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Abstract

This paper considers the potential for using seasonal climate forecasts in de-

veloping an early warning system for dengue fever epidemics in Brazil. In

the first instance, a generalised linear model (GLM) is used to select climate

and other covariates which are both readily available and prove significant in
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Carvalho), xris@cict.fiocruz.br (Christovam Barcellos)

Preprint submitted to Computers & Geosciences January 19, 2010

*Manuscript
Click here to download Manuscript: R-Lowe-Computers-and-Geosciences_minor_revs.tex

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12827415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ees.elsevier.com/cageo/download.aspx?id=139207&guid=29763906-3ccc-4583-985e-58801e973c86&scheme=1


prediction of confirmed monthly dengue cases based on data collected across

the whole of Brazil for the period January 2001 to December 2008 at the

microregion level (typically consisting of one large city and several smaller

municipalities). The covariates explored include temperature and precipi-

tation data on a 2.5◦ × 2.5◦ longitude-latitude grid with time lags relevant

to dengue transmission, an El Niño Southern Oscillation index and other

relevant socio-economic and environmental variables. A Negative-Binomial

model formulation is adopted in this model selection to allow for extra-

Poisson variation (overdispersion) in the observed dengue counts caused by

unknown/unobserved confounding factors and possible correlations in these

effects in both time and space. Subsequently, the selected global model is

refined in the context of the South East region of Brazil where dengue pre-

dominates, by reverting to a Poisson framework and explicitly modelling the

overdispersion through a combination of unstructured and spatio-temporal

structured random effects. The resulting spatio-temporal hierarchical model

(or GLMM - generalised linear mixed model) is implemented via a Bayesian

framework using Markov Chain Monte Carlo (MCMC). Dengue predictions

are found to be enhanced both spatially and temporally when using the

GLMM and the Bayesian framework allows posterior predictive distributions

for dengue cases to be derived which can be useful for developing a dengue

alert system. Using this model, we conclude that seasonal climate forecasts

could have potential value in helping to predict dengue incidence months in

advance of an epidemic in South East Brazil.

Keywords: dengue fever, prediction, epidemic, spatio-temporal model,

seasonal climate forecasts
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1. Introduction and motivation1

The early identification of an epidemic of infectious disease is an important2

first step towards implementing effective interventions to control the disease3

and reducing mortality and morbidity in human populations (Kuhn et al.,4

2005). However, often an epidemic is under way before the authorities are5

notified and control measures are put in place. In this paper we assess the6

potential for using seasonal climate forecasts to provide early warnings of7

future increased and geographically specific risk of dengue fever in Brazil.8

Dengue fever and its more severe form (dengue hemorrhagic fever) is one9

of the most important emerging tropical diseases at the beginning of the10

21st century in terms of morbidity and mortality (Gubler, 2002, Guzman11

and Kouri, 2003). Dengue is an acute viral disease characterised by fever,12

headache, muscle and joint pains, rash, nausea, and vomiting, while dengue13

haemorrhagic fever is a potentially deadly complication that in severe cases,14

can cause circulatory failure. Dengue viruses are transmitted by the bite of15

infected Aedes females, in particular Aedes aegypti, an urban mosquito with16

widespread distribution in tropical cities. Field survivability of Aedes aegypti17

and patterns of dengue transmission are influenced by many factors including,18

but not limited to, climate which influences mosquito biology and interactions19

between the mosquito vector and dengue virus (Kuno, 1995; Scott et al.,20

2000; Sanchez et al., 2006). In many regions, epidemic dengue transmission21

is seasonal in response to variability in temperature and rainfall. There have22

been recent concerns of a worldwide spread of dengue fever because of climate23

changes that could favour an expansion of the transmission area.24
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In Brazil, the greatest incidence of cases occur from January to May when25

the climate is warmest and most humid (Braga and Valle, 2007). Three of26

the four dengue virus serotypes have spread throughout Brazil, where re-27

ported dengue cases in the last decade represent about 60% of dengue cases28

reported in the Americas as a whole (Nogueira et al., 2007a). Dengue epi-29

demics impact heavily on the national health services. There is no specific30

treatment for dengue, but appropriate medical care frequently saves the lives31

of patients with the more serious dengue haemorrhagic fever. A major epi-32

demic occurred in Brazil in 2008, with 764 040 reported cases (January to33

September) including 3 848 cases of hemorrhagic fever and 213 deaths 1. In34

Rio de Janeiro, military field hospitals were opened during the 2008 outbreak35

to help to ease the pressure on emergency rooms packed with people suffering36

from dengue 2.37

The current monitoring system in Brazil relies on observing dengue incidence38

in December/January to estimate epidemic potential late in the austral sum-39

mer. However, this does not provide a quantitative measure or much pre-40

dictive lead time. The greater the lead time available for forecasting disease41

risk, the greater the opportunity for effective disease risk intervention, al-42

though long term predictions often involve larger errors. Myers et al. (2000)43

suggested that epidemic forecasting is most useful to health services when44

case numbers are predicted two to six months ahead. This would allow time45

for the allocation of resources to interventions such as preparing health care46

1http://portal.saude.gov.br/saude/
2http://news.bbc.co.uk/1/hi/world/americas/7324000.stm
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services for increased numbers of dengue patients and educating populations47

