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On the syntomic regulator for products of elliptic curves

Andreas Langer

Abstract

We consider the syntomic regulator on the integral motivic cohomology of a smooth proper
surface over a p-adic field and apply a recent formula of Besser that uses p-adic integration theory,
in particular his theory of triple indices on Coleman integrals, to the case of a self-product of an
elliptic curve. The method is suitable to separate decomposable from indecomposable elements
in the (integral) motivic cohomology. As an interesting example, we construct an element that,
though not given in decomposable form, becomes decomposable after taking p-adic completion.

Introduction

The purpose of this paper is to apply a new method of Besser how to compute the syntomic

Q1

Q3, Q4

regulator of the (integral) motivic cohomology of a smooth proper surface X over a p-adic field
L with good reduction to the case of a product of elliptic curves.

Let V = H2
et(X̄, Qp(2)) be the second étale cohomology considered as a GL = Gal(L̄/L)-

representation. We know that V is a crystalline representation. Let H1
f (L, V ) be the Bloch–Kato

group in H1(L, V ) = Ext1GL
(L, V ) classifying extensions

0 −→ V −→W −→ L −→ 0

of GL-representations that are crystalline.
For a regular scheme Z, we denote by Hi(Z,K2) the Zariski cohomology of the algebraic

K-sheaf K2 and let Hi(Ẑ,K2) := lim←−n
Hi(Z,K2)/pn be its p-adic completion. If X is a proper

smooth model over the ring of integers OL in L, then the syntomic regulator rsyn is a map from
H1

zar(X ,K2) to the syntomic cohomology H3
syn(X , SQp

(2)) which is isomorphic to H1
f (L, V ) by

the p-adic points conjecture (compare [16]). Note that if X is a surface, an element in H1(X,K2)
is represented by a finite formal sum θ =

∑
i(Zi, fi), where Zi are curves on X and the fi are

rational functions on the Zi’s satisfying the condition Q2∑
i

div(fi) = 0

on X. For a scheme X which is smooth over OL, one has a similar description for H1(X ,K2)
with Zi being irreducible subschemes of codimension 1 on X .

Besser’s technique reduces the computation of rsyn(z) to p-adic integration theory on curves,
in particular his theory of triple indices for Coleman integrals plays a crucial role. It is relatively
easy to see that rsyn induces an injection

rsyn : ̂H1
zar(X ,K2)⊗Qp ↪→ H3

syn(X , SQp
(2))

(we recall the argument in paragraph 3) and one might expect that this regulator map is, at
least for a large class of varieties, an isomorphism.

For example, if the geometric genus of X is zero, then H3
syn(X , SQp

(2)) ∼= H1
f (L,NS(X̄)⊗

Qp(1)) and if NS(X̄) = NS(X), the Néron–Severi group of X, one can show that the image of
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the decomposable part Pic(X )⊗O∗
L under rsyn generates H1

f (L,NS(X̄)⊗Qp(1)) (for a detailed
argument see paragraph 3). We conjecture that rsyn is an isomorphism if X = E × E is the
self-product of an elliptic curve. It follows from recent work of Saito and Sato that this would
imply the finiteness of the torsion subgroup in the Chow group of zero-cycles Ch0(E × EQp

)
(compare [19]).

From now on let X = E × EZp
where E is a smooth proper model over Zp of an elliptic curve

E defined over Q with complex multiplication by the ring of integers in an imaginary quadratic
field, with ordinary good reduction at p.

It then follows from diagram (3.6) below that the image of the decomposable part Pic(X )⊗
Z∗

p in H1(X ,K2) generates a 4-dimensional subspace in H3
syn(X , SQp

(2)), the latter being a
5-dimensional Qp-vector space. Let {f, g} be a Steinberg symbol in K2(k(E)) (where f, g
are rational functions on E supported at torsion points) that appears in the p-adic Deligne–
Beilinson formula of Coleman and de Shalit, and relates the Coleman–de Shalit regulator
(= p-adic integral) of {f, g} to the value of the p-adic L-function of E at s = 0. If U ⊂ E is
the complement of finitely many Zp-sections of E including all points in supp((f)) ∪ supp((g)),
then one can, via the diagonal embedding U ↪→ U × U , consider (U , f) as an element in H1

(U × U ,K2).
Throughout the paper, we shall consider two liftings of (U , fC) for some C > 0.
(i) If U → U × E denotes the diagonal embedding, then we may consider z′′ = (U , f) as an

element in H1(U × E ,K2).
(ii) We show that (U , fM ) lifts globally to an element z ∈ H1(E × E ,K2). Here M is

chosen such that the torsion points occurring in supp(div(f)) have order dividing M . (See
Proposition 1.4 and Definition 1.8.)

Then we prove the following two results about these liftings.
(i) By applying a projection formula of Besser on finite polynomial cohomology, we relate

rsyn(z′′) ∈ H3
syn(U × E , SQp

(2)) to the Coleman–de Shalit regulator rp({f, g}), and hence to the
p-adic L-function Lp(E, s) (see Proposition 2.33).

(ii) We show that rsyn(z) lies in the decomposable part of H3
syn(X , SQp

(2)), that is, in
H1

f (Qp,NS(X̄)⊗Qp(1)) (see Theorem 3.1).
In the language of Asakura–Sato [1] our element z turns out to be regulator-decomposable.

Obviously, z is not given in decomposable form (like elements in Pic(X )⊗ Z∗
p), but it becomes

decomposable after p-adic completion. The proof is a nice application of Besser’s theory of
triple indices on Coleman integrals.

In his recent Durham PhD Thesis [22], Zigmond studied similar elements, which he calls
triangle configurations, with respect to the Deligne–Beilinson regulator. Take for some positive
integer M two M -torsion points P and Q on E and let h be a rational function on E such that
div(h) = M [P ]−M [Q]. Then the element

TP,Q = (E × {P}, h−1) + (Δ, h) + ({Q} ×E, h−1)

is a triangle configuration. It is easy to see that TP,Q ∈ H1(E × EF ,K2) for some extension
field F . Zigmond shows that the image of triangle configurations under the Deligne–Beilinson
regulator in real Deligne cohomology (associated to the variety E × E over F )

rDB : K
(2)
1 (E × EF ) = H1(E × EF ,K2)⊗Q −→ H3

D(E × ER, R(2))

is contained in the image of decomposables (that is, elements coming from Pic(E × EF )⊗ F ∗).
According to Beilinson’s Conjecture, the regulator map rDB, when restricted to the integral

motivic cohomology K
(2)
1 (E × EF )Z, is injective.

