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Abstract. Planar piecewise isometries with convex polygonal atoms that are
piecewise irrational rotations can naturally generate a packing of phase space
given by periodic cells that are discs. We show that such packings cannot
contain certain subpackings of Apollonian packings, namely those belonging to
a family of Arbelos subpackings. We do this by showing that the unit complex
numbers giving the directions of tangency within such an isometric-generated
packing lie in a finitely generated subgroup of the circle group, whereas this is
not the case for the Arbelos subpackings. In the opposite direction, we show
that, given an arbitrary disc packing of a polygonal region, there is a piecewise
isometry whose regular cells approximate the given packing to any specified
precision.

1. Introduction. Consider an orientation-preserving piecewise isometry T of a
planar region M , namely a decomposition of M into the union of convex polygonal
regions, or atoms, such that T is an orientation-preserving isometry on each atom.
It has been recognised for some time that such piecewise isometries (PWIs) induce
a full measure partition of the phase space into the union of the regular set of
periodically coded points and its complement, the exceptional set, see for example
[7]. Under generic assumptions on the piecewise isometry that we state in Section
2, the set of points with the same periodic coding is a disc and hence the regular set
gives a disc packing of M that may or may not be dense in M . Previous work has
suggested that the packing is typically very “loose”, so that tangencies between the
discs are rare: for example in [3] it is shown that almost all packings for a certain
family of PWIs have no tangencies, and it is conjectured in [4] that the exceptional
sets for the same family of maps have positive measure. Moreover, one can obtain
a full measure disc packing which is tangent-free [3]. However, the possibility is not
excluded that, for some parameterised families of PWIs, there may be dense set of
parameters for which many tangencies occur.

This paper presents a further result in this direction. Apollonian packings are
well known [1, 2, 6, 11] and are the most studied of dense disc packings. They
are conjectured to be the “tightest possible” packings in that their complements
are thought to have smallest possible Hausdorff dimension [10]. In [1] there are
numerical estimations of the complement of Apollonian packings that indicate that
they have dimension 1.30568, derived by examining scaling properties of a semi-
group that generates the packing. Within an Apollonian packing, one may identify

2000 Mathematics Subject Classification. Primary: 37E05; Secondary: 52C26.
Key words and phrases. Piecewise isometries, apollonian circle packings.

791

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12827414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


792 MARCELLO TROVATI, PETER ASHWIN AND NIGEL BYOTT

sequences of discs which form a subpacking of a particularly simple kind, namely
Arbelos packings, in which each disc is tangent to two fixed boundary discs. The
main result of this article is that certain Arbelos packings (and hence the Apollonian
packings which contain them) can never arise as subpackings of the disc packings
associated to PWIs satisfying our assumptions.

We now describe the content of the paper in a little more detail. After recalling
in Theorem 2.2 that periodically coded cells for PWIs are typically discs, we show in
Theorem 2.3 that the unit vectors in the directions of the tangencies between discs
lie in a finitely generated subgroup of the circle group S1. By contrast we prove in
Theorem 4.3 that the tangency directions of any of a family of Arbelos subpackings
give rise to a subgroup of S1 which is not finitely generated, and in Theorem 4.4
we conclude from this that such subpackings cannot be generated by a PWI. In
the opposite direction, we show in Theorem 5.1 that, given any non-overlapping
disc packing A of a polygonal region D, there is a PWI on D whose regular set is
arbitrarily close to A.

We note that a stronger result than Theorem 4.4 has recently been given in [12],
but for a more restrictive class of piecewise isometries than considered here: for
such a PWI, any given disc in the associated disc packing can be tangent to at most
finitely many other discs.

2. Disc packings induced by PWIs. Piecewise isometries arise in different con-
texts ranging from purely abstract geometrical problems to physical systems. In
particular, when we consider 2-dimensional PWIs, these generate interesting geo-
metrical configurations (see [7, 8, 9]). However there are several examples, such as
bandpass Sigma-Delta modulators as depicted in Figure 1 (see [5]), that generate a
disc packing which appears to be tangent-free, i.e. there are no tangencies between
any two distinct discs.

In this Section, our aim is to investigate some properties of disc packings in-
duced by PWIs, emphasising the bridge between dynamics on the one hand, and
combinatorial properties on the other hand.

