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Application of robust anti-windup techniques to dynamically
substructured systems

Guang Li, Member, IEEE, Guido Herrmann, Senior Member, IEEE, David P. Stoten, Jiaying Tu and Matthew C.
Turner

Abstract—Dynamically substructured systems (DSS) play an
important role in modern testing methods. DSS enables full-
size critical components of a complete system to be tested
physically in real-time, whilst the remaining parts of the system
run in parallel as a real-time simulation. The performance of
DSS testing is influenced by the synchronization of the physical
and numerical substructures, which necessitates the design of
a DSS controller. Since the testing signal is known and can be
assumed to be a perfectly measured disturbance, the DSS control
can be viewed as a regulation control problem with measured
disturbance attenuation. A potential problem with DSS control
arises from actuator saturation, which can be encountered in
DSS transfer systems and can significantly influence the testing
accuracy. This paper demonstrates the application of a novel
robust disturbance rejection anti-windup (AW) technique, to cope
with the actuator saturation problem in DSS. Implementation
results from a hydraulically-actuated DSS test rig confirm the
advantage of using this novel approach over some other existing
AW approaches. Furthermore, some specific practical issues are
discussed for the AW compensator design, such as the tuning of
parameters.

Index Terms—Keywords: Anti-windup compensation, Dynamic
testing, Dynamically substructured systems, Servohydraulically-
actuated systems.

I. INTRODUCTION

A. A brief introduction to dynamically substructured systems
and their control

THE concept of dynamically substructured systems (DSS)
is to use a mixed system containing physical components

(called physical substructures) and numerical components
(called numerical substructures), to replace the original (or em-
ulated system) during dynamic testing. This idea can overcome
drawbacks involved with purely numerical or purely physical
testing. For example, some physical components may contain
significant uncertainties and nonlinearities, so that replacing
them by an estimated numerical model may greatly influence
the testing results. On the other hand, using some physical
components in a testing procedure may be either unnecessary
or unrealistic (e.g., the inclusion of a full-size dam or bridge
within a laboratory environment). See [1], [2] for a detailed
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discussion on the advantage of using DSS. The uses of the
DSS concept can be found in areas such as automotive [3],
aerospace [4], civil engineering [5]–[8] and robotics [9].

DSS is distinguishable from the hardware-in-the-loop (HIL)
method, which is used traditionally to test the performance
of a controller, with a hardware interface to an embedded
numerical plant (see, e.g. [10], [11]). However, in more recent
developments, the HIL approach has some common features
with the DSS methodology; for example, see [12]–[14]. The
distinguishing feature of DSS is to produce a composite system
involving both numerical and physical testing components,
which must be synchronized at their interfaces in order to
create a similar testing environment to the original emulated
system.

The employment of DSS in the civil engineering area has
been significant [5]–[8], [15] and will serve in this section
as an introductory example for a typical DSS-application,
i.e. the testing of a building during an earthquake. Instead
of testing the whole building on a shaking table (which is
usually not realistic), only the upper part of the building is
tested physically, while the remaining lower part is simulated
simultaneously in a computer [5]. The objective is to make
the responses from this substructured building as close as
possible to the original whole building when subject to the
same testing signal. In the DSS-case, the test signal acts on
the lower, simulated part of the building.

Often, the schematic representation of a DSS can be de-
picted as in Fig. 1 [1]. This DSS contains one numerical
substructure ΣN and one physical substructure ΣP , although
the total number of numerical substructures and physical
substructures are not necessarily limited to one of each type.
The physical substructure typically consists of a number of
interconnected components: actuator(s), a test-frame structure,
a test specimen, an inner-loop controller, and sensor(s). The
testing signal d represents an external excitation input to the
emulated system, ΣE , typically an environmental disturbance
(e.g. seismic, air turbulence, road inputs). The displacements
{zN , zP } and forces {fN , fP } are the response signals of
ΣN and ΣP at their interfaces; hence, we call them interface
signals. The interface signals are separated into two sets: one
set is chosen as the constraint signals {fN , fP } and the other
set as the synchronization signals {zN , zP }. This choice may
change in different situations. When measurement noise is
ignored, the constraint signals satisfy fN = fP . The purpose
of the control signal u is to ensure that the difference between
zN and zP , defined as the DSS error e := zN − zP , is kept as
near to zero as possible. It can be shown that when e is small,
the DSS responses will be closer to those of the emulated
system. This is called DSS synchronization, so that the DSS
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Fig. 1: An illustration of dynamically substructured system
[1].

error is driven towards zero by a control signal u.