to eliminate mosquito breeding sites i.e. by regularly emptying water that48

accumulates in discarded refuse, tyres and domestic water storage containers,49

commonplace in urban slums/favelas found in some areas of Brazil.50

As seasonal climate forecasts predict seasonal or monthly average tempera-51

ture and precipitation (and other variables) for the forthcoming months/season52

in both time and space, they could potentially be used in a national dengue53

early warning system (EWS) for Brazil to aid epidemic planning months in54

advance. EWS based on seasonal climate forecasts have been developed to55

predict malaria incidence, for example in Botswana (Thomson et al., 2006),56

but there has been limited progress in developing EWS for dengue fever.57

Therefore, the use of seasonal climate forecasts with lead times of one month58

or more within a dengue EWS is a research area in need of exploration.59

Before assessing the viability of using seasonal climate forecasts in a dengue60

prediction model, a model driven by observed climate variables with time61

lags relevant to dengue transmission, issued at the same resolution as the62

climate forecasts, must first be evaluated. If a significant relationship is63

identified between observed climate and dengue in Brazil, the use of forecast64

climate for dengue prediction purposes could be valuable. The remainder of65

this paper focuses on the viability of using observed climate variables in a66

spatio-temporal dengue prediction model.67

In Section 2 we outline some of the key processes involved in dengue trans-68

mission and describe the data used in the statistical modelling. Section 369

documents the exploratory data analysis and model selection process to find70
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which monthly climate variables and time lags are statistically significant71

for modelling dengue incidence in Brazil, using a negative-binomial gener-72

alised linear model (GLM) to allow for overdispersion. In section 4 we fo-73

cus on the South East of Brazil where dengue predominates, and refine the74

previously selected Brazilian global model by reverting to a Poisson formu-75

lation and explicitly including spatially unstructured and spatio-temporal76

structured random effects via a Bayesian framework to account for unob-77

served/confounding factors. Section 5 then assesses the ability of the refined78

model to issue dengue epidemic warnings for the peak dengue season in 200879

when a serious epidemic occurred. The final section discusses future ideas80

for research and summarises the main findings of the paper.81

2. Dengue transmission82

A number of complex factors are related to dengue transmission, in partic-83

ular population growth and unplanned urbanization, resulting in substan-84

dard housing, inadequate water, sewerage and waste management systems85

which allow mosquito reproduction. Poverty and health inequality are be-86

hind almost all of these factors (Gubler, 2002). Given favourable climatic87

conditions for development of the dengue-carrying mosquito, the urban envi-88

ronment plays a major role in determining transmission rates. Rainfall may89

influence the filling of containers out in the open (e.g. old tyres) which cre-90

ate potential breeding sites for the mosquito. More importantly, the breed-91

ing of mosquitoes depends on temperature, humidity, the mosquitoes’ life92

expectancy, life-long fecundity, biting activity and virus incubation (Favier93
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et al., 2005). Several previous studies have examined the link between cli-94

mate and dengue. In many tropical countries, a positive association between95

rainfall and dengue incidence have been documented (Li et al., 1985; Moore96

et al., 1978; Gould et al., 1970). However, a significant relationship was not97

found for other regions (Eamchan et al., 1989, Goth et al., 1987 Kuno, 1995).98

Some authors have found that time-lagged climate variables of up to two or99

three months have a statistically significant association with dengue (Li et al.,100

1985; Schreiber, 2001; Wu et al., 2007). Precipitation and temperature os-101

cillations over large parts of Latin America and the Caribbean are strongly102

influenced by changes in Pacific sea surface temperatures (SST) as part of103

the El Niño Southern Oscillation (ENSO) (Glantz, 2001) and these in turn104

can influence vector competence and survivorship. Several studies have also105

used some index of ENSO to model dengue (Brunkard et al., 2008; Cazelles106

et al., 2005; Gagnon et al., 2001; Hales et al., 1999). Therefore the inclusion107

of covariates based on the urban environment, climate (e.g. temperature,108

precipitation, Pacific SST) and their lagged effects appear to be potentially109

important components of a climate informed dengue prediction model.110

Dengue fever data (counts of confirmed cases per month) from January 2001111

- December 2008 (96 months) were obtained at municipality level (5651 mu-112

nicipalities) from SINAN DATASUS - an Information System for Notifiable113

Diseases, established by the Brazilian Ministry of Health3. A network of114

laboratories, capable of diagnosing dengue infections, has been implemented115

in all states. The network is responsible for confirmation of cases to support116

