
METEOROLOGICAL APPLICATIONS
Meteorol. Appl. 15: 19–24 (2008)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/met.45

On the effect of ensemble size on the discrete and continuous
ranked probability scores

Christopher A. T. Ferro,a* David S. Richardsonb and Andreas P. Weigelc
a School of Engineering, Computing and Mathematics, University of Exeter, UK

b European Centre for Medium-Range Weather Forecasts, Reading, UK
c Federal Office of Meteorology and Climatology (MeteoSwiss), Zurich, Switzerland

ABSTRACT: Four recent papers have investigated the effects of ensemble size on the Brier score (BS) and discrete
ranked probability score (RPS) attained by ensemble-based probabilistic forecasts. The connections between these papers
are described and their results are generalized. In particular, expressions, explanations and estimators for the expected
effect of ensemble size on the RPS and continuous ranked probability score (CRPS) are obtained. Copyright  2008 Royal
Meteorological Society
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1. Introduction

Ensemble predictions are often used to construct prob-
abilistic forecasts, such as the proportion of ensemble
members forecasting the occurrence of an event. Ensem-
ble size affects the quality of such forecasts, and this fact
raises several questions for forecast developers, providers
and users: what is the expected effect on verification
scores of changing ensemble size; what is the explana-
tion for the effect and how can it be estimated; which
reference forecasts should be used for skill scores; and
how should forecasts be compared between systems with
different ensemble sizes? We answer these questions by
deriving expressions, explanations and estimators for the
expected effect of ensemble size on verification scores.
With these tools, developers of forecasting systems can
estimate the impact of increasing or decreasing their
ensemble size before implementing the changes in their
operational system. The potential forecast quality that
would be reached with an infinite ensemble size can
also be estimated. Furthermore, differences in the quali-
ties of forecasting systems with unequal ensemble sizes
can be diagnosed. For example, the scores that would be
achieved by the systems were their ensemble sizes equal
can be estimated and compared, perhaps revealing that
the apparent superiority of one system is due only to its
larger ensemble size rather than any fundamental differ-
ence in the forecasting model. In a similar way, reference
forecasts that account for ensemble size can be used in
skill scores to provide a fair baseline.
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These topics have been addressed recently in four
papers: Richardson (2001), Müller et al. (2005), Weigel
et al. (2007), and Ferro (2007), which we shall refer to
as R01, M05, W07, and F07. These papers consider dif-
ferent scores [the Brier score (BS) and discrete ranked
probability score (RPS)], make different assumptions,
use different notations, and propose different interpre-
tations of their results. Nevertheless, there are strong
connections between the papers. We clarify these con-
nections in Section 2 and discuss their interpretation in
Section 3 before presenting a generalization in Section 4
that includes results from all four papers as special cases.
We present similar results for the continuous ranked prob-
ability score (CRPS) in Section 5. We adopt a notation
similar to F07; a comparison of notations from the four
papers is contained in Table I.

2. Connections

Suppose that we observe which one of K possi-
ble categories occurs at each time t = 1, . . . , n. Let
It,k = 1 if category k is observed at time t , and It,k = 0
otherwise. Suppose also that we issue probabilistic fore-
casts Q̂t,k equal to the proportion of m ensemble mem-
bers forecasting category k at time t . A popular verifica-
tion score for such forecasts due to Brier (1950) is

B̂K,m = 1

n

n∑
t=1

K∑
k=1

(Q̂t,k − It,k)
2 (1)

This is known as the RPS (Epstein, 1969; Murphy,
1971) if the categories are nested and category K is cer-
tain to occur. For example, if the categories correspond to
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Table I. A comparison of some notation and assumptions used by F07, R01, M05, and
W07. IID means ‘independent and identically distributed’.

F07 R01 M05/W07

Observation I E o

Probabilistic forecast Q̂ Pf y

Ensemble probabilities Q P∞ p

Climatology E(P ) o p

Brier score B̂M,n – 〈BS〉
Expected Brier score BM bM –
Ensemble members Exchangeable IID IID
Ensemble probabilities – Reliable Climatological

temperature not exceeding thresholds u1 < · · · < uK =
∞ then Q̂t,1 ≤ · · · ≤ Q̂t,K = 1 can be thought of as
cumulative probabilities. When K = 2, the RPS is also
known as the BS, which we write as

B̂m = 1

n

n∑
t=1

(Q̂t − It )
2 (2)

where Q̂t = Q̂t,1 and It = It,1. We denote by pk the long-
run frequency with which category k is observed to occur,
and assume stationarity throughout.