This synchronization requires a DSS controller, which must
also negate the dynamical effects of additional actuators in the
physical substructures. To facilitate the DSS controller design,
we use the DSS framework illustrated in Fig. 2, which is
generalized from Fig. 1 and modified from the original in [1],
by extracting out the transfer system (i.e. the actuator system),
represented by GA, to signify its role in the DSS:

zN = Gdd−GIGAu (1a)
zP = GAu (1b)

Here, zN and zP are DSS output signals; the control signal u
is provided by a DSS controller; Gd contains the components
which are subject to the testing signal d; GI represents the
interaction between GA and the remaining system. GI and Gd

may consist of both numerical and/or physical components,
and the constraint signals are contained in GI . Note that a
specific investigation of the internal structures and signals can
help design more sophisticated controllers (e.g. by taking into
account measurement noise from the physical and numerical
interface and locating the origin of the uncertainties in the
physical substructure). However, in this paper, our emphasis
is mainly on the design of a robustly performing AW com-
pensator imposed on a pre-designed linear controller. It is
generally not very efficient for H∞ and LMI based designs
to consider each specific internal structure and signal explic-
itly, if there is no specific issue. Hence, the DSS controller
designs are simplified by assuming the uncertainties can be
lumped into uncertainty blocks. (Later practical results will
demonstrate this assumption to be correct.) The DSS control
described above can be cast into a regulation problem, with
measured disturbance rejection, since the testing (excitation)
signal d will always be a measurable disturbance.
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Fig. 2: The DSS framework [1]

B. Coping with actuator saturation problem in DSS testing
using anti-windup compensation

One of the main issues with DSS control is associated
with the performance of the actuators. Much of the work in
DSS control is about how to overcome the limiting dynamic
characterisics of actuators, e.g. phase/time delays [16], [17]
and hard limits [13]–[15], etc. This paper addresses how
to use anti-windup (AW) compensation techniques to cope
with actuator saturation problem. Although every effort for
appropriate actuator selection should be made at the design
stage, there are still some important issues for consideration:

1) Hard input constraints should be enforced on actuators
to prevent them from triggering safety limits, for safety
reasons.

2) In order to achieve the best synchronization during DSS
testing, the actuators are often expected to run at their
full capabilities. This is because it is often the case
that driving actuators into saturation can result in better
performance than using cautious controllers that remain
inside the saturation limits.

3) Since the cost of an actuator can increase dramatically
with performance, it is reasonable to use a less expensive
actuator to achieve a satisfactory performance.

4) In some cases, a sufficiently powerful actuator may not
be available (e.g. structure testing in civil engineering).
In this case, it is not possible to use an actuator without
avoiding saturation.

Potential control strategies for coping with actuator satura-
tion include model predictive control (MPC) and anti-windup
(AW) compensation. The MPC strategy has been successfully
implemented on a hydraulically-actuated test rig developed at
the University of Bristol, with sampling rates up to 1kHz [18].
Although such sampling rates are applicable under the current
testing environment, problems may occur when the testing
of DSS systems requires a higher sampling rate, or the on-
line computational burden of MPC increases with model order
and prediction horizon length. For this reason, we propose to
use AW compensation as an alternative strategy to reduce the
online computational requirements. Various AW approaches
have been extensively studied in theory and practice, e.g. [19]–
[26]. The framework proposed by Weston and Postlethwaite
in [27] has found application in a number of different areas,
e.g. see [28], [29]. Following the framework in [27], an AW
approach for the disturbance rejection problem is proposed in
[30], where numerical results show performance improvement
over alternative approaches. In a recent work [31], we have
further modified this AW approach for improving its robust
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TABLE I: Notation list for the QM system – Variables
Notation Description
y1, y2 Front/rear wheel displacements.
yb Body center of mass displacement.
θ Pitch angle of the body.
yb31, yb32 Front/rear ends of body displacements.
y31, y32 Front/rear suspension base displacements.
u1, u2 Inputs of the front/rear suspension actuators.
f1, f2 Interaction forces.
d1, d2 Disturbances on the front/rear wheels.

performance by incorporating an additive uncertainty into the
synthesis procedure.

In this paper, we implement this AW approach, together
with other existing AW approaches for comparison purposes,
on a servohydraulically-actuated quasi-motorcycle test rig,
developed at the University of Bristol for real-time testing
of DSS configurations. The issues in the design and imple-
mentation of the AW compensators in real-time applications
have also been addressed. Hence the main contributions of this
paper are to demonstrate the efficacy of the novel AW com-
pensation approach in [31], and also to provide a systematic
procedure of AW compensator design for DSS systems.

