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ABSTRACT: For the shallow-water equations on the sphere, an inherently mass-conserving semi-Lagrangian discretisation
(SLICE) of the continuity equation is coupled with a semi-implicit semi-Lagrangian discretisation of the momentum
equations. Various tests from the literature (two with analytical nonlinear solutions) are used to assess the model’s
performance and also to compare it with that of a variant model that instead employs a standard non-conserving semi-
implicit semi-Lagrangian discretisation of the continuity equation. The mass-conserving version gives results that are overall
somewhat better than the non-conserving one. Copyright c© 2009 Royal Meteorological Society and Crown Copyright

KEY WORDS analytical nonlinear solutions; C-grid; orographic forcing; spatial discretisation; temporal discretisation

Received 27 November 2008; Revised 2 April 2009; Accepted 11 May 2009

1. Introduction

Because of their good performance at large timestep,
Semi-Implicit Semi-Lagrangian (SISL) schemes are
widely used for the dynamical cores of many operational
numerical weather prediction (NWP) and climate mod-
els (Staniforth and Côté, 1991; Temperton et al., 2001;
Williamson, 2007). Arguably, the remaining drawback is
the lack of inherent mass conservation, due to the intrin-
sically non-conservative nature of the interpolation used
in such schemes. In practice, mass conservation is not a
major problem in NWP due to the relatively short inte-
gration times. However, for climate simulations, lack of
inherent mass conservation can cause a significant drift in
the global mass (Moorthi et al., 1995) and also introduce
significant errors (Machenhauer and Olk, 1997). Lack of
mass conservation has traditionally been dealt with by
using a posteriori mass-fixing schemes, whereby global
mass conservation is restored diagnostically, e.g. Priest-
ley (1993) in the context of passive transport, and Gravel
and Staniforth (1994) for a shallow-water model.

Significant progress has been made on developing
semi-Lagrangian schemes that inherently conserve mass
(Rančić, 1992, 1995; Nair and Machenhauer, 2002; Nair
et al., 2002, 2003, 2005; Zerroukat et al., 2002, 2004,
2005, 2006, 2007, 2009; Mahidjiba et al., 2008). This
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has however been for the most part in the context of
passive transport, rather than for the discretisation of
coupled nonlinear fluid flow equations for which noise
and stability are potential issues (Durran and Reinecke,
2004). An exception is the recent Lauritzen et al. (2006,
2008) work.

In Lauritzen et al. (2006), two locally mass-conserving
Cell Integrated Semi-Lagrangian (CISL) schemes are
applied to the continuity equation of a spherical limited-
area SISL shallow-water equations (SWE) model. CISL
results for a series of test cases are found to be similar
to those of a SISL (non-conserving) version of their
model. The stable application of the CISL schemes within
the model is achieved in a somewhat complex manner
in which the departure area requires explicit evaluation.
(The complexity results from a desire to retain as much
of the Lagrangian aspect of the implicit divergence
term as possible, whilst simultaneously retaining as
simple a Helmholtz equation as possible. These somewhat
conflicting goals are reconciled via a predictor–corrector
approach.) It is for this reason that the authors claim that
the approach cannot be used with SLICE. (Our view
is that this is incorrect since, whilst SLICE does not
need any explicit knowledge of the departure areas, it
could, with some expense, be used to evaluate these.)
Additionally, parts of the Lauritzen et al. (2006) scheme
use only first-order accurate trajectories, which can limit
accuracy at large timestep (Staniforth and Pudykiewicz,
1985). Kaas (2008) follows a similar, but substantially
simpler, route to couple his Locally Mass Conserving
Semi-Lagrangian (LMCSL) scheme to a SISL Cartesian
SWE model.
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Here SLICE is applied in a straightforward, yet stable,
way to the continuity equation of a global SISL SWE
model. Additionally, and importantly, the trajectories are
evaluated to second-order accuracy.

The paper is organized as follows. The model is for-
mulated in section 2; various tests from the literature are
used in section 3 to illustrate the model’s performance;
and conclusions are drawn in section 4.

2. Formulation

2.1. The continuous equations

The SWEs can be written in (mass-conservative)
Lagrangian form as

Du
Dt

= −2�r × u − ∇ (
� + �S) ≡ � , (1)

D

Dt

[∫
δA

(
� − �ref) dA

]
= −�ref

∫
δA

∇ · u dA , (2)

where u is the velocity vector; t is time; D/Dt is the
total derivative following the fluid; �r is a radial vector
with magnitude given by the radial component of the
Earth’s rotation vector �; � is the geopotential of the
free surface relative to the underlying rigid surface; �S

is the geopotential of this rigid surface relative to mean
sea level; and �ref is a constant, representative, reference
value for �, introduced here in anticipation of a SISL
discretisation. Also δA is a (finite) material area (this is
an area, rather than a volume, as only two dimensions are
considered here) that moves with the fluid. Equation (2)
is the integral equivalent of the more usual form,

D

Dt

(
� − �ref) + �ref∇ · u = − (

� − �ref) ∇ · u , (3)

of the continuity equation used in traditional SISL
discretisations.

The kinematic equation, also introduced in anticipation
of a SISL discretisation, is

Dx
Dt

= u, (4)

where x is the position vector on the sphere relative to
the centre of the sphere.

2.2. The SISL discrete equations in vector form

The continuous equations (1)–(2) and (4) are discretised
in a SISL fashion as:

(u − α�t�)n+1
A = (u + β �t �)nD , (5)

{∫
δA

[(
� − �ref) + α �t �ref∇ · u

]
dA

}n+1

A

=
{∫

δA

[(
� − �ref) − β �t �ref∇ · u

]
dA

}n

D

,

(6)

(x + βx�t u)nD = (x − αx�t u)n+1
A , (7)

where α and αx are the usual time weights; β ≡ 1 − α;
βx ≡ 1 − αx ; and �t is the timestep size. Here subscripts
A and D refer to evaluation at an arrival and departure
point, respectively, or, for an integral quantity as in (6),
at an arrival and departure cell, respectively. All the
results presented here (see section 3) use the centred
values α = β = αx = βx = 1/2, with associated second-
order accuracy in time. The iterative approach to solving
this set of implicit equations is outlined in Appendix D.
This avoids the usual, and undesirable, extrapolation of
nonlinear terms and of the wind field used in the trajectory
calculation.

