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An improved stability criterion for a class of Lur'e systems

Guang Li, William P Heath and Barry Lennox

Abstract—We consider the stability of the feedback con-
nection of a linear time invariant (LTI) plant with a static
nonlinearity expressed by a certain class of quadratic progam.
By generalizing the class of candidate Lyapunov functions u Y
we improve on existing results in the literature. A Lyapunov
function is constructed via the S-procedure from quadratic é <
constraints established using the Karush-Kuhn-Tucker (KKT)
conditions. The stability criterion can be expressed as atiear
matrix inequality (LMI) condition. We discuss some simple Fig. 1. A Lur'e system
examples that demonstrate the improved results.
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I. INTRODUCTION . .
say we show that while for some examples Primbs’ method

The stability analysis of Lur'e systems (see Fig. 1), namelyives a less conservative test, for other examples the Popov

an LTI plant connected with a memoryless nonlinearity inyyiterion gives a less conservative test. Indeed we shotv tha
the feedback path satisfying a sector bound condition, ¥, some nonlinearities Primbs’ method may give worse
a classical problem in control theory [8]. There are manyggits than the circle criterion.

stability tests for this problem based on the circle crieri The main contribution of this paper is to propose a

the Popov criterion and the use of Zames-Falb multiplierg,e,y stability criterion that is based on Primbs’ method but
etc.. Recently a new LMI stability test was proposed fo{yhich further reduces the conservatism of the approach. The

a subclass of Lur'e systems where the nonlinearity can ke, ,rovement is achieved by constructing a novel candidate
expressed by a quadratic program (QP) [14], [16]. This iByanunov function, that involves not only a quadratic term
a nontrivial subclass, which includes feedback systemss tha 27,477, but also an integral term with the nonlinearity.

contain common nonlinearities, such as saturation, deazdonhiS construction is inspired by the Lyapunov function

and combinations of saturation and deadzone. Furthermotggaciated with the Popov criterion which is a combination
input constrained model predictive control (MPC) can alsgs 4 quadratic term in state and an integral term involving
be cast into this subclass, which enables a simple test éor th}, o nonlinearity [7], [12], [1]. Furthermore, to achieve a

stability analysis of input constrained MPC. We will refer t stability criterion in a concise LMI form, we use the three

the test a'SDrimbs’ method throughout this paper. conditions developed in [10], [9] which were shown to be

_ Primbs” method uses the S-procedure to represent @@y valent to a large number of conditions originally dedv
implication that a candidate Lyapunov function is decre@si 5y primbs’ method [14], [16]. Thus we develop concise
subject to some constraints derived from the KKT condition§tabi”ty conditions which can never be worse than Primbs’
for the QP. When the Lyapunov function is quadratic iNnethod. We demonstrate numerical examples where the new

the stater and the nonlinearity corresponds to a saturatiopygt is less conservative than both Primbs’ method and the
or a deadzone the test is equivalent to the circle criteriO@opOV criterion.

More generally, [14] and [16] propose a Lyapunov function

that is quadratic in both the state and inpit, «”]7. This Il. CONTINUOUS TIME CASE
subsumes the circle criterion for these cases and can algo pygplem setup

be shown to give a considerably less conservative stability

criterion than the Popov criterion for some simple cases. . . .
b P lant G(s) with equal number of inputs and outputs, which

It is also claimed [16] that it may give a less conservativ ive feedback . ith i N
stability criterion than the use of Zames-Falb multiplieree as a negative feedback connection with a nonlinesy -
R™ — R™ expressed by a QP

veracity of this claim is beyond the scope of this paper.
Nevertheless we give a simple example where the Popov
criterion is less conservative than Primb’s method. Th# is

Consider a strictly proper stable continuous time MIMO

¢ (y(t)) = arg mﬁin %ﬂTHﬂ +al Fy(t) )
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Lemma 1 (QP properties — continuous time case [9]):
The constrained QP (1) has the following properties

(¢ + Ny)" (Ho + Fy) <0 (2
(¢ + Ni)T(Ho + Fy) = 0 whered exists (3)
(¢ + Ni)T(Ho + Fyj) = 0 whered exists (4)

Here we usep and ¢ to represent(y(t)) andde(y(t))/dt
respectively for conciseness.
Proof: See [9]. O

B. New stability criterion

Based on the three conditions (2)-(4) and a new Lur’e type

Lyapunov function, a stability criterion can be establiblas
follows.