The results of implementing three AW approaches are
presented: 1) the robust disturbance rejection AW (DRAW)
approach modified from [30]; 2) the robust AW (RAW)
approach of [32], [33]; 3) the internal model control (IMC)
based AW (IMC AW) approach [19]. Both DRAW and RAW
are based on the framework of Weston and Postlethwaite in
[27], and subsume IMC AW as a special case. RAW is mainly
for regulation problems, whilst DRAW is for measured distur-
bance rejection problems, which can be specifically tailored
for coping with DSS saturation. DRAW extends ideas from
[30] to include robust performance for additive uncertainties.

The paper is organized as follows. Section II introduces the
test rig and its two DSS formulations. Section III presents the
AW approaches. Section IV presents H∞ controller designs,
the tuning of AW compensators and the implementation results
for the two DSS developed in section II. Section V concludes
the paper.

II. SUBSTRUCTURING FOR A QUASI-MOTORCYCLE (QM)
HYDRAULICALLY-ACTUATED SYSTEM

A. The test rig and its substructured form

We consider a quasi-motorcycle (QM) hydraulically-
actuated system, developed at the University of Bristol; see
Fig. 3 for a photograph of the rig and Fig. 4 for its schematic
representation. The test rig is composed of three subsystems,
the first of which is a rigid vehicle body, with an evenly
distributed mass of 229kg, and two suspension struts. The
latter are connected to the vehicle body at one end and to
two 25kN hydraulic actuators (via swing arms) at the other
end. The second and third subsystems consist of two separate
25kN hydraulic actuators, attached to the hubs of the front and
rear wheels/tires. Each hydraulic actuator has a built-in linear
variable differential transformer (LVDT) for the measurement
of displacement and also a load cell for the measurement of
force. For test purposes, we can select each subsystem either

TABLE II: Notation list for the QM system – Parameters
Notation Description Values

Quasi-motorcycle body:
m3 Mass 229kg
J Moment of inertia 62.7kgm2

L Body length 1.60m
L1, L2 Lengths from front/rear 0.800m, 0.800m

end to mass center
Front/rear suspension:

k31, k32 Stiffness 34.8kN/m, 39.5kN/m
c31, c32 Damping 717Ns/m, 970Ns/m

Front/rear wheels:
m1, m2 Mass 12.3kg, 15.7kg
k1, k2 Stiffness 384kN/m, 409kN/m
c1, c2 Damping 700Ns/m, 816Ns/m

as a numerical or a physical element. Hence, we can derive
different DSS for this test rig, which are classified according
to the type of forces at the interfaces between the subsystems
[34]. In this paper, we only focus on two scenarios. In scenario
1, the QM body with the two suspension struts constitute the
physical substructure, while the front and rear wheels form the
numerical substructure. We call this a single mode substructure
(SiM) since only one type of force, i.e. inertial terms, occur
in the physical substructure. In scenario 2, the two wheels
are chosen as the physical substructure and the body with
two suspension struts as the numerical substructure. We call
this a multi mode substructure (MuM), since two substructures
with the same type of loading (reaction forces) are present
in the physical substructure. The interface variables are the
displacements and the forces at the attachment points of the
wheel hubs and the ends of the swing arms and they are
represented respectively as {y31, y32}, {y1, y2}, {f31, f32} and
{f1, f2}.

B. Synthesis of the DSS for the test rig

The dynamic equations of the quasi-motorcycle system can
be found in [18], [34] (see Fig. 4); the linearized equations of
motion, in the Laplace domain, are summarized as follows:

y1 = Gyd1d1 −Gyf1f1 (2)
y2 = Gyd2d2 −Gyf2f2 (3)

f31 = P2s
2yb31 + P3s

2yb32 (4)

f32 = P3s
2yb31 + P1s

2yb32 (5)
yb31 = G31y31 (6)
yb32 = G32y32 (7)

with

Gyd1 =
c1s+ k1

m1s2 + c1s+ k1
Gyd2 =

c2s+ k2
m2s2 + c2s+ k2

Gyf1 =
1

m1s2 + c1s+ k1
Gyf2 =

1

m2s2 + c2s+ k2

G31 =
c31s+ k31

m31s2 + c31s+ k31
G32 =

c32s+ k32
m32s2 + c32s+ k32

and P1 =
m3L

2
31

L2
3

+ J3

L2
3

, P2 =
m3L

2
32

L2
3

+ J3

L2
3

and P3 =
m3L31L32

L2
3

− J3

L2
3

. Here equations (2) and (3) represent the
dynamics of the front and rear wheels; equations (6) and (7)
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Fig. 3: Photograph of the quasi motorcycle test rig

Fig. 4: A schematic representation of the quasi motorcycle test
rig: (a) the vehicle body with two suspension struts and two
swing arms; (b) the hub and wheels with j = 1 for the front
and j = 2 for the rear.

represent the dynamics of the front and rear suspension struts;
and equations (4) and (5) reflect the dynamical interaction
between the front and rear parts of the vehicle through the
vehicle body. All the variables and parameters, with their
nominal values, are listed in Tables I and II.