3http://dtr2004.saude.gov.br/sinanweb/novo/
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epidemiological surveillance (Nogueira et al., 2007b). However, this network117

is not accessible to all municipalities. Dengue counts were aggregated to the118

microregion level (558 microregions), where a microregion typically consists119

of one large city and several smaller municipalities. This alleviates problems120

of misreporting due to variation in the availability of health services and121

epidemiological facilities at the municipality level. Figure 1a shows dengue122

counts for this period grouped into the 5 main regions of Brazil (Figure 1b)123

and Figure 1c shows the total dengue cases in each microregion for the period124

January 2001-December 2008. Dengue is most prevalent in the South East.125

Two major epidemics occurred in the late austral summer of 2002 and 2008,126

while considerably less dengue occurred in 2004 and 2005. There is very little127

dengue in South Brazil and the North West Amazon.128

Insert Figure 1 here129

National cartographic data such as altitude and biome were obtained from130

the Brazilian Institute for Geography and Statistics (IBGE)4. Census data131

at the microregion level such as population, percentage of urban population,132

and the percentage of households with a water supply provided by a network,133

refuse collection and at least one bathroom, was obtained from an aggregated134

database SIDRA maintained by IBGE. Each microregion belongs to an ad-135

ministrative main region (1. North, 2. North East, 3. South, 4. South136

East, 5. Central West) and a biome (1. Amazon Rainforest, 2. Caatinga, 3.137

Cerrado, 4. Atlantic Rainforest, 5. Pampa, 6. Pantanal). A spatial variable138

4http://www.sidra.ibge.gov.br/
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named zone was defined according to the 6 biomes but by also subdividing139

the Atlantic Rainforest biome into 3 areas (North, South East and South)140

according to different climatic regimes. For example, south of the Tropic of141

Capricorn (23.5◦S) the climate is more temperate and humid, while in the142

North East portion of the Atlantic Rainforest the climate is relatively warmer.143

Therefore 8 zones are defined for which climatic, geographical and ecologi-144

cal conditions are homogeneous. In a modelling context, zone is treated as145

a categorical variable, or factor. Figure 2 shows the spatial distribution of146

altitude and urban population in Brazil and the location of the geographical147

zones (Figure 2a, b and c). Figures 2d, e and f illustrate the relationship be-148

tween these covariates and standardised morbidity ratio (SMR) for the given149

time period where, for a microregion i, the SMR is defined as the ratio of150

observed (yi) to expected (ei) dengue cases in the time period. The expected151

cases ei in each microregion are calculated as the population at risk (pi) mul-152

tiplied by the global dengue detection rate over the whole of Brazil for the153

time period (ei = pi ×
∑

yi/
∑

pi). Altitude has a statistically significant154

negative relationship with dengue SMR (as altitude increases, dengue counts155

decrease) and percentage of urban population had a statistically significant156

positive relationship, given a microregion with excess risk of dengue fever157

(SMR> 1), as urban areas are ideal environments for mosquitoes and many158

people living in close proximity create a human virus reservoir.159

Insert Figure 2 here160

Figure 3 illustrates that dengue has a strong annual cycle which differs with161

geographical zone. The spatially varying dengue annual cycle is included in162
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the model specified in section 3, as an interaction between the categorical163

variables zone and month. As only part of the cycle may be attributable to164

climatic conditions, the inclusion of this interaction could account for other165

confounding variables, such as seasonal population movements, leading to166

differences in the annual cycle across zones.167

Insert Figure 3 here168

Observed gridded (2.5◦×2.5◦ latitude-longitude grid) monthly mean precipi-169

tation data was obtained from the Global Precipitation Climatology Project170

(GPCP) (Adler et al., 2003). Reanalysis monthly mean surface air temper-171

ature data was obtained from the NCAR/NCEP Reanalysis (Kalnay et al.,172

1996). These climatic variables are referred to as ‘observed’ climate for the173

remainder of the text. Niño 3.4 is an index used to measure the strength174

of El Niño and La Niña events (Barnston et al., 1997) and is defined as the175

departure in monthly sea surface temperature from its long-term mean av-176

eraged over the region (120◦W-170◦W and 5◦S- 5◦N). A positive (negative)177

index indicates El Niño (La Niña) conditions. A time series of the monthly178

Niño 3.4 index was obtained from NOAA Climate Prediction Center5.179

Microregion and gridded data were combined by assigning a grid point to180

each microregion on the basis that the microregion is contained within the181

grid square (see Fig. 4).182

Insert Figure 4 here183

5http://www.cpc.ncep.noaa.gov/data/indices/sstoi.indices
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3. Model selection using a generalised linear model184