Zigmond’s main result [22, Theorem 4.7] shows that if α is a sum of triangle configurations
that already lies in K

(2)
1 (E × EF )Z, then rDB(α) is contained in the image of decomposables

with coefficients in O∗
F .
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THEQ5 SYNTOMIC REGULATOR Page 3 of 19

As we are in the CM-case, let us assume that F is chosen such that F contains the CM-field,
E/F has good reduction everywhere and the M -torsion points P and Q are defined over F .
Let E be a smooth proper model of E over OF . Then

K
(2)
1 (E × EF )Z = Image(H1(E × E ,K2) −→ H1(E × EF ,K2))⊗Q.

It is easy to prove that there always exists a decomposable element σP,Q ∈ Pic(E × EF )⊗ F ∗

(supported on EF × {P}, Δ and {Q} × EF ) and an integer k such that kTP,Q − σP,Q is integral,
that is, in K

(2)
1 (E × EF )Z.

Beilinson’s Conjectures in this case predict that all elements in K
(2)
1 (E × EF )Z are

decomposable [22, Conjecture 2.4], hence the above element kTP,Q − σP,Q is expected to be
decomposable, which implies that TP,Q is decomposable in H1(E × EF ,K2)⊗Q.

Our element z′ that we define in (1.8) can be seen to be a sum of triangle configurations.
Hence, Zigmond’s results and the Beilinson-Conjectures imply that z′ is decomposable and
hence also z, which is obtained as a push-forward from z′ under some norm map. It seems to
be out of reach to prove directly that z is decomposable. Our main result gives further evidence,
by using p-adic regulators instead of the Deligne–Beilinson regulator, for this expectation.

We hope that the same method will also lead to a proof that in another well-known family of
elements in H1(X ,K2), namely those defined by Mildenhall and Flach [17], which are integral
at p, we find a regulator indecomposable one, which would imply that rsyn is an isomorphism. Q6

1. p-adic regulators on CM-elliptic curves

Let E be an elliptic curve defined over Q with complex multiplication by the ring of integers
OK in an imaginary quadratic field K. For a good reduction prime p for E, Coleman and de
Shalit [13] constructed a p-adic regulator map as a homomorphism from K2 of the function
field of E to its tangent space,

rp,E : K2(Qp(E)) −→ Hom(H0(EQp
,Ω1

E), Qp),

whose value at the Steinberg symbol {f, g} is the linear functional

rp,E({f, g})(ω) =
∫
(f)

log(g) · ω (1.1)

(ω ∈ H0(E,Ω1
E)). Here log is a fixed branch of the p-adic logarithm and the integral is defined

via Coleman’s p-adic integration theory. Coleman defines a function Flog(g)·ω : E(Qp)→ Qp,
unique up to a constant such that if (f) =

∑
ni(xi) is the divisor of f , then∫

(f)

log(g) · ω =
∑

niFlog(g)·ω(xi).

Here Flog(g)·ω is a Coleman integral and primitive for the differential in the sense that
dFlog(g)·ω = log(g) · ω.

The main result of Coleman and de Shalit [13] is a p-adic analogue of the Deligne–Beilinson
conjecture, which relates the p-adic regulator to a value of the p-adic L-function of E as follows.

Theorem 1.2. Let p be a good ordinary reduction prime for E (hence p splits in OK). For
rational functions f, g ∈ K(E) with divisors D = div(f) and D′ = div(g) supported at torsion
points of E (subject to some mild restrictions), we have

rp,E({f, g})(ω) = cf,g · Ωp · Lp(E, 0),

where Ωp is a p-adic period extended by a Euler factor at p and cf,g ∈ Q.



“jdr021” — 2011/7/22 — 19:52 — page 4 — #4
�

�

�

�

�

�

�

�

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

Page 4 of 19 ANDREAS LANGER

There exists a pair (f, g) for which cf,g ∈ Q∗. We fix such a pair throughout this paper.
Following Coleman and de Shalit, we may also assume that the divisor D looks as follows.
There is a non-trivial ideal a ⊂ OK with (a, 2pN) = 1, where N is the conductor of E, such that

D = (N(a)− 1)(0)−
∑

P∈E[a]
P �=0

P. (1.3)

Here E[a] denotes the group of a-torsion points in E and N(a) the norm of the ideal a in Z;
see [13, Paragraph 5; 18].

Let M = N(a). Then all points occurring in D are M -torsion points. Let U = E − supp(D).
Then (U, (f)) ∈ H1(U × U,K2) where U is considered to be embedded diagonally, so Δ : U →
U × U .

Then we have the following proposition.

Proposition 1.4. There exists a C ∈ N such that

(U, (fC)) ∈ Image(H1(E × E,K2) −→ H1(U × U,K2)).

Proof. Localization in algebraic K-theory yields an exact sequence

H1(E × E,K2) −→ H1(U × U,K2)
∂−→ Ch0(E ×E\U × U), (1.5)

where E × E\U × U is a normal crossing divisor on E × E, whose irreducible components
consist of curves {x} ×E, x ∈ supp(D) or E × {x}, x ∈ supp(D) intersecting transversally in
points (x, y), x, y ∈ supp(D).

We write

D = div(f) =
M−1∑
i=1

−[xi] + (M − 1)[0],

so

−D = div(f−1) =
M−1∑
i=1

[xi]− (M − 1)[0].

Let F/Q be such that all points xi are defined over F . Then

∂(U, (f−1)) =
M−1∑
i=1

[(xi, xi)]− (M − 1)[(0, 0)] ∈ Ch0(E × E\U × U). (1.6)

Now consider the points
[(xi, xi)] ∈ Pic({xi} × E) = Pic(E).

We have
Mx1 = 0, Mx2 = 0 on E,

hence
M [x1]−M [x2] = div(h1) for h1 ∈ F (E),

which implies that

M [(x1, x1)]−M [(x1, x2)] = 0 in Ch0(E × EF \U × UF ).

Next
−M [(x2, x2)] + M [(x1, x2)] ∈ Div(E × {x2}),

which is principal, and hence 0 in Pic(EF × {x2}).
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Then

2M [(x2, x2)]− 2M [(x2, x3)]

is 0 in Pic({x2} × EF ), and hence 0 in Ch0(E × EF \U × UF ).
Next

−2M [(x3, x3)] + 2M [(x2, x3)]

is 0 in Ch0(E × EF \U × UF ). By induction one shows, for all j, that

jM [(xj , xj)]− jM [(xj , xj+1)] = 0

and

−jM [(xj+1, xj+1)] + jM [(xj , xj+1)] = 0

in Ch0(E × EF \U × UF ).
By using (1.6) we get

∂((U, (f−M ))) = M [(x1, x1)]−M [(x1, x2)]
−M [(x2, x2)] + M [(x1, x2)]
+ 2M [(x2, x2)]− 2M [(x2, x3)]
± . . .

