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ON THE RESTRICTED HILBERT–SPEISER AND LEOPOLDT
PROPERTIES

NIGEL P. BYOTT, JAMES E. CARTER, CORNELIUS GREITHER AND

HENRI JOHNSTON

Abstract. Let G be a finite abelian group. A number field
K is called a Hilbert–Speiser field of type G if, for every tame

G-Galois extension L/K, the ring of integers OL is free as an

OK [G]-module. If OL is free over the associated order AL/K

for every G-Galois extension L/K, then K is called a Leopoldt

field of type G. It is well known (and easy to see) that if K is

Leopoldt of type G, then K is Hilbert–Speiser of type G. We show

that the converse does not hold in general, but that a modified

version does hold for many number fields K (in particular, for

K/Q Galois) when G = Cp has prime order. We give examples

with G = C5 to show that even the modified converse is false
in general, and that the modified converse can hold when the
original does not.

1. Introduction

Let L/K be a finite abelian extension of number fields with Galois group G.
The associated order is defined to be AL/K := {x ∈ K[G] : x(OL) ⊆ OL}. In
the case K = Q, Leopoldt’s theorem [17] shows that the ring of integers OL of
L is free as a module over AL/Q. (A simplified proof of this result can be found
in [18].) More generally, we say that a number field K is Leopoldt if, for every
finite abelian extension L/K, the ring of integers OL is free over AL/K (note
that this differs from the definition of Leopoldt given in [15]). Since AL/K =
OK [G] if and only if L/K is tame, Leopoldt’s theorem implies the celebrated
Hilbert–Speiser theorem: Every tame finite abelian extension L of Q has a
normal integral basis, that is, OL is free as a Z[G]-module. (In this paper,
we shall take “tame” to mean “at most tamely ramified”.) A number field
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K is called a Hilbert–Speiser field if, for every tame finite abelian extension
L/K, the ring of integers OL is free over OK [G]; in particular, Q is such a
field. The same reasoning as above shows that if K is Leopoldt then K is
Hilbert–Speiser. The converse follows from Leopoldt’s theorem and the result
proven in [13] that Q is the only Hilbert–Speiser field. Hence, we have the
following observation.

Theorem 1.1. Let K be a number field. Then K is a Hilbert–Speiser field
if and only if K is a Leopoldt field.

The question arises as to whether a similar result holds when one fixes the
group G.

Definition 1.2. Let G be a finite abelian group and let K be a number
field. Then K is a Hilbert–Speiser field of type G if, for every tame G-Galois
extension L/K, the ring of integers OL is free as an OK [G]-module. Further-
more, K is a Leopoldt field of type G if, for every G-Galois extension L/K,
the ring of integers OL is free as an AL/K -module.

The following conjecture was stated in [8], and proved there in the case in
which G = Cp is cyclic of prime order p and K contains a primitive pth root
of unity ζp (see [8, Theorem 1.2]).

Conjecture 1.3. Let K be a number field and let G be a finite abelian
group. Then K is a Hilbert–Speiser field of type G if and only if K is a
Leopoldt field of type G. We denote this statement by HS-L(K,G).

Miyata [21] has investigated the integral Galois module structure of wildly
ramified extensions L/K of number fields of prime degree. A careful reading
of his paper suggests that one should expect the OK -ideal TrL/K(OL) to be
a global obstruction to the freeness of OL over AL/K . It is therefore natural
to consider the adjusted module TrL/K(OL)−1OL in place of OL itself. We
mention also a related situation where a similar adjustment is known to be
necessary: see for example [26, Chapter III, Section 3]. Let K be a number
field, G a finite abelian group, and H a Hopf order in K[G]. If L is a Galois
extension of K with group G whose associated order AL/K coincides with
H, then OL is locally free over H. Moreover OL can be regarded (under a
mild hypothesis on H) as a principal homogeneous space over the dual Hopf
order H ∗ to H. There is a “class invariant” homomorphism from the group of
principal homogeneous spaces over H ∗ into the locally free class group Cl(H).
This associates to OL the class (H ∗)−1(OL) = (TrL/K(OL)−1OL). On the
other hand, the map which simply associates to OL its class (OL) in Cl(H)
need not be a homomorphism. This lends further support to the idea that, in
general, the class (TrL/K(OL)−1OL) may be a more natural object to study
than (OL) itself.

In the light of these observations, we consider in this article the following
modified versions of Definition 1.2 and Conjecture 1.3.
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Definition 1.4. Let G be a finite abelian group and let K be a number
field. Then K is said to satisfy the modified Leopoldt condition of type G if, for
every G-Galois extension L/K, the adjusted ring of integers TrL/K(OL)−1OL

is free as an AL/K -module.

Conjecture 1.5. Let K be a number field and let G be a finite abelian
group. If K is a Hilbert–Speiser field of type G, then K satisfies the modified
Leopoldt condition of type G. We denote this statement by mHS-L(K,G).