Let G have state space representatigi(s) -~
(A, B, C,0). Definell; fori =1,2,3,p as

ng) H§21)T Hl(-?’l)T
I, = ngl) HEQQ) Hl(-?’Q)T (5)
HE31) HE32) HE33)

where forIl;
(" = —(CTFTNC + CTNTFC)
n® = —(FC + HNC)
n® = —2m, 1Y =0, 1 =0, 1* =0

)

for 11,
" = —(CTFTNCA+ ATCTNTFC)
n*" = —(HNCA + B'"CTNTFC)
*® = —(HNCB + BTCT"NTH)
o = —rc, 1 = —g, 0i* =0
for II3

ng) _ —ATCT(FTN + NTF)CA
Hg}21) _ —BTC'T(FTN + NTF)CA
Hg22) _ _BTOT(FTN + NTF)CB, H§33) — _9H
" = —(HN + F)cA, I{Y = —(HN + F)CB
and forlII,
it = —C*'NTFCA - ATCTFTNC
n*Y = —-FCA— HNCA - BTCT"FT'NC
1®» = —FOB -~ HNCB — BTCTFT - BTCTNTH
H;B‘l) -0, H1(733) =0, H}()SB) -0

Result 1The system is stable if there exists a positive definite

Py Pro
P1T2 P
[T, uT]T, such that the following LMI can be satisfied

matrix P =

3
H0+/\HP+Z7’1'H1' <0

i=1

(6)

with dimension corresponding to
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Fig. 2. LTI plant connected in feedback with a saturationcfiom

v

G(s)

Fig. 3. LTI plant connected in feedback with a deadzone fanct

where
ATPy +PyA ATPs+ PyB P
o= |PLA+B"Py PLB+BTPy P
P Py 0
Here the multipliers\, r; € R with ¢ = 1,2,3, A > 0 and
T1 Z O
Proof: See Appendix. (]

)

Remark: When the sector bound condition (2) takes the
simple form¢” (¢ — Ky) < 0 with K a scalar or a positive
diagonal matrix, the stability criterion (6) subsumes the
Popov criterion in LMI form with nonnegative multiplier,

which may be expressed as [2]:
ATP + PA PB - KCT — KATCT )X <0
BTP - AKCA—-KC —2K - \XCB—-BTCT)\

(8)
with A > 0. This can be seen by lettinf, = 0, P, =0
andr, = r3 = 0. However the multiplierr in the Popov
criterion can also be relaxed to any real number (see [13]).
C. Examples

Saturation nonlinearity (see Fig. 2):

A saturation given byu(t) = sat (y(t)) = %
o max{1,]y(?)[}

can be expressed by an optimization problem as hG]
u(t) = argmin - (i — y(1))* o

st ju(t)] <1
It is straightforward to see that this saturation functiafisf
into the QP (1) whenwesdf =1, F=—-1,L=1,N=0
andb = 1. Its corresponding candidate Lyapunov function is

V(z,u) = [z7, v 1" Plz”, u”] + 2) /y ¢Tdr  (10)
0

Deadzone nonlinearity (see Fig. 3):
The deadzone

y+1fory<—1

0for —1<y<1

y—1fory>1

u =

(11)



can be expressed as [15]

u = arg min EQQ
T Ay (12)

subject toju —y| < 1

It is straightforward to see that this saturation functialisf
into the QP (1) whenweséf =1, F=0,L =1, N = -1

andb = 1. The corresponding candidate Lyapunov functioffrig- 4.

take the same form as (10).

Combined deadzone and saturation nonlinearity (see Fig.

4):

The combined deadzone and saturation
—1fory < -2
y+1lfor —2<y< -1

u=<¢ 0for —1<y<1 (13)
y—1lforl<y<2
1fory>2
can be expressed as
u:[O 1}1}
1
v =argmin -0 HO 4+ F
o 2 (14)
subject toLv + LNy < b
1
where
H= 1j1m _11} with anym > 0
P=l0 0] =171 0]
- (15)
1 0 1
-1 0 1
L= 0 1 b= 1
0 -1 1

In this case, we must augment the LTI plant @és) =

0 1
G(s) 0 0

mented plant and its output.

and considew to be the input of the aug-

Remark: This formulation is not unique. There are many
other ways of parameterizing a combined deadzone and

saturation in terms of a quadratic program.