2.1. Cells for PWIs. A planar piecewise isometry is a map of the form

T : M → M

where M is a closed bounded polygonal region within C (or R2) that has a finite
partition into N convex polygons or atoms:

M =
N
⋃

k=1

Mk

where each Mk is an open convex polygon such that T |Mk
= Tk is an isometry. We

write S1 for the circle group in the complex plane S1 = {z ∈ C : |z| = 1}, and we
only consider orientation-preserving isometries; these are necessarily of the form

Tk(z) = vkz + wk. (1)

for vk ∈ S1 and wk ∈ C. We suppose that the boundaries of Mk are line segments
of the form

Vk,jR + Wk,j (2)

with Vk,j ∈ S1 and Wk,j ∈ C, for j = 1, . . . , l(k), the positive integer l(k) being the
number of sides of the polygon Mk. We define Br(x) = {y ∈ C : |x − y| < r}.
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Definition 2.1. We say that a set X ⊂ M ⊂ C is a disc packing of M if

X =
⋃

i∈I

Bri
(xi)

where Bri
(xi) are disjoint (non-overlapping) open discs with radii ri > 0 and centres

xi ∈ C, indexed by a countable set I.

A disc packing X of M is said to be dense if X = M . The pairs {(xi, ri) : i ∈ I}
with ri > 0 and Bri

(xi) ⊂ M characterise the disc packing; if we want them to
be non-overlapping we require that |xi − xj | ≥ ri + rj whenever i 6= j. There is
a tangency between Bri

and Brj
if and only if |xi − xj | = ri + rj . Note that the

Lebesgue measure of this packing is simply
∑

i πr2
i .

We say s = s0s1 · · · sk · · · with sk ∈ {1, · · · , N} is an itinerary (which may be a
finite or infinite word) if there is an x ∈ M such that T n(x) ∈ Msn

for all n. For
an itinerary s = s0 · · · sn of length n (where we allow n = ∞), we define the n-cell
C(s) by

x ∈ C(s) if and only if T j(x) ∈ Msj
for all 0 ≤ j ≤ n.

For each n there is clearly a full measure partition of M into n-cells; the excluded
points are those that land on the boundary of one of the atoms after at most
n iterates (after any number of iterates if n = ∞); the latter has zero measure,
although its closure may have positive measure [3]. We define an infinite coding as
s = {si}i∈Z+ , and we say that s is periodic with period n if it can be written

s = (s0s1 · · · sn−1) = s0 · · · sn−1s0 · · · sn−1 · · · .

We now give a slightly strengthened version of results of Goetz [7, Prop 2] and
Ashwin & Fu [3, Props 1 and 2].

Theorem 2.2. Let C(s) be a cell of a piecewise isometry T , corresponding to a
finite or infinite itinerary s. Then C(s) is a convex region, and is open if s is finite.

If s is a periodic (infinite) itinerary such that C(s) is non-empty, then C(s) has
non-empty interior. Moreover, if the rotation factors v1, . . . , vN of T in (1) satisfy
the condition

vn1

1 vn2

2 · · · vnN

N = 1 with integers nk ≥ 0 ⇒ nk = 0 for all k, (3)

then the periodic ∞-cell C(s) is a closed disc of strictly positive radius, possibly with
countably many boundary points excluded.

Proof. First consider a finite word s = s0 . . . sn. For 0 ≤ k ≤ n set Nk = T−1
s0

◦ · · · ◦
T−1

sk−1
(Msk

). Then each Nk is a convex open set, being an isometric image of Msk
.

We will show by induction on n that

C(s) =

n
⋂

k=0

Nk,

so that in particular, C(s) is a convex open set. The induction starts with C(s0) =
Ms0

= N0. Now assume the result for C(s0 . . . sn−1). The restriction of T n−1 to this
(n−1)-cell is Tsn−2

◦. . .◦Ts0
and its image lies in Msn−1

. Thus, for x ∈ C(s0 . . . sn−1),
we have

x ∈ C(s0 . . . sn) ⇔ Tsn−1
(T n−1(x)) ∈ Msn

⇔ x ∈ Nn.

We therefore have

C(s0 . . . sn) = C(s0 . . . sn−1) ∩ Nn =

(

n−1
⋂

k=0

Nk

)

∩ Nn,
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completing the induction. For an infinite word s = s0s1 . . ., we then have

C(s) =

∞
⋂

n=0

C(s0 . . . sn)

so that C(s) is convex in this case also.
Next consider a non-empty ∞-cell C(s) corresponding to the periodic coding

s = (s0s1 · · · sn−1). We have T n(C(s)) = C(s), since s has period n, so the map

T̃ = T n|C(s) is an isometry from the convex set C(s) to itself. Therefore C(s)

contains a fixed point of T̃ ; denote this by p. For x ∈ C(s), we have

T̃ (x) = vsn−1
(vsn−2

(· · · (vs0
x + ws0

) · · · ) + wsn−2
) + wsn−1

) = ṽ x + w̃

where ṽ = vsn−1
vsn−2

· · · vs0
= eiθ, say, and w̃ can be similarly computed. As

T̃ (p) = p, it follows that

T̃ (x) = eiθ(x − p) + p for x ∈ C(s).