Poisson models are widely used in the analysis of count data. However, it185

is well established that observed count data e.g. disease cases, often dis-186

play substantial extra-Poisson variation, or overdispersion (Lawless, 1987).187

Overdispersion was evident in this dengue dataset. Fitting a Poisson gen-188

eralised linear model (GLM) involving the full set of explanatory variables189

described earlier results in a residual deviance more than a hundred times190

larger than the residual degrees of freedom, implying that as the mean dengue191

count increases, the variance increases at a much greater rate. In section 4192

we will consider making explicit allowance for this overdispersion within the193

Poisson framework via the inclusion of appropriate random effects, but for194

model selection purposes within this section we accommodate overdisper-195

sion implicitly by using the negative binomial distribution for the observed196

counts, viz:197

f(y; µ, θ) =
Γ(y + θ)

Γ(θ)y

µyθθ

(µ + θ)y+θ
,

with mean µ, scale parameter θ and variance function V (µ) = µ + µ2/θ. In198

a GLM context the associated canonical link is g(µ) = log(µ).199

In order to select which explanatory variables are important for modelling200

dengue counts in Brazil for the 96 month time period (Jan 2001 - Dec 2008),201

the negative binomial GLM described above was fitted using the MASS202

package (Venables and Ripley, 2002) in R (R Development Core Team, 2008),203
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starting with a maximal model based on all of the covariates described in204

the previous section i.e. spatial covariates related to the urban environment,205

altitude, the annual cycle and interactions with geographical zone, observed206

climate variables with associated time lags (0-3 months) and the Niño 3.4207

index with time lags of up to 6 months. Exploratory analyses were then car-208

ried out using different subsets of variables to select an appropriate prediction209

model (e.g. examining model fit with and without climate information and210

with different interactions). These analyses were assisted by use of stepwise211

model selection algorithms based on the Akaike information criterion (AIC)212

which not only rewards goodness of fit, but also includes a penalty that dis-213

courages overfitting. The final most parsimonious model which emerged from214

the investigation is as follows:215

yit ∼ NegBin(µit , θ)

log(µit) = log(ei) + α +
∑

j

βjxjit +
∑

j

γjwji +
∑

j

δjzjit,

where yit is dengue count for microregion i = 1, . . . , 558 and time t =216

1, . . . , 96, µit is the corresponding mean dengue count and θ is the scale217

parameter. The expected cases ei = pir are treated as an offset in the model218

based on the population pi in microregion i and the overall average dengue219

rate per month r. The variables xjit represent the selected climate influences:220

precipitation one month previous (j = 1), precipitation two months previous221

(j = 2), temperature one month previous (j = 3), temperature two months222

previous (j = 4) and Niño 3.4 six months previous (j = 5). The variables wji223

12



are: altitude (j = 1) and percentage of urban population (j = 2). Finally,224

zjit is a series of factors reflecting zone, month and interaction between zone225

and month.226

All covariate coefficients were found to be significantly different from zero at227

the p =0.001 level. The estimated parameters and standard errors for the228

climate variables included in the final model are listed in Table 1. Precipita-229

tion and temperature with time lags of 1 and 2 months were found to be the230

most statistically significant and are positively related to dengue as warm,231

humid conditions promote mosquito development and rain water fills dis-232

carded containers outdoors to create mosquito breeding sites in the months233

preceding increased dengue incidence. The Niño 3.4 index is negatively re-234

lated to dengue. This is because the major dengue epidemics in 2002 and235

2008 in particular, were preceded by negative SST anomalies in the Niño 3.4236

region. The scale parameter θ was estimated to be 0.32 with standard error237

0.002, confirming a mean variance relationship considerably different from238

that of the Poisson (equal mean and variance), hence justifying the use of a239

negative binomial rather than a Poisson GLM for model selection purposes.240

One important aspect of such a model to a public health decision maker is its241

ability to predict dengue during the peak dengue season from February-April242

(FMA). In Figure 5, scatter plots with fitted loess curves show the relation-243

ship between observed and predicted dengue using the GLM model for the244

FMA season 2001-2008 for Brazil (Fig 5a) and the South East region where245

dengue predominates (Fig 5b). Although the model clearly fails to capture246

much of the variability in dengue counts in this season, there is an overall247
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Table 1: Parameter estimates for climate covariates.

