Identification and characterisation of toxin-antitoxin systems (TA) in *Burkholderiapseudomallei*

Submitted by Aaron Trevor Butt to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences In February 2013

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature:

Abstract

The aim of this study was to identify and characterise type II toxin-antitoxin (TA) systems in *Burkholderiapseudomallei*, the causative agent of the human disease melioidosis.

8 putative TA systems were identified within the genome of *B. pseudomallei*K96243. 5 of these were located within genome islands. Of the candidate toxins, BPSL0175 (RelE1) or BPSS1060 (RelE2) caused growth to cease when expressed in *Escherichia coli*, whereas expression of BPSS0390 (HicA) or BPSS1584 (HipA) (in an *E. coli* Δ hipBA background) caused a reduction in the number of culturable bacteria. HicA also caused growth arrest in *B. pseudomallei*K96243 Δ hicAB. These toxin induced phenotypes were enhanced by an <3kDa extracellular factor that accumulated in the spent medium during growth. Expression of the cognate antitoxins could restore growth and culturability of cells.

Expression of *hicA* in *E. coli* gave an increased number of persister cells in response to ciprofloxacin or ceftazidime. Site directed mutagenesis studies identified two key residues within the HicA toxin that were essential for both the reduced culturability and increased persistence phenotypes. Deletion of *hicAB* from *B. pseudomallei*K96243 did not affect persister cell or survival frequencies compared to the wild type following treatment with a variety of stress conditions.

Deletion of the $\Delta hipBA$ locus from *B. pseudomallei* K96243 also had no affect on bacterial persistence or survival under the conditions tested.

Contents	Page Numbe	er
Title page		1
Abstract		3
List of contents		4
List of figures		12
List of tables		15
Publications and nosters		16
Declaration		17
		1/
Acknowledgements		18
Abbreviations		
19 <u>Chapter 1- Introduction</u>		
1.0 Burkholderiapseudomallei	23	
1.0.1 Genome		23
1.0.2 Virulence factors		27
1.0.2.1 Secretion systems		27
1.0.2.2 Adhesion		27
1.0.2.3 Flagella		28
1.0.2.4Quorum sensing		28
1.0.2.5 Polysaccharides		28
1.0.2.6 Secreted factors		29
1.0.3Antibiotic resistance and phenotypic tolerance		30
1.1 Melioidosis		31
1.1.1 Risk factors		31
1.1.2 Clinical features		32
1.1.3 Diagnosis		34
1.1.4 Treatment		34
1.1.5 Intracellular survival of B. pseudomallei.		35
1.1.6 Immune response		37
1.1.7 Vaccines		37
1.1.7.1 Live attenuated vaccines		38
1.1.7.2 Subunit vaccines		38

1.2 Persister cells	39
1.2.1 Eradication of persisters	42
1.3 Toxin-antitoxin (TA) modules	45
1.3.1 Background	45
1.3.2 Toxin-antitoxin structure	46
1.3.2.1 Type I	48
1.3.2.2 Type II	49
1.3.2.3 Type III	50
1.3.2.4 Type V	51
1.3.3 Targets of Type II TA toxins	52
1.3.3.1 DNA replication	52
1.3.3.2 Ribosome dependent mRNA interferases	52
1.3.3.3 Ribosome independent mRNA interferases	54
1.3.3.4 Ribosome inhibition	58
1.3.3.5 Cell division	58
1.3.3.6 Other targets	59
1.4 Structural relationship of toxin and antitoxins	59
1.4.1 Antitoxins	59
1.4.2 Toxins	61
1.5 Species distribution of TA systems	63
1.5.1 Distribution in Burkholderia sp.	65
1.6 Aims of this study	66
Chapter 2- Materials and methods	
<u>Chapter 2- Materials and methods</u> 2.0 Bacterial strains	68
<u>Chapter 2- Materials and methods</u> 2.0 Bacterial strains 2.1 Culture media	68 68
<u>Chapter 2- Materials and methods</u> 2.0 Bacterial strains 2.1 Culture media 2.2 Bacterial storage	68 68 68
Chapter 2- Materials and methods 2.0 Bacterial strains 2.1 Culture media 2.2 Bacterial storage 2.2.1 Freezer storage	68 68 68 68
Chapter 2- Materials and methods 2.0 Bacterial strains 2.1 Culture media 2.2 Bacterial storage 2.2.1 Freezer storage 2.2.2 Fridge storage	68 68 68 68 68
Chapter 2- Materials and methods 2.0 Bacterial strains 2.1 Culture media 2.2 Bacterial storage 2.2.1 Freezer storage 2.2.2 Fridge storage 2.3 Bioinformatic screening	68 68 68 68 68 70
Chapter 2- Materials and methods 2.0 Bacterial strains 2.1 Culture media 2.2 Bacterial storage 2.2.1 Freezer storage 2.2.2 Fridge storage 2.3 Bioinformatic screening 2.3.1 RASTA bacteria	68 68 68 68 68 70 70