We observe immediately that TrL/K(OL)−1OL is locally free over AL/K

if and only if OL is. Moreover, TrL/K(OL)−1OL and OL are isomorphic as
AL/K -modules if and only if TrL/K(OL) is a principal OK -ideal. Thus, for a
number field K which is Hilbert–Speiser of type G, there are potentially two
ways in which Conjecture 1.3 (respectively, Conjecture 1.5) might fail. On the
one hand, it might fail locally, so that there is some G-Galois extension L of K
for which OL (and hence also TrL/K(OL)−1OL) is not even locally free over
AL/K . On the other hand, genuinely global failure may occur, so that there
is a G-Galois extension L of K for which OL (respectively, TrL/K(OL)−1OL)
is locally free over AL/K , but not free over AL/K .

We shall show that neither conjecture is true in general, and indeed that
both local and global failure can occur. We shall prove, nevertheless, that
Conjecture 1.5 holds in many interesting cases. Specifically, we show first
that both conjectures can fail locally if G is the elementary abelian group
C2 × C2.

Theorem 1.6. Let K be a number field such that the ray class group
Cl4(OK) modulo 4OK is trivial, and such that some prime p of K above
2 has absolute ramification index at least 3. Let G = C2 × C2. Then K is
Hilbert–Speiser of type G, but there exists a G-Galois extension L of K such
that OL is not locally free over AL/K .

Corollary 1.7. HS-L(K,C2 × C2) does not hold if K is any of the three
real cubic fields Q(αi), 1 ≤ i ≤ 3, where α1, α2, α3 is a zero of x3 +x2 − 3x − 1,
x3 − x2 − 5x − 1, x3 + x2 − 5x − 3, respectively.

We shall then specialise to the case where G = Cp is cyclic of prime order
p, as in [8]. The above-mentioned work of Miyata allows us to prove the
following key proposition, which in particular shows that global failure of
mHS-L(K,Cp) cannot occur.

Proposition 1.8. A number field K satisfies the modified Leopoldt condi-
tion of type Cp if and only if
(a) K is Hilbert–Speiser of type Cp; and
(b) for every wildly ramified Cp-Galois extension L/K, the ring of integers

OL is locally free over its associated order AL/K .
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Hence, mHS-L(K,Cp) holds if and only if either (a) does not hold or (b) does
hold.

With this in mind, we point out the main result of [12]. Its proof is based
on a detailed analysis of locally free class groups and ramification indices.

Theorem 1.9. Let K be a totally real number field and let p ≥ 5 be prime.
Suppose that K/Q is ramified at p. If p = 5 and [K(ζ5) : K] = 2, assume
further that there exists a prime p of K above p with absolute ramification
index at least 3. Then K is not Hilbert–Speiser of type Cp.

We can often verify part (b) of Proposition 1.8 by using the results of [1]
and [2]. In other cases, we can quote existing results in the literature showing
that K is not Hilbert–Speiser of type Cp (see [12], [14]). Combining all of
these results gives the following theorem.

Theorem 1.10. Let p be a prime and let K be a number field. Suppose
that at least one of the following conditions holds:
(a) p = 2 or 3,
(b) K/Q is unramified at p,
(c) K is totally real, or
(d) K is (totally) imaginary and K/Q is Galois.
Then mHS-L(K,Cp) holds.

Corollary 1.11. Let p be a prime and let K be a number field such that
K/Q is Galois. Then mHS-L(K,Cp) holds.

Remark 1.12. Since the only primes of K which divide TrL/K(OK) are
those which are wildly ramified in L/K, the conjectures mHS-L(K,Cp) and
HS-L(K,Cp) coincide if every prime of K above p is principal. In this case (for
instance, if p remains prime in K, or if K has class number 1) one can replace
“mHS-L(K,Cp)” with “HS-L(K,Cp)” in the conclusions of Theorem 1.10 and
Corollary 1.11.

We end the paper with some explicit examples. Firstly, we exhibit a sex-
tic field which is not Galois over Q, and for which mHS-L(K,C5) (and also
HS-L(K,C5)) does not hold. This suggests that one should not expect any
significant strengthening of Theorem 1.10 to be possible. Secondly, we justify
the introduction of the conjecture mHS-L(K,G) in place of HS-L(K,G) by
giving several examples of quartic fields K satisfying condition (b) of Theo-
rem 1.10, so that mHS-L(K,C5) holds, but for which HS-L(K,C5) does not
hold.

2. Local failure for elementary abelian extensions of degree 4

In this section, we prove Theorem 1.6 and Corollary 1.7. We first need
a criterion which, for a G-Galois extension N/M of p-adic fields, guarantees
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that the valuation ring ON of N is not free over its associated order AN/M .
Such a criterion is given by [5, Theorem 3.13]. It is valid for any abelian
p-group G, and in fact applies not just to ON but to any power Ph of the
maximal ideal P of ON . Specialising to the case p = 2, G = C2 × C2, N/M is
totally ramified, and h = 0, this result reads as follows.

