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Abstract. 
 

The causes and consequences of variation in aposematic signals during immature 

stages are not clearly understood. This thesis explores the effects of early environment 

on the expression of aposematic signals in the green and black poison frog 

(Dendrobates auratus), and the consequences of variation in such components in the 

wild. It also explores how aposematic expression relates to levels of chemical defences 

in immature froglets. Embryos and larvae of poison frogs in the genus Dendrobates are 

known to be darkly pigmented. This thesis reports for the first time polymorphism in 

egg pigmentation in D. auratus and ontogenetic colour change through development 

reverting to a normally pigmented phenotype; however whether this pigmentation 

results from constraints or has adaptive consequences remains unclear. Evidence on 

how immature individuals allocate resources to growth and warning signalling is scarce. 

Experimental results in this thesis show that food supply during early environment 

affected body size and signal luminance in post-metamorphic froglets. Therefore the 

relative importance of these traits in relation to predation risk was further tested, using 

artificial prey in a field experiment. The results indicated that rates of attack by birds 

correlated negatively with body size, and on the contrary survival of artificial prey was 

independent of signal luminance. I therefore tested the hypothesis that in the wild 

larger, relatively well-nourished juvenile frogs are chemically better defended. I found 

that in fact larger juveniles are at a selective advantage conferred by their greater 

foraging efficiency and their superior levels of chemical defences. Overall, these results 

shows plasticity in aposematic traits in relation to early environmental nutrition in D. 

auratus; and suggests that acquiring large body size and similar integument colour as 

to adults are key determinants for survival during the early stages of their terrestrial life. 
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Chapter 1. General Introduction  

 

1.1. Aposematic signals in relation to early developmental conditions 

 

The complex and dynamic interactions between predators and prey have favoured 

the evolution of several defence mechanisms in animals, some of which are 

advertised via different signal modalities in order to avoid harmful encounters with 

predators (Dawkins 1993). Many chemically defended prey exhibit distinctive 

integument colouration that may draw the attention of predators and enable them 

to avoid confusing distasteful prey from edible prey (Wallace 1867). The 

possession of conspicuous colouration jointly with secondary defences such as 

toxins or physical weapons is known as aposematism (Poulton 1890). Aposematic 

colours are distinctive, in contrast to those whose main function is concealment or 

crypsis (Cott 1940). The existence of aposematic signals is well documented 

among invertebrates, fishes, amphibians, snakes, and birds, and has been a topic 

of extensive debate and research in relation to its evolution (Ruxton, Sherratt, & 

Speed 2004). Nevertheless much less is known about how environmental 

conditions may affect the expression of aposematic signals, especially during early 

development, and the consequences for fitness. 

 The conditions in which an individual develops early in its life are of critical 

importance in shaping the final form of its mature phenotype (Lindström 1999a; 

Metcalfe & Monaghan 2001). In particular, phenotype expression and fitness at 

adulthood can be affected by variability of the developmental environment (e.g. 
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temperature, nutrition, photoperiod, predation pressure) (Monaghan 2008) and the 

capacity of the genotype to cope with such variance (Nijhout, 2003). It is well 

known that the environment experienced in early life can have important effects on 

physiological, morphological and behavioural traits which manifest at adulthood. 

However, the extent to which aposematic traits are sensitive to developmental 

conditions remains relatively poorly understood. Aposematic signals are expected 

to be uniform in expression, to facilitate easy recognition and to reduce sampling 

error by predators. Consequently, any variation in signal expression would be 

expected to be selected against (Endler & Greenwood 1988; Mappes & Alatalo 

1997a; Beatty, Beirinckx, & Sherratt 2004). Conversely, non-directional selection 

on signal expression would be expected to result if predators for example are 

inexperienced / unfamiliar with the signal (Rowe, Lindström, & Lyytinen 2004; 

Ihalainen et al. 2008). In fact, intraspecific variation in aposematic signal 

expression is widespread in nature (e.g. Summers, Cronin, & Kennedy 2003; 

Bezzerides et al. 2007; Tullberg et al. 2008; Mochida 2011; Wang 2011). Such 

variation may be expected to influence predation risk, perhaps especially during 

early life stages when secondary defences are incompletely developed, and 

animals must spent time exposed while they prioritise foraging in order to meet the 

demands of growth and development. 

  This thesis explores aspects of early life conditions affecting components of 

aposematism such as body size, signal expression and conspicuousness in the 

green and black poison frog (Dendrobates auratus), and the consequences of 

variation in such traits for predation risk in the wild. It also explores how 
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aposematic colouration relates to levels of chemical defences in immature froglets 

in the wild. 

 

1.2. Phenotypic plasticity and aposematic signals 

 

Phenotypic plasticity is a mechanism that enables individuals to adapt to 

environmental changes, and also operates during early development (West-

Eberhard 2005). Indeed, considerable phenotypic plasticity of aposematic 

coloration has been found in response to prey population density (Sword 1999, 

2000). Also panic moth caterpillars (Grant 2007) and poison frogs (Hoffman & 

Blouin 2000) show temporal variation in aposematic colouration as result of 

ontogenetic colour change. Similarly, in the striated shieldbug (Graphosoma 

lineatum) there are seasonal changes in aposematic colouration (Tullberg et al. 

