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ABSTRACT

A tropospheric energy budget argument is used to analyze twentieth-century precipitation changes. It is

found that global and ocean-mean general circulation model (GCM) precipitation changes can be under-

stood as being due to the competing direct and surface-temperature-dependent effects of external climate

forcings. In agreement with previous work, precipitation is found to respond more strongly to anthropogenic

and volcanic sulfate aerosol and solar forcing than to greenhouse gas and black carbon aerosol forcing per

unit temperature. This is due to the significant direct effects of greenhouse gas and black carbon forcing.

Given that the relative importance of different forcings may change in the twenty-first century, the ratio of

global precipitation change to global temperature change may be quite different. Differences in GCM

twentieth- and twenty-first-century values are tractable via the energy budget framework in some, but not all,

models. Changes in land-mean precipitation, on the other hand, cannot be understood at all with the method

used here, even if land–ocean heat transfer is considered. In conclusion, the tropospheric energy budget is a

useful concept for understanding the precipitation response to different forcings but it does not fully explain

precipitation changes even in the global mean.

1. Introduction

The conservation of energy, applied either to evapo-

ration at the surface or to condensation in the tropo-

sphere, is a more severe constraint on increases in global

precipitation than is the availability of atmospheric

moisture (e.g., Mitchell et al. 1987; Allen and Ingram

2002; Yang et al. 2003). Hence, global precipitation rates

increase at around 2% K21 in general circulation models

(GCMs), rather than following the 7.5% K21 increase

that would be predicted by the Clausius–Clapeyron

equation (Held and Soden 2006). Recent work by Wentz

et al. (2007) suggested that observed global precipita-

tion may increase with the Clausius–Clapeyron equa-

tion. However, this is based on only 20 yr of data,

neglects the effects of climatic natural variability, and

the different effects that different forcings may have on

precipitation. The latter are the subject of this paper.

A problem may arise if we express precipitation

changes in terms of temperature changes, because dif-

ferent radiative forcings on climate that produce the

same change in global temperature can produce differ-

ent changes in global precipitation due to the direct

effects of some forcing agents on the troposphere.

Granted, many authors have been interested specifically

in the effect of increasing CO2 on precipitation, rather

than a combination of forcings. However, it is possible

to separate the direct effect of forcings and their effect

via global temperature change because of the time

scales on which they operate. Doing so facilitates

comparison between different models and between

different forcings. Take, for example, the negative

precipitation sensitivity of ECHAM4 to global warming

when aerosol forcing is present (Roeckner et al. 1999;

Liepert et al. 2004). It turns out that this is due to a large

negative temperature-independent effect of forcings on

precipitation and the relatively weak climate sensitivity

of ECHAM4 global temperatures. It is not because

precipitation scales negatively with temperature when
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aerosols are present. The dependence of ECHAM4

precipitation on temperature is in fact fairly independent

of the presence of aerosols (B. Liepert 2006, personal

communication). The temperature-independent effect of

forcing on precipitation is probably dominated by

greenhouse gases, as we shall see below.

Energy conservation arguments work best for global

precipitation. At smaller scales, changes in precipitation

can be dominated by local processes. It may not be

possible to write down changes in precipitation via a

simple formula—particularly where advection of energy

in or out of the region considered is important. For ex-

ample, because zonal mean precipitation is dominated by

changes in moisture convergence and divergence, pre-

cipitation changes take opposing signs at different lati-

tudes. We must be careful, therefore, when applying

energy budget constraints below global scale that our

results are meaningful, such as for surface-based ob-

served precipitation data only available over land.

The question for this paper is whether we can write

down a simple model to help us understand the pro-

cesses controlling global precipitation analogous to

energy balance models used to understand global tem-

perature change. We apply the argument of Mitchell

et al. (1987) and Allen and Ingram (2002) that global

precipitation changes are constrained by the perturba-

tion energy budget of the troposphere to twentieth-

century observed and modeled precipitation data. Us-

ing surface temperature and radiative forcing data, we

attempt to reproduce precipitation changes via a linear

regression model of the troposphere. We could equally

well conserve energy at the surface (e.g., Boer 1993).

However, the tropospheric argument allows us to con-

trast individual forcings transparently. We therefore

make implicit assumptions about the surface energy and

moisture budgets. Where these break down, our model

cannot reproduce observed precipitation.

Our interest is not only in improving our physical

understanding of precipitation change, but also in es-

timating the possible range of twenty-first-century

precipitation more independently of GCMs. This is

possible if the observed twentieth-century precipitation

change can be expressed in terms of observed twentieth-

century temperatures and forcings. We may then apply

the observed fit to twenty-first-century forcing estimates

(Nakicenovic et al. 2000) and a probabilistic forecast of

twenty-first-century temperature made by, for example,

Stott and Kettleborough (2002). [The future tempera-

ture trends derived by Stott and Kettleborough (2002)

rely on the HadCM3 model, as well as observations.]

Although some modern GCMs can adequately simulate

forced changes in observed twentieth-century global-

land precipitation (Lambert et al. 2005), their range of

twenty-first-century projections is not determined by

our knowledge of observations.

Section 2 describes the observed and modeled data

used, section 3 our method for expressing precipitation

change via the tropospheric energy budget, section 4

our results, section 5 the possible effects of land–

atmosphere coupling on land precipitation, and section

6 the differing responses of twentieth- and twenty-first-

century GCM precipitation. We discuss our conclusions

in section 7.

2. Observed data and model simulations

We consider gridded twentieth-century precipitation

and temperature anomalies with respect to 1961–90.

Global and ocean-only means are taken for each model

dataset; land means are taken over the area sampled by

precipitation observations for each model dataset and

the observations. Hence, observations and model data

are comparable over land. (Surface-based precipitation

observations are unavailable over the oceans.) Forcing

data are available as global means only.

a. Observed temperatures and precipitation

Observed precipitation data are taken from the

Hulme dataset on a 2.58 latitude 3 3.758 longitude grid

for 1901–98 (Hulme 1992; New et al. 2000). The data are

derived from surface-based precipitation gauges and are

only available over land. During a given year, data are

‘‘masked’’ so that only grid boxes for which 7 of 12

months’ worth of data are available are used. This is an

arbitrary criterion that has little effect on our results.

The global land-mean time series is plotted in Fig. 1c.

Satellite and merged datasets that provide precipitation

over the oceans are available, but none provides the

length of record necessary for our analysis (Huffman

et al. 1997; Xie and Arkin 1997; Wentz et al. 2007).

Observed temperatures are taken for the same period

from version 3 of the Hadley Centre–Climate Re-

seach Unit global temperature anomalies dataset

(HadCRUT3; Brohan et al. 2006). Spatial coverage is

more complete than for the precipitation data. However,

we remove data for which there are no corresponding

precipitation observations for the sake of comparison.