2.4 Molecular biology	70
2.4.1Polymerase chain reaction (PCR)	70
2.4.2 Gel electrophoresis	72
2.4.3 PCR purification	72
2.4.4 Determining DNA concentration	72
2.4.5 Digest of DNA using restriction enzymes	72
2.4.6 Extraction of digested DNA fragments and plasmids	73
2.4.7 Ligation of digested vector to insert DNA	73
2.4.8 Gateway vector cloning	74
2.4.9 Plasmid extraction	74
2.4.10 Chromosomal DNA extraction	74
2.4.11 Sequencing of PCR products and plasmid DNA	74
2.5 Competent cells	75
2.5.1 Electrocompetent cells	75
2.5.2 Calcium competent cells	75
2.6 Electroporation	76
2.7 Transformation	76
2.8 Wanner mutagenesis	77
2.9 Conjugation	77
2.10 Toxicity assays with E. coli harbouring cloned toxin genes	78
2.10.1 Expression at different cell densities	79
2.10.2 Preparing E. coli cultures at high or low cell densities	79
2.10.3 Preparing stationary phase spent media	79
2.10.4 Preparing exponential phase spent media	80
2.10.5 Acid treatment of spent media	80
2.10.6 Heat treatment of spent media	80
2.10.7 Fractionation of spent media	81
2.11 Co-expression assays	81
2.12 Resuscitation assays	81
2.13 Live/dead staining	82
2.14 Minimum inhibitory concentration determination	83
2.15 Persister assays	83

2.15.1 Stationary phase cultures	83
2.15.2 E. coli cultures expressing BPSS0390	84
2.15.3 E. coli cultures expressing BPSS0390 at different densities	85
2.16 Deletion of <i>B. pseudomallei</i> TA loci	85
2.17 Expression of TA toxins in Burkholderia	88
2.17.1 Expression in <i>B. thailandensis</i>	88
2.17.2 Expression in <i>B. pseudomallei</i>	88
2.17.3 Expression in <i>B. pseudomallei</i> $\Delta BPSS0390-0391$	89
2.17.4 Isolation of <i>B. pseudomallei</i> K96243 $\Delta BPSS0390$ - 0391	89
spent media	
2.17.5 Expression in spent media	89
2.18 Hydrogen peroxide stress assay	90
2.19 Heat stress experiments	91
2.20 pH stress experiments	91
2.21 Cadmium sulphate assay	91
2.21.1Cadmium in LB broth	91
2.21.2 Cadmium in LB agar	92
2.22 Site directed mutagenesis	92
2.23 Protein gels	93
2.24 Western blots	93
2.25 Large scale protein expression	94
2.25.1 Zym-5052 media	94
2.25.2 ¹⁵ N labelled N-5052 media	95
2.25.3 ¹⁵ N and ¹³ C N-5052 media	95
2.26 Protein extraction	96
2.26.1 Large scale expression	96
2.26.2 Small scale protein expression	96
2.27 Protein extraction of histidine tagged proteins	97
2.27.1 Affinity chromatography	97
2.27.2 De-salting columns	97
2.27.3Enterokinase digestion	97
2.27.4 Concentrating protein	98