M05 and W07 consider the ranked probability skill
score, 1 − RPS/RPSref, in which the RPS achieved by the
forecasts is compared with the expected RPS (RPSref) that
would be obtained were a reference forecast issued for the
available observations. A positive score indicates forecast
skill. The climatology (p1, . . . , pK ) is a typical reference
forecast and is equivalent to a random ensemble forecast
with infinite ensemble size in which each member
independently forecasts category k with probability pk .
M05 and W07 show that this reference forecast attains
a better expected RPS than the equivalent forecast with
only m members, and therefore that a better-than-random,
m-member ensemble forecast can score negative skill if
climatology is used as the reference. M05 recommend
the m-member random forecast as a fairer reference and
obtain the corresponding value of RPSref by simulation:
W07 derive an analytical expression.

In the case of the BS, when K = 2, the expression
derived by W07 becomes

Bm = B∞ + p(1 − p)

m
(3)

where p = p1 and Bm = E(B̂m) → B∞ as m → ∞.
Equation (3) gives the expected BS for m-member
ensemble forecasts in which each member independently
forecasts category 1 with climatological probability p.
This is sufficient for defining fair reference values in skill
scores, but more general expressions for Bm with wider
implications are obtained by R01 and F07.

R01 also assumes that ensemble members are indepen-
dent and identically distributed but places no restriction

on the probabilities with which they forecast the two cat-
egories. In this case,

Bm = B∞ + E{Q(1 − Q)}
m

(4)

where Q represents the probability with which any
ensemble member will forecast category 1 at a randomly
chosen time. Equation (3) is recovered when Q = p at
all times.

F07 relaxes the assumption of independent ensem-
ble members to one of exchangeability. Exchangeability
says that the labelling of the ensemble members has no
impact on our prior beliefs about the values they will
assume: their joint distribution is invariant to relabelling
the members. Unlike independence, exchangeability per-
mits dependence between members; for example, mem-
bers can be correlated with one another, as long as all
correlations are equal. Exchangeability is justifiable for
most initial-condition ensembles, with possible excep-
tions arising when differences among initial states are
selected systematically and are expected to persist over
the integration time. Without exchangeability, generic
ensemble-size effects such as Equation (4) do not exist
because we know nothing about the statistical properties
of potential new members, and therefore nothing about
how they might affect verification scores.

Assuming exchangeability, F07 shows that Equa-
tion (4) generalizes to

Bm = B∞ + E(Q − R)

m
(5)

where R is the probability with which any two distinct
ensemble members at a randomly chosen time will both
forecast category 1. Since Q ≥ R, the expected BS
decreases as the ensemble size increases. Independent
members implies R = Q2 and recovers Equation (4). We
return to the interpretation of Equation (5) in Section 3.

Ensemble probabilities Q are perfectly reliable if,
for all q, category 1 is observed with frequency q on
those occasions when Q = q. Substituting Equation (10)
of R01 into Equation (15) of R01 reveals that, under
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the assumptions of perfect reliability and independent
ensemble members,

Bm = m + 1

m
B∞ = M(m + 1)

m(M + 1)
BM (6)

for any M . This also holds under the alternative assump-
tion of a ‘perfect’ ensemble in which not only the ensem-
ble members but also the observation are exchangeable
at each time. Given an original ensemble size m, the
expected value of the BS that would be obtained for any
ensemble size M �= m can then be estimated without bias
by

m(M + 1)

M(m + 1)
B̂m (7)

F07 also obtains an unbiased estimator for BM when
the original ensemble size is m, but assumes that only the
ensemble members are exchangeable. This more widely
applicable estimator is

B̂m − M − m

M(m − 1)n

n∑
t=1

Q̂t (1 − Q̂t ) (8)

This estimator is undefined when m = 1, in which case
F07 shows that an unbiased estimator for BM does not
exist and the stricter assumptions behind Equation (7)
must be employed.

Plotting such estimators for BM against M shows
how the BS is expected to change with ensemble size.
Consider also comparing two forecasting systems with
different ensemble sizes. As well as comparing the raw
BSs, we can use our estimators to compare the BSs
after adjusting for the difference in ensemble size. For
example, F07 describes how to construct confidence
intervals for the difference between the expected BSs that
would be obtained were both ensemble sizes equal to M .
Such comparisons can help to identify whether or not the
raw superiority of one system is due only to its larger
ensemble size. Data examples illustrating these and other
applications can be found in R01, M05, W07 and F07.