Moreover, the restriction of T n to the n-cell C(s0s1 . . . sn−1s0) ⊃ C(s) is given
by the same formula. As this n-cell is open, Bǫ(p) ⊂ C(s0s1 . . . sn−1s0) for some
ǫ > 0. Thus T n(Bǫ(p)) = Bǫ(p), so that Bǫ(p) ⊆ C(s). This shows that C(s) has
non-empty interior.

For the remainder of the proof, we assume that T satisfies the hypothesis (3).
Then in particular, ṽn 6= 1 for all n ≥ 1, so that θ /∈ πQ. We claim that if y ∈ C(s)
and |x − p| < |y − p| then x ∈ C(s), showing that the interior of C(s) is a disc
with centre p. Let r = |y − p|. Then, by the irrationality of θ/π, we know that

{T̃ n(y) : n ∈ Z+} is dense in Ar = {|z − p| = r}. We assume without loss of
generality that p = 0 and x ∈ R+. Let r1 = r, r2 = ir and r3 = −ir. Then x is in
the interior of the triangle △(r1, r2, r3), and the vertices of this triangle lie in Ar.
Given ǫ > 0, there exist n1, n2, n3 such that

|T̃ nk(y) − rk| < ǫ for k = 1, 2, 3.

Choosing ǫ small enough, we can ensure that x lies in △(T̃ n1(y), T̃ n2(y), T̃ n3(y)).
Since the vertices of this triangle are in the convex set C(s), it follows that x ∈ C(s),
as claimed. Finally, note that points on the boundary of C(s) that never hit a point
of tangency between C(s) and the boundary of any atom Mk will be included in
C(s); the countable set that does hit a point of tangency may be excluded from
C(s).

Remark 1. The hypothesis (3) is satisfied with vk = exp(iθk) for a full measure
set of rotations (θ1, . . . , θN ) with respect to the Lebesgue measure on [0, 2π)N . In
particular, if the θk/π are all irrational and independent over the rationals, then
(3) holds.

As a consequence of Theorem 2.2, under the hypothesis (3) there is a full measure
partition of M i.e.

M = E ∪ R ∪Z
where R is the regular set of periodically coded points, E is the exceptional set E
consisting of those ∞-cells with aperiodic itineraries, and Z is a set of Lebesgue
measure ℓ(Z) = 0 consisting of the points whose orbits hit the boundary of one of
the atoms. The discs comprising R may or may not give a dense packing of M .

In Figure 1 we show an example of part of a numerically computed disc packing
induced by the periodically coded cells for a piecewise isometry arising in signal
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Figure 1. Example of part of the disc packing for a map (de-
scribing the behaviour of a bandpass Sigma-Delta modulator) that
can be seen as a piecewise rotation by an irrational angle (see [5]
for details).

processing: a bandpass Sigma-Delta modulator (see [5] for details). Note that the
packing in the figure does not appear to have any obvious tangencies between any of
the larger discs; at smaller scales there is also apparently an absence of tangencies.

2.2. Tangencies of periodic cells.

Theorem 2.3. The set of tangency lines between any two discs in R for an
orientation-preserving piecewise isometry have directions given by elements of the
circle group S1 of the form

±v−1
i1

v−1
i2

· · · v−1
ik

(Vp,q)

for all choices of the indices. In particular, the elements of S1 corresponding to the
directions of such tangencies all lie in the finitely generated subgroup 〈±v−1

k , Vk,j :
1 ≤ k ≤ n, 1 ≤ j ≤ l(k)〉 of S1.

Proof. We first note that the element of S1 corresponding to a given tangency
line is ambiguous up to sign: namely ±z ∈ S1 both determine the same tangency
direction.

Suppose we have two discs C1 and C2 within R that have itineraries s1 and s2

with periods n1 and n2. Suppose that they are tangent at some point p = C1 ∩C2;
then it follows that for n = lcm(n1, n2) the discs must lie within different n-cells.
(If we consider the partition into n-cells for this n then C1 and C2 must lie within
different n-cells, otherwise s1

k = s2
k for all 0 ≤ k ≤ n).

Hence if Lp is a line segment that forms a mutual tangent between any two discs
in R, Lp must be a preimage of one of the lines in (2) under an iterate of T . If we
write

Lp = χR + p
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Figure 2. An Apollonian packing.

for direction χ ∈ S1, χ must be within Kn{Vk,j} where Kn is the set of finite words

in 〈v−1
1 , · · · , v−1

N 〉 of length n.