Observed Climate Coefficient estimate Standard error Prob> |z|

Precipitation lag 1 0.018 0.0037 5.12×10−4

Precipitation lag 2 0.022 0.0036 6.45×10−11

Temperature lag 1 0.091 0.0093 2×10−16

Temperature lag 2 0.161 0.0093 2×10−16

Niño 3.4 lag 6 -0.204 0.0119 2×10−16

positive association between observed and predicted counts at both the na-248

tional and regional level. The influence of the climate variables in the model249

predictions is demonstrated in Figure 6a which shows the time series of total250

observed dengue cases for the FMA season, predicted dengue using a GLM251

without any climate information (dotted line) and with climate information252

(dashed line). The climate variables are the only source of temporal infor-253

mation in the model, therefore by not including them the same prediction is254

produced for every month/season of each year. By including climate infor-255

mation, some of the temporal variability is captured albeit with limited skill.256

Figure 6c illustrates how the GLM predicts dengue for the FMA season in257

2008. In some areas, the predicted dengue level corresponds to the observed258

level, for example, in coastal margins of the South East region (see Fig 6b).259

However, low levels of dengue are overestimated in the South and the model260

fails to reproduce the variability in dengue cases across the Amazon. When261

we focus in at the region level (South East) and microregion level (Rio de262

Janeiro) for which dengue early warnings would be most useful, time series of263
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dengue for the FMA season 2001-2008 show that the climate informed GLM264

fails to reproduce the dengue epidemic in 2002 and the increase in dengue265

from 2006-2007 (Fig 7a and b).266

Insert Figure 5 here267

Insert Figure 6 here268

Insert Figure 7 here269

This GLM clearly fails to capture much of the temporal variability in dengue270

counts, which may be attributable to factors such as population immunity271

to the dominant circulating serotype or specific health interventions and vec-272

tor control measures. However, information regarding these aspects of the273

disease system are not readily available. Therefore, the use of unstructured274

random effects may be valuable to allow for unobserved latent structures275

in the model (McCulloch and Searle, 2004), for example, to capture the276

impact of unknown/unobserved confounding factors, such as the introduc-277

tion of a new dengue serotype in a certain area of Brazil. Also, by using a278

GLM independence is assumed in both time and space and neither of these279

assumptions may be valid. There could be strong temporal correlation ef-280

fects within some areas and there could also be spatial clustering effects in281

neighbouring microregions. To allow for such latent effects and correlation282

structures, the GLM is refined in the next section by reverting to a Poisson283

framework but using a generalised linear mixed model (GLMM) which in-284

cludes spatially unstructured and spatio-temporal structured random effects285

in the linear predictor. This explicitly models the extra-Poisson variation or286
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overdispersion previously allowed for using the negative binomial.287

We focus our analysis on the South East region of Brazil (see Figure 1a) where288

dengue is most prevalent and there are a large number of densely populated289

urban centres which could benefit from a climate informed dengue EWS.290

This is also the region where the previously reported GLM predictions did291

appear to capture some of the observed spatial variability in dengue counts292

(see Figure 6c).293

4. Development of a generalised linear mixed model294

As described above, we now focus on the 160 microregions in South East295

Brazil and return to a Poisson model for the dengue count data to develop a296

GLMM that includes random effects in the linear predictor. One approach297

to fitting such a model is to use a Bayesian framework. Markov Chain Monte298

Carlo (MCMC) methods make Bayesian modelling of complex situations in-299

volving many parameters a practical feasibility (see Gilks and Spiegelhal-300

ter (1996), Brooks (1998) for more details). One further advantage of the301

Bayesian approach is that the associated MCMC sampling yields full poste-302

rior predictive distributions which automatically incorporate all components303

of variance at the different levels in the model. A full assessment of predic-304

tion uncertainty is therefore more easily obtained with Bayesian estimation305

than with the more traditional maximum likelihood approach.306

The inclusion of random effects introduces an extra source of variability (a307

latent effect) into the model to capture the impact of unknown/unobserved308
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confounding factors. For example, serotype introduction, which can vary309

spatially and temporally. Unstructured random effects can help account for310

overdispersion in the distribution of dengue counts yi, however, this does not311

allow for explicit spatial dependence between yi. This dependence can be312

included by adding a spatially structured random effect. A typical choice for313

a spatially structured prior is a conditional intrinsic Gaussian autoregressive314

model (CAR) (see Besag et al., 1995);315

νi|νj 6=i ∼ N

(

∑

j 6=i aijνj
∑

j 6=i aij

,
σ2

ν
∑

j 6=i aij

)

,

where aij are adjacency weights for the microregions, here taken to be simple316

binary values: aij = 1 if microregion i has a common boundary with mi-317

croregion j, aij = 0 otherwise. The hyperparameter σν controls the strength318

of the local spatial dependence. As the CAR is improper, a ‘sum to zero’319

constraint is applied to νi and it is then advisable to take a uniform flat prior320

for the intercept α (see model specification below).321

Models to predict vector-borne disease may include an autoregressive time322

series component (e.g. Gomez-Elipe et al., 2007), based on the idea that323

the current value of the time series yit can be explained as a function of324

past values. Accordingly, a first order autoregressive temporal effect ωt was325

included in the model, where t is calendar month and ω1 (August) is set326

equal to zero in the model specification to avoid identifiability problems.327

Therefore the spatio-temporal GLMM adopted is given by:328
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yit ∼ Pois(µit)

log(µit) = log(ei) + α +
∑

j

βjxjit +
∑

j

γjwji + φi + νi + ωt

α ∼ U(−∞, +∞)

φi ∼ N(0, σ2
φ)

νi ∼ CAR(σ2
ν)

ω1 = 0, ωt ∼ N(ωt−1, σ
2
ω), , t = 2, . . . , 12.

