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Abstract
The stop-signal paradigm is a popular method for examining response inhibition and impulse
control in psychology, cognitive neuroscience, and clinical domains because it allows the
estimation of the covert latency of the stop process (SSRT). In three sets of simulations, we
examined to what extent SSRTs that were estimated with the popular mean and integration
methods were influenced by the skew of the reaction time distribution and the gradual slowing of
the response latencies. We found that the mean method consistently overestimated SSRT. The
integration method tended to underestimate SSRT when response latencies gradually increased.
This underestimation bias was absent when SSRTs were estimated with the integration method for
smaller blocks of trials. Thus, skewing and response slowing can lead to spurious inhibitory
differences. We recommend that the mean method of estimating SSRT be abandoned in favour of

the integration method.



Fictitious inhibitory differences

The ability to inhibit planned or ongoing actions is a cornerstone of flexible human behaviour
(Verbruggen & Logan, 2008). The stop-signal paradigm (Figure 1A) is currently one of the most
popular tasks for examining response inhibition in the laboratory. The last decade has witnessed
an exponential rise in stop-signal studies in various research domains (see Figure S1 in the
Supplemental Material available online). The paradigm is popular because it allows researchers to
estimate the covert latency of the stop process: the stop-signal reaction time (SSRT). SSRT has
been used to explore the cognitive and neural mechanisms of response inhibition, the
development and decline of inhibitory capacities across the life span, and correlations between
individual differences in stopping and behaviours such as substance abuse, pathological gambling,
risk-taking, and more generally, control of impulses and urges (Chambers, Garavan, & Bellgrove,
2009; Logan, 1994; Verbruggen & Logan, 2008). In the present study, we used simulations to test
the reliability and accuracy of SSRT estimates. Previous simulations of Band, van der Molen, and
Logan (2003) showed that commonly used SSRT-estimation methods were not influenced much
by variability in go reaction time (RT) or SSRT, or by dependency between the go and stop
processes. However, we will show that estimates are strongly biased by positive skew and by
gradual slowing of reaction times. Because skew and slowing are important characteristics of RT
distributions in most stop-signal experiments (see below), our simulations suggest that some of the
previously reported differences in stopping may be spurious.

SSRT is estimated based on the assumptions of the independent race model (Logan, 1994;
Logan & Cowan, 1984; Verbruggen & Logan, 2009a): performance in the stop task can be
modelled as a race between a go process, which is triggered by the presentation of the go
stimulus, and a stop process, which is triggered by the presentation of a stop signal (Figure 1B).
The stop signal occurs after a variable delay (stop-signal delay; SSD). If the go process finishes
before the stop process (i.e. when RT < SSRT + SSD; Figure 1B) then response inhibition is
unsuccessful and a response is executed; if the stop process finishes before the go process (i.e.
when RT > SSRT + SSD) then the response is correctly withheld. The race model provides two

common methods for estimating SSRT: the integration method and the mean method (Logan &



Cowan, 1984). In the integration method, the point at which the stop process finishes is estimated
by integrating the RT distribution and finding the point at which the integral equals the probability of
responding [p(respondlsignal)] for a specific delay (Figure 1B). SSRT is then calculated by simply
subtracting SSD from the finishing time. In the mean method, the mean of the inhibition function (a
plot of the probability of responding given a stop signal against SSD; see Logan & Cowan, 1984;
Verbruggen & Logan, 2009a) is subtracted from the mean of the RT distribution.

In recent years, the majority of stop-signal studies have used a dynamic tracking procedure
to determine an SSD at which subjects inhibit 50% of the time. At the beginning of the experiment,
SSD is set to a specific value (e.g. 250 ms) and is then constantly adjusted after stop signal trials,
depending on the outcome of the race: when inhibition is successful, SSD increases (e.g. by 50
ms); when inhibition is unsuccessful, SSD decreases (e.g., by 50 ms). This one-up/one-down
tracking procedure typically results in a p(respondlsignal) = .50, which means that the race
between the stop process and the go process is tied. Then SSRT is usually estimated with the
mean method or the integration method (see Figure S1 in Supplemental Material)l. The mean
method uses the mean of the inhibition function (see above), which corresponds to the average
SSD obtained with the tracking procedure when p(respondisignal) = .50. In other words, the mean
method assumes that the mean RT equals SSRT + mean SSD, so SSRT can be estimated easily
by subtracting mean SSD from mean RT (e.g. Logan & Cowan, 1984; Logan, Schachar, &
Tannock, 1997). The integration method assumes that the finishing time of the stop process
corresponds to the nth RT, with n = the number of RTs in the RT distribution multiplied by the
overall p(respondisignal) (Logan, 1981); SSRT can then be estimated by subtracting mean SSD
from the nth RT (e.g. Ridderinkhof, Band, & Logan, 1999; Verbruggen, Liefooghe, &

Vandierendonck, 2004).