3. An excluded Arbelos packing. One might expect that in a dense disc packing
of some region M of the complex plane, each disc would necessarily be tangent to
other discs in the packing. This turns out to be far from the case. Indeed, a dense
disc packing of an equilateral triangle is exhibited in [3], based on the construction
of the Sierpinski gasket, in which no tangencies occur between the discs.

At the other extreme, there are disc packings in which every disc is tangent to
infinitely many others. This occurs in the best-known family of dense disc packings,
namely the Apollonian packings. These packings were introduced by Apollonius of
Perga and known in classical Greek times because of their intrinsic beauty and
elegance. They have been extensively studied ever since, and several famous math-
ematicians, from Descartes to Coxeter, have discovered interesting properties (see
[11] for details). An example of an Apollonian packing of a circle is depicted in
Figure 2. We may regard this as a packing of the Riemann sphere, with the region
exterior to the bounding circle viewed as a disc containing the point at infinity [1].

We define an Apollonian packing of a disc D to be an infinite union of closed
discs in D such that

• their interiors are disjoint;
• each disc is in the space formed by, and is tangent to, either three other discs

or two other discs and the boundary of D;
• given any three mutually tangent discs (or two discs tangent with each other

and the bounding circle) there is another disc of the packing, tangent to all
three of the given discs (or to both given discs and the bounding circle).
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Figure 3. The Arbelos packing of D− defined in Section 3 with
z0 = 0. We show in Theorem 3.2 that the angles of tangency of the
packing to the disc D+ do not lie in a finitely generated subgroup
of S1.

Any such packing is necessarily dense. An Apollonian packing of D is uniquely
determined by any two mutually tangent discs of the packing which are both inter-
nally tangent to the boundary of D.

Any Möbius transformation of the Riemann sphere takes an Apollonian packing
to another Apollonian packing. If a point on the boundary of one of the discs is
mapped to the point at infinity, the disc is mapped to a half-plane.

In [1] different kinds of Apollonian subpackings are studied, depending on the
configuration they produce. Three basic configurations are the Spiral, the Ring, and
the Knife or Arbelos; these are sequences of discs generated by iterating a certain
transformation.

Our goal now is to deduce from Theorem 2.3 that one particular Arbelos packing
A of the unit disc D− := {z : |z| ≤ 1} can never arise from a piecewise isometry
satisfying the condition (3). This is the content of Corollary 1 below. Later on,
in Theorem 4.4, we will generalise this result to cover an infinite family of Arbelos
packings of D−.

The Arbelos packing we consider is adapted from [1], and is illustrated in Fig-
ure 3. We can generate it using the Möbius transformation

f(z) = ζ
z − Z

1 − zZ
(4)

where

ζ =
3 − 4i

5
, Z =

1 − 2i

5
.

For any |ζ| = 1 and Z ∈ D−, f(z) maps the unit circle to itself, and we have chosen
Z and ζ in such a way that f(1) = 1 and f(0) = (1 + 2i)/5. Note that other values
of Z and ζ will define other Arbelos packings of D−.



798 MARCELLO TROVATI, PETER ASHWIN AND NIGEL BYOTT

This f fixes the discs D− and D+ := {z : |z − 1
2 | < 1

2}, and maps the disc

D0 := {z : |z + 1
2 | < 1

2} onto an infinite family of discs

Dk := fk−1(D0)

for k ≥ 1. Note that each disc Dk (for k > 1) is tangent to the disc D− (internally)
and the discs D+, Dk−1 and Dk+1 (externally). However we will see that the
configuration generated by f on C cannot be produced by any piecewise isometry.

We write this Arbelos packing

A := {Dk : k ∈ Z}
and note that any Apollonian packing of the unit disc will contain a packing of this
form up to a Möbius transformation (see [1] for details). We focus on the sequence
of tangencies of Dk with D+ and aim to show that this cannot appear within the
regular set for any piecewise isometry. Writing the tangency points

zk = Dk ∩ D+

we obtain an explicit formula for zk (note that f maps a neighbourhood of zk onto
a neighbourhood of zk+1).

Lemma 3.1. Let zk be defined as above. Then

zk =
k

k − 2i
=

k2 + 2ki

k2 + 4
.

Moreover the slope Vk of the common tangent of Dk and D+ is given by

Vk = −k2 − 4

4k

and the unit complex number vk giving the direction of tangency at zk, is given by

vk =
i(k + 2i)

k − 2i
=

(k2 − 4)i − 4k

k2 + 4
.