2008). Furthermore, the expression of aposematic colouration can be influenced by 

variability in ambient temperature during development (Lindstedt, Lindström, & 

Mappes 2009), and in response to the quantity or quality of early nutrition (Blount 

et al., 2012; Grill, 1999; Grill & Moore, 1998; Lindstedt et al., 2010; Ojala, 

Lindström, & Mappes, 2007). Chemical defences are also subject to phenotypic 

plasticity. For example, variation in the diet experienced during early development 

can influence the accumulation of diet-derived toxins at adulthood (e.g. Daly et al. 

1994; Sime, Feeny, & Haribal 2000). The fact that not all individuals of aposematic 

species are maximally conspicuous or toxic suggests that there are costs 

associated with aposematism. One such cost is conspicuousness to predators 
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(Sherratt 2002). Nevertheless there could also be physiological costs related to 

aposematic signals and chemical defences. 

 

1.3. Physiological constraints and expression of aposematic signals 

 

One possible explanation for why aposematic traits vary within species is that the 

expression of such traits is subject to physiological resource allocation trade-offs. 

Investment in aposematic traits as an anti-predator strategy can trade-off with life-

history traits, reducing the effectiveness of the signal (Endler & Mappes 2004). 

Allocation of resources to enable the storage and secretion of chemical defences, 

and detoxification mechanisms can divert resources necessary for metabolic 

maintenance and growth (Ahmad, 1992; Dobler, 2001; Grill & Moore, 1998; 

Nishida, 2002). Also, allocation of resources to aposematic signals can compete 

with other uses like thermoregulation (Lindstedt et al. 2009) or immunity against 

parasites (del Campo, Smedley, & Eisner 2005; Lindsey & Altizer 2009). 

Integument colouration in aposematic animals is largely the result of deposition of 

diet-derived pigments (Fox 1976; Nijhout 1991; Sandre et al. 2007a), which may 

function in colouration and also as antioxidants (McGraw 2005).  Demanding 

metabolic activities like rapid growth during early development can increase the 

production of reactive oxygen species (ROS) (Alonso-Alvarez et al. 2007; Menon & 

Rozman 2007; Nussey et al. 2009). ROS can be neutralized in part by endogenous 

enzymatic and non-enzymatic antioxidants and/or antioxidants derived from the 

diet (reviewed in Selman et al. 2012). Despite the fact that availability of 



5 

antioxidants and levels of oxidative stress might be expected to impair early 

expression of aposematic signals, this mechanism has not been fully explored. 

Ojala et al. (2005) demonstrated potential trade-offs in the allocation of antioxidant 

pigments to aposematic signal expression versus other life history traits. However, 

the role of oxidative stress as a physiological mechanism mediating such trade-offs 

remains unclear. 

 

1.4. Design of aposematic signals and predators response 

 

The expression of warning signals may reflect production and maintenance costs 

(Dawkins 1993). In turn the receiver of such information (i.e. the predator) may 

itself incur opportunity costs in terms of the time needed to assess the reliability of 

signals, which could otherwise be spent on other activities (Dawkins & Guilford 

1991). Consequently, it is in the interests of both the signaller (prey) and the 

receiver (predator) that a signal has efficacy, resulting in avoidance by the predator 

and no harm to the prey. The strength and durability of the association between a 

noxious quality such as existence of chemical defence and warning advertising can 

be affected by different components of the signal, for example conspicuousness 

(Roper & Redston, 1987; Roper, 1994), colouration (Ham et al. 2006), size 

(Gamberale & Tullberg 1998), and pattern (Aronsson & Gamberale-Stille 2012). An 

aposematic signal looks conspicuous when it contrasts against the visual 

background where it is seen, or when contrast results from comparison among the 

various markings of the prey itself (Endler, 1990; Stevens & Ruxton, 2012).  In this 
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regard prey might vary the signal itself or the type of background in order to appear 

more or less conspicuous (Gamberale-Stille, 2001; Roper & Redston, 1987; Uy & 

Endler, 2004). Evidence from empirical studies shows that non-cryptic colours (e.g. 

yellow, red, orange) facilitate predator learning and enhance unlearnt avoidance in 

visual-oriented predators (Ruxton et al. 2004). On the other hand, achromatic 

contrast (i.e. brightness variation) seems to facilitate speed and duration of 

aversion learning of aposematic signals (Prudic, Skemp, & Papaj 2007). In addition, 

predator bias toward aposematic signals can be enhanced by large patterns 

(Forsman & Merilaita 1999), increases in the body sizes of prey (Hagman & 

Forsman 2003; Nilsson & Forsman 2003) or prey aggregations (Gamberale-Stille, 

2000; Lindström, Alatalo, & Mappes, 1999; Riipi, Alatalo, Lindström, & Mappes, 

2001). Although some aspects of the pattern elements of aposematic signals can 

be considered disruptive (Stevens 2007), the specific layout of such markings may 

cause aversion in predators (Wüster et al. 2004). In some instances it has been 

demonstrated that symmetric pattern elements enhance the anti-predator value of 

aposematic signals (Forsman & Merilaita 1999), whereas in other circumstances 

no difference has been found (Stevens, Castor-Perry, & Price, 2008). 

