

...

CAHp

 ΦU =


CBu

CABu CBu

...
...

. . .

CAHp−1Bu CAHp−2Bu · · · CBu

 Φd =


CBd

CABd + CBd

...∑Hp−1
i=0 CAiBd


Here, the disturbance d(k) is measured at the same time as the measurement of y(k). The future

estimation of d̂(k + i|k) is influenced by the knowledge of the behaviour of the disturbance. In

(14), it is assumed that the estimation of d̂(k + i|k) is constant, i.e. d(k) = d̂(k + 1|k) = . . . =

d̂(k +Hp − 1|k), [11].

Substituting (14) into (13) and (12) leads to a quadratic programme (QP)

U∗(k) = argmin
U(k)

[
1

2
U(k)THU(k) + U(k)T (Fxx̂(k) + Fdd(k))

]
subject to LU(k) ≼ b(k)

(15)

where

H = ΦTQΦ+R Fx = ΦTQΛ Fd = ΦTQΦd

and

Q =


Q

. . .

Q

P

 R =


R

. . .

R



L =


Inu×Hp

−Inu×Hp

ΦU

−ΦU

 b(k) =


Umax

−Umin

Ymax − Φxx(k)− Φdd(k)

−Ymin +Φxx(k) + Φdd(k)
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with Umax =
[
uTmax, . . . , u

T
max

]T
, Umin =

[
uTmin, . . . , u

T
min

]T
, Ymax =

[
yTmax, . . . , y

T
max

]T
and Ymin =[

yTmin, . . . , y
T
min

]T
.

From equation (15), we can see that when the input constraints are ignored, a linear controller

can be determined by:

uk = ĒU(k)∗ = −(Kxx̂(k) +Kdd(k)) (16)

with Kx = ĒH−1Φx and Kd = ĒH−1Φd. Note that (16) contains a feedforward term Kd and a

feedback termKx. In this paper we denote the controller (16) as a linear unconstrained MPC and

we note that the MPC controller formulated from (15) also has two-degrees of freedom. However,

the main difference between the MPC controller and the linear unconstrained MPC controller

(16) is that the MPC controller can achieve an optimal solution subject to the constraints. In

the experimental implementation described later in this paper, a performance comparison is

made between the MPC controller and the linear unconstrained controller (16).

We now summarize the main steps and issues that need to be considered when designing an

MPC controller for DSS:

1) DSS framework establishment. Formulate a strict separation DSS framework and derive its

corresponding state space realization according to (6). It is sometimes essential to identify

the models of the physical substructure components, including the actuators, using system

identification methods.

2) DSS observer design. If the measurement noise from the physical substructure is significant,

a Kalman-Bucy observer with a reduced order of np can be designed according to (11); when

some of the measurement noise can be neglected, a DSS observer with a further reduced

order can be designed.

3) MPC controller formulations. When the actuator slew rate limit needs to be considered, a

more generic cost function should be employed:

J(k) = ∥ŷ(k +Hp|k)∥2P

+

Hp−1∑
i=0

[
∥ŷ(k + i|k)∥2Q + ∥û(k + i|k)∥2R

]
+

Hu−1∑
i=0

∥∆û(k + i|k)∥2S
(17)

with ∆û(k+ i|k) = û(k+ i|k)− û(k+ i−1|k). This cost function can also be formulated into

a QP by augmenting the original system with the state [x(k)T , u(k− 1)T ]T and the matrices

Ã =

A Bu

0 I

 B̃u =

Bu

I

 B̃d =

Bd

0

 C̃ = [C 0] (18)
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The terminal weight can be calculated from a DARE solution of P̃ , satisfying:

P̃ = ÃT P̃ Ã+ Q̃− (ÃT P̃ B̃ + Ñ)T (B̃T P̃ B̃ + R̃)−1(B̃T P̃ Ã+ ÑT ) (19)

with

Q̃ =

CTQC 0

0 R

 Ñ =

0

R

 R̃ = R+ S (20)

Based on this augmentation, the MPC controller can be formulated in a similar way to (15).

The corresponding unconstrained MPC also takes the same form as (16).

It should be noted that various MPC formulations exist for different problems. For example,

when A is ill-conditioned, a linear transformation u(k) = Kx(k) + r(k) can be introduced

[20], [17], so that the resulting MPC controller formulation is based on the system x(k+1) =

(A+BuK)x(k) +Bur(k) +Bdd(k).