+ M(M − 1)[(xM−1, xM−1)]− (M − 1)M [(xM−1, 0)]
−M(M − 1)[(0, 0)] + (M − 1)M [(xM−1, 0)],

which is a sum of principal divisors in (E × E\U × U)F and hence 0 in Ch0(E × EF \U × UF ).
Then ∂((U, (fM ))) = 0 in Ch0(E × EF \U × UF ) as well, where we consider (U, (fM )) as an

element in H1(U × UF ,K2). Hence, there exists z′ ∈ H1(E × EF ,K2) with image (U, (fM )) in
H1(U × UF ,K2).

Now consider the following commutative diagram with respect to the push-forward π∗ :
?/F →?/Q: Q7

H1(E × EF ,K2) −→ H1(U × UF ,K2)
∂−→ Ch0(E × EF \U × UF )

↓ π∗ ↓ π∗ ↓ π∗
H1(E × E,K2) −→ H1(U × U,K2)

∂−→ Ch0(E × E\U × U).
(1.7)

We have π∗(U, (fM )) = (U, (fC)) where C is a multiple of M . Then z := π∗(z′) has image
(U, (fC)) in H1(U × U,K2). This completes the proof of Proposition 1.4.

Since all a-torsion points occurring above extend uniquely to a-torsion points on a smooth
proper model E/Zp

of E and all principal divisors supported in a-torsion points extend to
principal divisors in E/Zp

(resp. E × EZp
\U × UZp

), the whole construction in Proposition 1.4
can be performed on the model E × EZp

over Zp as well, so we may assume that Q8

(U , (f)) ∈ H1(U × UZp
,K2),

and that (U , (fC)) lies in the image of

H1(E × EZp
,K2) −→ H1(U × UZp

,K2).

Let L denote the completion of F at a prime lying above p with ring of integers OL. While
in Proposition 1.4 we have shown the existence of an element mapping to (U , fM ) under the
above restriction map, we now work with an explicit element z′ ∈ H1(XOL

,K2), which has
(Δ, fM ) as a summand (where Δ : E → E × E is the diagonal), and whose construction is
already suggested by the proof of Proposition 1.4. It is given as follows.
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Let hi ∈ L(E)∗ be rational functions such that div(hi) = M [xi]−M [0]. Let

z′ =
M−1∑
i=1

((EL × {0}, hi) + ({xi} × EL, hi)) + (Δ, fM ). (1.8)

Then

div(hi|EL × {0}) = M [xi, 0]−M [0, 0]

and

div(hi|{xi} × EL) = M [xi, xi]−M [xi, 0].

As divfM |Δ = M(M − 1)[0, 0]−∑i M [xi, xi], we see that z′ ∈ H1(XL,K2) and we can
achieve z′ ∈ H1(XOL

,K2) by possibly multiplying the functions hi by an appropriate p-power.
Evidently, z′ is a sum of triangle configurations.

The group Gal(L/Qp) acts on the set {xi : i = 1, . . . , M − 1}; hence, any σ ∈ Gal(L/Qp)
defines a permutation of the summands {xi × EL, hi} resp. {EL × {0}, hi}. We conclude that
σ leaves z′ invariant, so z′ ∈ H1(E × EL,K2)Gal(L/Qp); hence, the image of z′ in H1(E ×
EQp

,K2) lies in H1(E × EQp
,K2)Gal(Qp/Qp). We apply a result from Galois descent theory

[14, Proposition 4.6] and conclude that

̂H1(E × EQp
,K2)⊗Qp = ̂H1(E × EQp

,K2)
Gal(Qp/Qp) ⊗Qp;

hence, we can regard z′ as an element in ̂H1(XZp
,K2)⊗Qp. As before, let z = NL/Qp∗(z

′) ∈
H1(XZp

,K2). We have a commutative diagram of norm maps

H1(E × EL,K2) −→ ̂H1(E × EL,K2)⊗Qp

↓ NL/Qp∗ ↓ NL/Qp∗
H1(E × EQp

,K2) −→ ̂H1(E × EQp
,K2)⊗Qp.

We have seen that the image z̃′ of z′ in ̂H1(E × EL,K2)⊗Qp already lies in
̂H1(E × EQp

,K2)⊗Qp. Hence, the image z̃ of z = NL/Qp
(z′) in ̂H1(E × EQp

,K2)⊗Qp satisfies
z̃ = [L : Qp]z̃′ (because the composition map

̂H1(E × EQp
,K2)⊗Qp −→ ̂H1(E × EL,K2)⊗Qp

NL/Qp∗−→ ̂H1(E × EQp
,K2)⊗Qp

is multiplication by the degree [L : Qp]).
As the syntomic regulator rsyn(z) or rsyn(z′) only depends, respectively, on the class of z or

z′ in ̂H1(XZp
,K2)⊗Qp ↪→ ̂H1(E × EQp

,K2)⊗Qp, we conclude that rsyn(z) = [L : Qp]rsyn(z′).
Hence, we later assume without loss of generality that z = z′.

Now we consider again both elements f, g ∈ K(E) as in Theorem 1.2. After possibly replacing
C by a multiple of C, we may assume that all zeroes and poles of f and g are torsion points
of order C. Let

t =
∐
x∈E

tx : K2(K(E)) −→
∐
x∈E

k(x)∗

be the tame symbol map. Let L̃ be a finite extension of Qp containing L such that all
points appearing in supp(f), supp(g) are defined over L̃. Then according to a lemma of Bloch
[7, Lecture 8], there exist functions fi ∈ L̃(E) with divisors Dfi

such that supp(Dfi
) ⊆

supp(f) ∪ supp(g) and ci ∈ L̃∗ such that

{f, g}C
∏

i

{fi, ci} ∈ Γ(EL̃,K2) = ker t. (1.9)
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We have the following equality of tame symbols

t({f, g}C) = t({fC , g}),
hence we have

{fC , g}+
∑

i

πL̃/Q∗
p
{fi, ci} ⊗ 1

m
∈ Γ(EQp

,K2)⊗Q, (1.10)

for some m ∈ N (compare [15, Paragraph 5]).
Now consider the composite map

Γ(EL̃,K2) −→ K2(Q̄p(E))
rp,E−→ Hom(H0(E,Ω1

E), Q̄p),

again denoted by rp,E . By the main result of Besser [3] on syntomic regulators for K2 of curves,
we have

rp,E

(
{fC , g}+

∑
i

{fi, ci}
)

= rsyn

(
{fC , g}+

∑
i

{fi, ci}
)

, (1.11)

where

rsyn : K2(EL̃)⊗Q −→ H1
dR(EL̃) ∼= H2

syn(EOL̃
, SQp

(2))

−→ Hom(H0(EQ̄p
,Ω1

EQ̄p
), Q̄p)

denotes the syntomic regulator for K2 of curves.
For functions a, b ∈ Qp(E), we have that the p-adic integral