The global land-mean time series is plotted in Fig. 2c.

b. GCM temperatures, precipitation, and forcing

We use GCM data from nine fully coupled ocean–

atmosphere models with sea ice and land surface

schemes. Data for the National Center for Atmospheric

Research’s Community Climate System Model version

3 (NCAR CCSM3), the Geophysical Fluid Dynamics

Laboratory’s Coupled Climate Models versions 2.0

500 J O U R N A L O F C L I M A T E VOLUME 22



FIG. 1. The 5-yr running mean precipitation anomalies with respect to 1961–90 for 1901–98 averaged over all

ensemble members for CCSM3, dark blue; GFDL0, pale green; GFDL1, pale blue; GISS (E-H), red; GISS (E-R),

thin black; HadCM3, brown; MIROC, orange; MRI, dark green; PCM, pink; and the observations, thick black and

land-mean only. (a) Global mean, (b) ocean mean, and (c) averaged over the land area sampled by the precipitation

observations. Note the broader y-axis scale in (c).
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FIG. 2. The 5-yr running mean temperature anomalies with respect to 1961–90 for 1901–98 averaged over all ensemble

members for CCSM3, dark blue; GFDL0, pale green; GFDL1, pale blue; GISS (E-H), red; GISS (E-R), thin black;

HadCM3, brown; MIROC, orange; MRI, dark green; PCM, pink; and the observations, thick black and land-mean only.

(a) Global mean, (b) ocean mean, and (c) averaged over the land area sampled by the precipitation observations.
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(GFDL CM2.0; hereafter GFDLO) and 2.1 (CM2.1;

hereafter GFDL1), the Goddard Institute for Space

Studies (GISS) E-H and E-R coupled atmosphere–

ocean models, the medium-resolution version of the

Model for Interdisciplinary Research on Climate 3.2

(MIROC medres), the Meteorological Research Insti-

tute’s coupled GCM model (MRI), and the NCAR

Parallel Climate Model (PCM) were provided by the

Intergovernmental Panel on Climate Change’s Fourth

Assessment Report (IPCC AR4) model output data-

base portal (information online at https://esg.llnl.

gov:8443/index.jsp; see the acknowledgments). Data for

the HadCM3 model were provided by P. Stott at the

U.K. Met Office (Gordon et al. 2000; Johns et al. 2003).

Because the output is on a variety of different grids,

model data are first interpolated onto the observed grid

before masking and calculation of land means. For each

model, an unforced control simulation and an ensemble

of forced simulations driven with estimates of twentieth-

century emissions are available. Precipitation time series

are plotted in Fig. 1 and temperature time series in Fig. 2.

GCMs are forced by changing the concentrations of

radiatively active species in the atmosphere, or, in the

case of solar forcing, by changing the solar irradiance

with time. The relative importance of different forcing

agents can be most easily gauged by comparing the net

downward radiative effect of each applied at the tro-

popause in watts per square meter. For each forcing,

this is calculated by temporarily returning climate sys-

tem temperatures below the tropopause to the unforced

control state and measuring the net radiation at the

tropopause. The quantity obtained is known as the

stratospherically adjusted radiative forcing (SARF), as

the stratosphere is allowed to come into equilibrium

with applied forcing. By doing this at various points dur-

ing the simulation, SARF time series can be calculated.

The precise nature of the SARF differs between

models (see Table 1), but each is forced with a minimum

of anthropogenic greenhouse gases (GHGs), the direct

effect of anthropogenic tropospheric sulfate aerosols,

stratospheric volcanic aerosols, and changes in solar

irradiance. Some models are additionally forced with

black carbon aerosols and the indirect effects of sulfate

aerosols. These data were provided by D. Stone (2006,

personal communication).

In addition to SARF data, we also have direct mea-

surements of tropospheric ‘‘SARF absorption’’ derived

from the MIROC Spectral Radiation-Transport Model

for Aerosol Species (SPRINTARS) model (Takemura

et al. 2006). SPRINTARS is an add-on to the MIROC

model that provides a more comprehensive description

of atmospheric aerosol transport and interaction with

radiation. Importantly for us, SARF data were calcu-

lated at the tropopause as in the other GCMs, but also at

the surface using the same method. The difference be-

tween the tropopause and surface values is the amount

of SARF absorbed by the troposphere.

There is no division of aerosol effects by aerosol type

in the SPRINTARS results. However, they assumed

that all reflection is due to sulfate aerosol and that all

direct absorption is due to black carbon (T. Nazawa

2007, personal communication). SARF and absorption

time series are plotted in Fig. 3. These data were provided

by T. Nazawa at the National Institute for Environmental

Studies and T. Takemura at Kyushu University.

3. The energy budget of the troposphere

We now express the changes in global precipitation in

terms of the perturbation energy balance of the tropo-

sphere, following the approach of Mitchell et al. (1987)

and Allen and Ingram (2002). Because the troposphere

has a small heat capacity, equivalent to only 2–3 m of

ocean, we can assume that it is in equilibrium on time

scales of a few years and longer. [The atmospheric ra-

diative damping time scale is around 30 days; see James

(1994).] Hence, changes in the tropospheric latent

heating, LDP, which accompany changes in precipita-

tion, must be balanced by changes in radiative and

sensible cooling, DR,

LDP� DR 5 0; ð1Þ

and see Fig. 4. Linearizing DR, we write

TABLE 1. The number of ensemble members and the details of

black carbon (BC), indirect sulfate (IS), solar, and volcanic SARF

for each model. Where known, we have listed the SARF data

origin.

Model

No. of ensemble

members BC IS Solar Volcanic

CCSM3 5 Yes Yes L95a Yes

GFDL0 3 Yes No L95 R00b

GFDL1 3 Yes No L95 R00

GISSH 5 Yes M02c L02d HS01e

GISSR 9 Yes M02 L02 HS01

HadCM3 4 No Yes Yes Yes

MIROC 3 Yes Yes Yes Yes

MRI 5 No No L95 HS93f

PCM 3 No No HS93 AKZg

a L95 represents Lean et al. (1995).
b R00 represents Ramachandran et al. (2000).
c M02 represents Menon et al. (2002).
d L02 represents Lean et al. (2002).
e HS01 represents Hansen and Sato (2001).
f HS93 represents Hoyt and Schatten (1993).
g AKZ represents C. M. Ammann et al. (2005, unpublished man-

uscript).
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LDP ’ kTDT 1 DRC 1 DRS; ð2Þ

where positive kTDT represents the net increases in

radiative and sensible cooling due to changes in tropo-

spheric temperature, positive DRC represents the in-

creases in net radiative cooling due to changes in

tropospheric absorbing species concentration, and pos-

itive DRS represents the net increases in cooling due to

changes in the net solar shortwave at the tropopause. (It

is important to realize that DRS is not simply the nega-

tive of the change in the absorbed insolation; see be-

low.) Both DRC and DRS are taken to be independent

of the surface temperature change. Hence, the effects

of SARF on precipitation are divided into surface-

temperature-dependent and -independent effects. Since

the evolution of the former depends on the heat capacity

FIG. 3. Values of SARF calculated from the twentieth-century simulations (solid lines) and