Proof. We first prove the formula for zk by induction. Note that the formula stated
gives z0 = 0, which is the tangent point between D0 and D+. Assuming the formula
for zk, we have

f(zk) =
3 − 4i

5
× 5k − (k − 2i)(1 − 2i)

5(k − 2i) − k(1 + 2i)

=
(2 − i)2

(2 − i)(2 + i)
× (2 + i)(2k + 2)

(2 − i)(2k + 2 − 4i)

=
(k + 1)

k + 1 − 2i
.

We easily verify that this point lies on the boundary of D+, so it is indeed the
tangent point between Dk+1 and D+, as asserted.

We next prove the formula for the unit complex numbers vk giving the direction
of tangency at the point zk. Noting that v0 = i, we see that the formula stated is
correct for k = 0. Now

vk+1 =
( df

dz (zk))

| df
dz (zk)|

vk

where
df

dz
=

4(3 − 4i)

(z + 2iz − 5)2
.
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Assuming the stated expressions for zk and vk, we calculate

vk+1 =
4(3 − 4i)(k − 2i)2

(2i − 4)2(k + 1 − 2i)2
× 20|k + 1 − 2i|2

20|k − 2i|2 × i(k + 2i)

k − 2i
.

Simplifying the above expression gives the value stated for vk+1, and the result
follows by induction.

Finally, we obtain the formula for the slope Vk of the tangent by observing that
if vk = x + iy then Vk = y/x.

Theorem 3.2. For the Arbelos packing A, the sequence vn does not lie within any
finitely generated subgroup of the group S1.

Proof. It suffices to show that the subgroup H = 〈v1, v2, . . .〉 of S1 is not finitely
generated. We have vn = (pn+qni)/rn where pn = −4n, qn = n2−4 and rn = n2+4.
Any odd prime factor of pn must divide n, and therefore cannot divide rn. Thus
pn and rn have no odd prime factors in common.

If H were finitely generated, we could choose N large enough that v1, . . . , vN

generate H . Then, for each m, every odd prime factor of rm must occur in one of
r1, . . . , rN . Take m to be the product of all odd prime factors of r1, . . . , rN . Then
rm = m2 + 4 is odd, and has at least one odd prime factor which does not occur
amongst the prime factors of r1, . . . , rN . This contradicts the choice of N , showing
that the group H cannot be finitely generated.

Corollary 1. The Arbelos packing A cannot arise as a subpacking of the regular set
R of cells of any orientation-preserving piecewise isometry satisfying the condition
(3).

Proof. This follows on noting from Theorem 3.2 that the subgroup of S1 generated
by the tangency directions of A is not finitely generated, whereas for any piecewise
isometry with polygonal atoms, Theorem 2.3 states that the allowable tangencies
between periodic cells must be contained in a finitely generated subgroup of S1.

4. An infinite family of excluded Arbelos packings. In §3 above, we consid-
ered one special Arbelos packing A. We now work more generally, and consider a
one-parameter family of Arbelos packings. As before, these will be packings of the
region between the circles D− = {z ∈ C : |z| = 1} and D+ = {z ∈ C : |z − 1

2 | = 1
2},

but we will now start with an arbitrary circle D0, internally tangent to D− and
externally tangent to D+. The choice of D0 then uniquely determines the packing:
the discs of the packing are fk(D0) for k ∈ Z, with f as in (4). An example of such
a packing is shown in Figure 4.

To find the tangency points zk = D+ ∩ Dk in such a packing, we transform our
original Arbelos packing A into a packing of an infinite vertical strip, as shown in
Figure 5.

Lemma 4.1. Let I : C → C be the Möbius transformation given by

I(z) =
1

z
+ 1. (5)

Then I−1(D+) and I−1(D−) are the straight lines x = −1 and x = − 1
2 respectively.

In particular, I−1 takes the tangency point zk of A to

Ĩk := I−1(zk) = −1 − ik

2
(6)
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Figure 4. The modified Arbelos packing, defined by taking z0 =
1+3i
10 as a point of tangency to the disc centred at z = 1

2 .

for k = 0, 1, 2, . . ..

Proof. Clearly I is an analytic function that preserves orientation and tangencies,
and takes the common point z = 1 of D− and D+ to ∞. We can write points on D−

or D+ as z = eiθ or z = 1
2 (eiθ + 1) respectively, for θ ∈ [0, 2π). A straightforward

calculation yields that I−1(w) = 1
w−1 . Then by direct computation we obtain

I−1(eiθ) = −1

2
− i

sin θ

2(1 − cos θ)
(7)

and

I−1

(

1

2
(eiθ + 1)

)

= −1 − i
sin θ

1 − cos θ
(8)

Therefore, I−1 maps D− onto the line (7) and D+ onto the line (8), as shown in
Figure 5.