∫
(b)

log(a)ω vanishes if a or b is
constant. Hence, we have

rp,E

(
{fC , g}+

∑
i

{fi, ci}
)

(ω) = rp,E({fC , g})(ω) =
∫
(fC)

log g ω = −
∫
(g)

log fCω, (1.12)

where we have used the properties of the p-adic regulator pairing (compare [13, Theorem 3.5]).
Consider again the model U ⊂ EZp

of U over Zp, where U is now the affine in EQp
with

complement EQp
\U = supp(f) ∪ supp(g), and we assume without loss of generality that f, g ∈

O∗
U . To U one can associate a basic wide open Y in the sense of Coleman or, equivalently, an

affinoid Dagger space in the sense of Grosse–Kloenne. It has an underlying affinoid variety Y ′

which is obtained as tube of the reduction UFp
of U under the specialization map

sp : ÊQp
−→ ÊZp

,

where ÊZp
is the formal completion of E along its closed fibre and ÊQp

the generic fibre of Ê
considered as rigid analytic variety. Note that Y is equipped with an overconvergent structure
sheaf. For each point e in supp(f̄) ∪ supp(ḡ), let Ye be the annuli end of Y at e. The collection
of all annuli ends of Y is denoted by End(Y ).

For the convenience of the reader, we recall Besser’s theory of double resp. triple indices
[3, 5, 6], which are defined on a certain class of Coleman integrals. Coleman integration theory
defines for wide open Y as above the Cp-algebra ACol(Y ) of Coleman integrals, which forms a
subclass of locally analytic functions, and the ACol(Y )-modules Ω1

Col(Y ) fitting into an exact
sequence

0 −→ Cp −→ ACol(Y ) d−→ Ω1
Col(Y ) −→ 0.

Ω1
Col(Y ) contains the space Ω1(Y ) of overconvergent forms on Y and ACol(Y ) contains the

space A(Y ) of overconvergent functions. Fix a branch of the p-adic logarithm log : C∗
p → Cp. Q9

For x ∈ EFp
, x /∈ S, a Coleman function is analytic on the open residue disc Ux and it is an

element of the polynomial algebra A(Ye)[log ze] where ze is a local parameter of the residue
disc of e if x = e ∈ S.
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Define ACol,1(Y ) as the inverse image of Ω1(Y ) under d and Ω1
Col,1(Y ) = ACol,1(Y ) · Ω1(Y ).

Besser defines double and triple indices on the Coleman integrals in ACol,1(Y ). First, we recall
the local definitions.

Let K be a complete subfield of Cp. We define Alog := K((z))[log z] of polynomials over the
formal variable log z over the field of Laurent polynomials over z. It admits a differential d into
the module of differentials K((z))[log z]dz by d log z = dz/z . Let Alog,1 := d−1(K((z)) dz) =
K((z)) + K log z. For F ∈ Alog,1 we define the residue of its differential Res dF := a−1 if dF =∑∞

n>−∞ anzn dz. Then we have the following proposition.

Proposition [3]. There is a unique antisymmetric function

〈 , 〉 : Alog,1 ×Alog,1 −→ K

with 〈F,G〉 = ResF dG if F ∈ K((z)). This is the local double index.Q10

For the triple index one starts with triples F,G,H ∈ Alog,1 together with choices of integrals
in Alog of all pairs R dS with different R,S satisfying

∫
R dS +

∫
S dR = SR (called auxiliary

data). The triple index

〈 , 〉 : Alog,1 ×Alog,1 ×Alog,1 −→ K

(F,G,H) −→ 〈F,G,H〉
is a function that

(i) is trilinear and symmetric in its first two variables;
(ii) satisfies a triple identity

〈F,G,H〉+ 〈F,H,G〉+ 〈H,G,F 〉 = 0;

(iii) reduces to the double index

〈F,G,H〉 = 〈F,
∫

GdH〉,
for G ∈ K((z)).

According to [6, Proposition 6.3], 〈 , , 〉 exists and is unique. It is called the local triple index.
The theory of global indices can be viewed as a generalization of the residue theorem. Suppose

that we are in the previous situation, that is, given a wide open Y on a rigid analytic curve X
with annuli ends Ye, we have given Coleman integrals F,G,H ∈ ACol,1(Y ). At each annuli end
the restrictions of the functions are in Alog,1 and hence local indices are defined at all annuli
ends. For the local triple indices, one first chooses auxiliary data globally as Coleman integrals
and then restrict to Ye.

Then Besser defines global indices

〈F,G〉gl :=
∑

e

〈F,G〉e,

〈F,G,H〉gl :=
∑

e

〈F,G,H〉e,

as the sum of all local indices at all annuli ends.
As is shown in [3, Proposition 4.10], the global double index only depends on the cohomology

classes of dF and dG in H1
dR(Y ).

The global triple index does not depend on the auxiliary choices. Later on, when we need
them, we shall recall further properties of the triple index as shown in [5, 6].

Now we return to the situation at the beginning of this section, that is, we have the basic
wide open Y in ÊQp

with annuli ends Ye at all points e ∈ S = supp((f̄)) ∪ supp((ḡ)).
Let ω be a holomorphic 1-form on E, that is, ω ∈ H0(EQp

,Ω1
E/Qp

), and Fω be a Coleman
integral. Then we have the following version of a proposition of Besser [3].
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Proposition 1.13.∑
e∈End(Y )

〈log g, Fω, log fC〉e =: 〈log g, Fω, log fC〉gl =
∑
x∈E

log tx(g, fC)Fω(x) +
∫
(g)

log(fC) · ω.

Here 〈 , , 〉e denotes Besser’s triple index for three Coleman functions at the annuli end Ye

and 〈 , , 〉gl the global triple index.

Indeed, this is a combination of [3, Propositions 3.4 and 5.3]. We have reformulated it by
replacing the double index inde(log g,

∫
Fωd log(fC)) at the annuli end Ye by the triple index

〈log g, Fω, log(fC)〉e. This follows from the definition of the triple index as Reseω = 0 for all
annuli ends Ye (note that ω is a global holomorphic form on E).

For the pair {ci, fi} we have∑
e∈End(Y )

〈log ci, Fω, log fi〉e = 〈log ci, Fω, log fi〉gl

(1)
= −〈log ci, log fi, Fω〉gl − 〈Fω, log fi, log ci〉gl
(2)
= 0.

Here the equality (1) follows from the triple identity and (2) follows from [6, Proposition 7.4
and Lemma 7.3].

Now we replace the pair of functions (g, fC) in Proposition 1.13 by the pair (ci, fi) for any
i. As

∫
(ci)

log(fi)ω vanishes, we get∑
x∈E

log tx(ci, fi)Fω(x) = 〈log ci, Fω, log fi〉gl = 0. (1.14)

Recall that the tame symbol tx of {g, fC}∏i{ci, fi} vanishes at all x. This implies that∑
x∈E

log tx(g, fC)Fω(x) = 0 (1.15)

as well.
For the element {g, fC}+

∑
i{ci, fi} ∈ K2(EL̃), we get the following useful formula for its

syntomic regulator.