i Some studies estimated SSRT by subtracting mean SSD from the median RT. This ‘median’ method is a variant of the
integration method that assumes that p(respondisignal) is always exactly .50. This is rarely the case. Thus, the median
method is most of the time a less accurate version of the integration method; therefore, it is not further considered in the
main analyses. We report the results for the median method in Table S8 in the Supplemental Material. The table shows
that when ‘subjects’ did not slow and p(respondlsignal) was close to .50, the results were very similar to the results for
the integration method (as expected). However, when slowing was implemented, SSRT was overestimated [because
p(respondisignal) was often lower than .50; see Tables S3—S5]. The overestimation bias was less pronounced than the
bias observed for the mean method because the median is less influenced by the tail of the distribution than the mean.
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Simulations and reliability iitests suggest that when the tracking procedure is used, the
mean and integration estimates are both reliable (Band et al., 2003; Congdon et al., 2012; Logan
et al., 1997; Williams, Ponesse, Schachar, Logan, & Tannock, 1999). However, a recent empirical
study reported numerical differences between the two (Boehler et al., 2012). We propose that such
discrepancies are due to two factors, namely (1) skewness of the RT distribution and (2) the
degree of proactive response slowing in anticipation of stop signals. Indeed, the simulations of
Band et al. (2003), and the comparison of mean and integration method by Boehler et al. (2012),
suggest that skew and slowing might have an effect on estimations. However, these factors not
been systematically explored in the simulations or reliability tests so far. There are often large
individual or group differences in the shape of the RT distribution and the degree of response
slowing, so it is important to know to what extent these differences influence SSRT estimates.

In our first set of simulations, we examined the effect of positively skewed RT distributions
on SSRT estimates. It is well known that the mean is strongly influenced by extreme scores in the
tails of the distribution; the median is less affected by the tails. In the stop-signal task, the median
corresponds to the nth RT when p(respondlisignal) is exactly .50. Because RT distributions are
usually positively skewed (Ratcliff, 1993), the right tail of the distribution might explain
discrepancies between the ‘mean’ and ‘integration’ estimates. As shown in Figure 1C, the mean
method would overestimate the finishing time of the stop process (and therefore, the SSRT) when
the RT distribution is skewed, whereas the integration method might provide a more accurate
estimate. We tested this in the first set of simulations.

In a second and third set of simulations, we explored the effect of response slowing on
SSRT estimates. Recent studies have shown that subjects slow responses either proactively when
they expect that stop signals might occur, or reactively when they fail to inhibit their responses (e.g.
Aron, 2011; Bissett & Logan, 2011; Leotti & Wager, 2010; Verbruggen & Logan, 2009b;
Verbruggen, Logan, Liefooghe, & Vandierendonck, 2008; Zandbelt, Bloemendaal, Neggers, Kahn,
& Vink, 2012). Indeed, subjects sometimes slow their RT distributions over the course of the

experiment to try to beat the tracking algorithm (see e.g. Leotti & Wager, 2010 for some extreme

i Reliability tests typically used the split-half method: The data set is split in two and SSRTs for both subsets are
compared.



examples). These shifts in the RT distribution could result in overestimates of SSRT in the mean
method because slowing would primarily influence the right tail of the distribution and
underestimates in SSRT in the integration method because the tracking is a step behind when

subjects continuously slow down. We tested the effect of slowing in the second and third set

simulations.
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Figure 1. (A) In the stop-signal task, participants perform a go task (e.g. respond to the shape of a stimulus). On
a minority of the trials, the go stimulus is followed by a ‘stop signal’ (e.g. the outline of the shape turning bold)
after a variable delay (stop-signal delay; SSD); this stop signal instructs the subject to withhold the planned
response. FIX = presentation duration of the fixation sign; MAXRT = response deadline. (B) Graphic
representation of the assumptions of the independent horse-race model of Logan and Cowan (1984), indicating
how the probability of responding [p(respondisignal)] depends on the distribution of go reaction times, stop-
signal delay (SSD) and stop-signal reaction time (SSRT). In this example, p(respondisignal) = .50. The dotted line
corresponds to the nth percentile, with n = p(respondisignal); the square shows the mean of the RT distribution.
(C) This panel demonstrates that when the distribution is skewed to the right, there is a substantial difference
between the mean and the nth RT; this may influence the SSRT estimations (see main text).



Methods
Race model simulations
Performance in the stop-signal task was simulated based on assumptions of the independent race
model (Logan & Cowan, 1984): on stop-signal trials, a response was deemed to be withheld
(signal-inhibit) when the RT was larger than SSRT + SSD; a response was deemed to be
erroneously executed (signal-respond) when RT was smaller than SSRT + SSD.

All simulations were done using R (http://www.r-project.org). RTs were sampled from an ex-

Gaussian distribution, using the rexGaus function (http:/gamlss.org). The ex-Gaussian distribution
is often used by psychologists to describe RT data (Ratcliff & Murdock, 1976); it has a positively
skewed unimodal shape and results from a convolution of a normal (Gaussian) distribution and an
exponential distribution. It is characterised by three parameters: mu (mean of the Gaussian
component), sigma (SD of Gaussian component), and tau (both the mean and SD of the
exponential component) (Figure S2 in the Supplemental Material shows how changes in these
three parameters influence the distribution). Sigma approximately represents the rise in the left tail
and tau the fall in the right tail of the ex-Gaussian distribution, whose mean = mu + tau and
variance = tau2 + sigmaz? (Ratcliff, 1979). Band et al. (2003) also used an ex-gaussian distribution
to model reaction times in their simulations.