2.3. The SISL discrete equations in component form

Let (λ, φ) be the usual longitude–latitude spherical polar
coordinates on a sphere of radius a, with velocity
components

u ≡ (u, v) ≡
(

a cos φ
Dλ

Dt
, a

Dφ

Dt

)
. (8)

The principal issue with writing the momentum equa-
tions in component form in spherical geometry is the
evaluation of a vector field at the departure point, i.e.
the right-hand side of (5). This is because, in spherical
(and also other curvilinear) geometries, the unit basis vec-
tors at the departure point are not in general aligned with
those at the arrival point. In Staniforth et al. (2009) it
is shown how to address this issue by defining a rota-
tion matrix 
 whose elements depend on the unit basis
vectors at both the departure and the arrival points.

Using this approach (with a slight abuse of vector
notation), (5) becomes

(u − α�t�)n+1
A = [


 (u + β �t �)nDL

]
, (9)

where subscript DL denotes evaluation at the departure
point in terms of the local basis vectors at that departure
point (the usual subscript D also denotes evaluation of the
departure point, but instead in terms of the basis vectors
of the arrival point). The elements of the rotation matrix

 are given explicitly in appendix A.

Taking the components of (9) with respect to the unit
vectors at the arrival point then leads to

(u − α�t�u)
n+1
A = 
11 (u + β �t �u)

n
DL

+ 
12 (v + β �t �v)
n
DL

,
(10)

(v − α�t�v)
n+1
A = 
21 (u + β �t �u)

n
DL

+ 
22 (v + β �t �v)
n
DL

,
(11)

where

�u ≡ −2 (�r × u)u − 1

a cos φ

∂

∂λ

(
� + �S

)
, (12)

�v ≡ −2 (�r × u)v − 1

a

∂

∂φ

(
� + �S

)
. (13)
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1106 M. ZERROUKAT ET AL.

Being a scalar equation, the continuity equation (6)
remains unchanged.

The departure point equation (7) for xn
D is solved

iteratively using a local Cartesian transform approach
– see Appendix B for a summary of this procedure,
and Wood et al. (2009) for a detailed derivation. Unlike
traditional two-time-level semi-Lagrangian schemes, the
present departure calculations do not use any extrapolated
wind. As summarised in Appendix D, the wind at level n

and the latest update at (n + 1) are used within an iterative
framework.

2.4. Spatial discretisation

The spatial discretisation follows closely one of the
schemes derived in Thuburn and Staniforth (2004), here-
inafter referred to as TS04. Dependent variables are
staggered with respect to one another on an Arakawa
C grid and, as recommended in TS04, v is placed at
the poles in preference to u and �. The discretisation
employs two-point differencing and averaging operators
– see Appendix C for their definitions – and, as noted
in TS04, it can be equivalently viewed as being based
on either finite differences or finite volumes. Our prefer-
ence is the finite-volume viewpoint, consistent with the
finite-volume basis for the SLICE transport scheme used
herein.

After spatial discretisation, (10)–(11) become

(u − α�t�u)
n+1
A = 
11 (u + β �t �u)

n
Du

L

+ 
12 (v + β �t �v)
n
Du

L

≡ Rn
u, (14)

(v − α�t�v)
n+1
A = 
21 (u + β �t �u)

n
Dv

L

+ 
22 (v + β �t �v)
n
Dv

L

≡ Rn
v , (15)

where the superscripts on DL indicate the gridpoint
whose departure point is to be used, and (12) and (13)
are redefined as

�u ≡ −2 (�r × u)u − 1

a cos φ
δλ

(
� + �S) , (16)

�v ≡ −2 (�r × u)v − 1

a
δφ

(
� + �S) , (17)

where the difference operators δλ and δφ are defined in
Appendix C.

The Coriolis terms in (16)–(17) are evaluated following
TS04. As shown therein, this leads, for the linearised
equations with v placed at the poles, to good Rossby
mode dispersion properties, and also ensures that the
Coriolis terms provide no source or sink of energy. Thus

−2 (�r × u)u = 1

a cos φ�λ

〈
〈̃v〉φ f

�

〉λ

, (18)

−2 (�r × u)v = − 1

a �φ

〈
〈̃u〉λ f

�

〉φ

, (19)

where

ũ ≡ a �φ �
λ
u, (20)

ṽ ≡ a cos φ�λ�
φ
v, (21)

are mass flux variables (cf. Equations (2.6)–(2.7) of
TS04),

f ≡ 2� sin φ (22)

is assumed to be evaluated and stored at � points (as
suggested by Thuburn, 2007, for good Rossby mode
dispersion on a C-grid), � = |�| is the magnitude of the
Earth’s rotation vector, and the averaging operators, 〈·〉
and (·), are defined in Appendix C.

The discrete continuity equation (6) can be rewritten
as [(

� − �ref) + α �t �ref∇ · u
]n+1
A

= Rn
� , (23)

where the integral term

Rn
� ≡ 1

�A

{∫
δA

[(
� − �ref)−β �t �ref∇· u

]
dA

}n

D

,

(24)

is computed using the C-SLICE conservative remap-
ping algorithm (Zerroukat et al., 2009), and �A ≡
a2 cos φ�λ�φ is the discrete element of area of the
arrival cell. Also, the divergence term is computed as

∇ · un+1
A = 1

a cos φ

[
δλu + δφ (v cos φ)

]n+1
A

. (25)

2.5. The Helmholtz equation

With the definitions

u′ ≡ un+1
A , v′ ≡ vn+1

A , �′ ≡ �n+1
A − �ref, (26)

the momentum equations (14)–(15), and the continuity
equation (23), can be rewritten as

u′ + Huδλ�
′ = R∗

u + Rn
u, (27)

v′ + Hvδφ�′ = R∗
v + Rn

v , (28)