Lemma 1.16.

rsyn({g, fC}+
∑

i

{ci, fi})(ω) =
∫
(g)

log(fC)ω = 〈log g, Fω, log(fC)〉gl.

In the next section, we relate this result to the syntomic regulator rsyn(z′′) of the element
z′′ ∈ H1(U × EZp

,K2), given by z′′ = (U , f).

2. Cup product in finite polynomial cohomology using Besser’s triple index

Now we recall modified syntomic resp. finite polynomial cohomology, as defined by Besser
[2, 4, 5]. Let X → SpecR be a smooth scheme over a discrete valuation ring R with generic
fibre XK and closed fibre Xk, where K and k denotes, respectively, the fraction field and
residue field of R.

One then has complexes
RΓrig(Xk,K), RΓdR(XK ,K)
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with FnRΓdR the Hodge filtration, and a canonical map

τ : RΓdR(XK ,K) −→ RΓrig(Xk,K). (2.1)

We fix a Frobenius endomorphism ϕ : Xk → Xk with deg ϕ = q. Let P be the multiplication
monoid of all polynomials P (t) ∈ Q[t] with constant coefficient 1. Let P (t) =

∏deg P
1 (1− αit)

and Pm ⊂ P be the submonoid of polynomials that are pure of weight m, that is, 1/αi has
complex absolute value qm/2 . Let P ∈ P. We define the syntomic P -complex RΓf,P (X,n) as

RΓf,P (X,n) := MF(FnRΓdR(XK/K))
P (ϕ∗)−→ RΓrig(Xk/K) (2.2)

with cohomology group Hi
f,P (X,n).

One has commutative diagrams for P,Q ∈ P

FnRΓdR(XK/K)
P (ϕ∗)−→ RΓrig(Xk/K)

↓= ↓ Q(ϕ∗)

FnRΓdR(XK/K)
PQ(ϕ∗)−→ RΓrig(Xk/K).

One gets an induced map (compare [4, Definition 2.3])

RΓf,P (X,n) −→ RΓf,PQ(X,n). (2.3)

We consider the special polynomials Pi(t) = 1− ti/qni . For i < j we have the relation Pi |Pj ,
hence the Pi(t) form a directed subset of Qp[t], ordered by division. Using the maps (2.3) as
transition maps one, defines

RΓms(X,n) := lim−→
i

RΓf,Pi
(X,n), (2.4)

the modified syntomic complex of X. By a result of Besser, RΓms(X,n) is independent of the
choice of Frobenius.

The finite polynomial complex, twisted n times, of weight m is defined as

RΓfp(X,n,m) := lim−→
P∈Pm

RΓf,P (X,n), (2.5)

where the monoid Pm is ordered by division.
Its cohomology is denoted by Hj

fp(X,n,m) and called finite polynomial cohomology.
By Besser [5, (2.6)] one has canonical maps

Hi
ms(X,n) −→ Hi

fp(X,n, 2n) (2.6)

from modified syntomic to finite polynomial cohomology since all polynomials Pi have
weight 2n.

Remark. Note that we have an isomorphism

RΓsyn(X,n) ∼−→ RΓms(X,n) (2.7)

between the syntomic and the modified syntomic complex [2].

Besser also defines finite polynomial cohomology with compact support, denoted by
RΓfp,c(X,n,m) as the homotopy limit of the diagrams:

FnRΓdR,c(XK/K) RΓrig,c(Xs/K) MF(P (ϕ∗))
↘ ↙ ↘ ↙

RΓdR,c(XK/K) RΓrig,c(Xs/K)
(2.8)
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where MF(P (ϕ∗)) is the mapping fibre of P (ϕ∗) acting on RΓrig,c(Xs/K), for P ∈ Pm. Note
that on the level of cohomology with compact support, one has canonical maps

RΓrig,c(Xs/K) −→ RΓdR,c(XK/K) (2.9)

called cospecialization maps.
One has by definition canonical maps [5, Proposition 4.4]

π : Hj
fp,c(X,n,m) −→ Hj

rig,c(Xs/K). (2.10)

Also, one has cup products

RΓfp(X,n1,m1) ∗RΓfp,c(X,n2,m2) −→ RΓfp,c(X,n1 + n2,m1 + m2), (2.11)

and short exact sequences

Hi−1
rig (Xs/K) ι−→ Hi

fp(X,n,m) −→ FnHi
dR(XK/K). (2.12)

For x ∈ Hi
rig(Xs/K) and y ∈ Hj

fp,c(X,n,m) one has the formula

π(ι(x) ∪ y) = x ∪ π(y), (2.13)

where the cup product on the right-hand side is induced from products

RΓrig(Xs/K)×RΓrig,c(Xs/K) −→ RΓrig,c(Xs/K). (2.14)

We make essential use of Besser’s projection formula [5, (4.4)]: for finite polynomial
cohomology, namely, for f : Y1 → Y2 a proper morphism between smooth SpecR-schemes, we
have

f∗(α ∪ f∗β) = f∗α ∪ β, (2.15)

for α ∈ Hi
fp(Y1, n1, n2) and β ∈ Hj

fp,c(Y2,m1,m2). Note that the push-forward in syntomic
resp. finite polynomial cohomology is induced from corresponding Gysin maps RΓsyn(Y1, n)→
RΓsyn(Y2, n + d)[2d] with dimY1 + d = dimY2 (see [5, 20]). It is shown in [9] that the push-
forward in syntomic cohomology commutes with the push-forward in motivic cohomology.
Assume that Y1 is a smooth SpecR-curve and one has a finite morphism f : Y1 → Y2 to a
smooth surface Y2 over SpecR. Then f induces push-forward maps

f∗ : H1
ms(Y1, 1) −→ H3

ms(Y2, 2) and f∗ : H1
fp(Y1, 1, 2) −→ H3

fp(Y2, 2, 4). (2.16)

Denote by γ the image of the syntomic regulator of (U , fC) under the map H3
ms(U ×

EZp
, 2)→ H3

fp(U × EZp
, 2, 4). Let ω ∈ H1

ms(U , 1) ⊂ H1
fp(U , 1, 2) and η ∈ H0(E,Ω1) ⊂ H1

dR(E) ∼=
H1

fp,c(U , 0, 1) where the last isomorphism follows from [5, Lemma 5.2].
Let π1 : U × E → U , E × E → E be the projection maps to the first components. Then the

induced maps

Δ∗π∗
1 : H0(E,Ω1) −→ H0(E,Ω1)

: H1
fp(U , 1, 2) −→ H1

fp(U , 1, 2)

: H1
fp,c(U , 0, 1) −→ H1

fp,c(U , 0, 1)

are the identity maps. Note that π1 : U × E → U is proper, so π∗
1η is well defined.