Independent diffuse Gaussian priors (mean 0, precision 1×10−6 ) were taken329

for βj (j = 1, . . . , 5) and γj (j = 1, 2), whilst independent gamma hyperpri-330

ors with equal shape and inverse scale parameter (0.01) were used for the331

precisions (τφ = 1/σ2
φ, τν = 1/σ2

ν , τω = 1/σ2
ω) of the priors for the spatially332

unstructured φi and spatially structured νi random effects, (i = 1, . . . , 160),333

and the temporally autocorrelated random effects ωt (t = 2, . . . , 12).334

This model was fit with WinBUGS6 software, using two parallel MCMC335

chains, each of length 25,000 with a burn-in of 20,000 and thinning of 10336

to obtain samples from P (α, β, γ, φ, ν, ω, τφ, τν , τω|y). As mentioned earlier,337

the explanatory variables xjit (j = 1, . . . , 5) and wji (j = 1, 2) are as before,338

however, all covariates are now standardised to zero mean and unit variance339

to aid convergence. This model is fit at the region level, therefore the zone340

factor is omitted as there is little variation in zone type in the South East341

region, and any geographic differences between microregions are captured by342

6http://www.mrc-bsu.cam.ac.uk/bugs/
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the spatial random effects. Satisfactory convergence was confirmed using a343

range of standard criteria (Gelman et al., 2004). Posterior distributions for344

each parameter associated with the climate covariates in the model are given345

in Figure 8 (with posterior means in parentheses). The climate parameters346

are all significantly different from zero and the sign of the association between347

dengue and each climate variable is consistent with the results from the GLM348

fit (Table 1).349

Insert Figure 8 here350

A posterior predictive distribution can be obtained for each microregion by351

drawing random samples from a Poisson distribution with mean equal to the352

MCMC samples from the model fit. The mean of the posterior predictive353

distribution for all microregions in the South-East region were obtained for354

the peak dengue season FMA. In Figure 9 a scatter plot with fitted loess curve355

shows the relationship between observed and predicted dengue using the356

GLMM model for the FMA season 2001-2008. When compared to predicted357

values from the GLM (see Fig 5b), the loess curve has shifted towards the358

45◦ line and more of the variability in dengue cases has been captured by the359

prediction model. Figure 10 illustrates the spatial distribution of observed360

(Fig 10a), and predicted dengue for FMA season 2008 using both the GLM361

(Fig 10b) and GLMM (Fig 10c). While the GLM predicted medium levels of362

dengue across much of the region, the GLMM captures more of the observed363

variation. When compared with Figure 7, Figure 11 shows how the addition364

of random effects to the model has improved dengue predictions for both the365

South East as a whole (Fig. 11a) and for the microregion Rio de Janeiro366
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(Fig. 11b), particularly for the 2008 epidemic.367

Insert Figure 9 here368

Insert Figure 10 here369

Insert Figure 11 here370

5. Probabilistic epidemic prediction371

The specified Bayesian hierarchical model can also be used to predict the372

probability of dengue exceeding a pre-defined epidemic threshold in each mi-373

croregion. As the GLMM here provides a posterior predictive distribution374

for each microregion (rather than a point estimate), the probability of ex-375

ceeding an epidemic threshold can be calculated and the decision to trigger376

an alert can be based on the probability of exceeding the threshold being377

greater than a specified alert level, (e.g. probability of exceedance ≥ 90%).378

Many epidemic detection algorithms have been investigated to detect epi-379

demics (Cullen et al., 1984; Hay et al., 2002; Teklehaimanot et al., 2004). As380

an example, we consider the event of dengue exceeding an epidemic threshold381

of the mean plus one standard deviation for each microregion in South East382

Brazil in FMA 2008. The epidemic threshold is based on the dengue counts383

in the FMA season for the previous seven years (FMA 2001-2007). We can384

assess the ability of the GLMM to predict ‘dengue epidemics’ across South385

East Brazil during the FMA season in 2008 using a contingency table (see386

Table 2). Observed dengue counts for the 3-month season were compared387
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with model predictions where the probability of an epidemic exceeded an388

alert threshold chosen to be 90%.389

Table 2: Contingency table for observed dengue exceeding epidemic threshold (mean plus

one standard deviation) and probability of predicted dengue exceeding alert threshold

(≥ 90%) for the 160 microregions.