Observation 1: It is possible to show analytically that

Primbs’ method using onlyI; for a combined saturation

and deadzone modelled as the quadratic program (14) with

coefficients (15) gives a maximum gaid = 1/||G||, for
guaranteed stability.
Proof: See Appendix. (]

D. Numerical example
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LTI plant connected in feedback with a combined deadzand
saturation function

v

G(s) 1
u K

¢<Jy

Fig. 5. LTI system connected in feedback with a nonlineaatyd an
additional gaink.

and the input of the nonlinearity (see Fig. 5). The numerical
tests were performed in Matlab with the software packages
SEDUMI [18] and YALMIP [11]. The tests were performed
with two different plants:

1
Gl = Tyt t1 (162)
Ga(s) = ! (16b)

st 453 +8s24+3s5+1

Table 1 shows maximum values &f for which the various
criteria guarantee stability. The tests used were theicklss
circle and Popov criteria, Primbs’ method using orly,
Primbs’ method using all conditions (i.e. usihfy to II3),

the new method using onlif; andIl,, and the new method
using all conditions (i.e. usingl; to II3 and II,). The
nonlinearitiesy were saturation (9), deadzone (12) and the
combined deadzone and saturation (14). For each case the
larger the value of<, the less conservative the test. We may
observe the following:

« Both the saturation (9) and the deadzone (12) belong
to the same sector, so the circle criterion gives the
same result for both these cases, and similarly the
Popov criterion gives the same result. On the other
hand Primbs’ method gives a different result for the
two cases, as discussed in [14], [16].

o For the saturation withGy, Primbs’ method is more
conservative than the Popov criterion. For this case the
new method (using all conditions) is less conservative
than all other tests considered.

« For the saturation witlGs, Primbs’ method (using all
conditions) is less conservative than the Popov criterion.
Again for this case the new method (using all condi-
tions) is less conservative than all other tests considered

To make a comparison of how conservative the different «
approaches are, we consider a strictly proper stable LTtpla
with a nonlinearity in the negative feedback path and an
additional scalar gaif& > 0 between the output of the plant

The new method (using all conditions) is never more
conservative than Primbs’ method. However for the
deadzone it is no better than Primbs’ method, while for
the combined deadzone and saturation it is no better



TABLE |
A COMPARISON OF THE EXISTING APPROACHES AND THE NEW II5 =
APPROACH CONTINUOUS CASE IN EACH CASE THE MAXIMUM VALUE
OF K FOR WHICH THE SYSTEM IS GUARANTEED STABLE IS SHOWN
. Hp -
Primbs New
) Circle | Popov | II; all Ty, 11, all
9) G1 1.69 4.03 1.69 | 3.98 4.03 9.63 .
9 | Go | 294 | 541 | 294| 693 | 541 | 1156 with
12) | G4 1.69 4.03 | 1.69| 10.16 4.03 10.16
14) | Gy 3.38 8.05 0.64 | 0.64 0.64 0.64

than Primbs’ method based dh, alone.

0 0 ~K(CA)T
0 0 —(KCB+1)T
—-KCA —(KCB+1) -2
- T 21
H;u) H;m) 0 ( )
o o o
0 0 0
it = K*(A - 1,)"CTC(A - I1,)
I3 = (KBTCT — 1)KC(A - I,,) (22)

n*? = KkBTC"(KCB - 1) - KCB

« For the deadzone and saturation the circle criterion ihere the identity matrix,, € R"*™ with n the number of

less conservative than both Primbs’ method and the nestates.

methoq. Note that this nonlinearity is in a;maller Sectofeasylt 2 (stability criterion — discrete time case):Con-
than either the deadzone or the saturation alone. They. o 5150 strictly proper discrete time systéffr) con-

value for both Primbs’ method and the new method igcted with a nonlinearity expressed as a QP which satisfies

found by optimizing overr in (15). Nevertheless there ,eq conditions (18)-(20). Then the system is stable ifehe

may be differently structured quadratic programs that

give the same nonlinearity but less conservative resulfg @ Symmetric positive definite matrik =

that we have not tested.
Note thatl/||G1||- = 0.64 (c.f. Observation 1).