Based on these relations, the SiM and MuM can be con-
verted into the DSS framework of Fig. 2, as shown in the
following two subsections.

1) Scenario 1 – SiM: Suppose the forces {f31, f32} are
chosen as the constraint signals, while the displacements
{y31, y32} are the synchronizing signals, which are generated
by the action of the inner-loop controlled actuators y31 =
GAy1u31 and y32 = GAy2u32 with the displacement output
transfer functions identified as GAy1 = GAy2 = 43.6

s+37.6 .
By manipulation of equations (2)-(7), the SiM can be

represented by the DSS framework of (1), with zN = [y1, y2]
T ,

zP = [y31, y32]
T , d = [d1, d2]

T , u = [u31, u32]
T , Gd =

diag(Gyd1, Gyd2), GA = diag(GAy1, GAy2) and

GI =

[
Gyf1P2s

2G31 Gyf1P3s
2G32

Gyf2P3s
2G31 Gyf2P1s

2G32

]
.

2) Scenario 2 – MuM: Suppose the displacements
{y31, y32} are chosen as the constraint signals, while the
forces {f31, f32} are the synchronizing signals, which are
generated by the action of the inner-loop controlled actuators

f31 = GAf1u1 and f32 = GAf2u2 with the force output
transfer functions identified as GAf1 = GAf2 = 13.5

s+12.9 .
Manipulation of equations (2)-(7) enables the MuM to

be represented by the DSS framework of (1), with zN =
[f31, f32]

T , zP = [f1, f2]
T , and

Gd =

[
P2s

2G31Gyd1 P3s
2G32Gyd2

P3s
2G31Gyd1 P1s

2G32Gyd2

]
,

GI =

[
P2s

2G31Gyf1 P3s
2G32Gyf2

P3s
2G31Gyf1 P1s

2G32Gyf2

]
,

GA = diag(GAf1, GAf2).

III. THE ANTI-WINDUP (AW) APPROACHES

The AW scheme to be employed is inspired by the frame-
work proposed in [27], also shown in Fig. 5, but with the
introduction of a novel concept for robustness in AW com-
pensation (see [31]). The transfer functions for the plant and
controller are

P(s) =
[
Pw(s) Pu(s)

]
K(s) =

[
Kw(s) Ky(s)

]
(8)

where all the uncertainties from û to y in Fig. 5 are assumed
to be lumped into an additive uncertainty, ∆(s), so that the
dynamics from u to y is Pu(s) +∆(s). Note that we assume
an additive uncertainty in the plant; this assumption is general
enough and is also common practice for robust controller
design (see e.g. [32]), since an additive uncertainty can be
equivalently represented by other forms of uncertainties, e.g.
a multiplicative uncertainty.

The DSS shown in Fig. 2 can then be cast into this
framework by setting Pu = −(GI + I)GA and Pw = Gd. We
assume a state space realization of Pu is (Ap, Bp, Cp, Dp).

The AW compensator is given by[
Θ1(s)
Θ2(s)

]
∼

 Ap +BpF BpE
F E − I

Cp +DpF DpE

 (9)

The system conditioning is achieved by designing F and E.
In the following we concisely present three AW compen-

sation techniques, which can be used to cope with the DSS
actuation problem.

A. Disturbance rejection AW (DRAW) with guaranteed robust
performance

In order to introduce robustness in the AW compensation
design, we modify the approach in [30] by augmenting the
DSS testing signal d so that d̃ =

[
dT , dTd

]T
, where dd has

the same dimension as the plant output y. Kw is replaced by[
Kw wdI

]
and Pw by

[
Pw 0

]
, where the scalar wd > 0.

In this case, we have

Pd̃ = (I −KyPu)
−1 ([Kw wdI

]
+Ky

[
Pw 0

])
∼ (Ad̃, Bd̃, Cd̃, Dd̃)

(10)

An AW compensator can be synthesized by minimizing the
L2 gain of

1

γd

∥∥∥∥∥ W
1
2
y yd

W
1
2
r u

∥∥∥∥∥
2

− γd∥d̃∥2 ≤ 0 (11)
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Let ∥T ∥∞ denote the induced L2 norm of T . In contrast to
[30], we minimize not only the induced L2 gain ∥Tyd

∥∞,
where Tyd

: d̃ 7→ yd, but also the L2 gain ∥Tu∥∞, where
Tu : d̃ 7→ u, to achieve robustness and performance. A
minimal ∥Tu∥∞ guarantees robustness to additive uncertainty,
while a small ∥Tyd

∥∞ guarantees performance. In (11), the
weights Wy and Wr are included to achieve a trade-off
between robustness and performance.