�′ + H�

[
δλ

(
Hλu

′) + δφ

(
Hφv′)] = Rn

�, (29)

where

R∗
u ≡ α�t

[
−2 (�r × u)u − 1

a cos φ
δλ�

S

]n+1

A

, (30)

R∗
v ≡ α�t

[
−2 (�r × u)v − 1

a
δφ�S

]n+1

A

, (31)

Hu ≡ α�t

a cos φ
, Hv ≡ α�t

a
, (32)

Hλ ≡ a �ref, Hφ ≡ a cos φ �ref, H� ≡ α�t

a2 cos φ
. (33)
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Algebraically eliminating u′ and v′ from (27)–(29) then
leads to the Helmholtz problem

H�δλ

[
Hλ

(
Huδλ�

′)] + H�δφ

[
Hφ

(
Hvδφ�′)] − �′

=�∗ + �n, (34)

where �∗ ≡ D
(
R∗

u , R∗
v

)
, (35)

�n ≡ D
(
Rn

u , Rn
v

) − Rn
�, (36)

D (F , G) ≡ H�

[
δλ (HλF ) + δφ

(
HφG

)]
. (37)

The coefficients on the left-hand side of (34) (i.e. the
H ’s) are independent of time. The right-hand side of (34)
contains both an explicitly known term (i.e. �n) and an
implicitly defined nonlinear term (i.e. �∗), leading to a
nonlinear coupling with (27)–(28).

The nonlinear set of coupled equations (27), (28) and
(34) are solved using an iterative approach (Appendix D
provides details). Since the Coriolis terms are handled
iteratively, i.e. they appear on the right-hand side of (27)
and (28), convergence of the iterative procedure requires
that ��t/2 ≤ 1.

2.6. Standard SISL version of the model

To facilitate validation of the model, a version has
been created that differs only in its use of a standard
SISL discretisation of the continuity equation, i.e. the
discretisation (23) of (2) is replaced by the discretisation[(

� − �ref) + α �t �ref∇ · u
]n+1
A

= R∗
� + Rn

�, (38)

of (3), where

R∗
� ≡ −α �t

[(
� − �ref) ∇ · u

]n+1

A
, (39)

and now

Rn
� ≡ [(

� − �ref) − β �t �∇ · u
]n

D
. (40)

Since (38) has the same form as (23), except for the
addition of the term R∗

�, the solution procedure described
above goes through virtually unchanged. The only real
difference in the procedure is that the �∗ term in (34) has
an additional contribution, −R∗

�, which is evaluated in the
inner loop when D

(
R∗

u , R∗
v

)
is evaluated. The resulting

version of the model corresponds to a standard two-time-
level fully interpolating (i.e. no time extrapolation) SISL
discretisation of the shallow-water equations.

3. Computational examples

3.1. Preliminaries

Sample results for three test problems are presented
below, with initial conditions obtained by evaluating
analytically specified ones at gridpoints. The three test
problems are integrated using various timesteps 
t on
various grid resolutions I × J (I and J are the number of
control-volumes in the λ and φ directions, respectively).

For all experiments, the physical constants a (mean Earth
radius), � (Earth’s rotation rate), and g (acceleration due
to gravity) are set to the values given in Williamson
et al. (1992): thus a = 6.37122 × 106 m, � = 7.292 ×
10−5 s−1, and g = 9.80616 m s−2.

Recall (see algorithm of Appendix D) that L and M

are the number of inner and outer iterations, respec-
tively. For all results presented here, L = M = 2. Addi-
tionally: the time weights are all set to one half, i.e.
α = β = αx = βx = 1/2, so the scheme is centred and
second-order accurate in time; and �ref is set to the
minimax value of the initial � field, i.e. to �ref =
{min (�|t=0) + max (�|t=0)} /2.

3.2. Stationary jets over a zonal orography

This test is based on the exact axisymmetric stationary
twin-jet solution, described in detail in section 2.3.2 of
Staniforth and White (2007), viz.

u (φ) = 4umax cos φ (1 − cos φ) , (41)

v = 0, (42)

� (φ) = �0+8u2
max cos2 φ

(
1 − 4 cos φ

3 + cos2 φ

2

)
+4�a umax cos2 φ

(
1− 2 cos φ

3

)
−�S(φ), (43)

with the parameters set to umax = 50 m s−1 and �0 =
105 m2 s−2. The orography is arbitrarily chosen to be a
cosine-squared hill such that

�S(φ) = �S
0 cos2

[ π

W
(φ − φc)

]
for |φ − φc| ≤ W

2
,

= 0 otherwise, (44)

where the maximum surface orographic height �S
0/g =

3 × 103 m, its latitudinal width W = π/3, and the hill is
centred at φ = φc = π/4.

(In the absence of orography, Staniforth and White
(2008a) have shown that this solution is guaranteed to be
physically stable when subjected to small but otherwise
arbitrary perturbations: this ensures that any significant
time evolution observed in a numerical solution must
be of numerical origin, and not due to an inherent
physical instability of the flow. Stability of the solution
in the presence of the orography (44) has recently been
demonstrated by White and Staniforth (2009).)

The exact solution described above is, however, essen-
tially one-dimensional since it only depends upon φ, and
not upon λ. To construct a numerically more challenging
test case, Staniforth and White (2007) suggest defining
the solution in a rotated (λ′, φ′) coordinate system, using
the procedure given in their appendix, to obtain a test
problem that varies two-dimensionally in the rotated
coordinate system. This approach is adopted here with
the model’s polar axis inclined at an angle αaxis = π/6
with respect to the geographical one. (Note that the
Coriolis terms in the model, which uses the (λ′, φ′)
coordinate system, have to be modified to depend upon
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Figure 1. Initial fields for the stationary jets problem: (a)
(
� + �S) /g,

(b) u, and (c) v. The contour intervals are 400 m for
(
� + �S

)
/g, and

10 m s−1 for u and v; solid lines denote positive contours, dashed lines
negative contours, and there is no zero contour.

both λ′ and φ′, rather than on just the single variable φ

in the unrotated coordinate system.) The initial fields for(
� + �S

)
/g, u and v are displayed in Figure 1 over the

domain of integration.
Both the mass-conserving and standard SISL mod-

els have been integrated on 64 × 32, 128 × 64 and
256 × 128 uniform longitude–latitude grids to 5 days
with �t chosen so that the meridional Courant number
based on umax, C ≡ umax�t/ (a�φ), is identical for all
the integrations, i.e. C ≈ 0.576. It is worth noting that
the zonal Courant number, Cλ ≡ umax�t/ (a�λ cos φ),
differs, on a uniform longitude–latitude grid, from C by
a factor 1/ cos φ. For the u-points nearest to the pole, this
factor is 1/ sin (�φ/2), giving an increase compared with
C of a factor of approximately 20, 40 and 80, respec-
tively, for the 64 × 32, 128 × 64 and 256 × 128 grids.