Lemma 2.1. Let M be a finite extension of Q2 with absolute ramification
index e. Let N/M be a totally ramified C2 × C2-Galois extension with rami-
fication numbers t1 ≤ t2 (in the lower numbering). Suppose further that

(1) t2 −
⌊

t2
2

⌋
< 2e.

Let w be the valuation of the different of N/M , and for a ∈ Z let a denote the
least non-negative residue of a modulo 4. Then ON is not free over AN/M if,
for at least one value of i ∈ {1,2}, we have

(2) 3 > ti > w.

By Hilbert’s formula for the different [25, Chapter IV, Section 1, Proposi-
tion 4], we have w = 3(t1 + 1) + (t2 − t1). Since t1 and t2 must both be odd
[25, Chapter IV, Section 2, Proposition 11 and Exercise 3(f)], it follows that

(3) w = 3 − t2.

We now turn to the question of recognising Hilbert–Speiser fields of type
C2 × C2.

Proposition 2.2. Let K be a number field such that Cl4(OK) is trivial.
Then K is Hilbert–Speiser of type C2 × C2.

Proof. For any finite group G, the ring of integers OL in a tame G-Galois
extension L of K is a locally free OK [G]-module of rank 1. Moreover, if G is
abelian, then a locally free OK [G]-module is determined up to isomorphism
by its rank and its class in the locally free class group Cl(OK [G]). Thus, if
Cl(OK [G]) is trivial, then OL is necessarily free for any such L, and K is
Hilbert–Speiser of type G.

We now take G = C2 × C2. By [20, Section 2] (or, more explicitly, [6,
Proposition 2.4]), Cl(OK [G]) is isomorphic to a certain quotient of 4 copies
of Cl4(OK). Thus, the triviality of Cl4(OK) implies that of Cl(OK [G]). �

Proof of Theorem 1.6. Let K be as in the statement of the theorem, and
let G = C2 × C2. Then K is Hilbert–Speiser of type G by Proposition 2.2.

Now let π ∈ K be a local parameter at p, let M = Kp be the comple-
tion of K at p, and let e ≥ 3 be the absolute ramification index of p. Let
E1 = K(

√
1 + π2e−5), E2 = K(

√
π), and L = E1E2. The completions of E1

and E2 at p are quadratic extensions F1, F2 of M with ramification numbers
u1 = 5, u2 = 2e respectively. Using standard results on the upper and lower
ramification filtrations (see [25, Chapter IV, Section 3]), we find that the
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completion of L at p is the totally ramified biquadratic extension N = F1F2

of M with upper ramification numbers u1 < u2, and hence with lower ram-
ification numbers t1 = u1 = 5 and t2 = u1 + 2(u2 − u1) = 4e − 5. We ap-
ply Lemma 2.1 to the G-Galois extension N/M . Firstly, (1) holds since
t2 − � t2

2 � = (4e − 5) − (2e − 3) = 2e − 2. Secondly, (2) holds for i = 1 as
t1 ≡ 1 (mod 4), and w ≡ 0 (mod 4) by (3). This shows that the valuation
ring ON is not free over AN/M . But since p is totally ramified in L/K, we
have AL/K,p = AN/M . Hence OL is not locally free over AL/K . �

Proof of Corollary 1.7. A list of all real cubic fields of discriminant ≤ 3132
is given by Cohen [9, Table B.4]. From this, we read off that the fields K =
Q(αi) for i = 1, 2, 3 are real cubic fields: in fact, they are the unique such
fields (up to Galois conjugacy) of discriminant 148, 404, 564, respectively, and
none of them is normal over Q. In each case, OK = Z[αi]. By factoring the
given polynomial over F2, we check that 2 is totally ramified in K. Thus the
unique prime of K above 2 has ramification index e = 3.

It remains to verify that Cl4(OK) is trivial. This can be done either using
PARI [23], or as follows. We observe that the canonical map Cl4(OK) �
Cl(OK) is injective if and only if the natural map O ×

K −→ (OK/4OK)× is
surjective. In each of the three cases, we can check the surjectivity of the
latter map by hand, using the fundamental units given in Cohen’s table.
This table also tells us that K has class number 1. Thus Cl4(OK) = 1 as
required. �

3. Realisable classes and the Proof of Proposition 1.8

Let K be a number field and let p be a prime. Let Δ ∼= (Z/pZ)× be the
group of automorphisms of Cp. Then the locally free class group Cl(OK [Cp])
is a Δ-module. As L/K varies over all tame Cp-Galois extensions of K,
the class (OL) of OL varies over a subset R(OK [Cp]) of Cl(OK [Cp]). Let
Cl(OK) denote the ideal class group of K and let Cl′(OK [Cp]) be the kernel
of the map Cl(OK [Cp]) −→ Cl(OK) induced by augmentation. Let J be the
Stickelberger ideal in Z[Δ]. In [20], it is shown that R(OK [Cp]) is the subgroup
Cl′(OK [Cp])J of Cl(OK [Cp]) generated by {cα : c ∈ Cl′(OK [Cp]), α ∈ J }.