Note that the L2 gain minimization of the mapping Tu
reduces the input u to the nonlinear saturation operator,
and hence it directly prevents saturation. By defining the
operators Tû : d̃ 7→ û, Tsat : u 7→ û in Fig. 5, we have
∥Tû∥∞ = ∥TsatTu∥∞ ≤ ∥Tsat∥∞∥Tu∥∞ = ∥Tu∥∞, since
∥Tsat∥∞ = 1. This means the minimization of ∥Tu∥∞ implies
the minimization of ∥Tû∥∞, which contributes to the reduction
of the L2 gains in the loops from d̃ to yd and from d to
û. Hence, using the argument of the small gain theorem, we
can remark that the inclusion of the minimization of ∥Tu∥∞
ensures robustness to additive plant uncertainty (see Fig. 5).

The theoretical detail can be found in [31]. Here we just
give the synthesis procedure:

Procedure 1 (DRAW compensator synthesis):

1) Given the matrix variable P = PT > 0, solve γ∗
d :=

min γd > 0 subject to LMIs (12) and (13) to yield P ∗

and γ∗
d .[

PAo +AT
o P + PWA +WT

AP WC + PWB

WT
C +WT

BP WD

]
< 0

(12)
with Ao =

[
Ap 0
0 Ad̃

]
,

WA =

[
0 BpCd̃

0 0

]
WB =

[
BpDd̃ 0 −Bp

Bd̃ 0 0

]
WC =

[
0 CT

p 0
0 CT

d̃
DT

p 0

]

WD =

−γdInw DT
d̃
DT

p 0

DpDd̃ −γdInyW
−1
y −Dp

0 −DT
p −Γ


andAT

d̃
P22 + P22Ad̃ P22Bd̃ CT

d̃
BT

d̃
P22 −γdInw DT

d̃
Cd̃ Dd −γdW

−1
r

 < 0 (13)

with γd > 0 and diagonal matrix Γ =
diag(γ1, . . . , γnu) > 0. Here, P is a symmetric
positive definite matrix with a structure

P :=

[
P11 P12

PT
12 P22

]
∈ Rnp+nd (14)

2) Substituting P ∗ and γ∗
d with some chosen diagonal pos-

itive definite W , solve the LMI:

Ψ+HTΛG+GTΛTH < 0 (15)

d

1
( )s

-

-

2
( )s

lin
y

d
y

ulin
u

d
u

y
û

d
wd

d

Fig. 5: Anti-windup scheme

for Λ, with Λ :=
[
F E

]
and

Ψ =

 AT
o P + PAo PBo + CT

doW̃ CT
po

BT
o P + W̃Cdo W̃Ddo +DT

doW̃ − γdĨnw 0
Cpo 0 −γdIny

,
H =

[
BT

p 0 −Inu 0 DT
p

]
diag(P, W̃ , I),

G =

[
Inp 0 0 0np×nw 0
0 0 Inu 0 0

]
, W̃ =

[
W 0
0 Inw

]
.

B. Two other existing AW approaches

For comparison, we also implemented two other AW com-
pensators designed by the robust AW (RAW) approach in [32]
and the IMC AW approach [19]. We now present these two
approaches for completeness.

1) The RAW approach of [32]: In (9), by assuming E = I ,
we have the framework used to develop the RAW approach in
[32]. This approach achieves a tradeoff between performance
and robustness, by minimizing the L2 gain:

1

γ

∥∥∥∥∥ W
1
2
y yd

W
1
2
r z∆

∥∥∥∥∥
2

− γ∥ulin∥2 ≤ 0 (16)

which is composed of a weighted combination of two map-
pings Tp : ulin 7→ yd representing the performance and
Tr : ulin 7→ z∆ representing the robust stability, with Wy

and Wr as the corresponding weights. This approach leads to
the LMI (23) in [32]:

M11 M12 0 M14 LT

⋆ −2U Inu UDT
p U

⋆ ⋆ −γInu 0 −I
⋆ ⋆ ⋆ −γW−1

y 0
⋆ ⋆ ⋆ ⋆ −γW−1

r

 < 0 (17)

with M11 = ApQ+QAT
p +BpL+LTBT

p , M12 = BpU−LT ,
M14 = QCT

p + LTDT
p , Q = QT > 0, L = FQ, diagonal

matrix U > 0 and scalar γ > 0. A beneficial by-product of
involving the extra map Tr in the minimization is the removal
of fast poles of the compensator.

2) IMC AW approach [19]: It is noted that the IMC AW
in [19] is subsumed within the AW framework of [32] when
we set F = 0 and E = I in (9).