SARF absorption in SPRINTARS (dashed lines). (a) GHG SARF in HadCM3 (solid brown)

and MIROC SPRINTARS (solid green). The GHG SARF in other models is very similar (not

shown). GHG absorption in SPRINTARS (dashed green). BC SARF in the GISS models (solid

black). BC absorption in SPRINTARS (dashed black). (b) Total sulfate aerosol SARF, both

direct and indirect, in HadCM3 (solid brown) and other models (dark blue). Direct sulfate

aerosol SARF in the GFDL models (solid red). (c) Volcanic SARF in the GISS models derived

from Hansen and Sato (2001) (solid black), in PCM derived from C. M. Ammann et al. (2005,

unpublished manuscript) (solid pink), and in SPRINTARS derived from Sato et al. (1993)

(solid green). Volcanic absorption in SPRINTARS (dashed green). (d) Solar SARF in the GISS

models derived from Lean et al. (2002) (solid black); in PCM derived from Hoyt and Schatten

(1993) (solid pink); and estimated by D. Stone from Lean et al. (1995) for GFDL, MRI, and

CCSM3 (dark blue); as well as in SPRINTARS derived from Lean et al. (1995). Solar SARF

absorption in SPRINTARS (dashed green).
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of the climate system, particularly the ocean mixed

layer, but the latter are effectively instantaneous, sep-

aration by time scale is possible if some SARF com-

ponents are applied rapidly, as is the case for volcanoes.

Here, DT refers to surface temperatures, as observed

data are available for the entire twentieth century. This

may be problematic, as we rely on the ratio of tropo-

spheric temperature change to surface temperature

change being constant (see section 3b).

Consider an increase in global precipitation, DP, that

accompanies an increase in global surface temperature,

DT. Increasing DT increases the tropospheric tempera-

ture and cooling (primarily radiative). There are ac-

companying increases in solar shortwave absorption by

water vapor as the water vapor concentration increases,

and there may be significant temperature-dependent

cloud feedbacks. The net tropospheric cooling from all

these factors determines the total possible increase in

latent heating, LDP. To produce the increase in DT,

however, we must first introduce a SARF, DF, via an

external agent that affects climate. Doing so can pro-

duce further changes in the precipitation that are in-

dependent of temperature.

We could increase the net solar shortwave input into

the climate system by, for example, increasing the solar

irradiance or reducing the concentration of the strato-

spheric volcanic aerosols. The increase in solar irradi-

ance is absorbed primarily at the surface, causing an

increase in surface temperature, DT, that is transmitted

to the troposphere by latent, sensible, and radiative

fluxes, as above. The resulting warmer troposphere

cools at a higher rate, kTDT, chiefly due to radiation,

and allows an increase in precipitation. Because some of

the increase in solar irradiance is directly absorbed by

the troposphere, we could also see a direct effect that

reduces precipitation. However, idealized model ex-

periments suggest that the atmosphere largely com-

pensates for direct solar absorption by tropospheric

warming that causes the emission of longwave radiation

almost independent of changes in DT (Lambert and

Faull 2007). This is termed tropospheric adjustment,

and was originally shown for aerosol forcing (Rotstayn

and Penner 2001). It is the reason why DRS is not simply

equal to the negative of the change in insolation ab-

sorbed by the troposphere. Allowing for tropospheric

and rapid surface adjustment to occur before calculating

the radiative forcing yields what we will call the tro-

pospherically adjusted radiative forcing (TARF; see

also Shine et al. 2003). If it was possible to calculate the

amount of TARF absorbed, then we would expect this

to be equal to DRS. Estimation is possible for idealized

GCM experiments using the method of Gregory et al.

(2004), but where there are time variations in SARF, as

in our experiments, this is not possible. In summary, we

expect DRS , 0, opposing positive kTDT, and the in-

crease in precipitation, but it should be small.

Forcing the climate system with an equivalent DF by

increasing the concentration of atmospheric CO2 pro-

duces a similar increase in DT and, hence, a similar in-

crease in kTDT. However, adding CO2 also increases the

opacity of the atmosphere to infrared longwave radia-

tion independent of temperature change. This causes

longwave emission to space to originate from higher,

colder levels, reducing the tropospheric radiative cool-

ing. Tropospheric emission to the surface, meanwhile,

increases, as radiation is emitted from lower, warmer

levels. The effect on the emission to space dominates,

because the change in emission altitude at the surface is

relatively small because the relevant longwave emission

regions are already quite saturated. This means that

DRC , 0. Previous work suggests that the effect will be

significant and will oppose positive kTDT and re-

duce LDP (Mitchell et al. 1987; Allen and Ingram 2002;

Yang et al. 2003; Lambert and Faull 2007). As for DRS,

there is evidence that tropospheric adjustment par-

tially counters DT independent absorption due to GHGs

(Gregory and Webb 2008). The adjustment occurs

through changes in clouds. It is considerably smaller than

in the solar case, however. Hence, we expect GHG

SARFs that produce the same increase in DT as SARFs

FIG. 4. A schematic energy budget diagram of the global tropo-

sphere. Because the heat capacity of the troposphere is small,

we can assume that it is in equilibrium on climatological time

scales. Hence, changes in latent heating, LDP, must be balanced by

changes in radiative and sensible heating, DR. Producing the in-

crease in tropospheric temperature that generates an increase in

precipitation requires the application of a SARF, DF. A DF that

causes direct tropospheric heating independent of LDP produces a

smaller change in precipitation because a smaller change in DT is

needed to produce DR.
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that affect insolation to produce smaller increases in

precipitation.

a. A regression model for global precipitation

To build a simple model compatible with the avail-

able data, we make further approximations for DRC and

DRS that are linear in SARF. This is sensible in most

cases, because SARF is the net radiative flux across the

tropopause and a major component of DR. First, we

write DRC’bCDFC, where DFC is the SARF at the tro-

popause due to changes in the concentrations of atmo-

spheric absorbing species and bC is a constant to be

determined. The SARFs that we consider to be part of

DFC are those that are simulated by the GCMs for which

we have data. We treat GHGs, which unambiguously

affect climate by absorbing longwave radiation, as

composing the bulk of DFC. We also include black

carbon aerosols, which force climate by absorbing

shortwave radiation (Haywood et al. 1997) and which

may show a temperature-independent effect that re-

duces precipitation.

Similarly, we write DRS’bSDFS, where DFS is the

shortwave SARF due to changes in solar irradiance and

reflecting aerosol concentration, and bS is a constant to

be determined. The relevant aerosol SARFs simulated

by our models are changes in volcanic stratospheric

aerosols, which very largely reflect shortwave radiation

alone, and tropospheric sulfate aerosols, which reflect

solar radiation by their direct and indirect effects, but

may also be a source of longwave heating in the tro-

posphere (Ramanathan et al. 2001).