As a sample result, the error fields (forecast minus
exact) at 5 days for

(
� + �S

)
/g, u and v for one of

these integrations, viz. the mass-conserving one on the
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Figure 2. As Figure 1, but showing the error fields (numerical minus
exact) after 5 days of integration using the mass-conserving model.
I = 128, J = 64, L = M = 2, and 
t = 1 hour. Contour intervals are

4 m for
(
� + �S

)
/g, and 0.2 m s−1 for u and v.

128 × 64 grid, are shown in Figure 2. The errors are
quite small in magnitude – plots of the forecast fields
are visually indistinguishable from those of the corre-
sponding exact ones. Although the analytic solution is
in exact, stationary, balance, the model’s numerics do
not, in general, exactly represent this balance when using
initial conditions obtained by evaluating the exact solu-
tion on the model’s grid. A numerical adjustment pro-
cess, akin to geostrophic adjustment, thus takes place in
response to this small imbalance at initial time. Although
the

(
� + �S

)
/g, u and v fields of the exact solution

in the Northern and Southern Hemispheres all exhibit
certain symmetry/antisymmetry properties, the analogous
numerical forecast fields (and therefore also the error
fields) do not. This is because the orography field �S ,
as specified in the unrotated coordinates by (44), does
not possess a hemispheric symmetry/antisymmetry prop-
erty – it is non-zero in one hemisphere and identically
zero in the other – and consequently neither does the
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� field. Analytically this does not adversely affect the
symmetry/antisymmetry properties of the

(
� + �S

)
/g,

u and v fields. It does however change how the force
balance is achieved: over orography, the gradient of
orography provides part of the pressure gradient force
needed in the absence of orography. Numerically, how-
ever, this is only approximately achieved, resulting in
larger errors over and near orography, and a consequent
loss of symmetry/antisymmetry in the

(
� + �S

)
/g, u

and v forecast and error fields, as seen in the error fields of
Figure 2.

The l1, l2 and l∞ error norms for h ≡ (
� + �S

)
/g

and v, as defined in Williamson et al. (1992), have
been computed at 5 days for all of the above-mentioned
integrations. These are displayed in Tables I and II
for the mass-conserving and standard SISL integrations,
respectively. Examination of these tables shows that
the error measures of the mass-conserving model are,
without exception, somewhat smaller than those of the
standard SISL model. This can be attributed to the
enhanced accuracy of the Parabolic Spline Method, used
within C-SLICE to conservatively remap mass in the
mass-conserving model, compared with cubic-Lagrange
interpolation, used to (non-conservatively) transport mass
in the standard SISL model. Also, the error measures
for both models diminish approximately quadratically as
the grid length and timestep are simultaneously halved,
consistent with the use of second-order-accurate centred
time and space differencing.

3.3. Exact unsteady flow

Läuter et al. (2005) have recently derived time-dependent
closed-form exact solutions of the SWEs. Unlike most
exact solutions for tests used in the past (which are
mostly independent of time), these solutions are a major
step forward in testing and validating numerical shallow-
water models, as they facilitate quantitative assessment
of the time-dependent aspects. (Staniforth and White
(2008b) generalised this derivation to three dimensions
in spherical geometry thereby further extending the

usefulness of the approach beyond the SWEs.) Läuter
et al. (2005) have shown that the following is an exact
solution of the SWEs:

u(λ, φ, t)

= u0 {sinαaxis sinφ cos(λ + �t) + cosαaxis cosφ} , (45)

v(λ, t) = −u0sinαaxis sin(λ + �t), (46)

�(λ, φ, t) =
�0− 1

2
{u0 [cosαaxis sinφ − sinαaxis cosφ cos(λ + �t)]

+a � sinφ}2 , (47)

�S(λ, φ) = 1

2
(a � sinφ)2 . (48)

Following Läuter et al. (2005, 2007), the following
parameter values are used: u0 = 2πa/12 m day−1, �0 =
133 681 m2 s−2, and αaxis = π/4. The initial fields for(
� + �S

)
/g, u and v are displayed in Figure 3 over

the domain of integration. Because the exact solution is
periodic with the diurnal frequency �, the initial fields
also correspond to the exact solution an integer number
of days later.

Both the mass-conserving and standard SISL mod-
els have been integrated on 64 × 32, 128 × 64 and
256 × 128 uniform longitude–latitude grids to 5 days.
The timesteps have been chosen to give one of
two values for the u0-based meridional Courant num-
ber C ≡ u0�t/ (a�φ); viz. Csmall ≈ 0.092 and Clarge ≡
10Csmall ≈ 0.92. The value of Csmall has been chosen
to be approximately the same as that used by Läuter
et al. (2007) for a similar set of experiments, run at
various resolutions at a constant Courant number, which
they give as CL ≡ u 900 s/854 km ≈ 0.0843, using their
PLASMA model on a global triangular grid. The value of
Clarge corresponds to adopting the same set of timesteps
used to produce the results for the stationary jets test
case described above. As for that case, the correspond-
ing zonal Courant number, Cλ ≡ u0�t/ (a�λ cos φ), at

Table I. Error norms after 5 days of integration at various resolutions for the midlatitude jets problem using the mass-conserving
model. �t in minutes.

