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Abstract— We consider the stability of the feedback con-
nection of a linear time invariant (LTI) plant with a static
nonlinearity expressed by a certain class of quadratic program.
By generalizing the class of candidate Lyapunov functions
we improve on existing results in the literature. A Lyapunov
function is constructed via the S-procedure from quadratic
constraints established using the Karush-Kuhn-Tucker (KKT)
conditions. The stability criterion can be expressed as a linear
matrix inequality (LMI) condition. We discuss some simple
examples that demonstrate the improved results.

I. I NTRODUCTION

The stability analysis of Lur’e systems (see Fig. 1), namely
an LTI plant connected with a memoryless nonlinearity in
the feedback path satisfying a sector bound condition, is
a classical problem in control theory [8]. There are many
stability tests for this problem based on the circle criterion,
the Popov criterion and the use of Zames-Falb multipliers,
etc.. Recently a new LMI stability test was proposed for
a subclass of Lur’e systems where the nonlinearity can be
expressed by a quadratic program (QP) [14], [16]. This is
a nontrivial subclass, which includes feedback systems that
contain common nonlinearities, such as saturation, deadzone
and combinations of saturation and deadzone. Furthermore,
input constrained model predictive control (MPC) can also
be cast into this subclass, which enables a simple test for the
stability analysis of input constrained MPC. We will refer to
the test asPrimbs’ method throughout this paper.

Primbs’ method uses the S-procedure to represent the
implication that a candidate Lyapunov function is decreasing
subject to some constraints derived from the KKT conditions
for the QP. When the Lyapunov function is quadratic in
the statex and the nonlinearity corresponds to a saturation
or a deadzone the test is equivalent to the circle criterion.
More generally, [14] and [16] propose a Lyapunov function
that is quadratic in both the state and input[xT , uT ]T . This
subsumes the circle criterion for these cases and can also
be shown to give a considerably less conservative stability
criterion than the Popov criterion for some simple cases.

It is also claimed [16] that it may give a less conservative
stability criterion than the use of Zames-Falb multipliers. The
veracity of this claim is beyond the scope of this paper.
Nevertheless we give a simple example where the Popov
criterion is less conservative than Primb’s method. That isto
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Fig. 1. A Lur’e system

say we show that while for some examples Primbs’ method
gives a less conservative test, for other examples the Popov
criterion gives a less conservative test. Indeed we show that
for some nonlinearities Primbs’ method may give worse
results than the circle criterion.

The main contribution of this paper is to propose a
new stability criterion that is based on Primbs’ method but
which further reduces the conservatism of the approach. The
improvement is achieved by constructing a novel candidate
Lyapunov function, that involves not only a quadratic term
in [xT , uT ]T , but also an integral term with the nonlinearity.
This construction is inspired by the Lyapunov function
associated with the Popov criterion which is a combination
of a quadratic term in statex and an integral term involving
the nonlinearity [7], [12], [1]. Furthermore, to achieve a
stability criterion in a concise LMI form, we use the three
conditions developed in [10], [9] which were shown to be
equivalent to a large number of conditions originally derived
for Primbs’ method [14], [16]. Thus we develop concise
stability conditions which can never be worse than Primbs’
method. We demonstrate numerical examples where the new
test is less conservative than both Primbs’ method and the
Popov criterion.

II. CONTINUOUS TIME CASE

A. Problem setup

Consider a strictly proper stable continuous time MIMO
plantG(s) with equal number of inputs and outputs, which
has a negative feedback connection with a nonlinearityφ(y) :
R

m → R
m expressed by a QP

φ (y(t)) = argmin
ũ

1

2
ũTHũ+ ũTFy(t)

subject toLu(t) + LNy(t) � b
(1)

whereH = HT > 0 and each elements of the vectorb is
nonnegative, which is represented asb � 0. HereH,F,N ∈
R

m×m, L ∈ R
l×m, b ∈ R

l. We assumeφ(0) = 0.
From the KKT conditions for this QP, three properties can

be derived:
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Lemma 1 (QP properties — continuous time case [9]):
The constrained QP (1) has the following properties

(φ+Ny)T (Hφ+ Fy) ≤ 0 (2)

(φ̇+Nẏ)T (Hφ+ Fy) = 0 whereu̇ exists (3)

(φ̇+Nẏ)T (Hφ̇+ F ẏ) = 0 whereu̇ exists (4)

Here we useφ and φ̇ to representφ(y(t)) anddφ(y(t))/dt
respectively for conciseness.
Proof: See [9]. �

B. New stability criterion

Based on the three conditions (2)-(4) and a new Lur’e type
Lyapunov function, a stability criterion can be established as
follows.