3. Interpretation

Increasing ensemble size merely improves the precision
of the forecasts Q̂t as estimators for the probabilities
that would be issued were the ensemble size infinite.
Our most general expression (Equation (5)) for Bm shows
that the consequent expected improvement in the BS is
independent of the observations, as are the adjustment
terms in the unbiased estimators (Equations (7) and (8))
for BM . F07 noted that the latter estimator can be written
as

B̂m − M − m

M(m − 1)

(
1

4
− S

)
(9)

where

S = 1

n

n∑
t=1

(
Q̂t − 1

2

)2

(10)

The effect of changing the ensemble size from m to
M therefore depends only on the values of m and M ,
and a measure of forecast sharpness, S. In particular,
the improvement in BS from increasing ensemble size
decreases as either m or the forecast sharpness increases.

The BS is often decomposed into reliability, resolution
and uncertainty terms:

B̂m = 1

n

m∑
k=0

Nk

(
k

m
− I k

)2

− 1

n

m∑
k=0

Nk(I k − I )2 + I (1 − I ) (11)

where I k is the mean of the Nk observations coincident
with forecasts equal to k/m, and I is the mean of all n

observations (Murphy, 1973). Changes in ensemble size
can affect both the reliability and resolution terms. For
example, we show in Appendix A that, when ensemble
members and observations are all independent and Q

always equals p, the expected reliability and resolution
terms are

E(REL) = p(1 − p)

n
E(N) + p(1 − p)

m
(12)

E(RES) = p(1 − p)

n
E(N) − p(1 − p)

n
(13)

where N is the number of possible forecasts k/m that
are issued at least once. If n � m then E(REL) ≈
p(1 − p)/m and E(RES) ≈ 0, and most of the ensemble-
size effect is restricted to the reliability term. This
fits with R01 and W07 who show that a finite-sized
ensemble is intrinsically unreliable. In a more general
perfect reliability setting, R01 shows that the increase
in variance of forecasts relative to Q brought about
by smaller ensemble sizes results in over-confidence:
forecasts less than p under-forecast and forecasts greater
than p over-forecast, inflating the reliability term and
giving a clockwise tilt to reliability diagrams. Smaller
ensemble sizes also reduce the resolution term because
fewer distinct forecasts are possible.

4. Generalization

We have seen that F07 gives the most general results
(Equations (5) and (8)) for the BS, but W07 considered
the more general RPS (Equation (1)). In this section, we
extend the results of F07 to the RPS.

Since B̂K,m is equal to the sum of K BSs, one for each
of the K categories, we immediately obtain

BK,m = BK,∞ + 1

m

K∑
k=1

E(Qk − Rk) (14)

as a generalization of Equation (5), where BK,m =
E(B̂K,m) → BK,∞ as m → ∞, and Qk and Rk are the
counterparts of Q and R for category k. Since Qk ≥ Rk
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for all k, the expected RPS decreases as the ensemble
size increases. When ensemble members are independent
so that Rk = Q2

k , and when Qk = ∑k
i=1 pi , the climatol-

ogy forecast for category k when categories are nested,
we recover the expression derived by W07 for the RPS:

BK,m = BK,∞ + 1

m

{
K∑

k=1

k∑
i=1

pi(1 − pi)

−2
K∑

k=2

k−1∑
i=1

k∑
j=i+1

pipj


 (15)

The unbiased estimator (Equation (8)) for BM also
generalizes to

B̂K,m − M − m

M(m − 1)n

n∑
t=1

K∑
k=1

Q̂t,k(1 − Q̂t,k) (16)

which can be used as before to estimate how the RPS will
change with ensemble size, and to compare forecasting
systems with different ensemble sizes.

As with the estimator for BM given by Equation (8),
the foregoing estimator for BK,M is undefined when
m = 1. Mirroring the derivation of Equation (7) for the
BS, however, the estimator

m(M + 1)

M(m + 1)
B̂K,m (17)

is unbiased for BK,M under the stricter assumptions that
either the Qk are perfectly reliable for all k and the
ensemble members are independent, or the ensemble is
perfect.