In the first set of simulations, sigma for the go task (RT-sigma) was 50, 100, or 150; and tau
for the go task (RT-tau) was 50, 150, 250 (see e.g. Schmiedek, Oberauer, Wilhelm, Siss, &
Wittmann, 2007, for a series of choice-reaction time tasks with tau’s in this range). Empirically,
sigma is usually not more than one fourth of tau (Ratcliff, 1993); however, we included a wider
range of sigma because variability is often increased in clinical populations (e.g.Klein, Wendling,
Huettner, Ruder, & Peper, 2006; Leth-Steensen, King Elbaz, & Douglas, 2000). For each
combination of RT-sigma and RT-tau, we simulated the data of 100 ‘subjects’. Mu was different for
each subject [mu(subject)]; it was sampled from a normal distribution with mean = 400 (i.e. the
population mean) and SD = 25, with the restriction that it was larger than 300.

SSRTs were also sampled from an ex-Gaussian distribution. For all subjects, both SSRT-

sigma and SSRT-tau were 10. Mu(subject) was derived from a normal distribution with mean = 200
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(population mean), and SD = 10, with the restriction that mu(subject) was larger than 150. Note
that we also ran simulations in which SSRT-sigma and SSRT-tau were varied; the results are
reported in the Supplemental Material (Table S7). SSRT-sigma and SSRT-tau did not influence the
estimates much, and did not interact with the effects of RT-tau and response slowing. Therefore,
we used only one value for SSRT-sigma and SSRT-tau in the main simulations reported below.

For each simulated subject, there were 4 blocks of 60 trials; signals randomly ‘occurred’ on
25% of the trials, resulting in 15 stop-signal trials per block. The ‘delay’ between the start of the go
process and the start of the stop process (SSD) was initially set at 150 + RT-tau (e.g. when RT-tau
was 250, the initial SSD was 400), and subsequently adjusted: after a signal-inhibit trial, SSD
increased by 50; after a signal-respond trial, SSD decreased by 50. The start value was chosen in
such a way that the race between go and stop would be close, but with a small initial ‘head start’
for the stop process (the finishing time of the go process = mean RT = 400 + RT-tau; the finishing
time of the stop process ~ SSD + mean SSRT = 150 + RT-tau + 200 + SSRT-tau). Because mu
was not manipulated across conditions, we only used tau to determine start SSD.

In the second set of simulations, we examined the effect of gradual slowing of reaction
times. RTs were again derived from an ex-Gaussian distribution but RT-mu increased linearly over
trials. The start value of RT-mu was again derived from a normal distribution with mu = 400 and SD
= 25. The slope of the increase depended on a slowing factor, which could be 1, 1.5, or 2.5; these
values were roughly based on the degree of slowing for individual subjects in one of our previous

studies (Verbruggen & Logan, 2009b). The slope of the increase was (y2 —y1)/(x2 — x1), with y2 =

RT-mu(start) * slowing factor, and y1 = RT-mu(start), x2 = 240 (the trial number of the last trial),and
x1 =1 (trial number of the first trial). When the slowing factor was 1, the slope was 0 (i.e. y2 = y1,
so no slowing). When the slowing factor was 1.5 or 2.5, the slope was positive and RT-mu
increased. For example, with only six trials and slowing factor = 1.5, RT-mu’s would be: T1 =
mu(start), T2 = mu(start) * 1.1, T3 = mu(start) * 1.2, T4 = mu(start) * 1.3, T5 = mu(start) * 1.4, T6 =
mu(start) * 1.5. In this second set of simulations, RT-sigma was 50 or 150, and RT-tau was 50 or

250.



Finally, in the third set of simulations, the slowing factor was different for each subject to
allow for individual differences in slowing. For each simulated subject, slowing factor was derived
from a uniform distribution with min = 1, and max = 3.

Estimation and analyses

For the first set of simulations, we estimated SSRT over all blocks using the mean (SSRT = mean
RT - mean SSD) and integration (SSRT = nth RT - mean SSD) methods. For the second and third
set, we also estimated SSRT for each block separately using the integration method and then took
the average of these four block estimatesii. Trials with a RT > 2000 were considered to be missed
responses (in real experiments, there is always a response deadline around this value). These
‘missed’ trials were excluded when we estimated SSRT using the ‘mean’ method; for the
integration methods, RT for missed responses was set to 20001,

For each estimation method, we calculated the difference between the estimated SSRT and
actual SSRT; positive values indicate that SSRT is overestimated, whereas negative values
indicate that SSRT is underestimated. Table 1 reports the mean difference scores, confidence
intervals, and t-tests that explored whether the SSRT difference was reliably different from zero.
Using mixed ANOVAs (see Tables S2, S4, and S6 in the Supplemental Material for overviews), we
then tested whether the difference scores were influenced by estimation method, RT-sigma, RT-
tau, and slowing (second set of simulations).