2.27.5 Size exclusion chromatography	98
2.27.6 Determining protein concentration	98
2.28 Circular Dichroism	98
2.29 Crystallography	99
2.30 EMSA	99
2.31RNase assay	100
2.32 Pull down assays	100
2.33 Stabilisation experiment	101
2.34 NMR	101
Chapter 3- Identification of type II TA systems in <i>B. pseudomaller</i>	i
3.0 Introduction	104
3.0.1 Aims	105
3.1 Bioinformatic screening	106
3.1.1 RASTA-bacteria	106
3.1.1.1 Validation	106
3.1.1.2 Screening publicly available B. pseudomalleigenomes	106
3.1.2 TA predictions and comparisons with other data sources	109
3.1.3 Distribution of candidate B. pseudomalleiK96243 TA genes in	112
assembled or partially assembled B. pseudomallei strains	
3.1.4Genomic location of candidate B. pseudomalleiK96243 TA genes	114
3.1.5 Distribution of B. pseudomallei K96243 putative TA in B. mallei	114
and B. thailandensis	
3.1.6 BLAST searching B. pseudomalleiK96243 TA candidates	116
3.2 Microarray data	119
3.2.1 Growth phase data	119
3.2.2 BALB/C mouse infection data	119
3.2.3 Hamster infection	120
3.2.4 NaCl treatment	120
3.2.5 Macrophage infection	120
3.2.6 Growth in iron	120
3.3 Expression of putative <i>B. pseudomallei</i> toxins genes in <i>E. coli</i>	121
3.3.1 Expression of <i>hipA_{E.coli}</i> in MG1655	121

3.3.2 Expression of <i>hipA</i> and <i>hipA</i> -his tagin <i>E</i> . <i>coli</i> MG1655 △ <i>hipBA</i>	124
3.3.2.1 Creating $\Delta hipBA::Cm^R$	124
3.3.2.2 Expression of the pBAD-his- <i>hipA</i> and pBAD- <i>hipA</i> constructs in 124 <i>E. coli</i> MG1655 Δ <i>hipBA::Cm^R</i>	
3.3.3 Expression of the 8 putative <i>B. pseudomallei</i> K96243 toxin genes in MG1655	127
3.3.4 Monitoring CFU following induction of BPSS1060, BPSL0175 and BPSS0390	130
3.3.5 Colony size following BPSS1060, BPSL0175 and BPSS0390 expression	131
3.3.6 Screening for homologs of the putative K96243 TA genes in <i>E. coli</i> MG1655	134
3.3.7 Expression of BPSS1584 in E. coli MG1655 ΔhipBA	134
3.4 Expression of partner antitoxin genes	136
3.4.1 Co-expression of toxin and antitoxin partner gene	136
3.4.2 Co-expression of different toxin and antitoxin families	140
3.4.2.1 Co-expression of BPSS0390 and BPSL0174	140
3.4.3 Resuscitation of growth by antitoxin	140
3.5 Discussion	144
Chapter 4- Characterisation of BPSL0175 (RelE2) toxin activity	_
4.0 Introduction	149
4.0.1 Aims	150
4.1 Expression of BPSL0175 at different cell densities	151
4.2 Expression of BPSL0175 in spent media	151
4.2.1 Empty pBAD and LacZ controls	151
4.2.2 BPSL0175 expression	153
4.3 Discussion	156
Chapter 5- Characterisation of the BPSS1583-1584 (HipBA) syste	<u>em</u>
5.0 Introduction	159
5.0.1 Aims	161
5.1 Phenotypic characterisation following BPSS1584 toxin	162
expression	