Observed

Yes No Total

Predicted Yes a=29 b=9 38

probability No c=19 d=103 122

≥ 90% Total 48 112 160

The contingency table provides information on the overall predictive skill390

of the warning system. The proportion correct, defined as the proportion391

of the 160 microregions for which the prediction correctly anticipated the392

subsequent epidemic or non-epidemic (a + d/a + b + c + d), was 83%. The393

hit rate (the proportion of epidemics that were correctly predicted a/a + c)394

was 60%. Conversely, the false alarm rate (the proportion of epidemics that395

were predicted but did not occur b/b + d) was 8%.396

Figure 12 shows the posterior predictive distribution for the FMA season 2008397

for the microregion Linhares, found on the coastal region of Esṕırito Santo,398

where the probability of exceeding the epidemic threshold was found to be399

≥ 90%, based on the epidemic threshold of mean plus one standard deviation400

derived from the distribution of dengue for the season FMA 2001-2007. A401

successful epidemic alert would have been issued for this microregion using402
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the GLMM with the given epidemic threshold and alert level. By lowering403

the alert level below 90% the hit rate for the region increases but so does the404

false alarm rate. In practice, the choice of epidemic threshold and alert level405

should be selected by decision makers based on expert opinion and available406

resources.407

Insert Figure 12 here408

6. Discussion and Conclusion409

The preliminary modelling results in this paper indicate that climatic covari-410

ates play a statistically significant role in the transmission of dengue fever.411

Although climate information alone does not account for a large proportion412

of the overall variation in dengue cases in Brazil, spatio-temporal climate in-413

formation with the addition of spatio-temporal random effects do account for414

some of this variability, particularly for the 2008 peak dengue season, when415

a serious epidemic occurred. Therefore the inclusion of seasonal climate fore-416

casts in a dengue EWS for Brazil is worth investigating. The next step would417

be to assess the predictive validity of the model when replacing ‘observed’418

with ‘hindcast’ (i.e. retrospective forecasts made for a historical period in419

pseudo-operational mode) climate variables. ‘Hindcast’ precipitation, tem-420

perature and Niño3.4 data are available from forecasting systems such as the421

UK Met Office seasonal forecasting system (Graham et al., 2005) and the422

European Centre for Medium Range Forecasts (ECMWF) System 3 (Ander-423

son et al., 2007). These systems typically produce ensemble predictions with424

lead times up to 6 months. By replacing ‘observed’ with ‘hindcast’ climate425
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variables in the above GLMM, a dengue prediction could be made 5 months426

ahead of the dengue season of interest. For example, to predict dengue in-427

cidence for March 2010, the model could be run in October 2009 using the428

observed Niño 3.4 index for September 2009 (6 month lag), and precipitation429

and temperature forecasts for January and February 2010 issued in October430

2009. The reliability of a climate-based EWS will depend on the skill of the431

forecasting system or multi-model combined and calibrated system such as432

EUROBRISA (Coelho et al., 2006), in predicting seasonal climate conditions433

for the region of interest.434

Previous sections have highlighted the potential for incorporating climate435

information into a spatio-temporal EWS for dengue in Brazil. However, be-436

fore implementing such an operational system several technical issues need437

to be considered. For example, the definition of epidemic thresholds by pub-438

lic health decision makers. Thresholds should be designed to minimise false439

alarms and false negatives (i.e. failing to predict that an epidemic will occur)440

and should correspond with the epidemic response capabilities in specific lo-441

cations. The spatial scale of the system affects the type of response activity442