Results and discussion
In the first set of simulations, the tracking procedure worked well and p(respondisignal) was close
to .50 for all RT-sigma/RT-tau combinations (see Table S1 in Supplemental Material). When we
collapsed across all values of RT-sigma and RT-tau, we found that the mean method
overestimated SSRT; by contrast, the integration method tended to slightly underestimate SSRT

(Table 1).

i Because there was an equal number of signal trials in each block, a block-based variant of the mean method results in
the exact same estimate as the estimate obtained using experiment-based mean method.

v As discussed below, the mean method tended to overestimate SSRT. This overestimation would be even more
pronounced if ‘missed’ responses were not excluded or when ‘missed’ RT was set to 2000.
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Experiment 1
Mean method 23.46 21.15 25.78 19.92 899 <.001
Integration method -6.16 -8.35 -3.97 5.53 899 <.001
Experiment 2:
slow factor = 1
Mean method 25.89 22.09 29.69 13.39 399 <.001
Integration method -4.73 -8.19 -1.28 2.70 399 0.01
Integration (blocked) -3.48 -6.92 -0.04 1.99 399 0.05
Experiment 2:
slow factor = 1.5
Mean method 39.67 35.47 43.88 18.55 399 <.001
Integration method -1.13 -4.62 2.36 0.64 399 0.52
Integration (blocked) -0.62 -4.15 2.91 0.35 399 0.73
Experiment 2:
slow factor = 2.5
Mean method 62.67 58.27 67.07 27.99 399 <.001
Integration method -14.10 -18.38 -9.82 6.48 399 <.001
Integration (blocked) -1.78 -5.38 1.81 0.97 399 0.33
Experiment 3
Mean method 51.07 46.81 55.33 23.55 399 <.001
Integration method -6.59 -10.37 -2.80 3.42 399 <.001
Integration (blocked) 0.84 -2.52 419 0.49 399 0.62

Table 1: Overview of analyses of the difference scores (i.e. difference between the estimated SSRT and actual
SSRT; positive values indicate that SSRT is overestimated, whereas negative values indicate that SSRT is
underestimated). One-sample t tests were performed to examine whether the scores were significantly different
from zero.

We used box-plots of differences scores to examine the accuracy of SSRT estimates and to
explore the estimation bias: a leftward shift of a box indicates underestimation; rightward shift
indicates overestimation. The plots (Figure 2) demonstrate that when RT-sigma and RT-tau were
small, the difference between the estimated and actual SSRTs was small for most of subjects. An

increase in RT-sigma led to more noisy estimates, but did not induce a systematic bias (i.e. the box
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widened but was still centred around zero). Changes in RT-tau, which influenced the right tail
(positive skew) of the RT-distribution, had a more pronounced effect on SSRT estimations. A
comparison of the bottom- and top-row box-plots shows that when RT-tau increased, estimates
became noisier and, more importantly, became biased. For the mean method, the rightward shift of
the top-row boxes shows that SSRT was overestimated when RT-tau increased. The integration
method had a small tendency to underestimate SSRT when RT-tau increased, but this effect was
less pronounced. Thus, the integration method seemed more robust and less biased than the
mean method. These conclusions are supported by significant main effects of estimation method,
RT-tau, and an interaction between method and RT-tau (see Table S2 in the Supplemental
Material).

The overestimation bias for large RT-tau’s is problematic when SSRTs of different groups or
conditions are compared. Often, RT distributions differ between groups or conditions. For example,
a recent study showed that RT-tau was approximately 251 ms for children with ADHD and 162 ms
for control children (Epstein et al., 2011). Such RT-tau group differences could influence the SSRT
estimates. We further tested this by randomly selecting 20 subjects in the RT-sigma=100/RT-
tau=150 condition and 20 subjects in the RT-sigma=100/RT-tau=250 condition. As expected, there
was no difference between the true stop latencies in both conditions [208 vs. 206; F(1,38) = 0.11, p
= 0.750]. However, there was a significant 31 ms difference between the estimated SSRTs [RT-
tau=150: 229 ms, RT-tau=250: 260 ms; F(1,38) = 6.60, p = .014]. Thus, when there are differences
in RT-tau, the mean method may lead to incorrect conclusions about group differences in SSRTSs.
Note that there was no difference between the SSRTs estimated using the integration method [200

vs. 204; F(1,38) = 0.07, p = 0.798].
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Figure 2. This series of box-plots shows the difference between the estimated stop latency (using the mean and
integration methods) and the true stop latency for each combination of RT-sigma and RT-tau. Negative values
indicate the estimated value is an underestimation of the true SSRT; positive values indicate that the estimated
SSRT is longer than the actual stop latency. The plots show that estimates become noisier when RT-sigma and
RT-tau increase. Importantly, the mean method substantially overestimates the stop latency when RT-tau
increases.

In the second set of simulations, we tested how gradual slowing of RTs over trials influences the
SSRT estimates. Here, we used two variants of the integration method: (1) the variant that we

used in the first set of simulations and that uses all trials to obtain a single SSRT estimate

(henceforth, the experiment-wide integration method), and (2) a block-based integration method
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that estimated SSRT for each block separately (there were 60 trials per block, 15 of which were

signal trials) and then took the average of these four estimates.

The box-plots in Figure 3 show that the mean method overestimates SSRT when RT-tau

increases or when mean RT gradually increases over trials (see also Table 1). By contrast, the

experiment-wide integration method tended to underestimate SSRT, especially when the slowing

factor increased (see Figure 3 and Table 1). The block-based integration method did not show

such a consistent bias. These conclusions were supported by the ANOVAs reported in Table S4 of

the Supplemental Material.

mean

int.blocked

int

mean

int.blocked

int

mean

int.blocked

int

-200 -100 0 100 200
| | | | | | | | | |
RTslow : 2.5 RTslow : 2.5
RTtau : 50 RTtau : 250

RTslow : 1.5

RTslow : 1.5

RTtau : 50

RTtau : 250

RTslow : 1

RTslow : 1

RTtau : 50

RTtau : 250

T
—-200

T T
-100 0 100

T
200

Figure 3. This series of box-plots shows how the SSRT estimates are influenced by RT-tau and response
slowing. The mean method is influenced by both, which leads to overestimations for most RT-tau and slowing-
factor combinations. By contrast, the integration method, which estimates SSRT based on all trials, tends to
underestimate SSRT. Finally, the block-based integration method, which estimates SSRT for each block
separately first, appears relatively immune to changes in RT-tau and slowing.