We want to compute the cup product

γ ∪ π∗
1ω ∪ π∗

1η,

under the product pairing:

H3
fp(U × EZp

, 2, 4)×H1
fp(U × EZp

, 1, 2)×H1
fp,c(U × EZp

, 0, 1)

−→ H5
fp,c(U × EZp

, 3, 7) ∼= H4
dR,c(U × E/Qp

) Tr−→ Qp. (2.17)
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We apply Besser’s projection formula for finite polynomial cohomology to the closed
immersion

Δ : U −→ U × E .
Note that γ = Δ∗(reg(fC)), where reg(fC) is the syntomic regulator of fC ∈ O∗(U) in
H1

ms(U , 1) ⊂ H1
fp(U , 1, 2). We obtain

γ ∪ π∗
1ω ∪ π∗

1η = reg(fC) ∪ ω ∪ η, (2.18)

where the cup product on the right-hand side is now computed under the pairing

H1
ms(U , 1)×H1

ms(U , 1)×H1
fp,c(U , 0, 1) ‘∪×id’−→ H2

ms(U , 2)×H1
fp,c(U , 0, 1)

id×π−→ H2
ms(U , 2)×H1

rig,c(Us/Qp)
∼−→ H1

rig(Us/Qp)×H1
rig,c(Us/Qp)

−→ H2
rig,c(Us/Qp)

Tr−→ Qp, (2.19)

where we have used the isomorphism in [3, Proposition 3.2].
Let Ψ be the image of reg(fC) ∪ ω under the pairing

H1
ms(U , 1)×H1

ms(U , 1) −→ H2
ms(U , 2) ∼−→ H1

rig(Us/Qp),

and η′ be the image of η under the map

H0(E,Ω1) ↪→ H1
fp,c(U , 0, 1) ∼= H1

dR(E) π−→ H1
rig,c(Us/Qp),

where π is defined as in (2.10).
Then we have

reg(fC) ∪ ω ∪ η = Ψ ∪ η′ ∈ Image(H2
rig,c(Us/Qp)

Tr−→ Qp). (2.20)

This follows from (2.12).
We apply this fact in the particular situation when ω = reg(g) for g ∈ O(U)∗.
We have the following proposition, which is a modified version of [5, Proposition 5.3].

Proposition 2.21. Let ω = reg(g) ∈ H1
ms(U , 1), g ∈ O∗(U), η ∈ H0(E,Ω1). Then we have

reg(fC) ∪ ω ∪ η = 〈Fη, log fC , log g〉gl,
where the right-hand side is the global triple index associated to the Coleman functions
Fη, log fC , log g on the basic wide open Y associated to U with annuli ends ei at the C-torsion
points on EFp

occurring in supp(f̄) ∪ supp(ḡ).

Corollary 2.22. We have the following identities:

reg(fC) ∪ reg(g) ∪ η = −〈log g, Fη, log fC〉glrp,E({fC , g})(η),

which is the p-adic regulator of the Steinberg symbol {fC , g}, evaluated at the homomorphic
1-form η (see § 1).Q11

Proof of the corollary. Only the first equality requires a proof: by the triple identity for the
global triple index we obtain

〈Fη, log fC , log g〉gl = −〈log g, Fη, log fC〉gl − 〈log g, log fC , Fη〉gl,
and the second term vanishes because of [6, Lemma 7.4].
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Remark. Corollary 2.22 follows directly from [3, Propositions 3.4 and 5.3]; however, we
prefer to prove here the Proposition 2.21 as it sheds some light on Besser’s triple index formula
and its beautiful proof.

Proof of the proposition. We first recall the computation of the cup product

reg(fC) ∪ reg(g) ∈ H2
ms(U , 2) ∼= H1

rig(Us),

following Besser [3].
Note that by definition

H1
ms(U , 1) = lim−→

k

{
ω ∈ Ω1(U)log, h ∈ A†, dh =

(
1− ϕ∗

p

)k

ω

}
,

where A† is the weak completion of OU and Ω1(U)log are the algebraic differential forms on
U with logarithmic singularities along E\U and ϕ : Y → Y is a lifting of the Frobenius on the
basic wide open Y .

The first Chern class of fC , resp. g ∈ O∗
U is given by

c1
1(f

C) =
(

d log fC ,
1
p

log fC
0

)
,

resp.

c1
1(g) =

(
d log g,

1
p

log g0

)
,

where f0 = fp/ϕ∗f ≡ 1 modulo p, hence log f0 is well defined.
Then reg(fC) ∪ reg(g) ∈ H2

ms(U , 2) is the second Chern class ch2({fC , g}) of the Steinberg
symbol {fC , g} which is given by(

d log fC ,
1
p

log fC
0

)
∪
(

d log g,
1
p

log g0

)
= (0, θ0(fC , g)) (2.23)

with

θ0(fC , g) =
1
p2

log fC
0 d log ϕ∗g − 1

p
log g0d log fC .

Under the isomorphism H2
ms(U , 2) ∼= H1

rig(Us) the image of ch2({fC , g}) in H1
rig(Us) is given

by the class of any form θ(fC , g) ∈ Ω1
A†/Qp

satisfying(
1− ϕ∗

p2

)
θ(fC , g) = θ0(fC , g) + d(?). (2.24) Q7

Let

P (t) = 1− t

p
, Q(s) = 1− s

p
.

There exist polynomials a(t, s), b(t, s) with

P ∗Q(ts) :=
(

1− ts

p2

)
= a(t, s)P (t) + b(t, s)Q(s).

By choosing

a(t, s) =
s

p
, b(t, s) = 1,

we get the representation

1− ts

p2
=
(

1− t

p

)
s

p
+
(

1− s

p

)
.
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Let the two variable polynomials act on ACol,1(Y )⊗ Ω1
Col,1(Y ) by letting t act as ϕ∗ ⊗ id and

s as id⊗ ϕ∗. Then (2.23) is equivalent to

P ∗Q(ϕ∗)θ(fC , g) = a(t, s)P (ϕ∗) log fC ⊗ d log g

+ b(t, s)d log fC ⊗Q(ϕ∗) log g + dh

=
1
p2

log fC
0 d log ϕ∗g − 1

p
log g0d log fC + dh

= θ0(fC , g) + dh. (2.25)

Consider the bilinear pairing introduced by Besser–de Jeu [6]

〈〈 〉〉 : ACol,1(Y )⊗ Ω1
Col,1(Y ) −→ Qp

between Coleman forms and Coleman functions on the basic wide open Y , given by

〈〈F,GdH〉〉 = 〈F,G,H〉gl. (2.26)