Let G have state space representationG(s) ∼
(A,B,C, 0). DefineΠi for i = 1, 2, 3, p as

Πi =







Π
(11)
i Π

(21)T

i Π
(31)T

i

Π
(21)
i Π

(22)
i Π

(32)T

i

Π
(31)
i Π

(32)
i Π

(33)
i






(5)

where forΠ1

Π
(11)
1 = −(CTFTNC + CTNTFC)

Π
(21)
1 = −(FC +HNC)

Π
(22)
1 = −2H, Π

(31)
1 = 0, Π

(32)
1 = 0, Π

(33)
1 = 0

for Π2

Π
(11)
2 = −(CTFTNCA+ATCTNTFC)

Π
(21)
2 = −(HNCA+BTCTNTFC)

Π
(22)
2 = −(HNCB +BTCTNTH)

Π
(31)
2 = −FC, Π

(32)
2 = −H, Π

(33)
2 = 0

for Π3

Π
(11)
3 = −ATCT (FTN +NTF )CA

Π
(21)
3 = −BTCT (FTN +NTF )CA

Π
(22)
3 = −BTCT (FTN +NTF )CB, Π

(33)
3 = −2H

Π
(31)
3 = −(HN + F )CA, Π

(32)
3 = −(HN + F )CB

and forΠp

Π(11)
p = −CTNTFCA−ATCTFTNC

Π(21)
p = −FCA−HNCA−BTCTFTNC

Π(22)
p = −FCB −HNCB −BTCTFT −BTCTNTH

Π(31)
p = 0, Π(33)

p = 0, Π(33)
p = 0

Result 1The system is stable if there exists a positive definite

matrix P =

[

P11 P12

PT
12 P22

]

with dimension corresponding to

[xT , uT ]T , such that the following LMI can be satisfied

Π0 + λΠp +

3
∑

i=1

riΠi < 0 (6)
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Fig. 2. LTI plant connected in feedback with a saturation function
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Fig. 3. LTI plant connected in feedback with a deadzone function

where

Π0 =





ATP11 + P11A ATP12 + P11B P12

PT
12A+BTP11 PT

12B +BTP12 P22

PT
12 P22 0



 (7)

Here the multipliersλ, ri ∈ R with i = 1, 2, 3, λ ≥ 0 and
r1 ≥ 0.
Proof: See Appendix. �

Remark: When the sector bound condition (2) takes the
simple formφT (φ−Ky) ≤ 0 with K a scalar or a positive
diagonal matrix, the stability criterion (6) subsumes the
Popov criterion in LMI form with nonnegative multiplier,
which may be expressed as [2]:
[

ATP + PA PB −KCT −KATCTλ
BTP − λKCA−KC −2K − λCB −BTCTλ

]

< 0

(8)
with λ ≥ 0. This can be seen by lettingP12 = 0, P22 = 0
and r2 = r3 = 0. However the multiplierλ in the Popov
criterion can also be relaxed to any real number (see [13]).

C. Examples

Saturation nonlinearity (see Fig. 2):
A saturation given byu(t) = sat (y(t)) = y(t)

max{1,|y(t)|}
can be expressed by an optimization problem as [16]

u(t) = argmin
ũ

1

2
(ũ− y(t))

2

s.t. |u(t)| ≤ 1
(9)

It is straightforward to see that this saturation function falls
into the QP (1) when we setH = 1, F = −1, L = 1, N = 0
andb = 1. Its corresponding candidate Lyapunov function is

V (x, u) = [xT , uT ]TP [xT , uT ] + 2λ

∫ y

0

φTdτ (10)

Deadzone nonlinearity (see Fig. 3):
The deadzone

u =







y + 1 for y < −1
0 for − 1 ≤ y ≤ 1
y − 1 for y > 1

(11)



can be expressed as [15]

u = arg min
ũ

1

2
ũ2

subject to|u− y| ≤ 1
(12)

It is straightforward to see that this saturation function falls
into the QP (1) when we setH = 1, F = 0, L = 1, N = −1
and b = 1. The corresponding candidate Lyapunov function
take the same form as (10).