13



We found that the mean method was strongly influenced by response slowing. One possible
explanation for this finding is that the mean method assumes that the probability of responding
approximates .50. However, Table S3 (Supplemental Material) shows that when the slowing factor
increased, p(respondisignal) tended to decrease: when the slowing factor is large, the tracking
procedure cannot keep up with the changes in RT, so p(respondlisignal) will be lower than .50.
Therefore, we re-estimated SSRT using only those simulated subjects for which .40 < p(respondl
signal) < .60; these values are based on the criterion discussed in Verbruggen, Logan, & Stevens
(2008). The results are shown in Figure S3 (Supplemental Material); as can be seen, the RT-tau
and slowing biases were still present, even when only the central estimates were included.

The second set of simulations demonstrated that the mean method and experiment-wide
integration method were influenced by response slowing. In a third set of simulations, we used a
random slowing factor for each simulated subject to explore the correlation between slowing and
the degree of over/underestimation. Figure 4 shows that when RT-tau was low and the experiment-
wide integration method was used, the estimated SSRT correlated negatively with the degree of
slowing¥¥i. Researchers have previously argued that such negative correlations could be due to
proactive suppression of motor output or changes in task priorities (e.g. Jahfari, Stinear, Claffey,
Verbruggen, & Aron, 2010; Leotti & Wager, 2010). Our simulations suggest that this negative
correlation could be due to a bias in SSRT estimation. Importantly, this bias was not observed
when SSRT was estimated for each block separately (middle row Figure 4). As expected based on
the previous sets of simulations, we found a positive correlation between response slowing and

degree of overestimation for the mean method.

v We obtained very similar results when we implemented slowing differently: On each trial, we obtained an RT from a
single ex-gaussian distribution with constant parameters [mu(subject), sigma, tau]. This RT was then multiplied by the
slowing factor. For example, if the slowing factor would have been 1.5 and the number of trials = 3, the RTs would be: T1
= RT(sampled), T2 = RT(sampled) * 1.25, T3 = RT(sampled) * 1.5. The negative correlations and underestimation bias
were still present for the standard integration method (if anything, the effects were more pronounced), but not for the
block-based method.

vi For the mean method, overall correlation was 0.26 [t(398) = 5.48, p < .001], which suggests that the mean method will
overestimate SSRT when subjects slow down. For the experiment-wide integration method, the overall correlation was
-0.19 [t(398) = -3.83, p < .001]; this suggests that the experiment-based integration method will underestimate SSRT
when subjects slow down. Finally, for the block-based integration, overall correlation was 0.02 [t(398) = 0.34, p = 0.74],
which suggests that the estimates are not influenced by slowing. We obtained very similar correlations between the
degree of slowing and the difference between SSRT(estimate) and SSRT(true): for the mean method, the overall
correlation was 0.29 [t(398) = 5.98, p < .001]; for the integration method, the overall correlation was -0.21 [t(398) = -4.36,
p < .001]; finally, for the block-based integration, overall correlation was 0.02 [t(398) = 0.45, p = 0.66]. This confirms that
the observed correlations between slowing and SSRT were due to an estimation bias.
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Figure 4: Correlation between the estimated SSRT and the slowing factor.



Conclusions and practical guidelines
In the present study, we explored to what extent the skew of the RT distribution and gradual
slowing of response latencies influences the ‘mean’ and ‘integration’ SSRT estimates. The mean
method is often used (see Figure S1 in the Supplemental Material) because it is very easy: SSRT
can be estimated simply by subtracting the mean SSD from the mean RT. However our simulations
show that this approach overestimates SSRT when the RT distribution is skewed to the right (i.e.
when RT-tau is large) or when RTs increase gradually over the course of the experiment. We
demonstrated that individual or group differences in RT skew or response slowing could result in
spurious inhibitory differences. Unfortunately, such RT differences may occur frequently. For
example, studies showed that SSRT is longer for children with ADHD than for control children
(Lijffijt, Kenemans, Verbaten, & van Engeland, 2005; Oosterlaan & Sergeant, 1998; Schachar &
Logan, 1990). However, a recent study estimated that tau was much higher in children with ADHD
than in control children (Epstein et al., 2011). Thus, the mean method will overestimate SSRT
differences between ADHD children and control children, and possibly produce spurious
differences. Thus, our first take-home message is that the mean method should be
abandoned because it is overly susceptible to the shape of the RT distribution.

The integration method fared better in the first set simulations: there was a trend to
underestimate SSRT slightly (approximately 4 ms), but there were no obvious group differences
caused by changes in the shape of the RT distribution. This is consistent with a recent reliability
analysis that used split-half reliability measures (Congdon et al., 2012). However, the second and
third set of simulations showed that the small underestimation bias for the integration method
became more pronounced when there is gradual slowing of RTs across blocks. This
underestimation bias may explain the previously observed negative correlations between SSRT
and response slowing(e.g. Jahfari et al., 2010; Leotti & Wager, 2010). Thus, our second take-
home message is that the experiment-wide integration method results in reliable and
unbiased estimates unless subjects slow their RT gradually.