By Besser [5, Proposition 2.14] we have, for θ ∈ Ω1
A†/Qp

= Ω1(Y ),

〈〈F, θ〉〉 = 〈F, Fθ〉gl, (2.27)

where 〈F, Fθ〉gl is Besser’s global double index on Y . Using Serre’s cup product formula and
the definition of the double index, we have in our situation that

θ(fC , g) ∪ η′ = 〈Fη, Fθ(fC ,g)〉gl, (2.28)

here η′ is the image of η ∈ H0(E,Ω1) in H1
rig,c(Us/Qp) given by {η, (Fη)e}, where Fη and

Fθ(fC ,g) are the Coleman integrals of η and θ(fC , g), respectively. Then (2.27) implies

〈Fη, Fθ(fC ,g)〉gl = 〈〈Fη, θ(fC , g)〉〉. (2.29)

Hence, we need to show that

〈〈Fη, θ(fC , g)〉〉 = 〈〈Fη, log fCd log g〉〉. (2.30)

We are in the same situation as in the proof of [5, Proposition 5.3]: consider both sides in
(2.30) as functions of η; these are functionals on the cohomology H1

dR(U/Qp). We see that
(2.30) follows, by applying [5, (2.15)], from the formula

〈〈Fη, P ∗Q(ϕ∗)θ(fC ,g)〉〉 = 〈〈Fη, P ∗Q(ϕ∗) log fCd log g〉〉. (2.31)

To prove (2.31), one then follows the proof of [5, Proposition 5.3]; the last lemma
[5, Lemma 5.4] can be applied as well: by the triple identity it remains to show that

〈(ϕ∗)nQ(ϕ∗) log g, (ϕ∗)m log fC , Fη〉gl = 0. (2.32)

This is true because for a function h ∈ O(Y )∗ we have, by [13, Lemma 2.5.1], that
log (hp/ϕ∗(h)) is in O(Y ). One then applies [6, Lemma 7.4]. This completes the proof of
Proposition 2.21.

Combining (2.18), (2.22) and Theorem 1.2, we obtain the following proposition.

Proposition 2.33. Let the assumptions be as in Theorem 1.2. Then the syntomic regulator
rsyn(z′′) of the element z′′ ∈ H1

zar(U × E ,K2) satisfies

rsyn(z′′) ∪ π∗
1(reg(g)) ∪ π∗

1η = cf,g · Ωp · Lp(E, 0).
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3. A regulator-decomposable element

Consider the smooth proper model E × EZp
of E × E over Zp, where p is a good ordinary

reduction prime. Its Néron–Severi group NS(E × EZp
) has rank 4, generated by the cycles

{EZp
× {∗}}, {{∗} × EZp

}, Δ and the CM-cycle, that is, the graph of the complex multiplication
EZp
−→√−d
EZp

, if K = Q(
√−d).

We consider the image of the composite map

Pic(E × EZp
)⊗ Z∗

p
∪−→ H1(E × EZp

,K2)

−→ H3
ms(E × EZp

, 2).

It follows from diagram (3.6) below that this image is generated by the elements rsyn(γi),
i = 1, 2, 3, 4, with

γ1 = rsyn(E × {0}, c),
γ2 = rsyn({0} × E , c),
γ3 = rsyn(Δ, c),
γ4 = rsyn(CM-cycle, c),

where c is a topological generator of the subgroup Zp ⊂ Z∗
p.

Theorem 3.1. Under the above assumptions we have the following properties. Q12
(i) The syntomic regulator

rsyn : H1( ̂E × EZp
,K2)⊗Qp −→ H3

syn(E × EZp
, SQp

(2))

is an injection and the dimension of coker(rsyn) is at most 1.
(ii) Let z be the element defined in (1.8). Then z is regulator-decomposable, that is, rsyn(z) ∈

H1
f (Qp,NS(X̄)⊗Qp(1)).

Remark. The p-adic points conjecture implies that H3
syn(E × EZp

, SQp
(2)) ∼= H1

f (Qp, V ),
so (ii) means that rsyn(z) is in the subspace corresponding to H1

f (Qp,NS(X̄)⊗Qp(1)) under
this isomorphism. (Recall that X̄ = (E × EQp

)× Q̄p, V = H2
et(X̄, Qp(2)).)

Proof of (i). Let BdR be Fontaine’s ring of p-adic periods and DR(V ) = (BdR ⊗ V )GQp be
defined as in [8]. There is a natural filtration on BdR that induces a filtration on DR(V ). The
Bloch–Kato-exponential map [8]

exp : DR(V ) −→ H1(GQp
, V )

induces an isomorphism

DR(V )/DR0(V ) ∼−→ H1
f (GQp

, V ), (3.2)

and via the BdR-comparison isomorphism we have an isomorphism

DR(V )/DR0(V ) ∼−→ H2
dR(X)/Fil2.

Hence, dim H3
syn(E × EZp

, SQp
(2)) = dimH1

f (Qp, V ) = 5.
We have a commutative diagram

Pic(E × EZp
)⊗ Z∗

p
∪−→ H1(E × EZp

,K2)
↓ ↓ rsyn

H2
syn(E × EZp

, SQp
(1)) ∪H1

syn(E × EZp
, SQp

(1)) ∪−→ H3
syn(E × EZp

, SQp
(2)).

(3.3)
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We show that the image of Pic(E × EZp
)⊗ Z∗

p in H3
syn(E × EZp

, SQp
(2)) generates a

4-dimensional subspace. This is seen as follows.
Let Pic(E × EZp

) ⊃ N = N0 ⊕N1 ⊕N2 ⊕N3 be the subgroup generated by N0 = Z ·Δ,
N1 = Z · [EZp

× 0], N2 = Z · [0× EZp
], N3 = Z · [CM-cycle].

Let M = M0 ⊕M1 ⊕M2 ⊕M3 ⊂ H2(Ē × Ē, Qp(1)) be the subgroup defined by

M0 = (∧2H1(Ē, Qp))(1) = H2(Ē, Qp(1)) ∼= Qp,

M1 = H0(Ē, Qp)⊗H2(Ē, Qp(1)) ∼= Qp,

M2 = H2(Ē, Qp(1))⊗H0(Ē, Qp) ∼= Qp,

M3 = 〈cet(CM-cycle)〉 ∼= Qp ⊂ Sym2H1(Ē, Qp)(1),

⊂ H2(Ē × Ē, Qp(1)).

One has an isomorphism for i = 0, 1, 2, 3:

Ni ⊗Z H1
f (Qp, Qp(1)) ∼= Mi ⊗Qp

H1
f (Qp, Qp(1))

∼= H1
f (Qp, Qp(1)), (3.4)

which induces an isomorphism

N ⊗H1
f (Qp, Qp(1)) α−→∼= M ⊗H1

f (Qp, Qp(1))

‖
H1

f (Qp,M ⊗Qp(1)) (3.5)

↪→

H1
f (Qp,H

2(Ē × Ē, Qp(2)).