that could be implemented. For example, at the microregion level interven-443

tions such as health care provisions may be possible. However, vector-control444

efforts may be more difficult to target. Predictive output from an EWS needs445

to be continuously monitored and evaluated over time and models should be446

refitted as new dengue/climate data becomes available. Spatial demographic447

data from the census (and interim projections) should also be updated when448

necessary. In order to issue the most reliable epidemic predictions forecast449

climate should be replaced with observed climate as time progresses towards450

23



the peak epidemic season, so that updated epidemic alerts can be re-issued451

to public health decision makers. However, time delays in obtaining and452

collating real-time information for both confirmed dengue cases from SINAN453

and climate forecasts and observations could hinder the ability to provide454

warnings far enough in advance. Another important consideration is the dis-455

semination and visualisation of early warnings of increased level of dengue456

risk. It is vital to train public health decision makers on how to interpret457

and use dengue risk forecasts, including awareness about forecast limitations458

to avoid misinterpretation and/or over interpretation.459

Developing a climate-based EWS for dengue using climate and disease in-460

formation over such short time periods remains a major challenge. During461

the study period, the Niño 3.4 index strongly influences the temporal signal462

of predicted dengue. From June 2007, a moderate La Niña event developed,463

which strengthened in early 2008. Was the dengue epidemic in 2008 influ-464

enced by this La Niña event or was this a coincidence? ENSO may play a role465

in synchronizing epidemics, however, periods between epidemics may also be466

a function of herd immunity from previous epidemics, and these two cycles467

(ENSO and herd immunity) may have coincided during the 2001-2008 study468

period. Further investigation is needed to understand temperature and pre-469

cipitation patterns associated with warm phase and cold phase ENSO for this470

region in Brazil and to consider the possibility of a non-linear relationship be-471

tween precipitation/temperature and dengue. The model parameterisation472

would benefit from the inclusion of one or more past epidemics to address473

these problems.474
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Despite this, it is hoped that this spatio-temporal dengue prediction model475

is a step towards the development of a useful decision making tool for the476

Brazilian health services. Such spatio-temporal models offer an opportunity477

to balance global climate variables and local responses, e.g. the influence478

of ENSO on dengue incidence is likely to occur unequally across the region479

due to particular socio-economic local conditions. Another advantage of the480

GLMM is the ability to address specific public health issues in terms of481

probabilities. This model could be extended to other regions in the world482

where climate-sensitive infectious diseases (e.g. cholera, malaria, leptospiro-483

sis, plague) present a burden to public health infrastructure, particularly in484

developing countries.485
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Figure captions624

Figure 1: (a) Monthly dengue fever counts (1 000 cases) for main regions of625

Brazil from January 2001 to December 2008 (b) map to show main regions626

of Brazil (c) map of total dengue cases in each microregion (558) in Brazil627

for period January 2001 to December 2008.628

Figure 2: Upper panel: spatial distribution of (a) altitude, (b) urban popu-629

lation, (c) zones in Brazil. Lower panel: scatter plot and loess curve to show630

relationship between dengue SMR and (d) altitude, (e) percentage of urban631

population, (f) boxplots to show distribution of dengue SMR in each zone.632

Note logarithmic y axes.633

Figure 3: Annual cycle of dengue for 8 zones in Brazil, calculated for period634

January 2001 to December 2008.635

Figure 4: Map to show centroids of microregions in Brazil (circles) and 2.5◦×636

2.5◦ climate grid (squares). Box indicates approximate location of South East637

region for which GLMM is developed.638

Figure 5: Scatter plot and loess curve (solid line) to show observed and639

predicted dengue fever, using GLM model for 3 month season FMA 2001-640

2008 for (a) Brazil and (b) South East region.641

Figure 6: (a) time series of total observed dengue (solid line), GLM predicted642

dengue without climate (dashed line) and GLM predicted dengue with cli-643

mate (dotted line) for FMA season 2001-2008 in Brazil, maps to show sum of644

(b) observed and (c) predicted dengue cases for microregions of Brazil, FMA645
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season 2008. Categories defined by quintiles of observed dengue for FMA646

season 2008.647

Figure 7: Time series of total observed dengue (solid line), GLM predicted648

dengue without climate (dashed line) and GLM predicted dengue with cli-649

mate (dotted line) for FMA season 2001-2008 for (a) South East (region650

level) and (b) Rio de Janeiro (microregion level).651

Figure 8: Kernel density estimates for marginal posterior distributions of pa-652

rameters β1, . . . , β5 (posterior means in parentheses) associated with climate653

variables: (a) precipitation lag 1, (b) precipitation lag 2, (c) temperature lag654

1, (d) temperature lag 2 and (e) Niño 3.4 index lag 6 for South East Brazil.655

Figure 9: Scatter plot and loess curve (solid line) to show observed and656

predicted dengue fever using GLMM for 3 month season FMA 2001-2008 for657

South East Brazil.658

Figure 10: Maps to show (a) observed dengue, (b) predicted dengue using659

GLM model and (c) predicted dengue using GLMM model for South East,660

FMA season 2008. Categories defined by quintiles of observed dengue for661

FMA season 2008.662

Figure 11: Time series of total observed dengue (solid line) and predicted663

dengue using GLMM (dashed line) for FMA season 2001-2008 for (a) South664

East (region level) and (b) Rio de Janeiro (microregion level).665

Figure 12: Kernel density estimate for posterior predictive distribution of666

dengue, FMA 2008 for Linhares (19.4◦S,40.1◦W), a microregion in Esṕırito667

33



Santo. Dashed vertical line indicates epidemic threshold of mean plus one668

standard deviation based on FMA 2001-2007. Solid vertical line indicates669

observed dengue count in FMA 2008.670
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