The gradual slowing of reaction times may be reduced by clear advance instructions (for

example, by stressing speed in the go task and explaining the staircase tracking procedure) and by
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providing feedback after every trial (e.g. Ridderinkhof et al., 1999; Verbruggen et al., 2004) or after
every block (e.g. Verbruggen et al., 2008). Thus, our third take-home message is that in
standard stop tasks researchers should provide clear instructions and implement feedback
procedures to discourage excessive strategic slowing.

Even when feedback is provided, slowing may still be observed in certain subjects (e.g.
Verbruggen et al., 2004; Verbruggen et al., 2008). Researchers can exclude those subjects who
slow their responses substantially; our simulations suggest that the underestimation bias appeared
when the mean of the normal part of the distribution doubled¥ii. However, this may result in the
exclusion of a large number of subjects in some experiments, which could induce an exclusion
bias. Also, researchers may be specifically interested in the correlation between slowing and
SSRT. Recently, several authors have argued that strategy adjustments may be an important
aspect of successful stop performance and more generally, impulse control in everyday life (e.g.
Aron, 2011; Bissett & Logan, 2011; Leotti & Wager, 2010; Verbruggen & Logan, 2009b). Feedback
about slowing may not be provided when such strategic adjustments are examined. Furthermore,
excluding subjects who slow substantially is not be appropriate in such studies. The second and
third set of simulations show that a block-based version of the integration method is less
susceptible to bias from response slowing. When SSRT was estimated for each block separately
(number of no-signal trials per block = 45; number of signal trials per block = 15) and then
averaged, we obtained a reliable and unbiased SSRT even when there was substantial response
slowing. Additional analyses (Supplementary Material; Figures S5-S6) suggest that approximately
40-80 trials are required per block (25% of which are signal trials). If there are fewer trials, the
estimates become too noisy; if there are more trials, the underestimation bias starts to emerge. We
recommend that there are at least 50 signals in total. Thus, our fourth take-home message is
that researchers should estimate SSRT for each block separately when strategic slowing is
observed and subjects cannot be excluded.

It should be noted that slowing could be interpreted as a violation of the context

independence and the stochastic independence assumptions of the race model (Logan & Cowan,

vii When RT-tau is small, the mean of the normal part of the distribution will not differ much from the global average.
17



1984). Context independence (also referred to as signal independence) refers to the assumption
that the RT distribution is the same for no-signal trials and stop-signal trials. Stochastic
independence refers to the assumption that trial-by-trial variability in RT is unrelated to trial-by-trial
variability in SSRT. Gradual slowing of RT does not necessarily violate these assumptions:
Because subjects cannot predict whether a stop signal will occur in the standard version of a stop
task, they are expected to slow down on all trials (including no-signal trials). In other words, the
assumptions of the race model hold as long as slowing occurs to a similar degree on both signal
and no-signal trials. Note also that the race model does not make assumptions about the shape of
the finishing-time distributions. Thus, skew should not influence the SSRT estimations. The results
of the first set of simulations demonstrated that this was the case for the integration method.

To conclude, our results demonstrate that the central SSRT estimates, which were
previously thought to be most reliable, are strongly influenced by the right tail of the RT distribution
and gradual slowing of RTs. Therefore, we recommend that researchers abandon the mean
method to estimate SSRT and instead use the experiment-wide or block-based integration method

to reliably estimate the latency of response inhibition.
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Table S1: p(respondisignal) for first set of simulations

Sigma
50
100
150
50
100
150
50
100

150

Tau

50
50
50
150
150
150
250
250

250

M SD min max
0.495 0.011 0.467 0.517
0.494 0.013 0.467 0.517
0.493 0.011 0.467 0.517
0.498 0.011 0.467 0.533
0.496 0.013 0.467 0.517
0.496 0.013 0.467 0.517
0.504 0.015 0.467 0.533
0.500 0.015 0.467 0.533
0.499 0.016 0.467 0.533
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Table S2: Overview of analyses of difference scores for the first set of simulations. We conducted

a 2 (RT-tau) x 2 (RT-sigma) x 2 (method) ANOVA to examine effects of sigma, and tau, and to

compare methods; we followed this up with separate 2 (RT-tau) x 2 (RT-sigma) ANOVAs for each

method.
df MSE F p
Combined
Method (M) 1, 891 62725 5609.24 <.001
Sigma (S) 2, 891 1944 3.84 0.022
Tau (T) 2, 891 1944 16.71 <.001
MxS 2, 891 62725 112.061 <.001
MxT 2, 891 62725 1326.78 <.001
SxT 4, 891 1944 5.74 <.001
MxSxT 4, 891 62725 21.24 <.001
Mean only
Sigma (S) 2, 891 939 9.66 < .001
Tau (T) 2, 891 939 125.23 <.001
SxT 4, 891 939 8.64 <.001
Integration only
Sigma (S) 2, 891 1075 5.83 < .001
Tau (T) 2, 891 1075 7.68 <.001
SxT 4, 891 1075 4.22 <.001
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Table S3 : p(respondlsignal) for second set of simulations