I11. DISCRETE TIME CASE
A. Problem setup
Similar results can be obtained for discrete time systems.
We will consider only a single-input single-output stryctl
proper stable discrete time plafif(z), which has a negative

feedback connection with a nonlinearity(y) : R — R
expressed by the QP

(y(k)) =argmin %uTu —u"Ky(k)

subject toLu(k) < b a7

Pi1 Ppo
_ _ o Pl Py
such that the following LMI is satisfied:
3
IIp + Z r;1I; <0 (23)
i=1
where . . -
Py Py Pig
o= Py P2 Pas (24)
P31 P Ps3
with
Py = ATPLA - Py
Py = PL =BTP A+ PLA-PL
Py = BTP B+ PLB+ BTP, (25)

whereb > 0. Here K is scalar andl € R!, b € R.
From the KKT conditions for this QP, three properties can
be derived:

Lemma 3 (QP properties—discrete time case)The con-

Py =PL =PEA
P3y = Pl = PLB + Pyy, P33 = Psy

Proof: See Appendix. (]

strained QP proposed above has the following properties Remark: Haddad and Bernstein [3] constructed the Lya-

o(k)" (p(k) — Ky(k)) <0
Ap(k +1)"(¢(k) — Ky(k)) > 0
Ad(k+ DT (p(k +1) — Ky(k+1)) <0

for conciseness.
Proof: See [10]. O

B. New stability criterion

We write G(z) ~ (4, B, C,0). Definelly, II,, II3 andIl,

(18)
(19)
(20)

with A¢(k + 1) = ¢(k + 1) — ¢(k). Here we usep(k) and
o(k + 1) to representy(y(k)) and¢(y(k + 1)) respectively

as
0 -—-KCT 0 0 0 KOT
I =|-KC -2 0|, Ib=]|0 0 1
0 0 0 KC 1 0

punov function for the discrete time Popov criterion devel-
oped by Szegd and Pearson [19] and Jury and Lee [6], [5].
By using the KYP lemma and straightforward manipulations,
the corresponding result for SISO case can be transformed
into an LMI

ATPA_ P ATPB:| \ Héll) H(21)T

P l<0 (26)
HéQl) H§;22)

BTPA BTPB

with TI'Y, TI2Y and 1?2 given by (22). For this case
(23) subsumes the Popov criterion (26) by setting = 0,
P22:Oandr2:r3:O.

C. Numerical example

As with the continuous case we consider a strictly proper
stable LTI plant with a saturation (9) in the negative feadkba
and with an additional scalar gaisi > 0 between the output



TABLE Il
A COMPARISON OF THE EXISTING APPROACHES AND THE NEW
APPROACH DISCRETE CASE

straightforward to handle different single-input single-

output nonlinearities via loop transformations. Further-
more it is straightforward to handle repeated nonlinear-
ities for the multivariable case. Thus test can be applied

Circle | Popov | Primbs | New to model predictive control with only simple bounds on
G1(z) | 0.2080 | 0.4346 | 0.3877 | 0.5498 Pre nly simple b
Go(z) | 0.3584 | 0.6045| 0.6943 | 0.9111 the constraints (the corresponding quadratic program

may be replaced by a feedback loop with repeated
saturation functions [17],[4]).

4) How does the test compare with the use of Zames-
Falb multipliers? One contribution of this paper is to
show that Primbs’ method with a piecewise quadratic
cost function complements the Popov criterion, in the

@1( ) = z—0.4 27) sense that one or the other may be less conservative

(z—=0.9)(z—0.1)(z — 0.8) depending on the plant.
Table 2 shows maximum values & for which the
circle criterion, the Popov criterion, Primbs’ method
and the new approach guarantee stability. For this cag&soof of Result 1:
the Popov criterion is less conservative than Primbs’ By definingu := —¢, the three constraints (2)-(4) can be
method, but the new approach is less conservative thavritten in quadratic forms in terms of := [z7, u”, 4*]" as
both. T T T
2) Suppose the plant is o1 :=v I[iv >0 oo:=v ' Ilov =0 o3 :=v"1I3v =0
(29)
z—0.5

(z—=0.9)(z+0.1)(z — 0.8)

Once again Table 2 shows maximum values Fof

for each method. This time Primbs’ method is less/(; v) = [T, u” )T P27, u”)

conservative than the Popov criterion, and once again y

both methods are more conservative than the new —2/\/ (0T F7(t) + ¢T HN7(t) + y" NT F7(t)]dt

approach. 0 (30)

of the plant and the input of the saturation. Once again tests
were performed with two different plants.

1) Suppose the plant is

V. APPENDIX

ég(z) =

(28)  \ith T1,, T, andTT; as (5).