Now assume that p is odd, and let Σ be the element Σg∈Cpg in the group
ring K[Cp]. For any wildly ramified Cp-Galois extension L/K, there is an
integral OK -ideal b such that b(AL/K ∩ KΣ) = OKΣ, and it is easy to see
that TrL/K(OL) = b. Miyata [21] associates to OL a class cl(OL) in the locally
free class group Cl(AL/K), and then investigates the behaviour of this class as
L varies over extensions with the same associated order. Note however that
in general OL need not be locally free over AL/K , so cl(OL) should not be
interpreted simply as “the class of” the AL/K -module OL. In the case that
OL is locally free over AL/K , one sees from [21, p. 160] that cl(OL) is the
class in Cl(AL/K) of the locally free module b−1OL, and not of OL itself.
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As in the previous paragraph, Cl(AL/K) is a Δ-module and [21, Corollary to
Theorem 2] shows that cl(OL) lies in Cl′(AL/K)J , where Cl′(AL/K) is defined
analogously to Cl′(OK [Cp]) and J is again the Stickelberger ideal in Z[Δ].
Moreover, there is a surjective Δ-homomorphism

(4) f : Cl′(OK [Cp]
)J −→ Cl′(AL/K)J .

Proof of Proposition 1.8. If K satisfies the modified Leopoldt condition
of type Cp, then it is clear that (a) and (b) hold once one recalls that
TrL/K(OL) = OK , and that AL/K = OK [Cp] if and only if L/K is a tame
Cp-Galois extension.

Suppose conversely that (a) and (b) both hold. Since K is a Hilbert–
Speiser field of type Cp, the subgroup Cl′(OK [Cp])J is trivial by [20, Theorem,
p. 103]. Now let L/K be any wildly ramified Galois extension with Galois
group isomorphic to Cp. Since OL is a locally free AL/K -module, it follows
from the discussion above that the class cl(OL) = (b−1OL) lies in Cl′(AL/K)J .
However, Cl′(AL/K)J is trivial by (4), so b−1OL is free over AL/K . �

By [7, Theorem 2], we know that a Hilbert–Speiser field K of type Cp must
have class number hK = 1 if either p = 2, or p = 3 and K contains a primitive
cube root of unity ζ3. The condition ζ3 ∈ K can be removed by Lemma 3.2
below. But if hK = 1 then HS-L(K,Cp) and mHS-L(K,Cp) coincide, so we
obtain the following additional corollary to Theorem 1.10.

Corollary 3.1. Let p = 2 or 3, and let K be any number field. Then
HS-L(K,Cp) holds.

We will see in Section 6.3 below that there exist Hilbert–Speiser fields of
type C5 having class number 2.

Lemma 3.2. If K is Hilbert–Speiser of type C3 and ζ3 /∈ K, then hK = 1.

Proof. Let M = K(ζ3). Then hM = 1 by [7, Theorem 2(ii)]. If the qua-
dratic extension M/K is ramified (either at a prime above 3 or at an infinite
prime), then the norm Cl(OM ) −→ Cl(OK) is surjective [27, Theorem 10.1],
so hK = 1. If M/K is everywhere unramified, then K is totally imaginary
and each prime p of K above 3 has absolute ramification index ep ≥ 2. We
claim that in this case K cannot be Hilbert–Speiser of type C3.

To prove the claim, we apply Herreng’s formula [14, Proposition 3.2] for
the 3-rank d3((OK/3OK)×) of the unit group of the residue ring OK/3OK .
Writing fp for the inertia degree of p, this yields

d3

(
(OK/3OK)×)

=
∑
p|3

fp

(
ep − 1 −

⌈
ep − 3

3

⌉)
.

To show K is not Hilbert–Speiser of type C3, it suffices by [13, Theorem 1] to
show that V3(K) := (OK/3OK)×/ im(O ×

K) has exponent divisible by 3. This
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will certainly hold if

(5) d3

(
(OK/3OK)×)

> d3

(
O ×

K

)
=

1
2
[K : Q] − 1.