M SD min max

Sigma Tau Slowing

50 50 1 0.494 0.010 0.467 0.517
150 50 1 0.494 0.013 0.467 0.533
50 250 1 0.505 0.015 0.467 0.533
150 250 1 0.499 0.015 0.467 0.533
50 50 1.5 0.460 0.012 0.433 0.483
150 50 1.5 0.463 0.014 0.433 0.500
50 250 1.5 0.473 0.014 0.433 0.500
150 250 1.5 0.472 0.017 0.433 0.517
50 50 25 0.398 0.013 0.367 0.417
150 50 25 0.401 0.014 0.367 0.433
50 250 25 0.410 0.017 0.367 0.450

150 250 2.5 0.410 0.019 0.367 0.467




Table S4: Overview of analyses of difference scores for the second set of simulations. We
conducted a 2 (RT-tau) x 2 (RT-sigma) x 3 (method) x 3 (slowing) ANOVA to examine effects of
sigma, tau, slowing and estimation method; we followed this up with separate 2 (RT-tau) x 2 (RT-

sigma) x 3 (slowing) ANOVAs for each method.

df MSE F p
Combined
Method (M) 2,2376 104 8594.58 <.001
Sigma (S) 1,1188 3533 0.01 0.922
Tau (T) 1,1188 3533 77.54 <.001
Slowing (SL) 2,1188 3533 8.405 0.000
Mx S 2,2376 104 16.54 <.001
MxT 2,2376 104 2275.63 <.001
M x SL 4,2376 104 612.43 <.001
SxT 1,1188 3533 7.026 0.008
SxSL 2,1188 3533 0.247 0.781
TxSL 2,1188 3533 8.163 <.001
MxSxT 2,2376 104 67.92 <.001
Mx S x SL 4,2376 104 20.30 <.001
MxTxSL 4,2376 104 119.00 <.001
SxTxSL 2,1188 3533 8.338 <.001
MxSxTxSL 4,2376 104 15.64 <.001
Mean only
Sigma (S) 1,1188 1122 1.70 0.192
Tau (T) 1,1188 1122 649.62 <.001
Slowing (SL) 2,1188 1122 123.12 <.001
SxT 1,1188 1122 28.11 <.001
SxSL 2,1188 1122 2.37 0.094
TxSL 2,1188 1122 5.61 0.004
SxTxSL 2,1188 1122 6.32 0.002
Integration only
Sigma (S) 1,1188 1342 0.88 0.347
Tau (T) 1,1188 1342 10.17 0.001

Slowing (SL) 2,1188 1342 13.35 <.001



SxT
SxSL
TxSL
SxTxSL

Integration (blocked) only

Sigma (S)
Tau (T)
Slowing (SL)
SxT

SxSL
TxSL
SxTxSL

1,1188
2,1188
2,1188

2,1188

1,1188
1,1188
2,1188
1,1188
2,1188
2,1188

2,1188

1342
1342
1342

1342

1276
1276
1276
1276
1276
1276

1276

5.44
0.84
34.17

14.97

0.29
3.20
0.65
0.08
1.02
1.08

4.33

0.020
0.434
< .001

< .001

0.589
0.074
0.523
0.782
0.360
0.340

0.013
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Table S5 : p(respondlsignal) for third set of simulations

Sigma
50
150
50

150

Tau

50
50
250

250

M SD min max
0.432 0.037 0.367 0.500
0.431 0.042 0.333 0.517
0.446 0.039 0.367 0.517
0.442 0.039 0.350 0.517
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Table S6: Overview of analyses of difference scores for the third set of simulations. We conducted
a 2 (RT-tau) x 2 (RT-sigma) x 3 (method) ANOVA to examine effects of sigma, tau, and estimation

method; we followed this up with separate 2 (RT-tau) x 2 (RT-sigma) ANOVAs for each method.

df MSE F p

Combined

Method (M) 2,792 259 1520.26 <.001

Sigma (S) 1,396 3251 0.68 0.410

Tau (T) 1,396 3251 49.71 <.001

Mx S 2,792 259 1.0223 0.360

MxT 2,792 259 274.94 <.001

SxT 1,396 3251 0.23 0.631

MxSxT 2,792 259 15.27 <.001
Mean only

Sigma (S) 1,396 1194 0.76 0.385

Tau (T) 1,396 1194 226.91 <.001

SxT 1,396 1194 4.76 0.030
Integration only

Sigma (S) 1,396 1410 0.07 0.798

Tau (T) 1,396 1410 23.34 <.001

SxT 1,396 1410 0.34 0.559
Integration (blocked) only

Sigma (S) 1,396 1164 1.50 0.222

Tau (T) 1,396 1164 0.03 0.867

SxT 1,396 1164 214 0.144
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Table S7: We reran the second set of simulations to test whether the effect of RT-tau and
response slowing were influenced by SSRT-sigma and SSRT-tau (i.e. rise of the left tail and fall of
the right tail of the SSRT distribution). This table shows the average (avg; in grey) and standard

deviation (sd) of the difference scores for each combination of SSRT-sigma * SSRT-tau *

estimation method * RT-tau * slowing factor. We replicated the effects of RT-tau and response

slowing: the mean method overestimated SSRT when RT-tau and/or the slowing factor increased,;

the experiment-wide integration method [int(exp)] underestimated SSRT when RTs gradually

increased; finally, the block-based integration method seemed relatively immune against effects of
RT-tau and response slowing. Importantly, SSRT-sigma and SSRT-tau had very little effect on the
differences scores and did not interact with the effects of RT-tau or slowing.