 Predators can show innate wariness toward aposematic signals as result of 

phobia to novel items (neophobia; Schlenoff 1984; Exnerová et al. 2007), or an 

aversion to include new items in the diet (dietary conservatism; Marples, Roper, & 

Harper 1998; Thomas et al. 2003, 2010). Nevertheless, naïve predators can learn 

to associate an aposematic signal with unprofitability faster if the signal is easy to 

recognize and is memorable (Ruxton et al. 2004). Birds, for example, have shown 

innate rejection toward conspicuous phenotypes (e.g. Marples, Van Veelen, & 
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Brakefield 1994; Darst, Cummings, & Cannatella 2006; Skelhorn & Rowe 2006). In 

some instances, however, initial sampling occurs before the bird learns to avoid the 

unpalatable prey (e.g. Schuler & Roper 1992, Chai 1996); here, the possession of 

adequate levels of secondary defences capable of causing deterrence is crucial to 

reduce predation risk. This is also important since certain potential predators of 

aposematic species, such as spiders, may not assess prey profitability using visual 

cues (Brodie & Tumbarello, 1978; Gray, Kaiser, & Green, 2010; Summers, 1999). 

Predators can vary in their sensory systems and therefore in how they perceive the 

aposematic signal, but also in their tolerance to chemical defences (Brodie & 

Ridenhour, 2002; Endler & Mappes, 2004). Indeed, differences in predator 

communities is likely to be one of the most important factors that drives variation in 

components of aposematic signalling within species, because it can relax selection 

towards uniformity and instead generate heterogeneous selection on signal form 

(Allen & Greenwood, 1988; Endler & Mappes, 2004; Losey, Harmon, Ballantyne, & 

Brown, 1997; Mappes, Marples, & Endler, 2005).  

 

1.5. Honest signalling in aposematic species  

 

Conventionally, aposematic signals have been considered to have relatively 

low information content, on the basis that predators show wariness simply because 

they associate the signal with a previous distasteful experience, without a 

necessary assessment of its quality (Grafen 1990; Guilford & Dawkins 1993). It is 

now clear that, in fact, predators do make assessments as to the level of defence 

before deciding whether to ingest prey (Skelhorn & Rowe 2006; Barnett et al. 2011; 



8 

Halpin, Skelhorn, & Rowe 2012). Nevertheless, whether aposematic signals can be 

considered to provide detailed and honest information about the defensive 

capacities of prey remains controversial (Stevens & Ruxton, 2012). Theoretical 

models have offered alternative ways to explain variation in aposematic signals 

and its association with level of defence. Aposematic signals seem to be 

‘qualitatively honest’ in the sense that only well-defended prey can bear the 

conspicuousness cost incurred by signalling (Sherratt 2002). However, there has 

also been speculation that aposematic signals may be ‘quantitatively honest’, in the 

sense that they provide detailed information about the strength of prey defence 

(Guilford & Dawkins 1993; Blount et al. 2009; Lee, Speed, & Stephens 2011). A 

positive correlation between aposematic signal expression and levels of chemical 

defence has been reported both within (Bezzerides et al., 2007; Blount et al., 2012; 

Maan & Cummings, 2012) and across aposematic species (Summers & Clough, 

2001; Cortesi & Cheney, 2010). Yet most theoretical models of aposematism 

predict the opposite pattern, i.e. well-defended prey should reduce investment in 

aposematic signals because they have a good chance of surviving attacks and can 

therefore avoid the conspicuousness costs of signals (Leimar, Enquist, & Sillen-

Tullberg 1986; Speed & Ruxton 2005a, 2007). Empirical evidence in support of this 

prediction shows an inverse correlation between aposematic signalling and the 

level of secondary defence (across dendrobatid species: Darst et al., 2006; within 

the seven spot ladybird, Coccinella septempunctata: Blount et al., 2012; within the 

granular poison frog, Oophaga [Dendrobates] granulifera: Wang, 2011). To 

address this lack of consensus, recently new theoretical models have been 

developed which generate predictions of both signal ‘honesty’ and negative signal-
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defence correlations (sometimes referred to as ‘dishonesty’) (Blount et al. 2009; 

Lee et al. 2011). These ‘resource competition’ models are based on the 

assumption that production and maintenance of aposematic signals and secondary 

defences both use-up a shared resource. Where the resource is in limited supply 

neither signalling nor defence can alone provide sufficient protection; here, the 

optimal strategy for prey is to invest equally in signals and defences resulting in a 

positive correlation between these traits (i.e. ‘honest’ signalling). However, when 

resources are abundant the model predicts a major investment in defences and a 

reduction in signalling, consistent with earlier theoretical models (Leimar et al. 1986; 

Speed & Ruxton 2005a, 2007). The shared resource could be energy, but an 

alternative possibility is antioxidant pigments, which must be partitioned between 

signals and protection against autotoxicity due to storage of toxins (Blount et al. 

2009). In a recent paper (Blount et al. 2012), found that in a food-limited 

environment the seven-spot ladybird showed a positive correlation between body 

levels of precoccinelline, a defensive alkaloid, and elytra carotenoid content, as 

predicted by the resource competition model. They also found that correlations 

between components of the aposematic signal and chemical defences were not 

only affected by direct variation in resource (i.e. food) supply, but also by sex 

differences in this sexually size-dimorphic species. Females are larger and thus 

more likely to become resource-constrained than males, suggesting that females 

are more likely to signal honestly (Blount et al. 2012). While this study provides 

some support for the resource competition models (Blount et al. 2009; Lee et al. 