I × J �t l1(h) l2(h) l∞(h) l1(v) l2(v) l∞(v)

64 × 32 120 0.101 × 10−2 0.165 × 10−2 0.583 × 10−2 0.341 × 10−1 0.333 × 10−1 0.820 × 10−1

128 × 64 60 0.258 × 10−3 0.406 × 10−3 0.141 × 10−2 0.859 × 10−2 0.839 × 10−2 0.245 × 10−1

256 × 128 30 0.634 × 10−4 0.989 × 10−4 0.326 × 10−3 0.214 × 10−2 0.208 × 10−2 0.646 × 10−2

Table II. As Table I, but using the standard SISL model.

I × J �t l1(h) l2(h) l∞(h) l1(v) l2(v) l∞(v)

64 × 32 120 0.109 × 10−2 0.178 × 10−2 0.657 × 10−2 0.365 × 10−1 0.363 × 10−1 0.915 × 10−1

128 × 64 60 0.288 × 10−3 0.464 × 10−3 0.171 × 10−2 0.941 × 10−2 0.946 × 10−2 0.266 × 10−1

256 × 128 30 0.709 × 10−4 0.116 × 10−3 0.417 × 10−3 0.237 × 10−2 0.238 × 10−2 0.730 × 10−2
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Figure 3. Initial fields for the exact unsteady flow problem: (a)(
� + �S

)
/g; (b) u; (c) v. Contour intervals are 400 m for

(
� + �S

)
/g,

and 10 m s−1 for u and v; solid lines denote positive contours, dashed
lines negative contours, and there is no zero contour.

the rows nearest to the poles, is larger than C by a fac-
tor of approximately 20, 40 and 80, respectively, for the
64 × 32, 128 × 64 and 256 × 128 resolutions.

As a sample result, the error fields (forecast minus
exact) at 5 days for

(
� + �S

)
/g, u and v for one

of the integrations, viz. the mass-conserving one on
the 128 × 64 grid, are shown in Figure 4. Note that
the initial symmetry/antisymmetry properties between the
Northern and Southern Hemispheres are preserved in the
forecast fields (and therefore also in the error fields).
Examination of overlays (not shown) of the forecast and
exact fields reveals that the errors are primarily due to
a small east–west phase lag in the numerical solution
of approximately 1.3 degrees of longitude per day, with
negligible distortion and numerical damping.

The l1, l2 and l∞ error norms for
(
� + �S

)
/g and v

of the above-mentioned integrations have also been com-
puted at 5 days. They are displayed for Csmall ≈ 0.092
in Tables III–IV for the mass-conserving and standard
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Figure 4. As Figure 3, but showing the error fields (numerical minus
exact) after 5 days of integration using the mass-conserving model.
I = 128, J = 64, L = M = 2, and 
t = 1 hour. Contour intervals are

30 m for
(
� + �S) /g, and 1 m s−1 for u and v.

SISL integrations, respectively, and correspondingly
in Tables V–VI for Clarge ≈ 0.92. (Error norms for
integrations using an extra, low-resolution, 32 × 16 grid
have also been included in Tables III–IV to facilitate
comparison with the results presented in Läuter et al.
(2007).) Examination of Tables III–VI shows that the
l1 and l2 error norms of the mass-conserving model are
mostly a little smaller than those of the standard SISL
model, particularly at long timestep. Also, the error
norms diminish approximately quadratically as the grid
length and timestep are simultaneously halved, again
consistent with the use of second-order-accurate centred
time and space differencing.

The Csmall (≈ 0.092) l2 error norms for the mass-
conserving and standard SISL models, displayed in
Tables III–IV, respectively, may be compared with those
shown graphically in the right-hand panel of Figure 3 of
Läuter et al. (2007) for their PLASMA model integrated
on a global triangular grid. It is seen that the l2 error
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Table III. Error norms after 5 days of integration at various resolutions for the exact unsteady problem using the mass-conserving
model; �t in minutes.

I × J �t l1(h) l2(h) l∞(h) l1(v) l2(v) l∞(v)

32 × 16 24 0.458 × 10−2 0.553 × 10−2 0.111 × 10−1 0.143 × 100 0.150 × 100 0.390 × 100

64 × 32 12 0.142 × 10−2 0.176 × 10−2 0.348 × 10−2 0.408 × 10−1 0.428 × 10−1 0.136 × 100

128 × 64 6 0.357 × 10−3 0.447 × 10−3 0.888 × 10−3 0.109 × 10−1 0.114 × 10−1 0.425 × 10−1

256 × 128 3 0.894 × 10−4 0.113 × 10−3 0.228 × 10−3 0.279 × 10−2 0.289 × 10−2 0.101 × 10−1

Table IV. As Table III, but for the standard SISL model.

I × J �t l1(h) l2(h) l∞(h) l1(v) l2(v) l∞(v)

32 × 16 24 0.518 × 10−2 0.613 × 10−2 0.122 × 10−1 0.144 × 100 0.151 × 100 0.344 × 100

64 × 32 12 0.147 × 10−2 0.179 × 10−2 0.355 × 10−2 0.410 × 10−1 0.429 × 10−1 0.138 × 100

128 × 64 6 0.362 × 10−3 0.447 × 10−3 0.878 × 10−3 0.108 × 10−1 0.114 × 10−1 0.426 × 10−1

256 × 128 3 0.896 × 10−4 0.111 × 10−3 0.217 × 10−3 0.273 × 10−2 0.285 × 10−2 0.104 × 10−1

Table V. As Table III, but for a ten times longer timestep.

I × J �t l1(h) l2(h) l∞(h) l1(v) l2(v) l∞(v)

64 × 32 120 0.162 × 10−1 0.196 × 10−1 0.377 × 10−1 0.536 × 100 0.536 × 100 0.549 × 100

128 × 64 60 0.420 × 10−2 0.507 × 10−2 0.963 × 10−2 0.135 × 100 0.135 × 100 0.157 × 100

256 × 128 30 0.102 × 10−2 0.123 × 10−2 0.231 × 10−2 0.324 × 10−1 0.325 × 10−1 0.522 × 10−1

Table VI. As Table V, but for the standard SISL model.