4) Feasibility and stability of MPC. Guaranteeing the feasibility and stability of MPC is not

an easy theoretical problem to solve, especially when the output limits are also considered.

When the prediction horizon is sufficiently large, the inclusion of a terminal weight, terminal

cost function and a local controller can guarantee feasibility and stability [12]. However, this

is not easy to check numerically. In applications, it is common practice to soften the output

constraints to make the QP feasible [11]. Note that for the cost function (17), the horizon

for ∆û(k+ i|k) can be shorter than Hp, while the stability is still guaranteed (see, e.g. [19]).

Furthermore, it could be useful to perform a stability and robustness test of the MPC system,

for example, using the methods developed in [5, 8, 10], especially when the testing of a DSS

is costly in a civil engineering application, for example.

5) MPC controller tuning. The tuning parameters mainly include the prediction horizon Hp

(and a shorter input changing rate horizon Hu for (17)), the weighting matrices Q and R,

and the constraints. Furthermore, a trade-off is required between the maximum allowable

sampling time, the saturation limit and the tuning parameters, in order to achieve the best

performance. When the actuator limits are relatively large, the output weight can be in-

creased and the output limits can be more restrictive.
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4 Case study – a quasi motorcycle (QM) system

We consider a QM system, which has been developed at the University of Bristol; see Fig 5.

The testing rig is comprised of three subsystems, the first of which is a rigid vehicle body with

an evenly distributed mass of 229kg and two suspension struts. These are connected to the

vehicle body and the other ends are connected via swing arms to two 25kN hydraulic actuators.

The second and third subsystems consist of two further 25kN hydraulic actuators, attached

to the hubs of the front and rear wheels/tyres. Each hydraulic actuator has a built-in linear

variable displacement transformer (LVDT) for the measurement of displacement and also a load

cell for the measurement of force. Two extra LVDTs are used to measure the extensions of

the suspension struts. In this case study, we select the subsystems as follows: the QM body

with the two suspension struts is the physical substructure, while the front and rear wheels

form the numerical substructure. This arrangement is shown schematically in Fig. 6, where the

swing arms are omitted for simplicity, by scaling the stiffness and damping parameters of the

suspension struts appropriately. We call this a single mode substructure since only one type of

force, i.e. inertial terms, occur in the physical substructure. Alternatively, we can also model

one wheel numerically and the other physically, or two wheels physically and the body with two

suspension struts numerically, depending on the problems that we are interested in (see [23,24]

for a detailed discussion). The control objective is to synchronize the physical and numerical

substructures by minimizing the error between the measured displacements of the bases of the

front/rear suspension struts and the numerically generated displacements of the front/rear wheel

hubs, subject to the interaction force constraint between the bases of the suspension struts and

the wheel hubs. In the following, we first convert this single mode QM suspension system into

the modified DSS framework. Then, real-time application results are presented to show the

performance of the MPC controller when synchronizing this substructured system. The QP in

the MPC controller is solved using the routines in [28], which can guarantee a reasonable on-line

computing speed [29]. The notation for the variables and parameters, as well as the values of

parameters, are listed in the Appendix.

12



4.1 Model establishment for the QM suspension system and its representa-

tion in the modified DSS framework

The dynamic equations of the quasi-motorcycle body are:

m3ÿ3 = f1 + f2 −m3g (21)

Jθ̈ = (L2f2 − L1f1) cos θ (22)

with sin θ = (y31 − y32)/L and y3 = (L2y31 + L1y32)/L. Here the approximations sin θ ≈ θ and

cos θ ≈ 1, for a small value of θ, are assumed.

The dynamic equations for the front and rear wheels are:

m1ÿw1 =k1(d1 − yw1) + c1(ḋ1 − ẏw1)− f1 −m1g

m2ÿw2 =k2(d2 − yw2) + c2(ḋ2 − ẏw2)− f2 −m2g

The dynamic equations for the front and rear ends of the QM body are:

L2

L
m3ÿ31 = k31(ya31 − y31) + c31(ẏa31 − ẏ31)−

L2

L
m3g

L1

L
m3ÿ32 = k32(ya32 − y32) + c32(ẏa32 − ẏ32)−

L1

L
m3g

and, based on experimental system identification, the dynamics of the inner-loop controlled

actuators are represented by second order linear models:

ya31 (s) =

(
7298

s2 + 170.8s+ 6876

)
︸ ︷︷ ︸

Gact1

u1 (s) ya32 (s) =

(
7690

s2 + 162.2s+ 7603

)
︸ ︷︷ ︸

Gact2

u2 (s)