(The equality holds since K is totally imaginary and ζ3 ∈ K.) But we calculate

2
(
d3

(
(OK/3OK)×)

− d3

(
O ×

K

))

= 2
∑

p

fp

(
ep − 1 −

⌈
ep − 3

3

⌉)
−

(∑
p

fpep − 2
)

=
∑

p

fp

(
ep − 2 − 2

⌈
ep − 3

3

⌉)
+ 2

≥ 2,

since ep ≥ 2 for each p. Hence (5) holds, as required. �

4. Local freeness for Cp-Galois extensions

Let p be prime and let N/M be a wildly ramified Galois extension of p-adic
fields of degree p. In this section, we briefly review the results of [1] and [2],
which give necessary and sufficient conditions for ON to be free over AN/M

in this case.
Let e denote the ramification index of M/Qp and let t denote the ramifi-

cation number of N/M . From [25, Chapter IV, Section 2, Exercise 3] and the
assumption that N/M is wildly ramified, we have 1 ≤ t ≤ pe

p−1 . Define n to
be the “length” of the continued fraction expansion

t

p
= a0 +

1
a1 + 1

a2+· · ·

= [a0, a1, a2, . . . , an], with an > 1.

Let a be the unique integer such that 0 ≤ a ≤ p − 1 and a ≡ tmodp (and so
t = a0p + a).

Theorem 4.1 ([1], [2]). The ring of integers ON is free over AN/M if and
only if
(a) a = 0, or
(b) t < pe

p−1 − 1 and a | (p − 1), or
(c) pe

p−1 − 1 ≤ t and n ≤ 4.

Corollary 4.2. If p = 3, then ON is always free over AN/M .

Proof. Since p = 3, we must have a ∈ {0,1,2}. The case a = 0 is clear, so
suppose a ∈ {1,2}. Then a divides 2 = p − 1 and either

t

p
= a0 +

1
3

or
t

p
= a0 +

2
3

= a0 +
1

1 + 1
2

,

so n ≤ 2. Since either t < pe
p−1 − 1 or pe

p−1 − 1 ≤ t, this completes the proof. �
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We end this section with a global consequence of Theorem 4.1.

Corollary 4.3. Let p ≥ 5 be prime, and let b(p) be the least positive
integer not dividing p − 1. Let K be a number field such that some prime p of
K above p has absolute ramification index e > b(p). Then there is a Cp-Galois
extension L of K such that OL is not locally free over AL/K .

Proof. Let M = Kp be the completion of K at p. For any integer t such
that 0 < t < pe/(p − 1) and t ≡ 0 (mod p), there is a (totally ramified) Cp-
Galois extension N of M with ramification number t: see for instance [11,
Chapter III, (2.5) Proposition]. We take t = b(p). As p ≥ 5, we have 0 < t <
p − 1, so that t ≡ 0 (mod p). Also, t < pe

p−1 − 1 since e ≥ t + 1 by hypothesis.
Thus, there exists a Galois Cp-extension N of M with ramification number t,
and moreover ON is not free over AN/M by Theorem 4.1 and the definition
of b(p).

Having found the p-adic extension N/M , we observe that there exists a
Cp-Galois extension L of the number field K such that Lp = N : this follows
from the Grunwald–Wang theorem (see for example [22, (9.2.3) Corollary];
note we are not in the “special case” since p is odd). Then OL is not locally
free over AL/K , since ON is not free over AN/M . �

5. Proof of Theorem 1.10

We now combine the results of previous sections and of [8], [14] to prove
our main result.

Proof of Theorem 1.10. Assume that K is a Hilbert–Speiser field of type
Cp. By Proposition 1.8, it suffices to show that if L/K is a wildly ramified
Cp-Galois extension, then OL is a locally free AL/K -module. To this end, let
M = Kp be the completion of K at some prime p above p and let e be the
ramification index of M/Qp. Let N/M be a Cp-Galois extension and assume
that N/M is (wildly) ramified. Let t be the ramification number of N/M .
From [25, Chapter IV, Section 2, Exercise 3] and the assumption that N/M
is wildly ramified, we have 1 ≤ t ≤ pe

p−1 .
We always have ζ2 = −1 ∈ K, so the case p = 2 is given by [8, Theorem 1.2].

The case p = 3 follows from Corollary 4.2. So we may henceforth assume that
p ≥ 5.

Suppose that K/Q is unramified at p. Then e = 1 and so the above in-
equality becomes 1 ≤ t ≤ p

p−1 , which forces a = t = 1. It now follows from
Theorem 4.1(c) that ON is a free AN/M -module. So we may henceforth as-
sume that e ≥ 2.

Suppose that K is totally real. By Theorem 1.9, we are reduced to the
case p = 5 and e = 2. We must have a = t ∈ {1,2}. If t = 1, the result follows
from Theorem 4.1(b); if t = 2, it follows from Theorem 4.1(c).
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Suppose that K is (totally) imaginary and K/Q is Galois. By the end of
the proof of [14, Proposition 3.4], we must have e ≤ 2p

p−2 , since otherwise K

would not be Hilbert–Speiser of type Cp. The inequalities 2 ≤ e ≤ 2p
p−2 and

1 ≤ t ≤ pe
p−1 now leave several cases to consider. Since p ≥ 5, we have 2p

p−2 < 4,
so e ∈ {2,3}. If e = 2 then a = t ∈ {1,2}. If t = 1, the result follows from
Theorem 4.1(b); if t = 2, it follows from Theorem 4.1(c) since

t

p
=

2
p

=
1

(p−1
2 ) + 1

2

.