I × J �t l1(h) l2(h) l∞(h) l1(v) l2(v) l∞(v)

64 × 32 120 0.165 × 10−1 0.201 × 10−1 0.393 × 10−1 0.543 × 100 0.542 × 100 0.557 × 100

128 × 64 60 0.423 × 10−2 0.510 × 10−2 0.942 × 10−2 0.136 × 100 0.136 × 100 0.143 × 100

256 × 128 30 0.102 × 10−2 0.123 × 10−2 0.229 × 10−2 0.329 × 10−1 0.329 × 10−1 0.361 × 10−1

norms of the mass-conserving and standard SISL models
are significantly smaller than the corresponding ones for
the PLASMA model, and this is particularly so at high
resolution. For example, the PLASMA model with grid
lengths of 1041 km and 261 km gives l2 error norms
of approximately 20 × 10−3 and 8 × 10−3, respec-
tively, whereas the mass-conserving model with the
somewhat coarser grid lengths of 1250 km and 312 km
gives l2 error norms of 5.6 × 10−3 and 0.45 × 10−3,
respectively.

3.4. Zonal flow over an isolated mountain

This is test case 5 of Williamson et al. (1992), an initially
zonal flow impinging on an isolated conically shaped
mountain; it has no known exact solution. The initial
conditions are

u (φ) = u0 cos φ, (49)

v = 0, (50)

�(φ) = �0 −
(
a � + u0

2

)
u0 sin2 φ, (51)

where u0 = 20 m s−1; �0/g = 5 960 m. The orography
is defined such that �S = �S

0(1 − r/R), where r2 =
min

{
R2, (λ − λc)

2 + (φ − φc)
2
}
: the maximum height

of the mountain is �S
0/g = 2 000 m; the centre of the

mountain is located at (λc, φc) = (3π/2, π/6); and R =
π/9 defines the horizontal scale of the mountain.

The mass-conserving model was integrated on a
128 × 64 uniform longitude–latitude grid, first using a
timestep of length �t = 600 s, as in Lin and Rood
(1997), and then with a 10-times larger timestep
�t = 6 000 s. Results after 5 and 15 days are dis-
played in Figures 5–7 for the total height field (� +
�S)/g, the zonal wind component u, and the merid-
ional wind component v, respectively. In each of these
figures, results with a 600 s timestep are displayed
after 5 and 15 days in panels (a) and (b), respec-
tively: the corresponding result at 15 days with a 10-
times larger timestep of 6 000 s is then displayed in
panel (c).

For each of these three figures, by comparing (b) with
(c), it is seen that the results using a 10-times longer
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Figure 5. Total height field (� + �S)/g (m) of the numerical solution
using the mass-conserving model for zonal flow over an isolated
mountain on a 128 × 64 (I × J) grid after (a) 5 days with 
t = 600 s,
(b) 15 days with 
t = 600 s and (c) 15 days with 
t = 6 000 s. The

contour interval is 50 m.

timestep (6 000 s versus 600 s) are almost indistinguish-
able from those with the shorter timestep, albeit with a
small difference at the Tropics.

The standard SISL model has also been integrated for
this test case with the longer, 6 000 s, timestep, and the
results after 15 days of integration are displayed in Fig-
ure 8. Comparing (a), (b) and (c) of this figure with
Figures 5(c), 6(c) and 7(c), respectively, for the corre-
sponding integration using the mass-conserving model, it
is seen that the results of both models with the longer,
6 000 s, timestep are also almost indistinguishable.

For this test case, Lin and Rood (1997) integrated
their explicit flux-form semi-Lagrangian shallow-water
model at the same 128 × 64 spatial resolution using a
600 s timestep; their timestep is limited by a stability
condition imposed by the use of a forward–backward
scheme to discretise the terms responsible for gravity-
wave propagation. Comparison of their Figures 4(a), 5(a)
and 6(a) with the corresponding results displayed in our
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Figure 6. As Figure 5, but for the zonal wind component u. The contour
interval is 5 m s−1; solid lines denote positive contours, dashed lines

negative contours, and there is no zero contour.

Figures 5(b), 6(b) and 7(b), respectively, show that their
results and ours are very similar.

Also, for this test case, Nair et al. (2005) integrated
their discontinuous Galerkin shallow-water model on a
cubed sphere having 48 × 48 degrees of freedom per
face. There are thus 192 degrees of freedom around the
Equator compared to the 128 used in our integrations,
so their resolution is approximately 50% finer than ours.
Although not mentioned in their paper, they used a
timestep of length �t = 90 s (private communication).
They reported that their integrations gave very similar
results to the high-resolution spectral T213 results shown
in Jakob-Chien et al. (1995), but without the spurious
oscillations in the vicinity of the mountain associated
(via Gibbs phenomenon) with its spectral representation.
Comparison of Figures 4(b), (c) of Nair et al. (2005) with
our Figures 5(a), (b), respectively, show that their results
and ours are also very similar.
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Figure 7. As Figure 6, but for the meridional wind component v.

4. Conclusions

A mass-conserving SL discretisation (C-SLICE) of the
continuity equation has been coupled to a SISL discreti-
sation of the shallow-water momentum equations. The
coupling is achieved in a straightforward way, analogous
to how a standard SISL discretisation of the continuity
equation is coupled to the momentum equations. In par-
ticular, and in contrast to the approach of Lauritzen et al.
(2006) and Kaas (2008), it does not require the explicit
evaluation of the Lagrangian divergence nor the use of
any first-order departure point calculations.