5.1.1 Live/Dead screening following BPSS1584 expression in $\Delta hipBA$	162
5.1.1.1 Fluorescence microscope imaging	162
5.1.1.2 Fluorescence plate reader	162
5.1.2 Expression of BPSS1584 at different cell densities	164
5.1.3 Expression of BPSS1584 in spent media	167
5.1.4 Expression of BPSS1584 in fractionated spent media	167
5.1.5 Expression of BPSS1584 in acid treated spent media	169
5.2 Expression of BPSS1584 in <i>Burkholderiapseudomallei</i> K96243	172
5.2.1 Generation of expression construct	172
5.3 Characterisation of the <i>B. pseudomallei</i> K96243 <i>AhipBA</i>	173
mutant	
5.3.1 Transcriptomics data	173
5.3.2 Heat stress assay	177
5.3.3 Persister assay with ciprofloxacin and ceftazidime	177
5.3.4 Acid stress	177
5.4Discussion	181
Chapter 6- Characterisation of the BPSS0390-0391 (HicAB) syste	<u>m</u>
6.0 Introduction	186
6.0.1 Aims	187
6.1 Phenotypic characterisation following BPSS0390 toxin	188
expression in <i>E. coli</i> MG1655	
6.1.1Live/Dead screening following BPSS0390 expression	188
6.1.2 Expression of BPSS0390 at different cell densities	188
6.1.3 Expression of BPSS0390 in spent media	191
6.1.3.1 Expression in exponential phase media	191
6.1.3.2 Comparing BPSS0390 expression at low density in different aged media	191
6.1.4 Expression of BPSS0390 in fractionated media	195
6.1.5 Heat treatment of spent media pre BPSS0390 expression	195
6.1.6 Acid treatment of spent media before BPSS0390 expression	197
6.1.7 Expression of BPSS0390 in <i>E. coli</i> with <i>B. thailandensis</i> spent	197
media	
6.1.8 Antibiotic treatment of E. coli MG1655 expressing BPSSS0390	200

6.1.8.2 Ciprofloxacin at different cell densities6.1.8.3 Ceftazidime	200 203 205
6.1.8.3 Ceftazidime	203 205
	205
6.2 Expression of BPSS0390 in Burkholderia	
6.2.1 Creation and testing of the pSCrhaB3-BPSS0390 construct	205
6.2.2 Expression in <i>B.thailandensis</i> E264	205
6.2.3 Expression in <i>B. pseudomallei</i> K96243	206
6.2.4 <i>B. pseudomallei</i> K96243 Δ <i>BPSS0390-0391</i>	209
6.2.41. Creation and confirmation of <i>ABPSS0390-0391</i> mutant	209
6.2.4.2 Expression of BPSS0390 in <i>ΔBPSS0390-0391</i>	212
6.2.5 Expression of BPSS0390 in <i>B. pseudomallei∆BPSS0390-0391</i>	214
grown in spent media	
6.2.6 Expression of BPSS0390 in <i>B. pseudomallei ABPSS0390-0391</i> with	216
E. coli spent media	
6.3 Characterisation of <i>B. pseudomallei</i> K96243 Δ <i>BPSS0390-0391</i>	218
6.3.1 Persister assay with ciprofloxacin	218
6.3.2 Ciprofloxacin persister assay on different aged cultures	218
6.3.3 Transcriptomics data	221
6.3.4 Hydrogen peroxide stress	221
6.3.5 Cadmium sulphate stress	224
6.4 Discussion	226
Chapter 7- Functional and structural characterisation of	
the BPSS0390 and BPSS0391 proteins	
7.0 Introduction	232
7.0.1 Aims	233
7.1 Identification of key BPSS0390 residues	234
7.1.1 Conservation of residues in homologous proteins	234
7.1.2 Mapping key residues on the predicted BPSS0390 structure	234
7.1.3 Mutagenesis of potential key residues	237
7.1.3.1 His tagging the BPSS0390 toxin and screening toxicity phenotype	237
7.1.3.2 Site directed mutagenesis	237
7.1.4 Expression of BPSS0390 mutants in E. coli MG1655	239