Suppose the candidate Lyapunov function has the form

IV. CONCLUSION AND DISCUSSION with P = PT > 0 and ) > 0. From (2), we have
We have presented a new stability test for linear plants

connected in feedback with a static nonlinearity that may —(¢" HNy+ ¢ Fy+y " N"Fy) > ¢"Hp >0  (31)
prims. method (14, [16] bt with e candidate Lyapmoyich valdates the positviy of s Lyapunoy functordls
function augmented with a term corresponding to that for T_he _system is stable if uqder the pondltlons (29), the f|rst
the Popov criterion. The test is guaranteed to be no mofi€rvative of Lyapunov function (30) is less thanngro, vhic
conservative than Primbs’ method, and no more conservatiya" be expressed by a qqadratlc inequatify.= v Il,v <
than the Popov criterion when constraint (2) takes the sémpp v_vherer = Tlo + 11, W'.th .HO _and_ IT,, as (7) and (5).
form 6" (¢ — Ky) < 0 and the corresponding multiplier is Using the 3S-procedure, _th|s implication can be repr_esented
positive. We have given numerical examples where the teY 70 + 2 iy ri0s < 0 with 71 > 0 andry, 3 € R, which
is less conservative than both Primbs’ method and the Pop89n be expressed in one LM as (6)]
criterion. Proof of Observation 1: The LMI stability condition for
The following questions remain open: stability is
1) Is it possible to show that the candidate Lyapunov
function remains positive even when the multiplier
corresponding to the Popov term is negative? If this BT;K—OKC _22)‘ _22 <0 (32
can be shown, then the test would also be shown to

subsume the Popov criterion when constraint (2) takeghere\ = 1 +m > 1. By the KYP lemma this is equivalent

ATP+PA MKCT PB-KCT

the simple formp” (¢ — Ky) < 0. to requiring

2) It is possible to represent nonlinearities such as the .
combined deadzone and saturation (14) with many| 0 (jwl—A)~'B 0 AKCT —KCT
different quadratic programs. Is it possible to specify | 1 0 AKC —2X 2
the quadratic program that gives the least conservative| 0 1 -KC 2 -2

test? 0 (jwI—A)"'B
3) How should the discrete case be generalized to more x| 1 0 < 0 forall w
general sectors and multivariable nonlinearities? It is 0 1



and hence for allv

with IT;, II, andIls as (21).
Therefore, the system is stable if under the conditions
(37), the Lyapunov function differencAV(z) < 0 can

be satisfied. By the S-procedure, this implication can be

KG(jw)+ KG(jw)*+2 —2—AKG(jw) >0
-2 - AKG(jw)* 2\
Taking Schur complements gives
N K2G(jw)*G(jw) — 4\ +4 < 0 for all w (33)

There exists a real > 1 for which the inequality is satisfied
if and only if K[|G|| <1. O

Proof of Result 2:

We firstly derive a relation which will be used later. 2]
Subtracting (19) from (20) giveAy(k + 1)[Ap(k + 1) —
KAy(k+1)] <0, i.e. Acp( )NAp(k)—KAy(k)] <0, which
is equivalent ta) < % k) < K. Hence we have

(k)
o(y) — (@)
y—y
In the following, we establish stability based on the three
conditions (18)-(20) and the candidate Lyapunov function [

(1]

(3]

<K (34)

V(k): [5]

y(k)
V(a(k),u(k) = (k)T PE(R) + 2 / p(0)do

with A > 0 and &(k) [z(k)T,u(k)T]T. Then the
corresponding Lyapunov function difference is

AV (k) ==V (k+1) — V(k)

(6]

(7]

y(k+1)
=6k +1)TPe(k+ 1) — (k)T PE(R) + 2)\/ p(o)do (g
y(k)
(35) 9]
Using the relation (34), we have [10]
y(k+1)
[ elo) - el "
y(k)
y(k+1)
<K [ o - y(Bldo = G ly(k+ 1)~ y()P?
k [12]
which is [13]
y(k+1)
2/ o(o)do [14]
y(k) [15]
<2p(y(k)[y(k +1) —y(k)] + K[y(k + 1) — y(k)]?
Therefore using, = —, (35) is [16]
AV (x)
=2T(ATPA — P)x + 27 AT PBu +u" BT PAx [17]
+ " BTPByp + 200" [y(k + 1) — y(k)]?
(36) [g

=27 (A"PA — P)x + 2" AT PBu + v BT PAx
+u"BTPBu — 2\’ [(CA — C)x + CBu
+ AM(CA — C)z + CBu]"[(CA — O)x + CBu)]
Then AV (k) < 0 can be represented in a quadratic form as
T(Mp + ,)v < 0 wherev = [x(k)T, u(k)T, Au(k)T]T
andlIly, 11, as (24) and (21) respectively. Furthermore, (18)-
(20) can be represented in quadratic forms as

vTHw <0

[19]

vl =0 vITIqv =0 (37)

represented by an LMI as (6).