2011), the role of oxidative stress as a mechanism underlying variation in 

aposematic signal expression remains unclear. Moreover, there is clearly a need 
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for more studies to assess the potential generality of these findings in other 

species and at different life stages. In particular, the resource competition models 

of aposematic signal honesty do not take into account the fact that during early 

development many prey species lack secondary defences and/or go through a 

process of ontogenetic colour change as discussed above (see § 1.2). ‘Honest’ 

signalling cannot, by definition, apply in the absence of secondary defences. 

 

1.6. Study species and field site 

 

One interesting group of aposematic animals are the poison frogs of the family 

Dendrobatidae, which possess a striking variety of intra- and interspecific 

integument colouration and patterning coupled with toxic substances sequestered 

from the diet (Lötters et al. 2007). As in many other amphibians, dendrobatids 

undergo a complex early life, derived from an evolutionary history involving aquatic 

ancestors and more recent terrestrial-adapted phenotypes (Summers & McKeon 

2004). The evolution of the aposematic syndrome in poison frogs has been the 

subject of extensive research (e.g. Darst, Menéndez-Guerrero, Coloma, & 

Cannatella, 2005; Hagman & Forsman, 2003; Santos, Coloma, & Cannatella, 2003; 

Summers & Clough, 2001). However, the relationships between early 

developmental conditions and the diversity of aposematic signal designs between 

and within species requires further study.  

The green and black poison frog Dendrobates auratus is a diurnal terrestrial 

frog found on both slopes in Central America, from Nicaragua to northwestern 
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South America (Savage 2002). Typically males tend clutches of 2 - 8 eggs 

(Summers, 1989; Wells, 1978) before carrying larvae to phytotelmata (holes in 

small trees, shells of fallen fruits or the leaf axis of bromeliads), where they develop 

without parental care over a period of 39-89 days (Summers, 1990). The tadpoles 

are cryptic and palatable during development, but after metamorphosis they are 

conspicuously coloured (Pope 1941), yet lack toxic defences because they need to 

be sequestered from dietary arthropods on the ground (Daly et al. 1994b). 

However, the proximate mechanisms during early development that may give rise 

to variation in aposematic traits and its consequences for predation risk are poorly 

understood. 

 The research presented in this thesis was conducted at a shade coffee 

plantation in the area of Cañablancal (8° 31’ N, 81° 03’ W), Santa Fe district, 

Veraguas province, Republic of Panama, where a population of the green and 

black poison frog can be found (Figure 1.1). 
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Figure 1.1 Location of Cañablancal study site in the Republic of Panama. 

 

1.7. Aims and structure of the thesis 

 

The present thesis explores the effects of the early developmental environment on 

phenotypic plasticity in growth, body size and aposematic traits in D. auratus. It 

also examines the consequences of variation in body size and aposematic signal 

expression for survival in terms of predation risk in the wild. Finally, it investigates 

how the expression of aposematic signals and levels of chemical defences relate 

to foraging efficiency, and how signals and toxins correlate in free-living froglets. 

Chapter 2 starts with the description of an observation of an ontogenetic 

change in egg and larvae pigmentation in wild-caught D. auratus raised in captivity. 

This novel observation adds to our understanding of the natural history of the 

species and the potential adaptive basis of colour polymorphism is discussed.  

. Panama cityStudy site
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In Chapter 3, plasticity in aposematic traits induced by early developmental 

conditions (i.e. variation in food supply) is addressed. Using a controlled 

experiment the amount of food was supplied at relatively low or higher levels, and 

the resultant investment in growth versus aposematic signals was measured in 

post-metamorphic froglets. In addition, levels of antioxidants and oxidative damage 

were measured to examine the possible role of oxidative stress as a mediator of 

developmental trade-offs. Specifically, I test the prediction that high-food froglets 

would grow relatively large, and would consequently reduce investment in warning 

signalling compared to low-food froglets. This is because it is anticipated that both 

large body size and high investment in aposematic signals may both attract the 

attention of predators during the vulnerable period post-metamorphosis when 

chemical defences are absent or incompletely developed.  

The potential adaptive significance of variation in body size and aposematic 

signal expression is evaluated in Chapter 4 in a field study of predation on model 

post-metamorphic froglets (i.e. artificial prey). This chapter tests the hypothesis 

that larger prey and those with more conspicuous signal expression should have 

lower survival. In both Chapters 3 & 4 we used a putative bird predator to model 

the visual perception of aposematic signals, as birds seem to be an important 

selective force in the evolution of discrete aposematic phenotypes (Exnerová et al., 

2008; Stevens & Ruxton, 2012) and extensive work has been done to evaluate 

their perceptual sensitivity (Vorobyev & Osorio 1998; Osorio, Miklósi, & Gonda 

1999; Hart et al. 2000; Cuthill 2006). Furthermore, there is a large body of 

evidence relating to the psychology of birds toward aposematic signals (Marples et 

al. 1998; Lindström et al. 1999a; Skelhorn & Rowe 2006). 