Applying these substitutions in Eq. (2), we obtain

LDP ’ kTDT 1 bCDFC 1 bSDFS: ð3Þ

b. Expected behavior of the regression model

If precipitation is to increase with GHG-driven global

warming, then we expect kT to be positive and for kTDT

to be large enough to outweigh negative bCDFC. How

constant should kT be across models? Under global

warming, current GCMs tend to retain an atmospheric

temperature profile that is quite close to the moist-

adiabatic lapse rate. Nevertheless, there is a spread in

the temperature and closely coupled moisture profiles

that produces a combined lapse rate–water vapor

feedback range of around 1.0 6 0.2 W m22 K21 at the

tropopause across IPCC AR4 models (Soden and Held

2006). (The temperature change refers to the surface

temperature change, as in our work. Errors are taken as

two standard deviations, approximating 5%–95% con-

fidence limits.) In addition, kT depends on flux changes

at the surface that have not been quantified. We might

expect them to be smaller because saturation in the rel-

evant longwave emission bands near the surface will tend

to reduce the effect of changes in atmospheric tempera-

ture profiles aloft. However, differences in GCM radia-

tion code have been shown to produce considerably

larger ranges in radiative fluxes at the surface than at the

tropopause in response to prescribed changes in water

vapor concentration (Collins et al. 2006). There is also no

reason to expect the surface effect to be of the opposite

sign as the tropopause effect, as it is for the temperature-

independent effect of changing GHG concentration.

Soden and Held (2006) also describe large intermodel

differences in cloud and albedo feedbacks. The most

important differences are in reflected shortwave radia-

tion, but these have only a secondary effect on the tro-

pospheric energy budget because most of this energy is

not absorbed by the troposphere. Therefore, although the

reflection of shortwave radiation does influence DT and

hence DP, it does not affect kT. There are also longwave

cloud feedbacks that do affect the tropospheric energy

absorption. Their range of radiative effects at the tropo-

pause is fairly small [e.g., 20.15 6 0.3 W m22 K21 for

nine AR4 GCMs from Webb et al. (2006)]. Their range of

effects at the surface has not been quantified, however.

Adding the tropopause clear-sky and longwave cloud

feedback ranges gives a total expected range for global

kT of about 0.4 W m22 K21. This must be considered a

minimum value, as differences at the surface also con-

tribute.

Over land, we know that changes in surface humidity

controlled by soil moisture can affect the local tropo-

spheric energy budget by suppressing the dynamical

processes that produce precipitation (Schär et al. 1999;

Koster et al. 2004). This does not necessarily affect the

mean land precipitation, as precipitation may simply fall

elsewhere. However, if such processes do change pre-

cipitation over large enough land areas, then kT may not

be a constant, and treating precipitation as linear in

temperature may be inappropriate.

Naı̈vely, we might expect bS to be the negative of the

fraction of the applied shortwave SARF absorbed in the

troposphere. However, there should also be a positive

tropospheric adjustment contribution from rapid tro-

pospheric warming due to the emission of longwave

radiation almost independent of warming at the surface,

as discussed above. Lambert and Faull (2007) found

that this positive contribution produced bS that is con-

sistent with zero in two slab (thermodynamic mixed-

layer ocean) GCMs for solar forcing. Because on cli-

matological time scales this occurs instantaneously, it is

best considered part of bS. Clearly, the positive contri-

bution cannot be larger than the SARF absorbed, so bS

should be consistent with 21 , bS , 0.
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We expect bC to be negative, but not less than 2 1.

Longwave SARF contributes 2 1 3 DFC to the tropo-

spheric energy budget at the tropopause by definition. It

also contributes a smaller, positive flux at the bottom of

the atmosphere, increasing bC (e.g., Goody and Yung

1989). There may be some tropospheric adjustment, as

described by Gregory and Webb (2008), but we expect

the effect on latent heat to dominate.

c. Additional problems

Above, we noted that using surface temperature

change to provide DT introduces a spread in our

estimates of kT across models, because changes in the

tropospheric lapse rate produce different changes in

the tropospheric temperatures in different models. We

also assume that kT is the same for different SARFs.

In addition to differences in the lapse rate, differences

in the spatial pattern of the surface temperature re-

sponse to different SARFs could produce different

kT. However, in the idealized experiments of Lambert

and Faull (2007), kT was consistent for CO2 and solar

SARF. We will also test the consistency of kT for forced

and unforced precipitation changes. Energy is con-

served in all of these cases, but it may not be possible to

fit a simple linear equation for precipitation change like

Eq. (3), if coefficients are not similar enough across

SARFs.

Black carbon aerosols can cause two further difficul-

ties for our method. First, black carbon aerosol SARF is

not always well related to tropospheric SARF absorp-

tion, especially over dark surfaces. We can circumvent

this problem by directly calculating the tropospheric

SARF absorption from the MIROC SPRINTARS data.

Second, it is uncertain what fraction of black carbon

aerosol absorption is compensated for by a reduction in

latent heating, compared with greenhouse gas absorp-

tion. (Recall that solar SARF absorption is largely

compensated for by the emission of tropospheric long-

wave radiation, rather than a reduction in latent heat-

ing.) Hence, combining the two types of SARF into DFC

may be inappropriate without first scaling the black

carbon SARF. Idealized GCM experiments comparing

the direct effects on precipitation of GHG and black

carbon forcing are scarce. However, the work of

Roberts and Jones (2004) suggests that the direct effect

of black carbon on precipitation is very approximately

25% larger per unit SARF. In our analysis, we investi-

gate the sensitivity of our results to applying this scaling.

Because GHG and black carbon SARF are well corre-

lated during the twentieth century (Fig. 3), introducing a

separate black carbon regressor is not a good idea.

We now write alternative formulations for DRC and

DRS based on tropospheric absorption. Here, DRC’

bACDAC, where DAC is the tropospheric GHG and

black carbon SARF absorption calculated from the

MIROC SPRINTARS model and bAC is a constant to

be determined. Similarly, DRS’bASDAS, where DAS is

tropospheric shortwave absorption due to changes in

solar irradiance and sulfate aerosol concentration and

bAS is a constant to be determined. Both bAC and bAS

have the same numerical limits on them as bC and bS

because the latter assume that SARF was greater than

or equal to tropospheric absorption of SARF.

Equation (2) now becomes

LDP ’ kTDT 1 bACDAC 1 bASDAS: ð4Þ

Compared to Eq. (3), Eq. (4) has the advantage that

temperature-independent changes in precipitation are

directly related to the SARF absorbed by the tropo-

sphere. It has the disadvantage that we only have ab-

sorption data for the MIROC model.

d. Application to observed and GCM data

Ordinary least squares (OLS) regression is used to

estimate values of kT, bC, and bS in Eq. (3), from 5-yr

mean observed and GCM temperatures and precipita-

tion, and the GCM SARF data; kT, bAC, and bAS are

estimated similarly in Eq. (4), except using the

SPRINTARS SARF absorption data rather than SARF

data. We use 5-yr means because the most predictable

response in twentieth-century global-land precipitation

occurs over 5–10-yr time scales (Lambert et al. 2004).

This is most probably because time variations in the

SARF series are dominated by these time scales.

We treat noise in LDP as white and as being due to

internal climate variability alone. As a result, our

analysis will tend to underestimate the regression pa-

rameter ranges for observations, as we neglect mea-

surement errors. We calculate the noise variance from

unforced control run GCM data. Where unforced

temperature and precipitation data are positively cor-

related, as they are globally and over the ocean, we

include only the component of precipitation variability

that is uncorrelated with temperature in the noise var-

iance. We do this because the correlated variability in

the twentieth-century runs contains information that

partially determines kT. Of course, the relationships

between forced temperature and precipitation and un-

forced temperature and precipitation may not be the

same, due to differences in the forced and unforced

surface temperature patterns as well as the forced and

unforced precipitation patterns (Douville et al. 2006).