7.1.4.1 Toxicity assay	239
7.1.4.2 Western blots to check expression of H24A and G22C	241
7.1.5 Co-expression of G14C, S23A or P41A with BPSS0391	241
7.1.6 Persister assays on E. coli MG1655 expressing BPSSS0390 mutants	244
7.1.6.1 Ciprofloxacin	244
7.1.6.2 Ceftazidime	246
7.2 Structure determination	248
7.2.1 Purification of recombinant protein	248
7.2.1.1 His tagged BPSS0390	248
7.2.1.2 His tagged H24A mutant	248
7.2.2 Crystallisation trials	252
7.2.3 CD spectrophotometry	252
7.2.4 Stabilisation experiments	255
7.2.5 NMR	255
7.2.5.1 Sample preparation	255
7.2.5.2 NOE assignment	256
7.3 The BPSS0391 antitoxin and BPSS0390-0391 complex	258
7.3.1 Identification of key BPSS0391 residues	258
7.3.2 Expression and purification of the BPSS0390-0391 complex	258
7.3.3 Western blots following co-expression of BPSS0391 with G14C,	260
P41A and S23G	
7.3.4 Expression and purification of BPSS0391	263
7.3.5 Pull down assay	265
7.4 RNA binding properties of the BPSS0390 toxin	267
7.5 Binding of BPSS0391his and BPSS0391 to DNA	267
7.6 Binding various concentrations of BPSS0390H24A to DNA	270
7.7 Discussion	272
Chapter 8- Final Discussion and conclusions	277
References	283
Appendix	300

List of figures

Page number

129

Chapter 1

Figure 1.0 The phylogeny of the <i>Burkholderia</i> genus	24
Figure 1.1 Heat map of Genomic Island distribution in <i>B. pseudomalleis</i> trains	26
Figure 1.2 World distribution of melioidosis	33
Figure 1.3 <i>B. pseudomallei</i> infection and host response	36
Figure 1.4 Persister cells survive antibiotic treatment	40
Figure 1.5 Eradication of persister cells	44
Figure 1.6 Structure and regulation of TA systems	47
Figure 1.7 Possible method for <i>mazEF</i> dependent cell death 57	••
Figure 1.8 Structure of 2 toxin families	62
Chapter 2	
Figure 2.0 Generation of gene knockout constructs	87
Chapter 3	
Figure 3.0 Genome location of the 8 putative TA loci and the genomic islands	115
(GI) on which they are located.	
Figure 3.1 Generation of the pBAD expression constructs	122
Figure 3.2 Expression of the <i>E. colihipA</i> gene	123
Figure 3.3 Schematic for the Wanner mutagenesis method	125
Figure 3.4 Electrophoresis gel confirming <i>E. coli</i> $\Delta hipBA$	126
Figure 3.5 Expression of <i>E. coli hipA</i> in <i>E. coli</i> Δ <i>hipBA</i> and the effect on optical density	128
Figure 3.6 The OD ₅₉₀ nmgrowth profiles of the 8 putative TA toxins	
Figure 3.7 Effect of toxin expression on culturability	132
Figure 3.8 Size of <i>E. coli</i> MG1655 following repression or expression of toxin	133
Figure 3.9 Effect of BPSS1584 expression on <i>E. coli</i> MG1655 <i>∆hipBA</i>	135
Figure 3.10Generation of the pME6032 expression constructs	138
Figure 3.11 Co-expression of cognate toxin and antitoxin pairs	139
Figure 3.12 Co-expression of <i>E. coli</i> MG1655 harbouring pBAD cloned	142
BPSS0390 and pME6032 cloned BPSL0174.	
Figure 3.13 Resuscitation of toxin induced <i>E. coli</i> MG1655 growth by antitoxin	143
Chapter 4	
Figure 4.0 Growth profile monitoring the CFU of <i>E. coli</i> MG1655 pBAD-BPSL0175 at different cell densities	149

Figure 4.1 The effect of spent media or LB on *E. coli* growth at 2 different cell154densitiesFigure 4.2 The effect of spent media or fresh LB on the CFU change of155*E. coli*MG1655 pBAD-BPSL0175155