14 

 One important benefit of aposematism is that it allows animals the ultimate 

freedom to go about their lives while exposed; unlike cryptic species, the 

aposematic animal is able to pursue its behaviour actively in daylight, enjoying 

some immunity from attack (Speed, Brockhurst, & Ruxton, 2010). Chapter 5 

focuses on behavioural observations of immature D. auratus in the wild, coupled 

with measurements of body size, aposematic signal expression and biochemical 

analyses of chemical defences. Based on results of previous work (Chapters 3 & 

4), here I test (1) whether larger juveniles have lower signal conspicuousness than 

smaller individuals; (2) whether larger juveniles have higher levels of chemical 

defenses and a greater feeding rate compared to smaller juveniles; and (3) 

whether larger, more toxic juveniles spend more time exposed on the forest floor. I 

also examined whether there was any evidence of ‘honest’ (or ‘dishonest’) 

aposematic signalling in this sample of wild juveniles. 

Finally, Chapter 6 summarizes the main results of the thesis and discusses 

the implications of early developmental conditions for the honesty of the 

aposematic syndrome and fitness in terms of predation risk in D. auratus. 
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Chapter 2. Unusual whitish eggs in the poison frog 
Dendrobates auratus Girard, 18551 

 

2.1. Abstract 

 

Poison frogs in the genus Dendrobates (sensu Grant et al. 2006) are known to lay 

black pigmented eggs. During a field study in May 2010 in central Panama, a 

captive pair of wild-caught adult Dendrobates auratus laid a clutch of whitish eggs. 

The eggs developed and metamorphic froglets were similar in size and colour to 

that of age-matched normal-coloured tadpoles produced by different parents and 

reared in exactly the same conditions. The observation of a pale pigmented 

tadpole in the wild suggests that polymorphism in the degree of melanism is not 

simply an artifact of laboratory rearing. Our study is the first to report the production 

of viable whitish eggs by any species in the genus Dendrobates. Whether this 

coloration arises due to constraint or is a polymorphism that has adaptive 

significance awaits further study. 

  

                                                

1
 This chapter has been published as: Flores, E. E., Moore, A. J. and Blount, J. (2012). Unusual whitish eggs 

in the poison frog Dendrobates auratus Girard, 1855. Tropical Zoology 25(2): 67-73. 
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2.2. Introduction 

 

Species of the genus Dendrobates Wagler, 1830 (sensu Grant et al. 2006) share 

some characters during early development, such as egg size, tadpole size and 

parental care, and are known to lay darkly pigmented eggs (Grant et al. 2006; 

Lötters et al. 2007). Mature oocyte pigmentation is considered one character state 

used to construct phylogenies in the Dendrobatidae (Grant et al. 2006), although 

some controversy exists concerning the adaptive significance of egg pigments in 

anurans. For example the hypothesis that dark pigmentation protects against 

ultraviolet (UV) damage (e.g. Duellman and Trueb 1986), has been questioned 

because the extent of damage to anuran embryos by UV radiation has been 

considered minimal under natural conditions (Licht 2003). However, the synergistic 

interaction of UV radiation with other factors (e.g. chemicals, parasites) may have 

negative consequences at early stages of development (Blaustein et al. 2003; 

Blaustein & Johnson 2003). The UV damage hypothesis may not equally apply to 

all dendrobatids since many species lay eggs on the ground or may be hidden by 

leaf litter, and other adaptive explanations may be important. The appearance of a 

novel phenotypic trait at a low frequency can be considered an anomaly or an 

artefact, unless it provides advantages under unusual environmental conditions 

(West-Eberhard 2003). During a study of early developmental influences on 

aposematic traits in the green and black poison frog, Dendrobates auratus Girard, 

1855, we found a clutch of whitish eggs, produced by a breeding pair kept in 

captivity, which developed into normal froglets showing characteristic dark 

pigmentation. 
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2.3. Methods 

 

During a field season in the Republic of Panama, on 6 May 2010, a pair of adult D. 

auratus were captured at a shade coffee plantation in the Santa Fe district, 

Veraguas province, near the small town of Alto del Pito (8°31’ N 81°03’W) (Figure 

1.1). These frogs were returned to the laboratory and reared under standardized 

conditions. The female (snout-vent-length – SVL = 36.968 mm, body weight = 

3.987 g), and the male (SVL = 34.571 mm, body weight = 2.574 g) were 

transferred to a glass terrarium (26 x 50 x 35 cm, L x W x H) with a layer of 

Sphagnum sp. Linnaeus, 1753 moss as substrate and two bromeliads (Catopsis 

wangerini (Mez & Wercklé 1904)) providing natural phytotelmata. These frogs were 

provided with water from a natural spring and filtered using reverse osmosis (RO) 

ad libitum in Petri dishes (10 cm diameter). Each terrarium was provided with two 

Petri dishes, one allocated in the middle of the terrarium and other half filled under 

a black pot upturned as shelter for egg deposition. Freshly collected soldierless 

termites Nasutitermes nigriceps Haldeman, 1853 were provided ad libitum as food. 

On 9 May 2010, three days after collection from the field, the pair laid a clutch of 

seven eggs, which were white in colour. Although the eggs lacked the 

characteristic formation of white and black poles, all reached stage 22 (sensu 

Gosner 1960) where the development of the neural tube and head were visible 

(Figure 2.1), and thereafter developed as normal embryos and hatched after 

thirteen days of embryogenesis. 
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Figure 2.1 Whitish tadpoles at stage 22 (sensu Gosner 1960). 