Now consider the commutative diagram

Pic(E × EZp
)⊗ Z∗

p −→ N ⊗ Z∗
p

↓ ∪ ↓ id⊗ logp

N ⊗H1
syn(E × EZp

, SQp
(1))

H1(E × EZp
,K2) ∼=↓

M ⊗H1
f (Qp, Qp(1))

↓ ↪→

H3
syn(E × EZp

, SQp
(2)) ∼= H1

f (Qp,H
2(Ē × Ē, Qp(2))).

(3.6)

The isomorphisms follow from the p-adic points conjecture as proved in [16, § 6]. The
commutativity of (3.6) follows from the commutative diagram

Pic(E × EQp
)⊗Q∗

p −→ N ⊗H1(Qp, Qp(1))
↓=

↓ ∪ H1(Qp, N ⊗Qp(1))↪→

H1(E × EQp
,K2) −→ H1(Qp,H

2(Ē × Ē, Qp(2)))

(3.7)

where the upper and lower horizontal arrows arise as boundary maps of Kummer sequences.
(See [14, Lemma 2.8].)

The diagram shows that the image of Pic(E × EZp
)⊗ Z∗

p in H3
syn(E × EZp

, SQp
(2)) generates

a 4-dimensional subspace.
By Bloch–Ogus theory, one has an exact sequence

0→ H1(E × EQp
,K2)/pn −→ NH3

et(E × EQp
, Z/pn(2)) −→ Ch2(E × EQp

)pn −→ 0, (3.8)
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where

NH3
et(E × EQp

, Z/pn(2)) = ker(H3
et(E × EQp

, Z/pn(2))

−→ H3
et(k(E × EQp

), Z/pn(2))

is the first step in the coniveau filtration.
Taking inverse limits and using that H3

et(E × EQp
, Qp(2)) ∼= H1(Qp, V ), we obtain an

injection H1( ̂E × EQp
,K2)⊗Qp ↪→ H1(Qp, V ).

As the kernel of H1(E × EZp
,K2)→ H1(E × EQp

,K2) is a finite torsion group, we also obtain
an injection

H1( ̂E × EZp
,K2)⊗Qp ↪→ H1( ̂E × EQp

,K2)⊗Qp ↪→ H1(Qp, V ),

the image of which is contained in H1
f (Qp, V ) ∼= H3

syn(E × EZp
, SQp

(2)), hence part (i) of
Theorem 3.1 follows.

Proof of (ii). Consider the subrepresentation W of V generated by algebraic cycles in the
Néron–Severi group, so W = N ⊗Qp(1). As we have seen above all four generators of N are
already defined over Qp. The exponential map respects subrepresentations, hence we obtain an
isomorphism

exp : DR(W ) = N ⊗DR(Qp(1)) ∼−→ N ⊗H1
f (Qp, Qp(1)). (3.9)

The map is given by

DR(Qp(1)) ∼= Qp
exp−→ Z∗

p ⊗Qp
∼= H1

f (Qp, Qp(1)),

where the last isomorphism is given by the boundary map of the Kummer sequence.
Note that DR0(W ) = 0 and DR(Qp(1)) = DR−1(Qp(1)), hence

DR(W ) ⊆ DR−1(V ) ∼= Fil1H2
dR(X).

Poincaré-duality on H2
dR(X) induces an isomorphism

H2
dR(X)/Fil2H2

dR(X) ∼= Hom(Fil1H2
dR(X) −→ Qp).

The restriction of this isomorphism to Fil1 induces a non-degenerate pairing on Fil1/Fil2 that
coincides with the intersection pairing on N .

In order to show that rsyn(z) is contained in H1
f (Qp, N ⊗Qp(1)), we need to show that

rsyn(z), considered as a linear form on Fil1H2
dR(X) via the above isomorphisms, vanishes on

Fil2H2
dR(X) = H0(X,Ω2). Let ω be an invariant, hence nowhere vanishing, holomorphic 1-form

on E, so ω ∈ H0(E,Ω1). We consider the pullbacks ω1 = π∗
1ω, ω2 = π∗

2ω on E × E via the
canonical projections πi. Then we need to compute rsyn(z)(ω1 ∪ ω2). Now we apply Besser’s
triple index formula [5, Theorem 1.1].

Let Y be the open surface obtained from X = E × EZp
by deleting the points [xi, xi], [xi, 0],

i = 1, . . . , M − 1 and [0, 0]. Let Y0 = (E × {0})X × Y, Yi = ({xi} × E)X × Y. Let V be the
complement of supp(div(f)), embedded diagonally in Y, so we have finite maps

λi : Yi −→ Y and Δ : V −→ Y.

Then Besser’s formula, applied to the element z in (1.8), yields

rsyn(z)(ω1 ∪ ω2) =
M−1∑
i=1

〈λ∗
i Fω1 , log hi, λ

∗
i Fω2〉gl,Ŷi

+
M−1∑
i=1

〈λ∗
0Fω1 , log hi, λ

∗
0Fω2〉gl,Ŷ0

+ 〈Δ∗Fω1 , log fM ,Δ∗Fω2〉gl,V̂ . (3.10)
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The sum runs over global triple indices on Coleman integrals defined on the wide open Ŷi and
V̂ that we can associate to the open curves Yi and V.

The choice of the global Coleman integrals Fω1 and Fω2 on E ×EQp
is as follows.

Let Fω be the unique Coleman integral of ω, which satisfies Fω(0) = 0. Then define Fω1 :=
π∗

1Fω and Fω2 := π∗
2Fω.

As λ∗
0Fω2 and λ∗

i Fω1 vanish for all i, we get

rsyn(z)(ω1 ∪ ω2) = 〈Δ∗Fω1 , log fM ,Δ∗Fω2〉gl,V̂
= 〈Fω, log fM , Fω〉gl,V̂ . (3.11)

The Coleman integral Fω, which satisfies Fω(0) = 0, also vanishes at all torsion points on E
by [12, Proposition 3.1].

By the triple identity we get

〈Fω, log fM , Fω〉gl,V̂ = −1
2
〈Fω, Fω, log fM 〉gl,V̂

= −1
2

∑
e

ReseF
2
ωd log fM . (3.12)

The residues are taken at annuli ends e associated to the points in supp((f)). As the zeros of
Fω kill the poles of d log fM , all residues vanish and hence

rsyn(z)(ω1 ∪ ω2) = 0.

This completes the proof of Theorem 3.1.

Acknowledgement. We thank M. Asakura and A. Besser for very helpful discussions.
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