Chapter 5

Figure 5.0 Fluorescent imaging following live/dead staining	163
Figure 5.1 Ratio of fluorescence units, after mixing various amounts of test	165
and dead E. coli cells.	
Figure 5.2 Growth profile monitoring the CFU of <i>E. coli</i> MG1655 Δ <i>hipBA</i>	166
pBAD-BPSS1584 at different cell densities	
Figure 5.3 The effect of spent media or LB on <i>E. coli</i> growth at 2 different	168
cell densities	
Figure 5.4 The effect of fractionated spent media or LB on <i>E. coli</i> growth at 2	170
different cell densities	
Figure 5.5The effect of HCl treated spent media on <i>E. coli</i> growth at 2	171
different cell densities	
Figure 5.6 Methodology for creation of the pBHR-paraBPSS1584BAD plasmid	174
Figure 5.7 Growth profiles measuring the optical density at 590nm of pBHR-	
paraBPSS1584BAD containing bacterial strains	
Figure 5.8 Fold change in CFU numbers of <i>B. pseudomallei</i> K96243 and	178
B. pseudomallei K96243 ∆hipBA heat treated for 2 hours at 65°C	
Figure 5.9Persister frequency of <i>B</i> . pseudomallei K96243 and <i>B</i> .	179
pseudomalleiK96243/hipBAwith 100 x MIC of antibiotic for 24 hours	
Figure 5.10 CFU fold change of <i>B. pseudomallei</i> K96243 and	180
B.pseudomallei∆hipBA subjected to pH stress	

Chapter 6

Figure 6.0 Fluorescent imaging following live/dead staining	189
Figure 6.1 Growth profile of BPSS0390 expressing <i>E. coli</i> MG1655	190
pBAD-BPSS0390 at 3 different cell densities	
Figure 6.2 The effect of exponential media or LB on <i>E. coli</i> growth at 2	192
different cell densities	
Figure 6.3 The effect of LB, exponential media and stationary spent media on	193
the growth of low density E. coli cultures.	
Figure 6.4The effect of fractionated spent media or on <i>E. coli</i> growth at 2	195
different cell densities	
Figure 6.5The effect of heat treated spent media on <i>E. coli</i> growth at 2	196
different cell densities	
Figure 6.6The effect of HCl treated spent media on <i>E. coli</i> growth at 2	198
different cell densities	
Figure 6.7The effect of <i>B. thailandensis</i> spent media or LB on <i>E. coli</i> growth	199
at2 different cell densities	
Figure 6.8Persister frequency following ciprofloxacin treatment of	201
BPSS0390 repressed or expressed E. coli MG1655 pBAD-BPSS0390	
pME6032-BPSS0391 cultures	
Figure 6.9 Persister frequency following ciprofloxacin treatment of BPSS0390	202
expressed <i>E. coli</i> MG1655 pBAD-BPSS0390 pME6032-BPSS0391cultures at	
different cell densities	
Figure 6.10Persister frequency following ceftazidime treatment of BPSS0390	204
repressed or expressed E. coli MG1655 pBAD-BPSS0390 pME6032-BPSS0391 of	cultures
Figure 6.11 Growth profile of <i>B.thailandensis</i> E264/pSCrhaB3-BPSS0390	207
Figure 6.12 Growth profile of <i>B.pseudomallei</i> K96243/pSCrhaB3-BPSS0390	208

Figure 6.13 Methodology of BPSS0390-0391 deletion	210
Figure 6.14 Gel image of potential <i>ABPSS0390-0391</i> mutants following sucrose	201
selection	
Figure 6.15 Growth profiles of <i>B. pseudomallei</i> K96243 <i>ABPSS0390-0391</i>	213
/pSCrhaB3-BPSS0390	
Figure 6.16 The effect of spent media or LB on growth of <i>B. pseudomallei</i>	215
К96243 ДВРSS0390-0391/pSCrhaB3 or B. pseudomallei К96243 ДВРSS0390-	
0391/pSCrhaB3-BPSS0390 at 2 different cell densities	
Figure 6.17 The effect of E. colispent media or LB on growth of B. pseudomallei	217
К96243 ДВРSS0390-0391/pSCrhaB3 or B. pseudomallei К96243 ДВРSS0390-	
0391/pSCrhaB3-BPSS0390 at 2 different cell densities	
Figure 6.18Persister frequency of <i>B. pseudomallei</i> K96243 or <i>B. pseudomallei</i>	219
K96243 <i>ABPSS0390-0391</i> treated with 100 x MIC (200µg/ml) of ciprofloxacin	
Figure 6.19Persister frequency of early or late stationary phase <i>B. pseudomallei</i>	220
K96243 or B. pseudomallei K96243 ABPSS0390-0391 treated with 100 x MIC (20	$00\mu g/ml$) of
ciprofloxacin	
Figure 6.20 Survivor frequency of <i>B.pseudomallei</i> K96243or <i>B.pseudomallei</i>	223
K96243 <i>ABPSS0390-0391</i> treated with 15mM hydrogen peroxide	
Figure 6.21 CFU fold change of <i>B.pseudomallei</i> K96243 and <i>B.pseudomallei</i>	225
K96243 <i>ABPSS0390-0391</i> treated with cadmium sulphate	