Now we choose the forces produced by the suspension struts f1 and f2 as the interaction

constraints between the two substructures, the displacements wheel hubs yw1 and yw2 as the

outputs of the numerical substructure and the displacements of the actuators ya31 and ya32

as the outputs of the physical substructure. Hence the dynamics of the DSS system can be

represented as:

yN = GN1d−GN0GP0Gactu (23)

yP = Gactu (24)

where

yN =

yw1

yw2

 yP =

ya31
ya32

 d =

d1
d2

 u =

u1
u2

 (25)
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GN1 =

Gyd1 0

0 Gyd2

 GN0 =

Gyf1 0

0 Gyf2

 (26)

GP0 =

P2s
2 ·GP01 P3s

2 ·GP02

P3s
2 ·GP01 P1s

2 ·GP02

 Gact =

Gact1 0

0 Gact2

 (27)

with

Gyd1 =
c1s+ k1

m1s2 + c1s+ k1
Gyd2 =

c2s+ k2
m2s2 + c2s+ k2

Gyf1 =
1

m1s2 + c1s+ k1
Gyf2 =

1

m2s2 + c2s+ k2

GP01 =
(c31s+ k31)

L2
L3

m3s2 + c31s+ k31
GP02 =

(c32s+ k32)
L1
L3

m3s2 + c32s+ k32

and

P1 = m3L
2
1/L

2 + J/L2

P2 = m3L
2
2/L

2 + J/L2

P3 = m3L1L2/L
2 − J/L2

The control objective is to minimize the DSS substructuring error y = yN − yP .

Here the physical and numerical substructures are:

GP =

GP0Gact

Gact

 GN =
[
GN1 −GN0

]
Note that GP0 is not proper but the term GP0Gact is proper; hence the physical part is proper.

GN1 and GN0 share some common modes, hence a minimal realization of GN should be used.

The resulting QM model represented in DSS framework has the following dimensions: xN ∈ R4,

xP ∈ R8, x ∈ R12, y ∈ R2 and u ∈ R2.

4.2 Experimental results

A dSPACE RS1103 system with Control Desk (Release 6.0) was used to implement the real-time

control. The QP used for the MPC controller was based on the active set algorithm. We used the

routine programmed in C language by [28], and developed a level-2 S function under MATLAB

2007b, which was compiled by the dSPACE compiler (rti1103). The SIMULINK block diagram

of the MPC controller based on the cost function (17) and the augmentation (18), (19) and (20)
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is shown in Fig.4, where TD and TI are n×n diagonal matrices with elements tD and tI as given

by

tD =
1

z
tI =

z

z − 1

It is noted that the formulation of the slew rate and the input constraint term b(k) accounts for

part of the on-line computation. The MPC controller block diagram associated with the cost

function (13) takes on a simpler form than shown in Fig. 4, hence it is ignored here.

The testing signal d = [d1, d2] was composed of two ramp chirp signals, where d2 had a 0.85s

delay from d1. The ramping time was 20s with the magnitude increasing from 0m to 0.0025m

and the frequency span was from 15Hz to 2Hz. This testing signal was assumed to be a road

disturbance, when the vehicle (1.7m in length between the front and rear wheels) was running

at a speed of 2m/s.

The MPC controller shown in Fig. 4 and its corresponding unconstrained MPC were im-

plemented on the QM system and a reduced order observer based on (11) was synthesized. A

process noise w was assumed to be added to the equation (8) for tuning purposes and the ratio

of the weights on the process noise and the measurement noise was chosen as 10:1. We enforced

a hard limit of ±0.002m on the displacement magnitude and a hard limit of ±0.1m/s on the

slew rate of both actuators. For the unconstrained MPC, the control signal was reset to the

upper or lower limit values, when its calculated value exceeded its limits. The hard input limits

used here are purely for demonstration purposes; the real input limits of the hydraulic actuators

are higher than these values.

The weights on Q, R and S in the cost function (17) significantly affect the robust stability

and the performance of the system: decreasing Q can make the system more stable and produces

a smaller input energy, but the DSS error will be larger; on the other hand, increasing Q can give

the converse effects. By trial and error, we chose the weights as Q = diag(5, 5), R = diag(0.1, 0.1)

and S = diag(1, 1). This choice of weights led to a bandwidth of 16Hz of the closed loop

unconstrained MPC system. We used a safe sampling rate of 500Hz, which is over 30 times the

closed-loop bandwidth.