C. Remarks on AW tuning in real-time implementations

Some remarks on AW tuning in real-time implementations
are given below:
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Remark 1: For the DRAW approach and the RAW ap-
proach of [32], wd, Wy and Wr can be used as the tuning
parameters to achieve a tradeoff between the performance and
robustness, together with the removal of fast poles.

Remark 2: For the DRAW approach and the RAW ap-
proach of [32], to achieve better performance over a given
frequency range, the transfer function Pu can be modified by
including a filter Wfy , so that Pu is replaced by WfyPu when
synthesizing the AW compensator.

Remark 3: For the DRAW approach, a filter Wfd can
also be included to modify Pd, as Kwnew := KwWfd and
Pwnew := PwWfd. A proper choice of Wfd can further
improve the performance.

When using the AW compensator designed by the DRAW
approach, an algebraic loop may arise in the AW framework
due to E ̸= I . Note that the LMIs of (15) guarantee
that the algebraic loop has a solution which is unique [35].
Hence, it is now possible to resolve an algebraic loop for a
strictly diagonally dominant matrix (E−1diag(ū)) with ū as
the deadzone limit, using the method proposed in [30]. We
present the main steps for resolving an algebraic loop with
two constrained signals.

Procedure 2 (Resolving an algebraic loop for two signals):
Define the deadzone nonlinearity as

dzi(ui) =

 ui + ūi, if ui ≤ −ūi

0, if − ūi ≤ ui ≤ ūi

ui − ūi, if ui ≥ ūi

(18)

where ūi with i = 1, 2 represent the deadzone limits.
Suppose E = [ e11 e12

e21 e22 ]. For a given û = [û1 û2]
T :

1) Compute ũ = E−1(û − Sign(E−1û)ū) where ū =
[ū1, ū2]

T and ũ = [ũ1 ũ2]
T . If ũ1 ̸= 0, ũ2 ̸= 0 and

Sign(E−1û) = Sign(ũ), then a solution of the algebraic
loop is found.
Otherwise, go to step 2):

2) Set dz1(û1 − e12ũ2) = 0 and ũ2 = dz2(û2)
e22

. Then if
ũ1 = 0, a solution is found.
Otherwise, go to step 3):

3) Set dz2(û2 − e21ũ1) = 0 and ũ1 = dz1(û1)
e11

. Then if
ũ2 = 0, a solution is found.

This procedure will guarantee the solution of the algebraic
loop and can be extended to the case with more than two
constrained signals.

IV. CONTROLLER DESIGNS, TUNING OF AW
COMPENSATORS AND IMPLEMENTATION RESULTS

In this section, we first introduce the framework used for
DSS robust H∞ controller design, for both the SiM and
the MuM. Then, we present the weighting functions used
for the designs of H∞ controllers and AW compensators.
To make a comparison of the AW approaches and show the
effect of using filters in AW tuning, we describe the real-time
implementations for five cases: 1) H∞ controller alone; 2) H∞
controller with an IMC AW compensator; 3) H∞ controller
combined with the RAW compensator of [32], without Wfy;
4) H∞ controller combined with the RAW compensator of

[32], with Wfy; 5) H∞ controller combined with the DRAW
compensator, with Wfy and Wfd.

The control outputs were set to ±1.5mm in the SiM
and ±750N in the MuM, in order to restrict the actuators’
magnitude of saturation. These saturation bounds were used
for demonstration purposes only; the actual magnitude limits
of the actuators were significantly larger than these values.

The testing signal d = [d1, d2]
T used for both the SiM

and the MuM was composed of two ramped chirp sinusoidal
signals, where d2 had a 0.85s delay from d1, representing the
forward motion of the vehicle. The testing duration was 20s.
An initial ramp time of 10s was used, with the magnitude
increasing from 0m to 0.0025m at 10s and kept constant at
0.0025m from 10s to 20s. In order to test the performance
of the DSS within a frequency range, the frequency of the
testing signal swept from 15Hz to 5Hz. This testing signal was
assumed to be a road disturbance, when the vehicle (1.7m in
length between the front and rear wheels) was running at a
speed of 2m/s.

All the real-time experiments were implemented using
MATLAB 2007br and dSPACE rti1103 c⃝ at a sampling rate
of 2kHz, which was far higher than the bandwidths of the
closed-loop sensitivity functions of both the SiM and the
MuM, when using the linear controllers described in sections
IV-A and IV-B1. Note that this sampling rate is faster than
the sampling rates (below 1kHz) for implementation of MPC
controllers on the SiM in [18], and an even higher sampling
rate could be implemented for AW compensators.