Chapter 7

Figure 7.0 Growth of E. coli MG1655 /pBAD/his-BPSS0390	236
Figure 7.1 Growth of E. coli MG1655 /pBAD/his-BPSS0390	238
Figure 7.2 CFU fold change of <i>E. coli</i> MG1655 following expression of	240
BPSS0390 mutants	
Figure 7.3 Combined western blots following repression or expression of	242
BPSS0390 mutants	
Figure 7.4 CFU fold change in <i>E. coli</i> cell numbers following co-expression	243
of BPSS0391 with the BPSS0390 site directed mutants	
Figure 7.5Persister frequency of <i>E. coli</i> MG1655 strains expressing	245
pBAD/his cloned BPSS0390 mutants using ciprofloxacin	
Figure 7.6Persister frequency of E. coli MG1655 strains expressing	247
pBAD/his cloned BPSS0390 mutants using ceftazidime	
Figure 7.7Western blot of E. coli MG1655 /pBADE. coli MG1655 /	250
pBAD/his-LacZ andE. coli MG1655 /pBAD/his-BPSS0390	
Figure 7.8 SDS-PAGE gels showing the purification steps of the H24A protein	251
Figure 7.9 CD spectroscopy of the his tagged BPSS0390 protein	254
Figure 7.10 HSQC Spectra	257
Figure 7.11 Co-expression and purification of his tagged BPSS0390 and	261
BPSS0391	
Figure 7.12 Western blots following co-expression of BPSS0391 with the toxic	262
alleles of BPSS0390	
Figure 7.13 SDS-PAGE gels showing the purification steps of the BPSS0391	
264 antitoxin	
Figure 7.14 SDS-PAGE gel showing the result of a pull down assay	266
Figure 7.15 Agarosegel showing the migration pattern of MS2 RNA incubated	268
with various proteins	
Figure 7.16 EMSA assay incubating DNA with purified his tagged BPSS0391	269

and BPSS0391 proteinFigure 7.17 EMSA assay incubating DNA with BPSS0390H24A protein at271various concentrations

List of tables

Chapter 1 Table 1.0 Type II toxin-antitoxin families	53
Chapter 2 Table 2.0 Bacterial strains used in this study	69
Chapter 3Table 3.0 Testing the validity of RASTA bacteriaTable 3.1 Information about the 5 reference <i>B. pseudomalleistrains</i> 108Table 3.2 List of predicted TA genes in the 5 reference <i>B. pseudomalleistrains</i> Table 3.3 Distribution of predicted <i>B. pseudomallei</i> K96243 TA genes in otherstrainsTable 3.4 Distribution of predicted <i>B. pseudomallei</i> K96243 TA genes inB. mallei and B. thailandensis.Table 3.5 Homology of the predicted <i>B. pseudomallei</i> K96243 TA systems with other proteins.	107 110 113 117 118
Chapter 5 Table 5.0. Stress conditions in which BPSS1583 and BPSS1584 were up or down regulated in <i>B. pseudomallei</i> K96243	176
Chapter 6 Table 6.0 Stress conditions in which BPSS0390 and BPSS0391 were up or downregulated in <i>B. pseudomallei</i> K96243	222
Chapter 7 Table 7.0 The most highly conserved residues in 75 proteins homologous to BPSS0390 Table 7.1 Crystallisation of H24A protein Table 7.2 The most conserved residues in 89 homologous BPSS0391 protein sequences	235 253 259