Now assume e = 3. In this case we find a = t ∈ {1,2,3}. When t ∈ {1,2} the
result follows from Theorem 4.1(b). If t = 3, then either

t

p
=

3
p

=
1

(p−1
3 ) + 1

3

or
t

p
=

3
p

=
1

(p−2
3 ) + 1

1+ 1
2

,

and so the result follows from Theorem 4.1(c). �

6. Counterexamples for C5

Most of this section is devoted to providing a counterexample to
mHS-L(K,C5) in the case that K/Q is not Galois. In this counterexam-
ple, mHS-L(K,C5) fails locally. In the last part, we give some examples of
fields K such that mHS-L(K,C5) holds, but HS-L(K,C5) does not; the failure
of HS-L(K,C5) is then necessarily a genuinely global phenomenon.

The counterexample will be a sextic field K over the rationals with signa-
ture (2,2). The defining polynomial is x6 + 2x4 − 5x − 5. The field K has
class number 1, and the prime 5 splits in K as the fourth power of a degree
one prime p1 times a degree two prime p2. Applying Corollary 4.3, and noting
that b(5) = 3, it follows that K has a C5-Galois extension L/K for which OL

is not locally free over AL/K .
It is therefore left to prove that K is Hilbert–Speiser of type C5. To do

this, we must show that the subgroup of realisable classes in the class group
of OK [C5] is trivial.

Since 5 ramifies in K, the calculation of the class group of OK [C5] is a little
difficult, involving two fibre products, but not as difficult as one might expect
since some relevant ray class groups are trivial and of order 2, respectively.
The final outcome is that the class group of OK [C5] is of order 1 or 2. This
implies, by an easy explicit argument, that Cl(OK [C5]) is annihilated by the
Stickelberger ideal (note that the cyclic group Aut(C5) of order 4 has to act
trivially). Therefore K is Hilbert–Speiser of type C5, by McCulloh’s theorem
on realisable classes in [20]. In fact, with extra effort one can show that the
order of the whole class group is 1; but it is much simpler to use McCulloh’s
theorem.
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6.1. The class group of a certain nonmaximal order R in M = K(ζ5).
Let K = Q(θ) with θ6 + 2θ4 − 5θ − 5 = 0. We check using PARI [23] that
5OK = p4

1p2, where p1 has degree 1 and p2 has degree 2. We let M = K(ζ5).
Calculation shows that p1OM is again prime.

Remark 6.1. M has very large degree (24), but the polynomial defining
M , afforded by the PARI command polcomposite, is not as unwieldy as
one might expect. We then calculated bnfinit of M , which contains all the
information we need on (ray) class groups of M .

Some remarks on the length and the reliability of our calculations: The
algorithm bnfinit took seconds or minutes, depending on the choice of gov-
erning parameters. We used the parameters c = 0.3, c2 = 12, which yield
a rigorous result under the assumption GRH. (It seems illusory to eliminate
GRH for a field of this size, in particular a call of bnfcertify results in an in-
stantaneous refusal, because the Minkowski constant is much too large.) The
inbuilt check number was 1, as it should be. Some more plausibility checks
were done, such as repeating the calculation with another defining polynomial
afforded by polred, or on different machines.

Another partial justification of correctness is as follows. All the units pro-
duced by [23] were double-checked (a quick way is to take the principal ideal
generated by a hypothetical unit and factor it; if one gets the empty factori-
sation, we indeed have a unit). Now if we accept the statement that the class
number hM of M is 1 (produced by bnfinit) as true, then the triviality of
a certain ray class group (established below) is rigorously true as well: The
unlikely case that PARI missed some units of M would only mean that our
number for the order of the ray class group might be too high, but we already
obtain order 1 using the supply of units found by [23].

The main task in this section is a comparison of the rings R = OK [ζ5] ∼=
OK ⊗Z Z[ζ5], which is not the maximal order of M , on the one side, and the
ring S = OM on the other side. By [23], S has class number 1. We want to
establish that Cl(R) is trivial as well.

For this, we need some analysis of the inclusion R ⊂ S. Since S disagrees
with R at most at primes which are ramified both in K and in Q(ζ5), the
only prime at which we expect disagreement is p1. Let π be a local parameter
at p1 in K, and let λ = ζ5 − 1. Since 5 is (tamely) ramified with ramification
index 4 both in Kp1 and in Q5(ζ5), the rings OM,p1 and Z5[π,λ] cannot be
equal. But one has the following local description at p1.

Lemma 6.2. The element ξ := λ/π is integral. The ring Sp1 = OM,p1 is
the (free) OK,p1 -span of 1, ξ, ξ2, ξ3, and the length of OM,p1/Z5[π,λ] is 6.
Moreover, π3Sp1 is contained in Rp1 = Z5[π,λ].