Combined deadzone and saturation nonlinearity (see Fig.
4):

The combined deadzone and saturation

u =























−1 for y < −2
y + 1 for − 2 ≤ y < −1
0 for − 1 ≤ y ≤ 1
y − 1 for 1 < y ≤ 2
1 for y > 2

(13)

can be expressed as

u =
[

0 1
]

v

υ = arg min
υ̃

1

2
υ̃THυ̃ + Fψ

subject toLv + LNψ � b

ψ =

[

1
0

]

y

(14)

where

H =

[

1 +m −1
−1 1

]

with anym > 0

F =

[

0 0
0 0

]

, N =

[

−1 0
1 0

]

L =









1 0
−1 0

0 1
0 −1









, b =









1
1
1
1









(15)

In this case, we must augment the LTI plant asG̃(s) =

G(s)

[

0 1
0 0

]

and considerv to be the input of the aug-

mented plant andψ its output.

Remark: This formulation is not unique. There are many
other ways of parameterizing a combined deadzone and
saturation in terms of a quadratic program.

Observation 1: It is possible to show analytically that
Primbs’ method using onlyΠ1 for a combined saturation
and deadzone modelled as the quadratic program (14) with
coefficients (15) gives a maximum gainK = 1/‖G‖∞ for
guaranteed stability.
Proof: See Appendix. �

D. Numerical example

To make a comparison of how conservative the different
approaches are, we consider a strictly proper stable LTI plant
with a nonlinearity in the negative feedback path and an
additional scalar gainK ≥ 0 between the output of the plant
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G(s)

Fig. 4. LTI plant connected in feedback with a combined deadzone and
saturation function
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Fig. 5. LTI system connected in feedback with a nonlinearityand an
additional gainK.

and the input of the nonlinearity (see Fig. 5). The numerical
tests were performed in Matlab with the software packages
SEDUMI [18] and YALMIP [11]. The tests were performed
with two different plants:

G1(s) =
1

s4 + s3 + 8s2 + 2s+ 1
(16a)

G2(s) =
1

s4 + s3 + 8s2 + 3s+ 1
(16b)

Table 1 shows maximum values ofK for which the various
criteria guarantee stability. The tests used were the classical
circle and Popov criteria, Primbs’ method using onlyΠ1,
Primbs’ method using all conditions (i.e. usingΠ1 to Π3),
the new method using onlyΠ1 andΠp, and the new method
using all conditions (i.e. usingΠ1 to Π3 and Πp). The
nonlinearitiesφ were saturation (9), deadzone (12) and the
combined deadzone and saturation (14). For each case the
larger the value ofK, the less conservative the test. We may
observe the following:

• Both the saturation (9) and the deadzone (12) belong
to the same sector, so the circle criterion gives the
same result for both these cases, and similarly the
Popov criterion gives the same result. On the other
hand Primbs’ method gives a different result for the
two cases, as discussed in [14], [16].

• For the saturation withG1, Primbs’ method is more
conservative than the Popov criterion. For this case the
new method (using all conditions) is less conservative
than all other tests considered.

• For the saturation withG2, Primbs’ method (using all
conditions) is less conservative than the Popov criterion.
Again for this case the new method (using all condi-
tions) is less conservative than all other tests considered.

• The new method (using all conditions) is never more
conservative than Primbs’ method. However for the
deadzone it is no better than Primbs’ method, while for
the combined deadzone and saturation it is no better



TABLE I

A COMPARISON OF THE EXISTING APPROACHES AND THE NEW

APPROACH: CONTINUOUS CASE. IN EACH CASE THE MAXIMUM VALUE

OF K FOR WHICH THE SYSTEM IS GUARANTEED STABLE IS SHOWN.