There is no way to distinguish between these in the

observations, however. We calculate kT for the unforced

control runs as a check. Introducing autocorrelation into
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the noise model makes a negligible difference in each

case, and will not be discussed further.

4. Regression results

We now present regression results for 5-yr mean

precipitation, temperature, and SARF and SARF

absorption for 1913–97. We begin by using the SARF

data for individual models rather than the MIROC

SPRINTARS SARF absorption data. We scale black

carbon SARF by 1.25, as suggested by the findings of

Roberts and Jones (2004).

a. GCM global-mean precipitation using SARF data

We find Eq. (3) to be a good model of global pre-

cipitation for 1913–97 in most of the nine GCMs. At the

10%–90% confidence level, kT is positive and significant

in all cases, and bC is negative and significant in five

cases; see Table 2. The value of bS is small and positive

in general and significant in five cases. Residual variance

TABLE 2. Regression coefficients for global, ocean-only, and land sampled from observations only for 5-yr means when SARF data are

used. In each case, kT is calculated for the control run, and the temperature-dependent component of the precipitation variability is

removed where kT is significant at the 10% level and the correlation between LDP and T, r(LDP, T), is positive. Values of kT, bC, and bS

and their confidence limits are then given for the forced ensemble means for 1913–97. The F-test P value is quoted as a consistency check

on residual variance. Values in boldface are significant at the 10% level.

CCSM3 GFDL0 GFDL1 GISSH GISSR HadCM3 MIROC MRI PCM

Global

control

kT (W m22 K21) 1.16 1.50 1.32 2.07 1.11 1.60 0.68 1.92 1.24

10%–90% 0.18 0.20 0.19 0.37 0.48 0.10 0.19 0.38 0.34

r (LDP,T) 0.75 0.79 0.78 0.74 0.38 0.82 0.52 0.76 0.64

Res 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

ALL

kT (W m22 K21) 0.91 1.68 1.54 1.78 1.59 1.97 0.84 1.87 1.92

10%–90% 0.32 0.49 0.34 0.57 0.41 0.33 0.48 0.36 0.35
bC 0.17 20.40 20.48 20.24 20.32 20.24 20.25 20.11 20.14

10%–90% 0.14 0.14 0.10 0.19 0.14 0.13 0.15 0.14 0.14

bS 0.33 0.16 20.06 0.35 0.23 0.07 0.26 0.17 0.33
10%–90% 0.11 0.17 0.16 0.19 0.12 0.08 0.13 0.10 0.12

F-test 1.00 0.33 0.50 0.91 0.95 0.60 0.97 1.00 0.71

Ocean

control

kT (W m22 K21) 2.10 2.29 3.27 2.13 2.46 3.00 3.78 2.48 2.07

10%–90% 0.22 0.31 0.36 0.43 0.55 0.21 0.36 0.54 0.42

r(LDP,T) 0.85 0.78 0.84 0.70 0.62 0.80 0.87 0.72 0.75

Res 0.01 0.04 0.04 0.02 0.01 0.02 0.02 0.02 0.01

ALL

kT (W m22 K21) 1.52 1.68 1.54 2.49 1.85 3.11 2.90 2.16 2.45

10%–90% 0.32 0.74 0.59 0.68 0.46 0.54 0.87 0.50 0.42
bC 20.17 20.40 20.48 20.33 20.19 20.28 20.58 20.16 20.37

10%–90% 0.12 0.21 0.18 0.20 0.14 0.18 0.23 0.20 0.16

bS 0.06 0.16 20.06 0.35 0.36 0.02 20.20 0.10 0.14

10%–90% 0.09 0.26 0.27 0.19 0.12 0.12 0.20 0.13 0.14

F test 1.00 0.02 0.01 1.00 1.00 0.93 0.29 0.02 0.73

Land (observed mask)

control

kT (W m22 K21) 0.30 20.39 21.98 1.41 20.62 21.41 24.26 20.16 20.25

10%–90% 0.29 0.85 1.11 1.21 1.07 0.65 0.92 1.24 1.30

r(LDP,T) 0.18 20.08 20.31 0.22 20.11 20.21 20.65 20.03 20.05

Res 0.13 0.36 0.67 0.11 0.10 0.38 0.26 0.14 0.19

ALL

kT (W m22 K21) 20.24 1.45 0.36 0.88 1.16 1.00 20.19 0.97 0.92

10%–90% 0.81 2.06 2.24 1.79 1.00 1.42 3.00 1.05 1.45

bC 0.88 20.67 21.24 20.14 20.63 20.49 20.42 20.06 0.24

10%–90% 0.43 0.68 0.79 0.73 0.43 0.69 1.07 0.45 0.60

bS 1.02 0.40 20.91 0.48 0.18 0.12 1.04 0.14 1.04

10%–90% 0.38 0.90 1.27 0.77 0.42 0.48 1.12 0.37 0.65

F test 0.95 0.41 0.69 0.11 0.54 0.85 0.36 0.32 0.71
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is consistent with unforced variability simulated by the

same GCM only in GFDL0, GFDL1, MIROC, and

PCM. Unforced kT is consistent with 1913–97 kT apart

from for PCM. The unforced precipitation and tem-

perature have correlation coefficients of r . 0.6 in all

models apart from in MIROC and GISS (E-R). Calcu-

lating the mean across the nine forced models, and

giving equal weight to each model, we find kT 5 1.56 6

0.19 W m22 K21, bC 5 20.23 6 0.07, and bS 5 0.23 6

0.06. The F-test P value is 1.00, indicating that the re-

sidual variance is too large when compared to a cross-

model estimate of unforced variability. Nevertheless,

the agreement looks excellent; see Fig. 5a. Removing

the factor of 1.25 scaling for the black carbon aerosol

SARF changes these regression results by , 0.03 in all

cases (not shown). Further varying the black carbon

scaling factor by as much as an order of magnitude does

not produce differences significant at the 10%–90%

level. It is also reassuring that kT for HadCM3 is con-

sistent with that for idealized experiments with the

HadSM3 slab model found by Lambert and Faull

(2007), as HadSM3 has the same atmospheric compo-

nent as HadCM3. (Our HadCM3 bL is also consistent

with their HadSM3 DRA 5 bLDFL although their range

of uncertainty is large.)

In different models kT is different. This is not sur-

prising, given that the feedbacks important to the tro-

pospheric energy budget are also different (see section

3b). However, values of 1913–97 kT plotted against the

control kT for the same model, more or less, lie on the

line y 5 x, as we would expect if the regression model is

reasonably robust (Fig. 6). Assuming that control kT

reliably describes the forced kT, we can try imposing the

values of control kT on our 1913–97 regression, and

calculating bC and bS alone. Values are consistent with

the full regression in all but a few cases, but uncertainty

ranges are somewhat reduced (Table 3). Interestingly,

bS is significant and positive in eight cases.

Positive bS is a common theme in our results, and is

contrary to our physical understanding. It may be an

artifact of regression that part of the temperature-

dependent response to precipitation is being fitted to

the solar and sulfate aerosol shortwave SARF changes.