REFERENCES

J. M. Gomes da Silva Jr, S. Tarbouriech, and R. Reginafmalysis
of regions of stability for linear systems with saturatimguts through
an anti-windup scheme. IFEEE International Symposium on Com-
puter Aided System Design Proceedings, volume 2, pages 1106-1111,
Glasgow, Scotland, 2002.

W. M. Haddad and D. S. Bernstein. Explicit constructidngaadratic
Lyapunov functions for the small gain, positivity, circland Popov
theorems and their applications to robust stability. Pa@dntinuous-
time theory. International Journal of Robust and Nonlinear control,
3:313-339, 1993.

W. M. Haddad and D. S. Bernstein. Explicit ConstructidrQuadratic
Lyapunov Functions for the Small Gain, Positivity, Circiad Popov
Theorems and Their Application to Robust Stability Partiscrete-
Time Theory.International Journal of Robust and Nonlinear control,
4:249-265, 1994.

W P Heath. Multipliers for quadratic programming with b@on-
straints. IFAC Workshop on Nonlinear Model Predictive Gohfor
Fast Systems, Grenoble, 2006.

E. I. Jury and B. W. Lee. On the absolute stability of noalr sample-
data systems. IhEEE Trans. on Automatic Control, volume 9, pages
551 — 554, 1964.

E. I. Jury and B. W. Lee. On the stability of a certain clasfs
nonlinear sampled-data systemslHEE Trans. on Automatic Control,
volume 9, pages 51-61, 1964.

R. E. Kalman. Lyapunov functions for the problem of Lure
automatic control. IlNatl Acad Sci U SA., volume 49, pages 201-205,
1963.

H. K. Khalil. Nonlinear systems (3rd ed).
Upper Saddle River, 2000.

G. Li. The robustness and stability analysis of modeldpréve
control. PhD thesis, the University of Manchester, 2006.

G. Li, W. P. Heath, and B. Lennox. The stability analysfssystems
with nonlinear feedback expressed by a quadratic progranel45th
|EEE Conference on Decision and Control, 2006.

J. Lofberg. YALMIP : A toolbox for modeling and optimation in
MATLAB. In CCA/ISC/CACSD, Sep 2004. The software package
is avalable fromhttp://control.ee.ethz.ch/~joloef/
yal m p. php.

K. R. Meyer. Liapunov functions for the problem of Lur'én Natl
Acad Sci U SA,, volume 53, pages 501-503, 1965.

K. S. Narendra and J. H. Taylor.Frequency domain criteria for
absolute stability. Academic Press, New York, 1973.

J. A. Primbs. The analysis of optimization based cdlers. Auto-
matica, 37:933-938, 2001.

J. A. Primbs and M. Giannelli. Kuhn-Tucker based stgb@onditions
for sytems with saturation. Technical Report, CDS, Pasad&A,
CIT-CDS00-005, 2000.

J. A. Primbs and M. Giannelli. Kuhn-Tucker based stgb@onditions
for systems with saturation. IEEE Trans. on Automatic Control,
46:1643-1647, 2001.

M. Soroush and K. R. Muske. Analytical model predicts@ntrol. In
F. Allgdbwer and A. Zheng, editor&Nonlinear model predicitve control,
pages 163-179. Birkhauser Verlag, Basel, 2000.

J. F. Sturm. Using SEDUMI 1.02, A MATLAB toolbox for opti
mization over symetric conesOptimization method and software,
11-12:625-653, 1999. The software package is avalable frotrp:
// sedumi . ntnaster. cal .

G. P. Szegb and Jr J. B. Pearson. On the absolute staifisampled-
data systems: The “indirect control” case.lEEE Trans. on Automatic
Control, volume 9, pages 160 — 163, 1964.

Pearson Prentice-Hall,