Primbs New
φ Circle Popov Π1 all Π1, Πp all
(9) G1 1.69 4.03 1.69 3.98 4.03 9.63
(9) G2 2.94 5.41 2.94 6.93 5.41 11.56
(12) G1 1.69 4.03 1.69 10.16 4.03 10.16
(14) G1 3.38 8.05 0.64 0.64 0.64 0.64

than Primbs’ method based onΠ1 alone.
• For the deadzone and saturation the circle criterion is

less conservative than both Primbs’ method and the new
method. Note that this nonlinearity is in a smaller sector
than either the deadzone or the saturation alone. The
value for both Primbs’ method and the new method is
found by optimizing overm in (15). Nevertheless there
may be differently structured quadratic programs that
give the same nonlinearity but less conservative results
that we have not tested.
Note that1/‖G1‖∞ = 0.64 (c.f. Observation 1).

III. D ISCRETE TIME CASE

A. Problem setup

Similar results can be obtained for discrete time systems.
We will consider only a single-input single-output strictly
proper stable discrete time plantG(z), which has a negative
feedback connection with a nonlinearityφ(y) : R → R

expressed by the QP

φ(y(k)) =arg min
u

1

2
uTu− uTKy(k)

subject toLu(k) � b (17)

whereb � 0. HereK is scalar andL ∈ R
l, b ∈ R

l.
From the KKT conditions for this QP, three properties can

be derived:

Lemma 3 (QP properties—discrete time case):The con-
strained QP proposed above has the following properties

φ(k)T (φ(k) −Ky(k)) ≤ 0 (18)

∆φ(k + 1)T (φ(k) −Ky(k)) ≥ 0 (19)

∆φ(k + 1)T (φ(k + 1) −Ky(k + 1)) ≤ 0 (20)

with ∆φ(k + 1) = φ(k + 1) − φ(k). Here we useφ(k) and
φ(k + 1) to representφ(y(k)) andφ(y(k + 1)) respectively
for conciseness.
Proof: See [10]. �

B. New stability criterion

We writeG(z) ∼ (A,B,C, 0). DefineΠ1, Π2, Π3 andΠp

as

Π1 =





0 −KCT 0
−KC −2 0

0 0 0



 , Π2 =





0 0 KCT

0 0 1
KC 1 0





Π3 =





0 0 −K(CA)T

0 0 −(KCB + 1)T

−KCA −(KCB + 1) −2





Πp =







Π
(11)
p Π

(21)
p

T
0

Π
(21)
p Π

(22)
p 0

0 0 0







(21)

with

Π(11)
p = K2(A− In)TCTC(A− In)

Π(21)
p = (KBTCT − 1)KC(A− In)

Π(22)
p = KBTCT (KCB − 1) −KCB

(22)

where the identity matrixIn ∈ R
n×n with n the number of

states.

Result 2 (stability criterion — discrete time case):Con-
sider a SISO strictly proper discrete time systemG(z) con-
nected with a nonlinearity expressed as a QP which satisfies
three conditions (18)-(20). Then the system is stable if there

is a symmetric positive definite matrixP =

[

P11 P12

PT
12 P22

]

such that the following LMI is satisfied:

Π0 +
3

∑

i=1

riΠi < 0 (23)

where

Π0 =





P̃11 P̃12 P̃13

P̃21 P̃22 P̃23

P̃31 P̃32 P̃33



 (24)

with

P̃11 = ATP11A− P11

P̃21 = P̃T
12 = BTP11A+ PT

12A− PT
12

P̃22 = BTP11B + PT
12B +BTP12

P̃31 = P̃T
13 = PT

12A

P̃32 = P̃T
23 = PT

12B + P22, P̃33 = P22

(25)

Proof: See Appendix. �

Remark: Haddad and Bernstein [3] constructed the Lya-
punov function for the discrete time Popov criterion devel-
oped by Szegö and Pearson [19] and Jury and Lee [6], [5].
By using the KYP lemma and straightforward manipulations,
the corresponding result for SISO case can be transformed
into an LMI

[

ATPA− P ATPB
BTPA BTPB

]

+ λ

[

Π
(11)
p Π

(21)
p

T

Π
(21)
p Π

(22)
p

]

< 0 (26)

with Π
(11)
p , Π

(21)
p and Π

(22)
p given by (22). For this case

(23) subsumes the Popov criterion (26) by settingP12 = 0,
P22 = 0 andr2 = r3 = 0.