Let us also consider the multi-category BS, which
has the same definition (Equation (1)) as the RPS, but
requires the K categories to be mutually exclusive and
exhaustive rather than nested. The foregoing results of
this section for the RPS apply equally to the multi-
category BS. However, the unbiased estimator (Equa-
tion (16)) for the multi-category BS also equals

B̂K,m − M − m

M(m − 1)

(
K − 1

K
− SK

)
(18)

where

SK = 1

n

n∑
t=1

K∑
k=1

(
Q̂t,k − 1

K

)2

(19)

is the sum of the sample variances of forecasts for
category k around the uniform forecasts 1/K . This
generalization of the sharpness measure (Equation (10))
for the BS attains its minimum value of zero when
Q̂t,k = 1/K for all t and k, and attains its maximum
value of (K − 1)/K when Q̂t,k = 1 for some k at each
time t .

5. Continuous ranked probability score

Following a suggestion from an anonymous referee, we
now perform a similar analysis of the effect of ensemble
size on the CRPS (e.g. Hersbach, 2000). This score
extends the RPS from a sum over K categories to an
integral over a continuum of categories, as follows.

Let It (u) = 1 if the observation at time t fails to exceed
a threshold u, and It (u) = 0 otherwise. Let also Q̂t (u) be
the proportion of m ensemble members failing to exceed
u at time t . The CRPS is defined as

Ĉm = 1

n

n∑
t=1

∫ ∞

−∞
{Q̂t (u) − It (u)}2du (20)

Assuming stationarity and exchangeable ensemble
members, we show in Appendix B that the expected
CRPS can be written as

Cm = C∞ + E|X1 − X2|
2m

(21)

where Cm = E(Ĉm) → C∞ as m → ∞ and {X1, X2} is
any pair of distinct ensemble members at a randomly
chosen time. Since |X1 − X2| ≥ 0, the expected CRPS
decreases as the ensemble size increases. Replacing the
ensemble members in Equation (21) with independent
variables following the climatological distribution yields
a reference value for skill scores.

We can also write

CM = Cm − M − m

2Mm
E|X1 − X2| (22)

where CM is the expected CRPS that would be obtained
for an ensemble of size M . Therefore, an unbiased
estimator for CM based on ensembles of size m is

Ĉm − M − m

2Mmn

n∑
t=1

�t (23)

where
�t = 1

m(m − 1)

∑
i �=j

|Xt,i − Xt,j | (24)

is Gini’s mean difference of the ensemble members
{Xt,1, . . . , Xt,m} at time t . See David (1998) for a history
of the mean difference.

As with the estimator for BM given by Equation (8),
the foregoing estimator for CM is undefined when m = 1.
As for the BS and RPS, however, an unbiased estimator
for CM does exist under the stricter, perfect ensemble
assumption. In that case,

Cm = m + 1

2m
E|X1 − X2| (25)

which leads to

CM = m(M + 1)

M(m + 1)
Cm (26)
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and the unbiased estimator

m(M + 1)

M(m + 1)
Ĉm (27)

As discussed in Section 3, increasing ensemble size
improves the precision of the forecasts Q̂t (u). Equa-
tions (21) and (23) show that the consequent expected
improvement in the CRPS is independent of the observa-
tions and proportional to a measure of average ensemble
spread, with smaller improvement when the spread is low.
Low spread arises when ensemble members are strongly
dependent, so that new members add little independent
information, or when the distribution from which the
ensemble forms a sample is sharp, that is when confi-
dence is high.

Our analysis of the CRPS also sheds light on our ear-
lier interpretation of the effect of ensemble size on the
BS. The mean difference between variables indicating
whether or not two distinct members forecast an event
A is

E|I(X1 ∈ A) − I(X2 ∈ A)|
= Pr(X1 ∈ A,X2 �∈ A) + Pr(X1 /∈ A, X2 ∈ A)

= 2{Pr(X1 ∈ A) − Pr(X1 ∈ A, X2 ∈ A)}
= 2(Q − R) (28)

Therefore, the effect of ensemble size on the BS given
by Equation (5) has the same form as in Equation (21)
for the CRPS, where X1 and X2 are replaced by indicator
variables for the event. The dependence on sharpness of
the ensemble-size effect for the BS can thus be restated in
terms of the average spread of the ensemble of indicator
variables.