In addition to exactly and inherently conserving mass,
the discretisation has two further notable features. The
first is that it follows the recommendations of TS04, in
particular for the discrete form of the Coriolis terms, to
give good Rossby mode dispersion properties and also to
ensure that the Coriolis terms provide no source or sink
of energy. The second is that the Cartesian transform
approach of Wood et al. (2009) is used to calculate
the departure points. An advantage of this is that the
method is consistent with the matrix rotation method that
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Figure 8. Numerical solution after 15 days of integration using the
standard SISL model with 
t = 6000 s for zonal flow over an isolated
mountain on a 128 × 64 (I × J) grid: (a) (� + �S)/g (m), (b) u, and (c)
v. Contour intervals are 50 m for (� + �S)/g, and 5 m s−1 for u and
v. Solid lines denote positive contours, dashed lines negative contours,

and there is no zero contour.

is applied to evaluate the components of the momentum
equation (Staniforth et al., 2009), thereby providing more
coherency between the discrete forms of the kinematic
and momentum equations.

A standard, non-mass-conserving SISL discretisation
of the continuity equation has also been presented to pro-
vide a baseline against which to measure performance.
Both the mass-conserving and non-conserving models
have been applied to three published test problems: sta-
tionary jets over a zonal orography (Staniforth and White,
2007); exact unsteady flow (Läuter et al., 2005, 2007);
and zonal flow over an isolated mountain (Williamson
et al., 1992). The first two of these problems have ana-
lytic solutions and both models give good results, for
a variety of spatial and temporal resolutions, as borne
out by various error measures and plots of the differ-
ences with respect to the analytic solutions. Further, the
mass-conserving scheme gives slightly better results than
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the non-conserving scheme. This is ascribed to the use
of a spline-based method for the conservative remap-
ping of the mass-conserving scheme compared with cubic
Lagrange interpolation for the non-conserving one. Simi-
lar results are also found for the Williamson et al. (1992)
test case 5; when run with a timestep (�t = 6 000 s) that
is an order of magnitude larger than is typically the case in
the literature (�t = 600 s), the results are almost indistin-
guishable from those obtained using the smaller timestep,
which themselves are almost indistinguishable from sim-
ilar results in the literature.

To obtain some indication of the overhead of using the
conservative (SLICE) scheme to achieve inherent mass
conservation, the mass-conserving and standard SISL
models have been run on a single-processor workstation,
with a limited, and similar, amount of code optimisation.
It is found that the mass-conserving model is about 10%
more expensive than the standard SISL one, confirming
the expectation that this overhead is relatively modest.
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Appendices

A. Rotation matrix

The appropriate rotation matrix for the shallow-water
equations is the 2 × 2 shallow-atmosphere one given in
section 3.2 of Staniforth et al. (2000). Thus


 ≡
[


11 
12

21 
22

]
, (A.1)

where


11 =
22 = Q11+Q22

1 + Q33
, 
12 =−
21 = Q12−Q21

1 + Q33
,

(A.2)

and

Q11 ≡ cos (λA − λD) , (A.3)

Q12 ≡ sin φD sin (λA − λD) , (A.4)

Q21 ≡ − sin φA sin (λA − λD) , (A.5)

Q22 ≡ cos φA cos φD + sin φA sin φD cos (λA − λD) ,

(A.6)

Q33 ≡ sin φA sin φD + cos φA cos φD cos (λA − λD) ,

(A.7)

are (selected) matrix elements of a 3 × 3 deep-atmosphere
rotation matrix Q; Staniforth et al. (2009) provide further
details.

B. Determination of departure points using a local
Cartesian transform method

At each arrival point, define a local Cartesian coordinate
system Oxyz, with its origin O at the centre of the sphere,
and whose unit vectors ic, jc, kc are parallel to the unit
vectors i, j, k of the spherical coordinate system there.
Let U and V be the components of the wind in the local
Cartesian system corresponding to the components (u, v)

in the spherical system, i.e.(
U

V

)
= 


(
u

v

)
, (B.1)

where 
 is the rotation matrix defined in Appendix A.
The departure point (XD, YD) in the local system at the
kth iteration is computed as:

X
(k)
D = −γ�t

[
αxU

n+1
A + βxU

n
(
λ

(k−1)
D , φ

(k−1)
D

)]
,

(B.2)

Y
(k)
D = −γ�t

[
αxV

n+1
A + βxV

n
(
λ

(k−1)
D , φ

(k−1)
D

)]
,

(B.3)

where γ ≡ (1 + Q33)/2; αx is an off-centring parameter
and βx ≡ 1 − αx (αx = βx = 1/2 for all results presented
here); k = 1, 2, i.e. only two iterations are used as they
are sufficient for reasonable convergence (Staniforth and
Côté, 1991). Conversion from (XD, YD) to (λD, φD) is
achieved using:

(λD − λA) = tan−1
(

XD

ZD cos φA − YD sin φA

)
, (B.4)

φD = sin−1

YD cos φA + ZD sin φA√
X2

D + Y 2
D + Z2

D

, (B.5)

where Z2
D ≡ a2 − X2

D − Y 2
D and the FORTRAN intrinsic

function ATAN2 is employed in (B.4).

C. Difference and averaging operators

Let the domain

[λ0, λI ] × [φ0, φJ ] ≡ [0, 2π] × [−π/2,+π/2
]

be divided into I intervals
[
λi−1, λi

]
, i = 1, 2, . . ., I

in the λ direction, and J intervals
[
φj−1, φj

]
, j =

1, 2, . . ., J in the φ direction. u- v- and �-points are then
located at (λi, φj−1/2), (λi−1/2, φj ) and (λi−1/2, φj−1/2)

respectively, where the half-integer coordinates are inter-
leaved with the integer ones.