C. Numerical example

As with the continuous case we consider a strictly proper
stable LTI plant with a saturation (9) in the negative feedback
and with an additional scalar gainK ≥ 0 between the output



TABLE II

A COMPARISON OF THE EXISTING APPROACHES AND THE NEW

APPROACH: DISCRETE CASE.

Circle Popov Primbs New
G̃1(z) 0.2080 0.4346 0.3877 0.5498
G̃2(z) 0.3584 0.6045 0.6943 0.9111

of the plant and the input of the saturation. Once again tests
were performed with two different plants.

1) Suppose the plant is

G̃1(z) =
z − 0.4

(z − 0.9)(z − 0.1)(z − 0.8)
(27)

Table 2 shows maximum values ofK for which the
circle criterion, the Popov criterion, Primbs’ method
and the new approach guarantee stability. For this case
the Popov criterion is less conservative than Primbs’
method, but the new approach is less conservative than
both.

2) Suppose the plant is

G̃2(z) =
z − 0.5

(z − 0.9)(z + 0.1)(z − 0.8)
(28)

Once again Table 2 shows maximum values ofK
for each method. This time Primbs’ method is less
conservative than the Popov criterion, and once again
both methods are more conservative than the new
approach.

IV. CONCLUSION AND DISCUSSION

We have presented a new stability test for linear plants
connected in feedback with a static nonlinearity that may
be represented by a quadratic program. The test is based on
Primbs’ method [14], [16], but with the candidate Lyapunov
function augmented with a term corresponding to that for
the Popov criterion. The test is guaranteed to be no more
conservative than Primbs’ method, and no more conservative
than the Popov criterion when constraint (2) takes the simple
form φT (φ −Ky) ≤ 0 and the corresponding multiplier is
positive. We have given numerical examples where the test
is less conservative than both Primbs’ method and the Popov
criterion.

The following questions remain open:
1) Is it possible to show that the candidate Lyapunov

function remains positive even when the multiplier
corresponding to the Popov term is negative? If this
can be shown, then the test would also be shown to
subsume the Popov criterion when constraint (2) takes
the simple formφT (φ−Ky) ≤ 0.

2) It is possible to represent nonlinearities such as the
combined deadzone and saturation (14) with many
different quadratic programs. Is it possible to specify
the quadratic program that gives the least conservative
test?

3) How should the discrete case be generalized to more
general sectors and multivariable nonlinearities? It is

straightforward to handle different single-input single-
output nonlinearities via loop transformations. Further-
more it is straightforward to handle repeated nonlinear-
ities for the multivariable case. Thus test can be applied
to model predictive control with only simple bounds on
the constraints (the corresponding quadratic program
may be replaced by a feedback loop with repeated
saturation functions [17],[4]).

4) How does the test compare with the use of Zames-
Falb multipliers? One contribution of this paper is to
show that Primbs’ method with a piecewise quadratic
cost function complements the Popov criterion, in the
sense that one or the other may be less conservative
depending on the plant.

V. A PPENDIX

Proof of Result 1:
By definingu := −φ, the three constraints (2)-(4) can be

written in quadratic forms in terms ofv := [xT , uT , u̇T ]T as

σ1 :=vT Π1v ≥ 0 σ2 :=vT Π2v = 0 σ3 :=vT Π3v = 0
(29)

with Π1, Π2 andΠ3 as (5).
Suppose the candidate Lyapunov function has the form

V (x, u) = [xT , uT ]TP [xT , uT ]