Using the expression for zk in Lemma 3.1, we then have

Ĩk =
1

zk − 1
=

k − 2i

k − (k − 2i)
,

which simplifies to (6).

An arbitrary Arbelos packing of the region between D− and D+ corresponds
under I−1 to a packing of the strip {−1 ≤ x ≤ − 1

2} in which successive discs are
mutually tangent. Any such packing must be obtained from the packing in Figure
5 by a vertical shift. To obtain the preimages under I of the tangency points zk in
the new Arbelos packing, we therefore simply replace (6) by

Ĩk = −1 −
(

k + β

2

)

i, (9)

where the parameter β is an arbitrary real number depending on the choice of D0.
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Figure 5. The transformation described in Section 4. In fact
each tangency point zk in the Arbelos between D0 and all the
other circles D1, . . . is associated to a tangency point between a
family of circles of unit radius and a vertical line x = −1.

Theorem 4.2. Consider any Arbelos packing {Dk : k ∈ Z} of the region between
D− and D+, and let β ∈ R be the corresponding parameter as above. Then the
tangency points zk = D+ ∩ Dk of the packing are given by

zk =
k + β

k + β − 2i
=

(k + β)2 + 2i(k + β)

4 + (k + β)2
,

and the unit complex numbers in the directions of tangency are

vk =
−4(k + β)

(k + β)2 + 4
+ i

(k + β)2 − 4

(k + β)2 + 4
.

In particular, both zk and vk have the form

p(k)

r(k)
+ i

q(k)

r(k)

where p(k), q(k), r(k), are real polynomials (depending on β) of degree at most 2.

Proof. The formula for zk is immediate from (9); we have

zk = I(Ĩk) =
1

Ĩk

+ 1 =
k + β

k + β − 2i
.

The radius of D+ passing through zk is represented by the complex number

zk − 1

2
=

k + β + 2i

2(k + β − 2i)
=

(k + β)2 − 4

4((k + β)2 + 4)
+ i

4(k + β)2

4((k + β)2 + 4)
,

with modulus 1
2 . To obtain a unit complex number perpendicular to this, we simply

multiply by 2i, which gives the stated expression for vk.

Taking β = 0 in Theorem 4.2, we obtain the formulae of Lemma 3.1. The example
shown in Figure 4 corresponds to β = 2/3.

We now generalise Theorem 3.2 to the family of Arbelos packings in Theorem
4.2.

Theorem 4.3 (Non-Finite Generation of Subgroups of Circle Groups). Let

vk =
p(k)

r(k)
+ i

q(k)

r(k)
, k = 0, 1, 2, . . .
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be the sequence of unit complex numbers giving the tangency directions for any
Arbelos packing as in Theorem 4.2. Then the subgroup

H = 〈v0, v1, . . . , 〉
of the circle group S1 = {z ∈ C : |z| = 1} is not finitely generated.

Proof. We adapt the proof of Theorem 3.2, using the explicit formula for vk (in
terms of the parameter β) given in Theorem 4.2. Recall that to prove Theorem 3.2,
we found a large prime factor occurring in the sequence of denominators of the vk,
and therefore implicitly used the uniqueness of prime factorisations in Z. This time,
however, we do not in general have β ∈ Z, and we will need to use an appropriate
result on the uniqueness of factorisations in a less elementary setting.

From Theorem 4.2 we have p(k) = −4(k + β), q(k) = (k + β)2 − 4 and r(k) =
4 + (k + β)2.

Suppose for a contradiction that H is finitely generated, so for some N ∈ N we
have

H = 〈v0, v1, v2, . . . , vN 〉.
Then for each k, the real and imaginary parts p(k)/r(k) and q(k)/r(k) of vk lie in
the ring

R = Z

[

β,
1

4 + β2
,

1

4 + (1 + β)2
, . . . ,

1

4 + (N + β)2

]

,

obtained by first adjoining β to Z and then inverting the denominators r(1), . . . r(N).
In particular, writing p(k) as an element of R and “clearing denominators”, we have
the equation in Z[β]:

4(k + β)
N
∏

j=0

(

4 + (j + β)2
)ej

=
(

4 + (k + β)2
)

f (10)

for some integers e0, . . . , eN ≥ 0 and some f ∈ Z[β].
We will show that k can be chosen so that (10) gives rise to a contradiction. To

do so, we must distinguish the cases when β is transcendental or algebraic over Q.