A. The framework used for the linear H∞ controller design
For the SiM, the physical components only reside in the

actuator block GA and the interaction block GI . For nominal
controller design, suppose that the actuator block has an
input multiplicative uncertainty G̃A = GA(I+WAL∆AWAR)
where ∆A = diag(δ1, δ2) with ∥δ1∥∞ ≤ 1 and ∥δ2∥∞ ≤ 1;
WAL and WAR are weighting functions with diagonal forms.
GI also contains numerical components; however, we assume
that all the uncertainties in GI are lumped into an output
multiplicative uncertainty G̃I = (I +WIL∆IWIR)GI where
a 2 × 2 full block ∆I satisfies ∥∆I∥∞ ≤ 1. Here, WIL and
WIR are weighting functions with diagonal forms. Note that
the uncertainty WAL∆AWAR represents the unmodelled dy-
namics of the actuators and measurement noises of the sensors,
while the uncertainty WIL∆IWIR represents the unmodelled
dynamics of the vehicle body and suspension struts. With this
uncertainty representation, the DSS framework in Fig. 2 is
modified to Fig. 6, where We is the DSS error performance
weighting function. Using d and e as measured variables and
ẽ as the performance variable, the standard M − ∆ form
for robust controller design can be derived [36]. Note that
the multiplicative uncertainty assumption used for nominal
controller design also suits the AW-design procedure, as
multiplicative uncertainty is subsumed by additive uncertainty
as shown in Fig. 5. For the AW compensator, this lumped
additive uncertainty can be used to achieve a trade-off between
robustness and performance.

For the MuM, though the physical components Gyd1 and
Gyd2 also exist in Gd, the uncertainties from these components
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TABLE III: The weighting functions chosen for the designs
of H∞ controllers and AW compensators in SiM and MuM

w(s) we(s) wfy(s) wfd(s)

SiM 0.1s+10
0.1s+100

s+2000
50s+100

0.9s+72
s+8

0.8s+40
0.8s+0.8

MuM 0.25s+55
0.5s+220

(s+486)2

(0.5s+180)2
s+200
s+100

(0.5714s+280)2

(s+2.8)2

are ignored since they do not affect robust stability. Hence, for
the MuM, we can adopt the same configuration as the SiM in
Fig. 6.

B. The choice of weighting functions for the H∞ controller
and the AW compensators

1) H∞ controller: The weighting functions WAR,
WAL, WAR, WAL all take the same diagonal form as
diag(w(s), w(s)) and the output weighting function is We =
diag(we(s), we(s)). In this case, the w(s) and we(s) used
for SiM and MuM are shown in Table III. Note that the
bandwidths of the two types of actuator dynamics, i.e.
{GAy1, GAy2} and {GAf1, GAf2}, are about 30rad/s and
10rad/s respectively. The weighting functions are chosen so
that the magnitude of uncertainties they represent are not
prominent at frequencies less than these bandwidth values,
while satisfactory performances are expected by tuning higher
values of we(s) within the bandwidths.

With these weighting functions, the MATLAB routine
hinfsyn produced two controllers with 12 states (after model
reduction) for the SiM and the MuM. Both controllers resulted
in closed-loop bandwidths of the SiM and MuM in the region
of 15Hz.

2) AW compensators: The filters Wfy used in cases 4)
and 5) and the filters Wfd used in case 5) all take diagonal
forms, i.e., Wfy = diag(wfy(s), wfy(s)) and Wfd(s) =
diag(wfd(s), wfd(s)). The weighting functions wfy(s) and
wfd(s) selected for AW compensator designs for the SiM
and MuM are shown in Table III. Note that these weighting
functions are filters which penalize the testing signal at low
frequencies. The choices of Wfd increase the magnitude of Pd

at low frequencies for both the SiM and MuM. Thus, the filter
Wfd models the testing signal acting on the DSS. Similarly,
the filter Wfy is chosen to increase the magnitude of Pu at
low frequencies. The weighting functions wfd and wfy chosen
in Table III all penalize the road disturbance frequency under
15Hz.

Furthermore, in cases 4) and 5) for both the SiM and
MuM, we choose Wy = diag(1, 1), Wr = diag(0.1, 0.1) and

TABLE IV: L2 gains and fast poles for AW compensators in
the SiM and MuM

Case 4) Case 5)
γu Fast pole γd Fast pole

SiM 1.0970 -658.3 7.0336 -95.6
MuM 2.9007 -100.2917 55.7903 -85.4757
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Fig. 7: Integral squared error comparison of 4 cases of AW
compensator implementations for the SiM.

wd = 0.1 in (10). This helps to achieve a trade-off between
robustness and performance, and also avoids the creation of
fast poles. Here, an AW compensator’s fast pole is defined as
the pole of Ap +BpF with the largest modulus.