This explanation may still hold, even though specifying

the control kT also produces significant positive values

of bS because forced and unforced precipitation changes

may not be identical. Alternatively, there may be

physical processes controlling the interaction between

the precipitation and shortwave SARFs that we do not

understand. For instance, if anticorrelated components

of DFS have quite different negative values of bS, then

the total bS could come out as positive. We cannot test

this with our data, however, because anthropogenic

sulfate SARF is strongly anticorrelated with solar and

GHG SARFs, making the introduction of separate re-

gressors impractical. Another possibility is that positive

longwave SARF due to volcanic aerosol dominates bS

(W. Ingram 2008, personal communication). Although

the longwave SARF due to volcanoes is small, it could

cause positive bS since we expect bS due to shortwave

absorption to be close to zero.

b. GCM ocean-mean precipitation using SARF data

Including only data over the oceans, we again find

that Eq. (3) is a good model of the mean precipitation

change. Here, kT is positive and significant in all cases,

bC is negative and significant apart from for MRI, and

bS is significant and positive in GISS (E-H) and (E-R);

see Table 2. In some cases, kT is larger than for global

means. Individual parameter values are less well con-

strained than for global means, but the general picture is

the same. Values of unforced kT are consistent with

1913–97 kT, apart from for CCSM3 and GFDL1, and

control precipitation–temperature correlations are .

0.6 in all cases. Taking the mean across all nine models,

we find kT 5 2.02 6 0.30 W m22 K21, bC 5 20.29 6

0.10, and bS 5 0.15 6 0.09. The F-test P value is 0.89,

which is marginally consistent with the unforced GCM

variability. Again, the fit is convincing (Fig. 5b).

c. Mean precipitation over the observed land area
using SARF data

Global-mean precipitation time series resemble global-

mean temperature time series, and ocean-mean pre-

cipitation time series resemble ocean-mean temperature

time series (cf. Figs. 1 and 2). Over land, however, the

situation is different. While the land-mean temperature

behaves similarly to the global and ocean-mean temper-

ature, the land-mean precipitation time series are not

similar to the global and ocean-mean precipitation. The

difference is reflected by our regression model, which

fails to capture land precipitation change in most of the

models. GISS E-R, and, to some extent, MRI are the

exceptions (Table 2).

What if we allow for the advection of energy between

the land and ocean atmospheres? Introducing a re-

gression term into Eq. (3) proportional to the land–

ocean energy transport is entirely unhelpful in the

GFDL0, GFDL1, GISS (E-R), MIROC, and MRI models,

for which we have heat flux data.

Taking the nine-model mean, however, improves

things; see Fig. 5c. This appears to suggest that, although

land precipitation is not controlled by the energy budget

in most of the GCMs, whatever is controlling the pre-

cipitation produces different results in each case. When

the GCM results are averaged together, an underlying
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FIG. 5. The 5-yr running mean components of the perturbation tropospheric energy budget for 1913–97

averaged across all model ensemble members, and giving equal weight to each model. The solid lines are

LDP, black; kTDT, red; bCDFC, green; and the best-fit reconstruction of LDP from regression (blue)

where the SARF data and Eq. (3) are used. Here, bSDFS is not shown because it is small or positive, which

conflicts with our physical understanding of the troposphere, in each case. The gray plume represents a

10%–90% confidence interval, which is smaller during 1961–90 because this is the period against which

anomalies are calculated. (a) Global mean, (b) ocean mean, and (c) averaged over the land area sampled

by the precipitation observations. The dashed lines in (a) represent kTDT (red), bACDAC (green), and the

best-fit reconstruction (blue) where SARF absorption data and Eq. (4) are used.

510 J O U R N A L O F C L I M A T E VOLUME 22



trend in all the models that is dependent on the differing

responses of precipitation to DFC and DFS takes over.

We find kT 5 1.04 6 0.84 W m22 K21, bC 5 20.45 6

0.34, and bS 5 0.28 6 0.33.

The model mean is not a good representation of the

observed precipitation. Lambert et al. (2005) found that

although five of the nine GCMs we consider here ade-

quately represent the response of land-mean precipita-

tion to SARF, the model mean does not. As expected,

then, we find that the observed land precipitation

change cannot be explained using the energy budget

model and observed land temperatures: kT 5 22.17 6

1.13 W m22 K21, bC 5 1.57 6 0.46, and bS 5 1.91 6

0.49. All three parameter values are apparently un-

physical and the fit to the observations is very poor; see

Fig. 5c. These results were obtained using the means of

DFC and DFS across models. Similarly unsatisfactory

numbers are found using other estimates of SARF.

d. GCM global-mean precipitation using MIROC
SPRINTARS absorption data

We now employ the MIROC SPRINTARS absorp-

tion data and Eq. (4) for global-mean GCM precipita-

tion. We find values of kT that are consistent with those

calculated in section 4a, although that for MIROC is

somewhat larger here; see Table 4. Values of bAC are

satisfactory, being negative and . 21 or small and

consistent with zero. Apart from in PCM, values of bAC

are consistent with the values of bC calculated above,

which is not surprising when we consider that the total

GHG and black carbon SARF absorption is similar

to the total black carbon and GHG SARF (Fig. 3a).

FIG. 6. Values of global mean kT in the ALL and control simulation comparison. The crosses

represent 10%–90% confidence intervals for each model. If forced and unforced variations in

surface temperature produce the same kT, then we would expect the crosses to lie along the

dotted line, y 5 x.

TABLE 3. Regression coefficients for global means when values of the global-mean control kT from Table 2 are imposed on the

regression. Values of bC and bS and their confidence limits are given for the forced ensemble means for 1913–97. The F-test P value is

quoted as a consistency check on residual variance. Values in boldface are significant at the 10% level.

CCSM3 GFDL0 GFDL1 GISSH GISSR HadCM3 MIROC MRI PCM

bC 0.07 20.35 20.42 20.32 20.16 20.12 20.21 20.13 0.10

10%–90% 0.07 0.06 0.06 0.08 0.05 0.07 0.08 0.05 0.07

bS 0.28 0.20 0.00 0.28 0.36 0.12 0.29 0.16 0.47
10%–90% 0.09 0.14 0.12 0.11 0.06 0.07 0.10 0.09 0.10

F test 1.00 0.35 0.57 0.91 0.96 0.81 0.98 1.00 0.97
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Values of bAS are not as we expect, being large and

positive in five cases. This problem may be connected

with using absorption data from one model, as bAS is

small and consistent with zero in MIROC. In mitigation,

we note that the total size of the bAS DAS terms is small

compared with the bSDFS terms, because DAS is small

compared with DFS (Figs. 3c and 3d). (The correlation

between the annual-mean DFS and the annual-mean

DAS across the models is 0.84.) Scaling the black carbon

absorption by an order of magnitude, as was done for

black carbon SARF in section 4a, causes bAC to tend to

zero as the scaling factor tends to 10. Hence, the overall

size of bACDAC is little affected. Importantly, there are

no significant changes to kT or bAS.