 

Once the tadpoles hatched (n = 7), they were individually weighed and 

photographed with a Cannon Power shot G6 (7.1 megapixel) digital camera 

(Cannon Inc., Japan) and transferred to a 700 ml plastic container containing 100 

ml RO water and covered with a mosquito net. The tadpoles were fed on a diet of 

King British cichlid fish flakes (Fish and Fins Ltd., East Sussex, UK) ad libitum. 

After tadpoles completed metamorphosis (n = 5, 65 ± 2.3 days, mean ± s.e., range, 

60 - 73), they were photographed, weighed and spectral reflectance of the dorsal 
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integument was measured in duplicate using a USB2000 spectrometer (Ocean 

Optics Inc. FL, USA) in order to calculate coloration metrics. These metrics were 

compared with those from a sample of n = 57 metamorphic froglets coming from 

pigmented eggs. These eggs came from parents that were captured in the wild at 

the same location, reared under the same standardized conditions and their 

tadpoles fed with the same diet of King British cichlid fish flakes provided ad libitum. 

 

2.3.1. Data analyses 

 

Statistical analyses were conducted using R v.2.12.1 (R Development Core Team 

2010). Mean morphological characteristics for froglets from whitish eggs and those 

from pigmented eggs were compared for equal variances and their means 

analyzed using a Student´s t-test. Spectral reflectance data were not normally 

distributed, and therefore were compared using the non-parametric Spearman´s 

rank correlation test.  

 

2.4. Results 

 

At hatching the tadpoles (n = 7) had an average total length of 14.718 (14.19 – 

15.35) ± 0.21 mm (mean (range) ± s.e.) and an average body weight of 28.33 (25 – 

32) ± 1.23 mg (mean (range) ± s.e.), meanwhile pigmented tadpoles (n = 57) had 
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an average total length of 14.758 (11.84 – 16.65) ± 0.16 mm, and an average body 

weight of 29.16 (16 – 47) ± 0.80 mg. The tadpoles had brownish pigmentation 

which clearly differed from the black colour of tadpoles observed in the wild and 

unrelated tadpoles raised in captivity under identical conditions. At metamorphosis 

(n = 5) average SVL (16.082 (15.16 – 17.23) ± 0.40 mm) and average body weight 

(491 (433 – 596) ± 0.03 mg) were not significantly different to that of age-matched 

coloured tadpoles produced by different parents and reared in exactly the same 

conditions (n = 57), mean SVL (15.726 (13.79 – 18.68) ± 0.13 mm) and mean body 

weight (430 (218 – 646) ± 0.01 mg) (t-test, [Weight] t 5.026 = 1.817, P = 0.13; [SVL] t 

4.884 = 0.851, P = 0.43) The metamorphic froglets also resembled normal 

conspecifics in external coloration and pattern (Figure 2.2). Comparison of spectral 

reflectance of the dorsal greenish-blue integument of the unusual and pigmented 

tadpoles showed that their coloration post-metamorphosis was statistically 

indistinguishable (Spearman’s rank correlation test based on mean values of the 

two groups, n = 451, rs = 0.99, P < 0.001) (Figure 2.3). In both cases the 

wavelength of maximum reflectance was 521 nm.  
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Figure 2.2 Metamorphosed froglet of Dendrobates auratus derived from whitish eggs in dorsal (left) 
and ventral views. 

 

 



22 

 

Figure 2.3 Mean spectral reflectance of dorsal (greenish-blue) coloration of tadpoles derived from 
whitish eggs (solid gray line) and normal-pigmented eggs (dashed black line) raised in captivity. 

 

 

2.5. Discussion 

 

Our study is the first to report the deposition of viable whitish eggs by any species 

in the genus Dendrobates. Interestingly the existence of creamy pigmented eggs 

and whitish tadpoles has been reported recently in other genera within the family 

Dendrobatidae (Brown et al. 2011). Whitish eggs/embryos are presumably a 

consequence of a lack of melanin formation. This could be due to an absence of 
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tyrosinase activity, which has been shown to be necessary for oocyte pigmentation 

in Xenopus laevis Daudin, 1802 (Kidson & Fabian 1989). On the other hand, the 

activity of the pituitary gland is known to promote melanophore expansion in 

anurans which has a direct effect on the dispersion of pigments (Hogben & Slome 

1931). Albinism is a genetically-based disorder which is characterized by a lack of 

skin melanin; in anurans this becomes evident at tadpole stages and persists 

through development and adulthood (Browder 1972). Indeed, albinism has 

previously been reported in several anuran species including poison frogs 

(Federighi 1938; Gill, Richards, & Nace 1970; Browder 1972; Mitchell & 

McGranaghan 2005; Lötters et al. 2007; Sanabria, Quiroga, & Laspiur 2010). 

However, our observation of whitish eggs is striking because the resultant tadpoles 

were brownish, and the froglets had the same phenotype as froglets that 

developed from pigmented eggs and not the characteristic albino phenotype (i.e., 

creamy skin, orange skin spots, pink eye and golden iris) (Figure 2.2). Ontogenetic 

colour changes can be the product of variation in levels of steroid hormones (i.e. 

testosterone, estrogen) during early development (Hayes 1997; Hayes & 

Menendez 1999). Alternatively, there could have been differential expression of 

genes responsible for skin pigmentation at different life stages (Lee et al. 2009). 