Proof. The integrality of ξ is clear, by looking at valuations. (Recall that π
is also a parameter for the extended ideal p1OM .) The OK -module T defined
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as the OK -span of 1, ξ, ξ2, ξ3 has the easily seen property that T/Z5[π,λ] is
of length 6 (= 1 + 2 + 3) over OK/p1, that is, of order 56. By comparing the
discriminants of the algebras R and S (given by [23] and Schachtelungsformel),
one sees that OM,p1/Z5[π,λ] also has order 56. Hence, we have equality. The
last statement follows from the definitions. �

Corollary 6.3. We also have the global inclusion p3
1S ⊂ R.

This corollary produces a fibre product arising as follows. If we let S̄ stand
for S/p3

1S and R̄ for the image of R in S̄, we obtain the fibre product

R ↪→ S
↓ ↓
R̄ ↪→ S̄,

where the horizontal arrows are the natural inclusions and the vertical arrows
are the natural projections. By [10, Theorem 42.13] and the fact that all rings
are commutative, we have the following exact sequence

S× × R̄× −→ S̄× −→ Cl(R) −→ Cl(S) ⊕ Cl(R̄).

Since R̄ has trivial class group (being semilocal), and since the class group
of S is also trivial, the class group Cl(R) is an epimorphic image of U :=
S̄×/(R̄× · im(S×)). It thus suffices to establish that U is trivial. In fact,
we will check that U ′ := S̄×/ im(S×) is already trivial. But U ′ is precisely
the ray class group modulo p3

1 of M . By [23], we find that this ray class
group is trivial, so we are done. (It is perhaps interesting to mention that
the ray class number of M modulo 5OM is relatively large, being equal to
15,625 = 56.)

We sum up: R = OK ⊗Z Z[ζ5] has class number 1. We note that, in prin-
ciple, this calculation could also be performed using the algorithm of [16].

6.2. The class group of the integral group ring. To calculate the class
group of OK [C5], we now have to look at a second fibre product with OK [C5]
at the upper left; the upper right and lower left corners are occupied by
R = OK ⊗Z Z[ζ5] and OK , respectively. Finally, the lower right-hand corner
has the ring T = R/λR = OK/5OK . (Recall λ = 1 − ζ5.) The class group
of R is trivial (see previous section), and so is the class group of OK [23].
Hence, applying [10, Corollary 49.28], we find that the class group of OK [C5]
is an epimorphic image of the group X := T ×/(im(R×) · im(O ×

K)). Our final
claim will follow, if we can establish that X is of order 1 or 2. But, reasoning
as above, X is an epimorphic image of T ×/ im(O ×

K), the ray class group
of K modulo 5OK . By [23] this group has order 2. This is safe, since we
ran bnfcertify on K, which confirmed the whole output of bnfinit. We
mention in passing that the fundamental units of K have remarkably small
coefficients. Let us also remark that we cannot expect ray class number 1
here, because of the existence of the quadratic extension K(

√
5)/K. (Getting
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back to a remark made at the beginning: it is possible, but not easy, to show
that X is of order 1. We also note that, in principle, this calculation can be
performed using the algorithm of [3].)

This completes the proof that the class group of OK [C5] has order at most
2, and this implies, as explained at the beginning, that K is Hilbert–Speiser
of type C5.

6.3. Some examples and more counterexamples. In this section, we
give some examples of fields K such that K has class number 2 and is Hilbert–
Speiser of type C5 (as mentioned after Corollary 3.1). The examples K will
be quartic fields over the rationals with signature (2,1). Moreover, K/Q will
be unramified at 5, and K will contain a nonprincipal prime p above 5. By
Theorem 1.10 (b), mHS-L(K,C5) holds. However, there exists a C5-Galois
extension L/K with TrL/K(OL) = p. This follows from the Grunwald–Wang
theorem as in the proof of Corollary 4.3, but we construct one such L ex-
plicitly in the Appendix. The existence of such an extension L shows that
HS-L(K,C5) does not hold: The class (p−1OL) in Cl(AL/K) is trivial by
mHS-L(K,C5), so the class (OL) in Cl(AL/K) cannot be trivial.

In order to produce our fields K, we used [23] and [24] to generate lists of
degree 4 polynomials fi with coefficients of absolute value less than or equal
to 20, and then successively sifted out along the following criteria:

(a) fi irreducible
(b) the field Ki defined by fi has signature (2, 1)
(c) 5 is unramified but not inert in Ki

(d) hKi = 2
(e) at least one prime of Ki above 5 is nonprincipal
(f) the field Mi = Ki(ζ5) has class number 2 which equals the ray class num-

ber of Mi modulo (1 − ζ5).

In fact, using [24], one quickly obtains 12,051 polynomials satisfying (a), (b),
and (d). With some extra effort utilising [4] we then found that x4 − x3 +
3x2 − 3x − 4 satisfies all the stated criteria. This example was then successfully
checked using [23] on another machine.