SSRT-sigma =10
SSRT-tau =10

int(exp)
int(block)
mean

SSRT-sigma = 25
SSRT-tau = 10

int(exp)
int(block)
mean

SSRT-sigma =10
SSRT-tau = 50

int(exp)
int(block)
mean

SSRT-sigma = 25
SSRT-tau = 50

int(exp)
int(block)

mean

slowing factor = 1

slowing factor = 1.5

slowing factor = 2.5

RTtau=50 RTtau=250 RTtau=50 RTtau=250 RTtau=50 RTtau=250
avg sd avg sd avg sd avg sd avg sd avg sd
192 248 -56 428 069 224 -11 441 -31 337 96 459
1.74 253 -25 433 025 227 -29 428 0.83 292 363 439
704 216 482 436 152 21.3 653 424 342 288 96.1 418
-26 26 -11 457 16 218 -65 423 -28 31.3 435 434
-22 255 -63 468 192 222 -7 425 081 26.2 0.65 40.1
348 241 443 435 159 21 60.9 401 36.1 256 93.2 376
-6.3 248 -10 452 -13 233 -25 384 -27 338 292 417
-55 252 -69 461 -14 239 -2 375 112 287 -39 378

-2 233 394 416 116 221 584 38 332 296 835 36.7
57 224 95 412 1382 225 -34 454 -27 323 74 456
-59 221 -73 412 115 224 -4 45 144 301 0.87 438
-15 211 416 375 135 212 611 414 345 285 895 399
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Table S8: Difference scores when SSRT was analysed using the median RT instead of the nth RT.
This table shows the average (avg; in grey) and standard deviation (sd) of the difference scores
(estimated SSRT - true SSRT) for each combination of RT-tau * RTsigma. The final column shows
the global average of the difference scores and 95% confidence intervals (when the interval does
not include 0, the global average is significantly different from zero). For the second set of
simulations, we calculated difference scores for each slowing factor separately. Note that in the
third set of simulations, we also found that the estimated SSRT correlated with the amount of
slowing (r = 0.46, p <.001), which suggests that the estimated SSRT will be an overestimation
when subjects slow down.

RTtau = 50 RTtau = 250
Average difference
RTsigma RTsigma RTsigma RTsigma (lower & upper Cl)
=50 =150 =50 =150
avg sd avg sd avg sd avg sd
. . -8.3
Simulation 1 -222 1395 336 2942 -179 4028 -16.6 42.28 (-11.7, -4.9)
Simulation 2
slowfactor 333 135 .1.34 3152 -139 3682 -979 4577 7
=1 ' ' ' ' ' ' ' ' (-8.8, -5.4)
slow factor 11.6
-15 845 15.06 1547 27.3 6.18 36.5 16.14 45.66 9.9, 13.2)
slow factor 52.2
—o5 257 22.09 4144 3495 69.96 38.81 71.89 42.69 (50.3, 54.2)
Simulation 3 18.43 2213 29.43 32.63 38.65 49.76 48.35 51.08 33.7
. . . . . . . . (29.6. 37,9)
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Figure S1: To demonstrate the increasing popularity of the stop-signal paradigm, we performed a
search in Web of Science (topic = ‘stop-signal task’). (A) The search results confirmed that the task
is currently very popular in different research areas (the research areas correspond to the Web of
Science Categories; note that papers can belong to multiple categories). (B) Since the year 2000,
there has been an exponentially increasing number of stop-signal studies. (C) We checked the
method section of 170 stop-signal articles published since 2010. 128 studies reported how SSD
was determined and how SSRT was estimated. The majority of these studies used the tracking
method. Approximately half of the tracking studies used the mean RT to estimate the SSRT; the
other studies used the integration method or used the median of the RT distribution as an
approximation for the nth RT.
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Figure S2: Effect of changes in mu, sigma, and tau on the shape of the RT distribution. A. When
mu increases, the RT distribution shifts to the right (left upper panel vs. left lower panel). B. When
tau increases, the distribution becomes positively skewed (left upper panel vs. right upper panel);
note that when RT-tau is small, the distribution is almost symmetrical. C. When sigma increases,
the spread of the distribution increases (left upper panel vs. right lower panel).
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Figure S3: Results for the mean method (second set of simulations) when only the central

estimates (.40 < presp < .60) are included. There was still an effect of RT-tau and slowing (both p-

values < .001).
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Figure S4: Results for the mean method (third set of simulations) when only the central estimates
(.40 < presp < .60) are included. There was still an effect of RT-tau (p <.001), and the degree of
slowing still correlated with overestimation.
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Figure S5: The effect of the number of trials per block for the ‘block-based’ integration method.

There were 240 trials per subject. For n=10, we split the data file in 24 blocks of 10 trials; for n=20,
we split the data file in 12 blocks of 20 trials; and so on. N=240 corresponds to the estimates using
the default integration method. N=60 corresponds to the values for the ‘blocked-based’ integration

method reported in the mean manuscript.
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Figure S6: Correlations between difference SSRT(true) and SSRT(estimated) for the different
block-based integration methods (see caption Figure S5 for discussion of methods). This figure
suggests that when the number of trials is larger than 80 trials, the previously observed negative
correlation (see main manuscript) appears again.
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