6. Conclusion

The expected BS, RPS, CRPS and multi-category BS
achieved by probabilistic forecasts constructed as pro-
portions of exchangeable ensemble members decrease as
ensemble size increases. This effect can be accounted for
when choosing reference forecasts for skill scores. The
magnitude of the effects on scores of changing the ensem-
ble size depends on the original ensemble size and mea-
sures of average ensemble spread or forecast sharpness.
Unbiased estimators for these effects can be used to esti-
mate how scores are expected to change with ensemble
size, and to compare forecasting systems with different
ensemble sizes.
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Appendix A. Reliability and resolution.

We derive Equations (12) and (13) for the expected relia-
bility and resolution when the observations and ensemble
members are all mutually independent Bernoulli random
variables with event probability equal to p. This implies
that the vector (N0, . . . , Nm) is multinomial with total n

and probabilities (
m

k

)
pk(1 − p)m−k

for k = 0, . . . , m. We find the expected reliability in two
steps: first fixing the Nk and taking the expectation with
respect to the It , then taking the expectation with respect
to the Nk. Since

I
2
k = 1

N2
k

{
n∑

t=1

I(Q̂t = k/m)It

+
n∑

t=1

∑
s �=t

I(Q̂s = Q̂t = k/m)IsIt




where I(A) = 1 if A is true and I(A) = 0 otherwise, the
conditional expectation of the reliability given the Nk is

1

n

m∑
k=0

I(Nk > 0)Nk

[
k2

m2 − 2k

m
p

+ 1

N2
k

{Nkp + Nk(Nk − 1)p2}
]

= 1

n

m∑
k=0

I(Nk > 0)Nk

(
k

m
− p

)2

+ p(1 − p)

n
N

Taking the expectation with respect to the Nk , use

E{I(Nk > 0)Nk} = E(Nk) = n

(
m

k

)
pk(1 − p)m−k

to obtain the expected reliability

1

m2

m∑
k=0

(
m

k

)
pk(1 − p)m−k(k − mp)2

+ p(1 − p)

n
E(N)

The sum in this expression is the variance of a
binomial random variable, and equals mp(1 − p). The
expected uncertainty term in the decomposition of the BS
equals (n − 1)p(1 − p)/n and the expected BS equals
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(m + 1)p(1 − p)/m; subtraction yields the expected res-
olution, p(1 − p)E(N)/n − p(1 − p)/n.

Appendix B. Expected CRPS.

We derive Equation (21) for the expected CRPS,

Cm = E

[
1

n

n∑
t=1

∫ ∞

−∞
{Q̂t (u) − It (u)}2du

]

By stationarity, the expectation of the integral is the
same for all t , so we can write

Cm = E


∫ ∞

−∞

{
1

m

m∑
i=1

I(Xi ≤ u) − I(Y ≤ u)

}2

du




where {X1, . . . , Xm} and Y are the ensemble mem-
bers and observation at an arbitrary time. Writing α =
min{X1, . . . , Xm, Y } and β = max{X1, . . . , Xm, Y }, the
integral becomes

∫ β

α

{
1

m

∑
i

I(Xi ≤ u) − I(Y ≤ u)

}2

du

= 1

m2

∑
i,j

∫ β

α

I(Xi ≤ u, Xj ≤ u)du

− 2

m

∑
i

∫ β

α

I(Xi ≤ u, Y ≤ u)du +
∫ β

α

I(Y ≤ u)du

= 1

m2

∑
i,j

(β − max{Xi,Xj })

− 2

m

∑
i

(β − max{Xi, Y }) + (β − Y )

= − 1

m2

∑
i �=j

max{Xi, Xj } − 1

m2

∑
i

Xi

+ 2

m

∑
i

max{Xi, Y } − Y

By exchangeability, we can then write the expectation
as

Cm = −m − 1

m
E(max{X1, X2}) − 1

m
E(X1)

+2E(max{X1, Y }) − E(Y )

= C∞ + 1

m
E(max{X1, X2} − X1)

where C∞ = 2E(max{X1, Y }) − E(Y ) − E(max{X1,

X2}) is independent of m. Furthermore, since

|X1 − X2| = max{0,X1 − X2} + max{0, X2 − X1}
= (max{X1, X2} − X2) + (max{X1, X2} − X1)

and similarly for |X1 − Y |, we have

E|X1 − X2| = 2E(max{X1, X2} − X1)

E|X1 − Y | = 2E(max{X1, Y }) − E(X1) − E(Y )

so that C∞ = E|X1 − Y | − E|X1 − X2|/2 and

Cm = C∞ + E|X1 − X2|
2m
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