Let K = Q(θ) with θ4 − θ3 + 3θ2 − 3θ − 4 = 0. Since 5 does not ramify
in K, K is arithmetically disjoint to Q(ζ5), and hence OK ⊗Z Z[ζ5] is the
ring of integers in M = K(ζ5). Since the ray class group of M modulo (1 −
ζ5) has order 2, and hM = 2, it follows that the quotient U ′ := (OM/(1 −
ζ5))×/ im(O ×

M ) is trivial.
We have a fibre product with OK [C5] at the upper left, and with the up-

per right and lower left corners occupied by OM = OK ⊗Z Z[ζ5] and OK ,
respectively. Finally, the lower right-hand corner has the ring OM/(1 − ζ5).
By [10, Theorem 42.13] and the fact that all rings are commutative we ob-
tain an exact sequence which appears as the middle row in the following
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diagram
0 0
↓ ↓

Cl′(OK [C5]
)

Cl(OM )
↓ ↓

1 → U → Cl
(

OK [C5]
)

→ Cl(OM ) ⊕ Cl(OK)
↓ ↓

Cl(OK) = Cl(OK)
↓ ↓
0 0,

where the left and right vertical sequences are, respectively, the exact sequence
of Section 3, and the exact sequence defined in terms of the natural maps.
One easily verifies that this diagram is commutative so there is a unique map
α : Cl′(OK [C5]) → Cl(OM ) which makes the resulting diagram commute. Ap-
plying the snake lemma to the vertical sequences and maps between them, we
obtain the exact sequence

0 −→ ker(α) −→ U −→ 0.

Hence, α has kernel U . That is, the following sequence is exact

1 −→ U −→ Cl′(OK [C5]
) α−→ Cl(OM ).

Since U = U ′/ im(O ×
K) is trivial, Cl′(OK [C5]) maps injectively into Cl(OM ),

and hence is of order 1 or 2. So it is annihilated by the Stickelberger ideal,
and K is Hilbert–Speiser of type C5. Furthermore, as explained above,
mHS-L(K,C5) holds, but HS-L(K,C5) does not.

Using the techniques described above, we can find many more examples
of such polynomials. We list three here, including our example above, along
with the corresponding discriminant dK :

x4 − x3 + 3x2 − 3x − 4
(
dK = −12,844 = −22 · 132 · 19

)
,

x4 − x3 + 4x2 − 4x − 1
(
dK = −17,051 = −172 · 59

)
,

x4 − 2x3 + 3x2 + x − 4
(
dK = −17,231, where 17,231 is prime

)
.

Appendix

As mentioned above, a C5-Galois extension L/K with TrL/K(OL) = p for
the first example K in the short list at the end of Section 6 can actually be
constructed explicitly. From [19], we find a polynomial

g(x, t) = x
(
x2 − 25

)2 +
(
x4 − 20x3 − 10x2 + 300x − 95

)
t2 − 4(x − 3)2t4

= x5 + t2x4 +
(

−20t2 − 50
)
x3 +

(
−4t4 − 10t2

)
x2

+
(
24t4 + 300t2 + 625

)
x +

(
−36t4 − 95t2

)



ON THE RESTRICTED HILBERT–SPEISER AND LEOPOLDT PROPERTIES 637

whose Galois group over Q(t) is the cyclic group C5 of order 5. Whenever τ ∈
K is such that gτ (x) = g(x, τ) is irreducible over K, the specialised polynomial
gτ has Galois group C5 over K. With some guesswork it is now possible to find
a choice of τ such that the resulting extension L = Lτ is ramified at the degree
one prime over 5 in K and unramified at the other prime over 5. We only
give the outcome; everything has been verified by PARI, using a variety of
double-checks, such as calculating discriminants both for the relative extension
L/K and the absolute field L, and comparing via the Schachtelungsformel.
Also the a priori fact that L/K is cyclic (which would be difficult to prove
by PARI in full rigour) was tested by looking at the factorisation of several
dozen prime ideals. Let θ denote a root of the defining polynomial for K, so
θ4 − θ3 + 3θ2 − 3θ − 4 = 0. We are now free again to use x as the variable for
the polynomial defining L/K. We find

gτ = x5 +
(

−9θ3 + 6θ2 + 15θ + 8
)
x4 +

(
180θ3 − 120θ2 − 300θ − 210

)
x3

+
(
666θ3 − 8364θ2 + 5370θ + 7728

)
x2

+
(

−6156θ3 + 51,624θ2 − 28,620θ − 43,823
)
x

+
(
6039θ3 − 75,306θ2 + 48,255θ + 69,512

)
.

Apart from the wild ramification at one prime above 5, L/K has tame rami-
fication in two primes of norm 66,821 and 4,268,881 respectively. (These two
numbers are prime.)
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