The above choices of tuning parameters yield the γu, γd
and the fast poles as shown in Table IV. Note that the fast
poles resulting from case 5) are much slower than the ones
from case 4), for both the SiM and MuM. This means that the
hardware upper sampling rate limit is less likely to be limiting
when using the DRAW approach.

The matrices E derived in case 5) are
[
1.5776 −0.1875
0.0068 1.4569

]
and [ 139.1651 7.2050

2.8278 24.6265 ] for the SiM and MuM, respectively.
Both matrices are invertible and the two matrices resulting
from E−1 diag(ū, ū) are diagonally dominant, with ū as the
absolute values of saturation limits in the SiM and MuM.
Hence the algebraic loop problems can be resolved using the
routine developed in [30].

C. Summary of DSS saturation problem solution using the AW
technique

In this subsection, we summarize the main steps in the AW
compensation approach for coping with the actuator saturation
problem in DSS.

Procedure 3:
1) DSS construction. Perform the DSS synthesis according to

the requirement of the dynamics testing problem (as shown
in section II-B).

2) Linear controller design.
2.1) Design a linear DSS controller. Tune the linear con-

troller to achieve satisfactory robust stability and
performance.

2.2) Set hard limits on the actuator input, or on the
controller output.
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Fig. 8: Integral squared error comparison of 4 cases of AW
compensator implementations for the MuM.
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Fig. 9: A comparison of the DSS outputs for the SiM
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Fig. 10: A comparison of the DSS outputs for the MuM

3) Design AW compensators (choose one of the following
methods).
IMC AW
Formulate the compensator according to section III-B2.
RAW

i) Synthesize a RAW compensator using (17). Tune Wy

and Wr to achieve a trade-off between robustness and
performance. The fast poles should be avoided during
this tuning procedure.

ii) Include a low pass filter Wfy , i.e. replace Pu by
PuWfy . The bandwidth of Wfy is determined by the
frequency range of the testing signal. Design a RAW
compensator by repetitively using (17) and running
simulations to achieve the best performance through
fine-tuning of Wfy .

DRAW
i) Synthesize a DRAW compensator according to Pro-

cedure 1. During the synthesis, tune Wy , Wr and
wd to achieve a trade-off between robustness and
performance. The fast poles can be avoided by proper
tuning of these parameters.

ii) Include a low pass output weight Wfy and a low pass
disturbance filter Wfd, i.e. replace Pu by PuWfy , Kw

by KwWfd and Pw by PwWfd. The bandwidth of
Wfy and Wfd should match that of the testing signal.
Design a DRAW compensator by repetitively using
the Procedure 1 and running simulations to achieve
the best performance through fine-tuning of Wfy and
Wfd.

iii) Check if E−1 diag(ū, ū) is diagonally dominant, with
the entries of ū containing the absolute values of
saturation limits. If this condition is satisfied (in most
cases, it is), use Procedure 2 to resolve the algebraic
loop problem.

D. Implementation results

We have performed several experiments of which two sets,
one for SiM and one for MuM, are presented here. The DSS
errors recorded from the real-time implementation of the H∞
controller alone (i.e. case 1)) and the H∞ controller with the
DRAW compensator (i.e. case 5)) are shown in Fig. 9 for the
SiM and in Fig. 10 for the MuM. The DSS error reduction
from case 1) to case 5) can be seen clearly from the figures.
To better illustrate and compare the effects of different AW
compensators, the integral squared DSS errors (ISE) plots of
cases 2) to 5) are shown in Fig. 7. From this figure we note
that Wfy is a key tuning parameter for the RAW performance.
The RAW without an output weight Wfy is slightly better than
the IMC AW in the MuM, but worse than the IMC AW in the
SiM. However, the inclusion of Wfy in the RAW can achieve
a better performance than the IMC AW for both the SiM and
the MuM. We also note that the DRAW with a disturbance
filter Wfd, i.e. case 5), yields the best performance.

This highlights an advantage of the DRAW-approach. Hav-
ing additional degrees of freedom for design, i.e. Wfd, wd,
and directly addressing a disturbance rejection design problem,
provides a practical advantage over the other AW-approaches.
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V. CONCLUSION

We have designed and implemented anti-windup (AW) com-
pensators based on linear robust H∞ controllers for two DSS
systems, based on a hydraulically-actuated quasi-motorcycle
test rig. The implementation results showed the efficacy of us-
ing the AW compensators to cope with the actuator saturation
problem that can be encountered in DSS systems. The DRAW
compensator, designed by a novel approach incorporating dis-
turbance rejection, was shown to achieve the best performance
in terms of the reduction of substructuring errors. The tuning
procedure of AW compensators and real-time implementation
issues were presented and discussed.
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