Case 1: β is transcendental.
Then Q[β] ∼= Q[X ] is a Unique Factorisation Domain: up to multiplication by an
element of Q \ {0}, any non-zero polynomial can be written as product of monic
irreducible polynomials, and this factorisation is unique up to the order of the
irreducible factors. Now if k > N then k + β, 4 + (j + β)2 for 0 ≤ j ≤ N , and
4+(k+β)2 are distinct monic irreducible polynomials. So 4+(k+β)2 is an irreducible
factor on the right in (10) which does not occur on the left. This contradicts the
unique factorisation property, showing that H cannot be finitely generated.

Case 2: β is algebraic over Q.
We work in the real algebraic number field F = Q(β), and use some standard facts
from algebraic number theory. Let OF denote the ring of algebraic integers in F . In
OF we do not necessarily have unique factorisation of elements into prime elements,
but we do have unique factorisation of ideals into prime ideals. In particular, for
α ∈ OF \ {0}, we may define vp(α) ≥ 0 for each non-zero prime ideal p of OF as
the exponents in the factorisation of the principal ideal generated by α:

αOF =
∏

p

p
vp(α),
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where the product is over all non-zero prime ideals p. Then α ∈ p if and only if
vp(α) > 0.

There is some integer m 6= 0 so that mβ ∈ OF . Let γ = mβ. Multiplying (10) by
a large enough power of m, and taking the ideal generated by each side, we obtain
the following equality between ideals of OF :

4mt(mk + γ)
N
∏

j=0

(

4 + (mj + γ)2
)ej

OF =
(

4m2 + (mk + γ)2
)

f̃OF (11)

for some f̃ ∈ OF and some t ≥ 0. Let

θ = 2m
N
∏

j=0

(

(mj + γ)2 + 4m2
)

∈ OF .

Then θ is independent of k, and any prime ideal p dividing the left-hand side of
(11) must divide either θOF or (mk + γ)OF .

Now let k ∈ Z+ lie in the ideal θ2OF of OF : we may for instance take k to
be any positive multiple of NF/Q(θ2), where NF/Q denotes the norm map from F

to Q. Let p be a prime ideal dividing
(

(mk + γ)2 + 4m2
)

OF . Then p divides the
right-hand side of (11), and hence divides either θOF or (mk + γ)OF . But if p

contains both (mk + γ)2 + 4m2 and mk + γ then it also contains contains 4m2, and
therefore (being prime) contains 2m, which divides θ. It follows that every prime
ideal p dividing

(

(mk + γ)2 + 4m2
)

OF in fact divides θOF . But

(mk + γ)2 + 4m2 ≡ 4m2 + γ2 (mod θ2OF )

by the choice of k, and

vp(4m2 + γ2) ≤ vp(θ) < vp(θ
2)

because 4m2 + γ2 divides θ. It follows that

vp

(

(mk + γ)2 + 4m2
)

= vp(4m2 + γ2)

for all prime factors p of
(

(mk + γ)2 + 4m2
)

OF . Hence this ideal divides the ideal

(γ2 + 4m2)OF . Taking norms, it follows that NF/Q

(

(mk + γ)2 + 4m2
)

divides

NF/Q(γ2 + 4m2) in Z.

Since NF/Q

(

(mk + γ)2 + 4m2
)

is a non-constant polynomial in k (it is the prod-

uct of the distinct conjugates of the algebraic number (mk + γ)2 + 4m2), we may
choose k ∈ θ2OF ∩ Z+ large enough to ensure that

|NF/Q

(

(mk + γ)2 + 4m2
)

| > |NF/Q(γ2 + 4m2)|.

This contradicts that fact that NF/Q(γ2 +4m2) divides |NF/Q

(

(mk + γ)2 + 4m2
)

|,
showing that H cannot be finitely generated.

Hence we arrive at the following result, of which Corollary 1 is a special case:

Theorem 4.4. No Arbelos packing of the region between D− = {z ∈ C : |z| < 1}
and D+ = {z ∈ C : |z − 1

2 | < 1
2} can appear as a subpacking of the regular set R of

any orientation-preserving piecewise isometry.

Proof. This is immediate from Theorems 4.3 and 2.3.
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Figure 6. Example of Theorem 5.1: we can approximate the
circle C1 by defining a suitable region D.

As pointed out to us by one of the referees, the Arbelos packings considered in
Theorem 4.4 are not entirely arbitrary: to obtain a general Arbelos packing (up
to affine change of coordinates) we would need to allow arbitrary values not only
for the shift parameter β but also for the radius R of D+, here fixed at 1/2. The
expressions for vk in Theorem 4.2 would then involve the two arbitrary parameters
β and R. Instead of the two cases in the proof of Theorem 4.3, there would be
a number of possibilities to consider, including the case where β and R are both
transcendental over Q but satisfy an algebraic relation amongst themselves. We
believe that our techniques can be extended to handle this more general situation,
but, due to the additional technical difficulties involved, we have not been able to
treat arbitrary Arbelos packings in the present paper.