− 2λ

∫ y

0

[φTF τ̇ (t) + φTHNτ̇(t) + yTNTF τ̇ (t)]dt

(30)

with P = PT > 0 andλ ≥ 0. From (2), we have

−(φTHNy + φTFy + yTNTFy) ≥ φTHφ ≥ 0 (31)

which validates the positivity of this Lyapunov function (30).
The system is stable if under the conditions (29), the first

derivative of Lyapunov function (30) is less than zero, which
can be expressed by a quadratic inequalityσ0 := vT Π̃pv <
0 where Π̃p = Π0 + Πp with Π0 and Πp as (7) and (5).
Using the S-procedure, this implication can be represented
by σ0 +

∑3
i=1 riσi < 0 with r1 ≥ 0 andr2, r3 ∈ R, which

can be expressed in one LMI as (6).�

Proof of Observation 1: The LMI stability condition for
stability is





ATP + PA λKCT PB −KCT

λKC −2λ 2
BTP −KC 2 −2



 < 0 (32)

whereλ = 1+m ≥ 1. By the KYP lemma this is equivalent
to requiring




0 (jωI −A)−1B
1 0
0 1





∗ 



0 λKCT −KCT

λKC −2λ 2
−KC 2 −2





×





0 (jωI −A)−1B
1 0
0 1



 < 0 for all ω



and hence for allω
[

KG(jω) +KG(jω)∗ + 2 −2 − λKG(jω)
−2 − λKG(jω)∗ 2λ

]

> 0

Taking Schur complements gives

λ2K2G(jω)∗G(jω) − 4λ+ 4 < 0 for all ω (33)

There exists a realλ ≥ 1 for which the inequality is satisfied
if and only if K‖G‖∞ ≤ 1. �

Proof of Result 2:
We firstly derive a relation which will be used later.

Subtracting (19) from (20) gives∆ϕ(k + 1)[∆ϕ(k + 1) −
K∆y(k+1)] ≤ 0, i.e.∆ϕ(k)[∆ϕ(k)−K∆y(k)] ≤ 0, which
is equivalent to0 ≤ ∆ϕ(k)

∆y(k) ≤ K. Hence we have

0 ≤
ϕ(y) − ϕ(ŷ)

y − ŷ
≤ K (34)

In the following, we establish stability based on the three
conditions (18)-(20) and the candidate Lyapunov function

V (k) := V (x(k), u(k)) = ξ(k)TPξ(k) + 2λ

∫ y(k)

0

ϕ(σ)dσ

with λ ≥ 0 and ξ(k) := [x(k)T , u(k)T ]T . Then the
corresponding Lyapunov function difference is

∆V (k) := V (k + 1) − V (k)

=ξ(k + 1)TPξ(k + 1) − ξ(k)TPξ(k) + 2λ

∫ y(k+1)

y(k)

ϕ(σ)dσ

(35)

Using the relation (34), we have
∫ y(k+1)

y(k)

[ϕ(σ) − ϕ(y(k))]dσ

≤K

∫ y(k+1)

y(k)

[σ − y(k)]dσ =
K

2
[y(k + 1) − y(k)]2

which is

2

∫ y(k+1)

y(k)

ϕ(σ)dσ

≤2ϕ(y(k))[y(k + 1) − y(k)] +K[y(k + 1) − y(k)]2

Therefore usingu = −ϕ, (35) is

∆V (x)

=xT (ATPA− P )x+ xTATPBu+ uTBTPAx

+ ϕTBTPBϕ+ 2λϕT [y(k + 1) − y(k)]2

=xT (ATPA− P )x+ xTATPBu+ uTBTPAx

+ uTBTPBu− 2λuT [(CA− C)x+ CBu]

+ λ[(CA− C)x + CBu]T [(CA− C)x + CBu)]

(36)

Then∆V (k) < 0 can be represented in a quadratic form as
vT (Π0 + Πp)v < 0 wherev := [x(k)T , u(k)T ,∆u(k)T ]T

andΠ0, Πp as (24) and (21) respectively. Furthermore, (18)-
(20) can be represented in quadratic forms as

vT Π1v ≤ 0 vT Π2v = 0 vT Π3v = 0 (37)

with Π1, Π2 andΠ3 as (21).
Therefore, the system is stable if under the conditions

(37), the Lyapunov function difference∆V (x) ≤ 0 can
be satisfied. By the S-procedure, this implication can be
represented by an LMI as (6).�
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