Since the length of the prediction horizon influences the computation burden to a great

extent, a maximum value should be chosen. By trying different values on Hp and Hu in ex-

periments, we determined suitable prediction horizons as Hp = 5 and Hu = 3. This allowed

the sampling of 500Hz, while further increasing the horizons did not improve the performance

significantly.
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One set of experimental results are shown in Fig. 7, based on the above choice of parameters.

From the Figs. 7(a) and 7(b), we can see that the magnitude of the substructuring errors

resulting from the unconstrained MPC controller exceed ±0.002m, but the substructuring errors

from the MPC controller are within ±0.001m. Figs 7(c) and 7(d) show that the input magnitude

is within±0.002m and Figs. 7(e) and 7(f) show that the input changing rate is within±2×10−4m

at a sampling frequency of 500Hz, which corresponds to a maximum slew rate of ±0.1m/s.

Although the comparison of the inputs and input slew rates shown in the Figs. 7(c)−7(f) are

not easy to discern, the accumulated sum of squares of the values y(k), u(k) and ∆u(k) plotted

in Figs. 8(a) - 8(c) confirm the improved response from the MPC controller, compared with

those from the unconstrained MPC controller.

In addition to the experiment described above, we have also conducted other tests, including

the MPC controller associated with the cost function (13), with various choices of parameters and

with observer of different orders. From these experiments, we have the following remarks. The

order of observer and different formulations of MPC controller can influence the implementation

time. When the MPC controller associated with the cost function (13), with a prediction horizon

Hp = 5, was employed, a reduced-order observer with 4 states (in this case, the DSS outputs

were assumed to be noise-free) allowed a sampling rate up to 1.2 kHz. A reduced-order observer

with 6 states allowed a sampling rate of 1kHz and a full order observer with 12 states allowed a

sampling rate of 700 Hz. The use of reduced-order observers was less demanding of computation

time, while a similar performance to the full-order observer was still achieved. Furthermore,

the implementation of the MPC controller associated with the cost function (17) needed more

computation time, since the computation of the constraint was performed on-line.

5 Conclusion

We have developed a procedure for using an MPC strategy to synchronize multivariable DSS

systems, subject to actuator magnitude saturation and actuator slew rate limits. A modified

DSS framework with a strict separation of DSS components was proposed to facilitate the DSS

observer design and the MPC controller formulation. A QM suspension system was demon-

strated as an implementation case study. Real-time experiments on the test rig demonstrated

the feasibility of applying the traditional on-line MPC strategy to DSS, based on the modified

DSS framework.
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A Notation list for the QM system

A.1 Parameters

Notation Description Values

Quasi-motorcycle body:

m3 Mass 229kg

J Moment of inertia 62.7kgm2

L Body length 1.60m

L1, L2 Lengths from front/rear 0.800m, 0.800m

end to mass center

Front/rear suspension:

k31, k32 Stiffness. 34.8kN/m, 39.5kN/m

c31, c32 Damping 717Ns/m, 970Ns/m

Front/rear wheels:

m1, m2 Mass 12.3kg, 15.7kg

k1, k2 Stiffness 384kN/m, 409kN/m

c1, c2 Damping 700Ns/m, 816Ns/m

A.2 Variables

Notation Description

yw1, yw2 Front/rear wheel displacements.

yb Body center of mass displacement.

θ Pitch of the body.

y31, y32 Front/rear ends of body displacements.

ya1, ya2 Front/rear suspension base displacements.

(the outputs of the front/rear suspension actuators).

u1, u2 Inputs of the front/rear suspension actuators.

f1, f2 Interaction forces.

d1, d2 Disturbances on the front/rear wheels.
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(e) The input slew rates ∆u1 and ∆u2 (MPC)

0 5 10 15 20

−2

−1

0

1

2

x 10
−4

Time (s)

∆ 
u 1 (m

)

0 5 10 15 20

−2

−1

0

1

2

x 10
−4

Time (s)

∆ 
u 2 (m

)

(f) The input slew rates ∆u1 and ∆u2 (unMPC)

Figure 7: A comparison between the DSS for QM controlled by MPC and unconstrained MPC

(unMPC) with trimmed input and trimmed input slew rate.
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Figure 8: A comparison of the sum of square of the DSS output, input and input slew rate

between the MPC and unconstrained MPC with trimmed inputs.
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