5. Approximating a packing by a piecewise isometry. Although Theorem
4.4 shows that a given Arbelos packing may not arise as the regular set of a piecewise
isometry, we can define a piecewise isometry whose regular set “approximates” the
Arbelos as closely as we wish. In fact we have the following:

Theorem 5.1. Let A be a non-overlapping disc packing of a polygonal region D.
Given ǫ > 0 there exists an orientation-preserving piecewise isometry (T, D) on
D with regular set B such that ℓ(A△B) < ǫ, where A△B denotes the symmetric
difference of the sets A and B.

Proof. Cover D with non-overlapping open squares S1, . . . SN of rational side length
δ, so D ⊆ ∪N

j=1Sk (see Figure 6). We assume, without loss of generality, that

Sj ∩ D 6= ∅ for each j, and that the squares are numbered so that Sj ⊆ A for
j = 1, . . . p; Sj ⊆ D but Sj 6⊆ A for j = p+1, . . . q; and Sj 6⊆ D for j = q+1, . . . , N .
We set

B = B(1) ∪ B(2)

where

B(1) =

p
⋃

j=1

Sj , B(2) =





N
⋃

j=q+1

Sj



 ∩ D =
N
⋃

j=q+1

(Sj ∩ D) .
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We now construct a piecewise isometry T : D → D with partition

S1, . . . Sq, Sq+1 ∩ D, . . . SN ∩ D

and regular set B.
We define T to be the identity on S1, . . . , Sp and also on Sq+1 ∩ D, . . . , SN ∩ D.

Then B is contained in the regular set of T . Consider now the squares Sp+1, . . . , Sq.
We define T on each of these squares as an irrational interval exchange in one coor-
dinate corresponding to some chosen irrational number λ: without loss of generality,
we may assume the square in question is [0, δ]2, and we then define T on this square
by T (x, y) = T ((x + λ) mod δ, y). This is a piecewise isometry on the square, with

two rectangular atoms, and (for example, on setting λ = δ/
√

2) examination of the
first coordinate shows that the orbit of any point has an aperiodic itinerary. The
squares Sp+1, . . . , Sq therefore belong to the exceptional set of T .

It remains to show that δ can be chosen small enough to ensure that ℓ(A△B) < ǫ.
Since B = B(1) ∪ B(2) and B(1) ⊆ A, we have

A△B = (A \ B) ∪ (B \ A) ⊆ (A \ B(1)) ∪ B(2),

so that

ℓ(A△B) ≤ ℓ(A\B(1)) + ℓ(B(2)).

Take Ã ⊂ A, where Ã = ∪M
k=1Dk consists of a finite number of discs of A and is

chosen so that ℓ(A\Ã) < ǫ/2. For each disc Dk in Ã, let Bk = Dk ∩B. Thus Bk is
the union of those squares Sj in the grid for which Sj ⊆ Dk ⊂ A, so that Bk ⊆ B(1).

The diameter of each square Sj is
√

2δ. So if the radius rk of Dk satisfies rk >
√

2δ

then Bk contains a disc of radius rk −
√

2δ. Thus

ℓ(Dk \ Bk) ≤ πr2
k − π(rk −

√
2δ)2 = 2πrk

√
2δ − 2πδ2 < 2πrk

√
2δ.

On the other hand, if rk ≤
√

2δ then

ℓ(Dk \ Bk) ≤ ℓ(Dk) = πr2
k < 2πr2

k ≤ 2πrk

√
2δ.

Hence

ℓ(Ã \ B(1)) =

M
∑

k=1

ℓ(Dk \ Bk) <

M
∑

k=1

2πrkδ
√

2 = C
√

2δ

where C =
∑M

k=1 2πrk is the total circumference of the discs in Ã.

Since B(2) is contained in the union of those squares overlapping the boundary
of D, and each square has diameter

√
2δ, we have

ℓ(B(2)) ≤ 2
√

δR

where R is the length of the boundary of D.
Putting all this together, we have

ℓ(A△B) ≤ ℓ(A \ Ã) + ℓ(Ã \ B(1)) + ℓ(B(2))

< ǫ/2 +
√

2δC +
√

2δR.

Choosing (rational) δ < ǫ/2
√

2(C + R), we have ℓ(A△B) < ǫ as required.
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