 By whatever mechanism the ability to revert to a pigmented phenotype at 

adulthood indicates plasticity in ontogenetic colour change in D. auratus. This 

could be in response to adverse environmental effects on melanocyte 

differentiation at early developmental stages (Hoffman & Blouin 2000), in the 

absence of which the response is not elicited (see West-Eberhard 2005). However 

there could be other, adaptive explanations. For example, aposematic species 
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such as coccinellids and the freshwater apple snail (Pomacea canaliculata 

Lamarck, 1822) produce eggs that are warningly coloured and contain chemical 

defences (Dreon, Ituarte, & Heras 2010). However, whitish eggs in D. auratus 

seem unlikely to function as an aposematic signal. For aposematism to provide 

protection against predators, it needs to be widespread in the population, 

facilitating predator learning, memory and avoidance (Ruxton et al. 2004), which is 

not the case in our study population. Furthermore, in dendrobatids secondary 

defences come from dietary sources of alkaloid compounds, and thus there is a 

general consensus that during early developmental stages D. auratus lacks toxicity 

(Daly et al. 2000, Saporito et al. 2009). Dendrobates auratus deposits eggs on a 

variety of substrates and localities, including leaf litter, or in a small pool of water 

on a fallen log or the hollow of a tree (Summers 1989; Summers 1990). Melanic 

coloration in developing anurans is considered to confer crypsis, thermoregulation 

and/or to protect against UV solar radiation (Rose 1962; Smith-Gill, Richards, & 

Nace 1972; Duellman & Trueb 1986; Blaustein et al. 2003). However, melanin 

synthesis must incur production costs, requiring amino acid precursors (Griffith, 

Parker, & Olson 2006) and incurring generation of pro-oxidant species 

(Rozanowska et al. 1999). An intriguing possibility, therefore, is that the genes 

which code for melanin synthesis are expressed to a greater extent in 

environments where embryos and tadpoles are more exposed to natural light and 

to visually hunting predators. It has been demonstrated for example, that adult 

males of D. auratus tend to avoid places with relatively high levels of sunlight UV 

radiation when displaying during the day (Han et al. 2007). Other species in the 

family that exhibit polymorphisms in egg and tadpole pigmentation (i.e. Ranitomeya 
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vanzolinii Myers, 1982 and R. flavovitatta Schulte, 1999) are known to exploit a 

range of altitudinal gradients along their range (Brown et al. 2011), therefore facing 

different levels of sunlight UV radiation. It is conceivable that production of melanin 

for egg pigmentation is reduced when exposure to harmful radiation or predation 

risk are minimal. 

 

2.5.1. Conclusions 

 

One of us (EF) has observed a single unusual brownish colored tadpole of D. 

auratus in the field; therefore variation in the degree of melanism is not simply an 

artifact of laboratory rearing. There is much controversy about the phylogenetic 

relationships in the family Dendrobatidae, due to the highly polymorphic nature of 

their integument coloration amongst other factors (Santos et al. 2009). Our study 

adds to this controversy in that we have identified what seems to be polymorphism 

in respect of egg coloration in D. auratus. However, whether this variation in egg 

coloration has adaptive significance in the Dendrobatidae family requires further 

study.  
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Chapter 3. Diet, development and the optimisation of 
warning signals in post-metamorphic green 
and black poison frogs2 

 

3.1. Abstract 

 

Many prey species are chemically defended and have conspicuous appearance to 

deter predators (i.e. aposematism). Such warning signals work because predators 

pay attention to the colour and size of signals, which they associate with 

unprofitability. Paradoxically, in early life stages aposematic species are often 

warningly coloured, but their chemical defences are lacking because they have yet 

to be acquired through the diet or synthesised endogenously. This state of being 

conspicuous yet poorly defended must place individuals at increased risk of 

predation, but how they minimise this risk during development is unclear. We 

reared larval green and black poison frogs (Dendrobates auratus) on a relatively 

low or a higher food supply, and tested the hypothesis that individuals with more 

resources should grow larger while reducing their investment in warning signals at 

metamorphic completion. We also assayed markers of oxidative balance 

(malondialdehyde, superoxide dismutase, and total antioxidant capacity) to 

ascertain whether there were resource allocation trade-offs that differed with diet 

treatments. Low-food froglets were relatively small, and their body size and signal 

                                                

2
 This chapter is in press as: Flores, E. E., Stevens, M., Moore, A. J. and Blount, J. D. (2012). Diet, 

development and the optimisation of warning signals in post-metamorphic green and black poison frogs. 
Functional Ecology.(in press). 
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luminance (perceived brightness) were positively correlated. In contrast, in high-

food froglets body size and warning signal luminance were negatively correlated, 

suggesting either a resource allocation trade-off, or alternatively a facultative 

reduction in luminance exhibited by larger froglets. The reduction in luminance in 

relatively large, high-food froglets did not appear to arise because of oxidative 

stress: signal luminance and markers of oxidative stress were positively correlated 

in high-food froglets, but were negatively correlated in low-food froglets suggesting 

a trade-off. Our results highlight developmental plasticity in body size and 

colouration as affected by resource (i.e. food) supply. Such plasticity seems likely 

to minimize predation risk during the vulnerable period early in life when individuals 

are warningly coloured and must make the transition from an undefended 

phenotype to a mature aposematic state. 