Despite the good fit for MIROC with global data,

using the absorption data does not help us fit the energy

budget model to land-only data.

5. Land–atmosphere coupling

What constrains the precipitation change over land?

In the previous section, we found that including a land–

ocean energy transport term in our energy budget ar-

gument does not help. One of the most obvious differ-

ences between land and ocean is the effectively limitless

availability of moisture over the ocean. Over land,

meanwhile, it has been shown that changes in soil

moisture content can have a significant effect on pre-

cipitation in GCMs. Koster et al. (2004) identified large

regions in the Northern Hemisphere during summer in

which soil moisture exerted an influence on precipita-

tion change in 16 GCMs. In such ‘‘moisture limited’’

environments, soil moisture controls the tendency of the

atmosphere to produce precipitation through its im-

pacts on tropospheric boundary layer humidity and the

near-surface energy budget, particularly during the

summer (Schär et al. 1999). [It is not the case, however,

that local evaporation must provide the bulk of local

rainfall; see McDonald (1962).] This does not nec-

essarily mean that global land-mean precipitation is

changed by regional links between soil moisture and

precipitation, though, because there could be compen-

sating changes in rainfall elsewhere.

In our GCMs, we find temperature-dependent soil

moisture decreases in similar regions to those identified

as showing large soil moisture–precipitation coupling by

Koster et al. (2004); see Fig. 7. (Having said this, some

of these regions show opposing changes in soil moisture

and near-surface atmospheric relative humidity.) So far,

studies of the link between soil moisture and land pre-

cipitation have focused on the predictability of regional

precipitation (e.g., Dirmeyer (2006)) or on idealized

GCM experiments (e.g., Schär et al. 1999; Koster et al.

2004). We believe that an investigation into the effects

of land–atmosphere coupling during the entire twentieth

century may give some insight into why land and ocean

precipitation changes differ so much while land and

ocean temperature changes do not.

6. Differing responses of twentieth- and
twenty-first-century precipitation

Held and Soden (2006) compared precipitation in-

creases per degree global warming in twentieth-century

and IPCC Special Report on Emissions Scenarios

(SRES) scenario A1B twenty-first-century GCM runs.

[The SRES AlB scenario is a strongly GHG forced fu-

ture taken from Nakicenovic et al. (2000).] They found

that precipitation increased by about 2% K21 across the

models, but that twentieth-century values have a mean

offset of 21% for all DT. Held and Soden (2006) at-

tributed this to the temperature-independent effects of

absorbing aerosols, which are a relatively larger pro-

portion of twentieth-century SARF than A1B twenty-

first-century SARF. In our language, their hypothesis is

that bC is more negative for black carbon aerosol SARF

than GHG SARF. Our methodology cannot estimate

the relative sizes of bC for black carbon and GHGs, as

the SARF time series are well correlated (Fig. 3). In

section 4d, however, we experimented with increasing

TABLE 4. Regression coefficients for global means when MIROC SPRINTARS SARF absorption data are used instead of SARF data.

Control run values of kT are the same as in Table 2. Values of kT, bAC, and bAS and their confidence limits are then given for the forced

ensemble means for 1913–97. The F-test P value is quoted as a consistency check on the residual variance. Values in boldface are

significant at the 10% level.

CCSM3 GFDL0 GFDL1 GISSH GISSR HadCM3 MIROC MRI PCM

kT (W m22 K21) 1.22 1.76 1.63 2.41 2.12 2.17 1.52 1.54 2.10

10%–90% 0.32 0.55 0.40 0.40 0.28 0.33 0.45 0.47 0.40
bAC 20.08 20.40 20.44 20.45 20.48 20.47 20.43 20.04 20.45

10%–90% 0.09 0.12 0.08 0.06 0.05 0.15 0.07 0.25 0.18

bAS 0.87 0.79 20.21 1.03 0.57 0.34 0.02 1.06 1.52

10%–90% 0.41 0.91 0.85 0.47 0.31 0.44 0.47 0.53 0.62
F test 1.00 0.23 0.48 0.75 0.89 0.71 0.80 1.00 0.75
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FIG. 7. Trends in soil moisture in the upper 0.1 m of the land surface in kg m 22 K21 for 1913–97

in five models for which we have data, and for the model mean giving equal weight to each model.

The solid dark-blue lines indicate zero change. The trends are calculated as gridbox soil moisture

per degree gridbox warming.
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the magnitude of the temperature-independent effect of

black carbon by as much as a factor of 10. This only

tended to reduce our best estimates of bAC toward zero.

Hence, we cannot produce the kind of behavior that

Held and Soden (2006) suggest with our regression

model. This does not mean that it cannot happen, of

course. In HadCM3, which is not forced by black carbon

(Table 1), the increase in percent per degree kelvin

precipitation change seen in the other GCMs during the

twenty-first century does not occur (Table 5). MRI and

PCM, on the other hand, which are also not forced by

black carbon (Table 1), still produce twenty-first-

century precipitation changes around 25% larger per

degree warming than twentieth-century changes.

An alternative explanation is that anthropogenic

sulfate aerosols, which, like black carbon, are a larger

fraction of twentieth-century SARF compared with

twenty-first-century SARF, are responsible. If sulfates

have a negligible direct effect on precipitation (bS ;0),

then sulfate-driven cooling during the twentieth century

will tend to reduce precipitation more strongly than

GHG- and black-carbon-driven warming increases it

per unit SARF.

To investigate this, we repeat the analysis of Held and

Soden (2006) by taking the difference between the first

and last 20 yr for both our twentieth-century and A1B

ensemble means. We compare these results to those

found using the energy budget argument, by expressing

Eq. (3) in percent per degree kelvin by dividing through

by LPclimDT, where Pclim is the 1961–90 precipitation

climatology against which the percentage change is

calculated. We obtain

DP

PclimDT
’ kT

LPclim
1

bCDFC

LPclimDT
1

bSDFS

LPclimDT
: ð5Þ

We then substitute GCM twentieth- and twenty-first-

century DT and twentieth-century and SRES A1B

SARF into Eq. (5) and calculate the change expected

when we use the parameters fitted in section 4a. The

results are presented in Table 5.

The percent per degree kelvin changes calculated

from Eq. (5) agree well with Held and Soden–type

values for the twentieth century. This is not surprising,

since the regression model was trained on these data,

albeit using 5-yr means. Agreement during the twenty-

first century is fairly good for most models, although the

values for CCSM3, GISS (E-R), HadCM3, and MIROC

are significantly in error, even though the 10%–90%

ranges are large. In particular, Eq. (5) fails to predict the

small decrease in precipitation sensitivity shown by

HadCM3 during the twenty-first century. The failure

may be due to the paucity of training data, although we

would expect this to manifest itself through very large

error bars. Alternatively, Eq. (5) fitted to twentieth-

century data may not fully capture the physical processes

behind twenty-first-century precipitation changes—

perhaps because kT depends on time scale, climate state,

or forcing type (see section 7).

Still, our results indicate that the relative contribu-

tions of GHGs and sulfate aerosols to total SARF may

play a role in determining the percent per degree kelvin

changes in precipitation. The concept of precipitation

sensitivity to global warming can be misleading, because

the forcing scenario under consideration is important.