In what follows, the grid intervals are

�λl ≡ λ
l+ 1

2
− λ

l− 1
2
, �φl ≡ φ

l+ 1
2

− φ
l− 1

2
, (C.1)

where the grid index l is a positive integral multiple
of 1/2.
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Averaging operators (·)λ, (·)φ , 〈·〉λ and 〈·〉φ are defined
via

F
λ
∣∣∣
i,j

≡
(

λ
i+ 1

2
− λi

�λi

)
F

i− 1
2 ,j

+
(

λi − λ
i− 1

2

�λi

)
F

i+ 1
2 ,j

,

(C.2)

F
φ
∣∣∣
i,j

≡
(

φ
j+ 1

2
− φj

�φj

)
F

i,j− 1
2
+

(
φj − φ

j− 1
2

�φj

)
F

i,j+ 1
2
,

(C.3)

〈F 〉λ∣∣
i,j

≡ 1

2

(
F

i− 1
2 ,j

+ F
i+ 1

2 ,j

)
, (C.4)

〈F 〉φ∣∣
i,j

≡ 1

2

(
F

i,j− 1
2

+ F
i,j+ 1

2

)
, (C.5)

where i and j are the horizontal grid indices in the λ

and φ directions respectively. i and j are both positive,
integral multiples of 1/2. λi denotes the value of λ at the
ith grid point in the λ-direction and φj denotes the value
of φ at the j th grid point in the φ-direction. For a general
variable, G, G|i,j denotes evaluation of G at the (i, j)th
grid point.

Differencing operators δλ and δφ are defined via

(δλF )i,j ≡
F

i+ 1
2 ,j

− F
i− 1

2 ,j

�λi

,

(
δφF

)
i,j

≡
F

i,j+ 1
2

− F
i,j− 1

2

�φj

.

(C.6)

D. Algorithm for the iterative solution of the nonlin-
ear coupled set of equations (27), (28) and (34)

Do n = 1, N (time-step loop)
– given the solution (u, v,�)n at level n.
Do m = 1, M (outer-loop iteration, departure loop)

– compute departure points using (u, v)n and the
latest estimate for (u, v)n+1.

– evaluate
(
Rn

u , Rn
v , Rn

�

)
at departure points.

Do l = 1, L (inner-loop iteration, Coriolis loop)
– evaluate

(
R∗

u , R∗
v

)
and the right-hand side of (34).

– solve the Helmholtz problem (34) for �n+1.
– update (u, v)n+1 from (27)–(28).

Enddo
Enddo

Enddo
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Staniforth A, Côté J. 1991. Semi-Lagrangian integration schemes
for atmospheric models – A review. Mon. Weather Rev. 119:
2206–2223.

Staniforth A, Pudykiewicz J. 1985. Reply to comments on and
addenda to ‘Some properties and comparative performance of the
semi-Lagrangian method of Robert in the solution of the advection-
diffusion equation’. Atmos.-Ocean 23: 195–200.

Staniforth A, White AA. 2007. Some exact solutions of geophysical
fluid dynamics equations for testing models in spherical and plane
geometry. Q. J. R. Meteorol. Soc. 133: 1605–1614.

Staniforth A, White AA. 2008a. Stability of some exact solutions of
the shallow-water equations for testing numerical models in spherical
geometry. Q. J. R. Meteorol. Soc. 134: 771–778.

Staniforth A, White AA. 2008b. Unsteady exact solutions of the
flow equations for three-dimensional spherical atmospheres. Q. J.
R. Meteorol. Soc. 134: 1615–1626.

Staniforth A, White AA, Wood N. 2009. Rotation matrix treatment of
vector equations in semi-Lagrangian models of the atmosphere. I:
Momentum equation. Q. J. R. Meteorol. Soc. submitted.

Temperton C, Hortal M, Simmons A. 2001. A two-time-level
semi-Lagrangian global spectral model. Q. J. R. Meteorol. Soc. 127:
111–128.

Thuburn J. 2007. Rossby wave dispersion on the C-grid. Atmos. Sci.
Letts. 8: 37–42.

Thuburn J, Staniforth A. 2004. Conservation and linear Rossby-
mode dispersion on the spherical C Grid. Mon. Weather Rev. 132:
641–653.

White AA, Staniforth A. 2009. Stability criteria for shallow water flow
above zonally symmetric orography on the sphere. Q. J. R. Meteorol.
Soc. submitted.

Williamson DL. 2007. The evolution of dynamical cores for global
atmospheric models. J. Meteorol. Soc. Japan 85B: 241–269.

Williamson DL, Drake JB, Hack JJ, Jakob R, Swarztrauber PN.
1992. A standard test set for numerical approximations to the

Copyright c© 2009 Royal Meteorological Society and
Crown Copyright

Q. J. R. Meteorol. Soc. 135: 1104–1116 (2009)
DOI: 10.1002/qj



1116 M. ZERROUKAT ET AL.

shallow-water equations in spherical geometry. J. Comput. Phys.
102: 211–224.

Wood N, White AA, Staniforth A. 2009. Rotation matrix treatment of
vector equations in semi-Lagrangian models of the atmosphere. II:
Kinematic equation. Q. J. R. Meteorol. Soc. submitted.

Zerroukat M, Wood N, Staniforth A. 2002. SLICE: A Semi-Lagrangian
Inherently Conserving and Efficient scheme for transport problems.
Q. J. R. Meteorol. Soc. 128: 2801–2820.

Zerroukat M, Wood N, Staniforth A. 2004. SLICE-S: A
Semi-Lagrangian Inherently Conserving and Efficient scheme for
transport problems on the Sphere. Q. J. R. Meteorol. Soc. 130:
2649–2664.

Zerroukat M, Wood N, Staniforth A. 2005. A monotonic and positive-
definite filter for a Semi-Lagrangian Inherently Conserving and
Efficient (SLICE) scheme. Q. J. R. Meteorol. Soc. 131: 2923–2936.

Zerroukat M, Wood N, Staniforth A. 2006. The Parabolic Spline
Method (PSM) for conservative transport problems. Int. J. Numer.
Meth. Fluid 11: 1297–1318.

Zerroukat M, Wood N, Staniforth A. 2007. Application of the Parabolic
Spline Method (PSM) to a multi-dimensional conservative transport
scheme (SLICE). J. Comput. Phys. 225: 935–948.

Zerroukat M, Wood N, Staniforth A. 2009. An improved version of
SLICE for conservative monotonic remapping on a C-grid. Q. J. R.
Meteorol. Soc. 135: 541–546.

Copyright c© 2009 Royal Meteorological Society and
Crown Copyright

Q. J. R. Meteorol. Soc. 135: 1104–1116 (2009)
DOI: 10.1002/qj