7. Discussion

Changes in GCM twentieth-century global-mean and

ocean-mean precipitation can be described by a simple

model of the perturbation energy budget of the tropo-

sphere. In the nine GCMs we consider, increases in

tropospheric temperature that increase tropospheric

cooling produce increases in precipitation. When the

warming is due to GHG SARF, the direct effect of

GHGs on the troposphere causes significant decreases

in tropospheric cooling unrelated to temperature, re-

ducing the overall effect of GHGs on precipitation. As a

result, precipitation responds more strongly to solar and

sulfate aerosol SARF per unit temperature than it does

to GHG SARF (Mitchell et al. 1987; Allen and Ingram

2002; Yang et al. 2003). Precipitation changes to dif-

ferent degrees in different GCMs but can be fitted to a

linear equation with three parameters. The largest

problem with the global-mean results is an apparent

TABLE 5. Values of ensemble-mean twentieth-century and A1B twenty-first-century precipitation changes calculated from Held and

Soden’s (HS) method compared to values calculated from Eq. (5). The errors are 10%–90% confidence limits for the Eq. (5) values.

CCSM3 GFDL0 GFDL1 GISSH GISSR HadCM3 MIROC MRI PCM

HS twentieth (% K21) 1.22 20.02 20.04 20.70 20.73 1.13 21.64 1.87 1.39

Eq. (5) (% K21) 1.07 0.02 20.22 20.67 20.78 1.20 21.51 1.98 1.24

10%–90% 0.67 0.93 0.64 1.50 1.03 0.67 1.25 0.71 0.63

HS twenty-first (% K21) 2.45 0.87 0.98 1.83 1.97 1.00 1.66 2.44 1.71

Eq. (5) (% K21) 1.62 1.43 0.81 1.65 1.17 1.96 0.76 2.37 1.95

10%–90% 0.50 0.66 0.47 0.81 0.60 0.44 0.67 0.59 0.53
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significant and positive temperature-independent effect

of reflecting sulfate aerosol and solar SARF on pre-

cipitation in five of the nine models. This may be an

artifact of the regression analysis. It may also be a gap in

our physical understanding. Residual consistency tests

also suggest that the energy budget model does not fully

account for forced changes in precipitation. However,

agreement between energy budget model precipitation

and the nine-GCM mean looks excellent; see Figs. 5a

and 5b.

Fitting the energy budget model to twentieth-century

GCM data allows us to predict twentieth- and twenty-

first-century percent per degree kelvin changes in pre-

cipitation. Unsurprisingly, the energy budget model

competently predicts all-century twentieth-century GCM

precipitation changes, because this is the period upon

which the model is trained. It also predicts twenty-first-

century precipitation changes that are consistent with

those found in five of the nine GCMs, although the en-

ergy budget model error bars are considerable. Only

HadCM3 shows a smaller precipitation sensitivity per

degree warming during the twenty-first century, which is

not anticipated by our model and is possibly related to

nonsimulation of the effects of absorbing black carbon

aerosols (Held and Soden 2006). However, the MRI and

PCM models also do not simulate black carbon and show

greater precipitation sensitivities in the twenty-first cen-

tury.

On the whole, the nature of global precipitation

change is qualitatively consistent with our understand-

ing of the troposphere. Estimates of the effect of in-

creasing temperature on precipitation are robust against

considering SARF absorbed by the troposphere, DA, as

opposed to SARF itself, DF. Both surface-temperature-

dependent and GHG surface-temperature-independent

effects are consistent with those found in the idealized

GCM experiments of Lambert and Faull (2007). The

direct effects of solar shortwave and sulfate aerosols, on

the other hand, are very uncertain, apparently taking

the wrong sign in some cases.

In common with earlier work, we have assumed that

kT, the constant of proportionality between the global-

mean surface temperature and dependent changes in

global-mean precipitation, is the same for different

forcings. Only the Lambert and Faull (2007) experi-

ments provide direct support for this, and only for CO2

and solar forcings. In this paper, we additionally find

that surface-temperature-driven changes in precipita-

tion due to natural variability mostly follow the same kT

as forced changes. Nevertheless, it would be useful to

have idealized experiments for a range of forcings. We

have also not considered the possibility that oceanic

adjustment could impact on kT. Williams et al. (2008)

have shown that changes in ocean properties cause

changes in temperature climate sensitivity to radiative

forcing on time scales of a few decades. Given that these

not only affect patterns of surface temperature change,

but also atmospheric lapse rates, moisture, and clouds,

there could be significant effects on kT. A future in-

vestigation of this might explain why the energy budget

model sometimes fails to predict changes in twenty-first-

century precipitation.

Over land, our linear perturbation energy budget

equation does not constrain precipitation. Adding a

land–sea atmospheric heat transport term to the re-

gression does not solve the problem in five GCMs for

which we have heat transport data. Land precipitation

may not be explicable using a linear equation and the

approximations that we employ. We note that the av-

erage behavior across all nine GCMs can be described

using the energy budget, and that average land precip-

itation does respond more strongly to shortwave SARF

per unit temperature. This is not a physical explanation,

however, as the average does not describe land precip-

itation changes in the observations or most individual

GCMs. Land surface processes may cause different

changes in precipitation in different models. Based on

our results, and those of Koster et al. (2004), it may be

that the availability of soil moisture is important. There

could also be significant differences in SARF between

land and ocean. Land–ocean heat fluxes may still play a

role that is indiscernible with a linear model. These two

factors could be particularly important under the rapid

changes in SARF caused by volcanic eruptions.

Is the energy budget picture of precipitation useful?

We reach the unhappy conclusion that we cannot ex-

plain precipitation changes over land, where we have

good observations, but may broadly understand pre-

cipitation changes over the oceans, where we have no

observations. Clearly, a probabilistic forecast of twenty-

first-century land precipitation of the form of Stott and

Kettleborough (2002) based on observations is not

possible. However, energy conservation probably does

explain why twentieth-century land precipitation has

been dominated by changes in volcanic shortwave

SARF, as was found by Gillett et al. (2004). It also gives

us strong reasons to believe that changes in oceanic

precipitation do not follow the Clausius–Clapeyron

equation even if changes in atmospheric moisture do

(;7.5% K2l). [The same is not true of extreme pre-

cipitation, however; see Pall et al. (2007).] This remains

the case, even though Wentz et al. (2007) found that

global precipitation changes during the past 20 yr are

consistent with moisture changes. Wentz’s results not

only neglect natural variability, but also a possible large

increase in recent bSDFS caused by recent decreases in
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atmospheric aerosol concentration (Romanou et al.

2007). This decrease, termed global brightening, is not

included in the majority of the contemporary GCM

simulations and may provide an explanation for the

large precipitation increases since the 1980s. Indeed,

Previdi and Liepert (2008) have shown that GCMs can

produce changes of 7% K21 or even more during 20-yr

periods. Finally, the energy budget approach urges cau-

tion in basing predictions of twenty-first-century precip-

itation on the response of twentieth-century precipitation

to temperature. This is likely to be important if twenty-

first-century SARF is dominated by GHG longwave

SARF.
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