 

3.2. Introduction 

 

Many prey species are defended, and have conspicuous colour, pattern, acoustic 

or olfactory signals which advertise unprofitability to predators (i.e. aposematism; 

(Poulton 1890; Eisner & Grant 1981; Ratcliffe & Fullard 2005). Until recently 

aposematic signals were assumed to not vary within species in order to facilitate 

predator learning and avoidance (reviewed in Ruxton, Sherratt, & Speed 2004). 

However, contrary to this expectation, it is becoming clear that intraspecific 

variation in aposematic colour and pattern is widespread (e.g. Summers, Cronin, & 

Kennedy 2003; Bezzerides et al. 2007; Tullberg et al. 2008; Mochida 2011; Wang 
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2011). While many mechanisms have been suggested for the initial evolution of 

aposematism (receiver psychology: Speed 2001; adaptive predator behaviour: 

Sherratt 2002; dietary conservatism: Thomas et al. 2003; physical defences: 

Speed & Ruxton 2005; defensive secretions: Gohli & Högstedt 2009), the 

developmental factors that give rise to phenotypic variation in aposematic signals 

remain little studied (Mappes et al. 2005; Stevens & Ruxton 2012). Predators vary 

in hunting strategies, perceptual sensitivities or experience, which may contribute 

to polymorphism in aposematic signals (reviewed by Endler & Mappes 2004) and 

differ according to the local predator assemblage (Wang & Shaffer 2008; Mochida 

2011; Valkonen et al. 2012). In addition variation in aposematic signals may result 

from genetic drift (Reynolds & Fitzpatrick 2007), sexual selection (Rudh, Rogell, & 

Höglund 2007; Maan & Cummings 2008), or environmental factors such as 

developmental diet (Grill & Moore 1998; Blount et al. 2012), prey density (Sword et 

al. 2000), parasitism (Losey et al. 1997; Lindsey & Altizer 2009) or 

thermoregulation (Lindstedt et al. 2009). 

 The environment in which early development occurs is fundamental for 

shaping the form of the mature phenotype (Cheverud & Moore 1994; Rossiter 1996; 

Monaghan 2008), and may elicit the expression of plastic phenotypes adapted to 

one or a set of environments (Nijhout 2003; West-Eberhard 2003). Yet, in 

aposematic species, only a handful of studies have considered the effects of early 

development on adult phenotypes. Early nutrition in particular has been shown to 

affect the size or colour of aposematic signals at adulthood in ladybird beetles (Grill 

& Moore 1998; Grill 1999; Blount et al. 2012), and arctiid moths (Ojala et al. 2007; 

Lindstedt et al. 2010). Furthermore, variability in the quantity of defensive 
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compounds sequestered from the diet or metabolically transformed from dietary 

precursors during early development may directly affect the amounts of such 

chemicals in the body at adulthood (e.g. Daly et al. 1994; Sime, Feeny, & Haribal 

2000). The development of aposematic signals may also be constrained if 

integument colour has additional functions, such as thermoregulation (Lindstedt et 

al. 2009). Variation in aposematic colouration has been also found in response to 

prey population density (e.g. Sword et al. 2000) and across seasons (e.g. Tullberg 

et al. 2008). In amphibians, integument colouration is largely the result of light-

absorbing (e.g. xanthophores, melanophores) or light-reflecting (e.g. leucophores, 

iridophores) chromatic cells, and their arrangement and dispersion in the skin 

(Grether, Kolluru, & Nersissian 2004). The expression of aposematic colouration is 

known to change with age in some amphibians (Hoffman & Blouin 2000) and 

potentially can be affected by the amount of particular pigments inside the 

chromatic cells (e.g. carotenoids, melanins and pterines) (Fox 1976; Grether et al. 

2004) 

 While it is clear that there is plasticity in aposematic traits, what is less clear 

is how variation in resource availability during early development may drive relative 

investment in warning signals versus growth. Early development may be a risky 

stage of life in aposematic species, because chemical or other forms of secondary 

defences must either be produced de novo or sequestered through the diet, and 

therefore may be absent or incompletely developed in juveniles (Sime et al. 2000; 

Nylin, Gamberale-Stille, & Tullberg 2001; Nishida 2002). This state of being 

conspicuous yet poorly defended must place individuals at increased risk of 

predation, but how they minimise this risk during development is unclear. Hence, if 
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predators can discern poorly defended froglets from well-defended adults the 

optimal strategy during development could be to invest maximally in growth, but to 

reduce investment in aposematic signals and thereby minimize detection. 

 Body size has been considered to evolve in concert with aposematic signals 

in poison frogs (Hagman & Forsman 2003), particularly in highly toxic species 

(Santos & Cannatella 2011). It seems unlikely that restricting resource allocation to 

growth would be favoured by selection, because larger froglets will be better able 

to meet the metabolic demands of foraging for toxic dietary items during the first 

few, critical days following metamorphosis (Taigen & Pough 1983). Chemical 

defences in post-metamorphic poison frogs are in the form of neurotoxic alkaloids 

acquired from dietary arthropods (Daly et al. 1994b; Saporito et al. 2009). However, 

during early development the mechanisms of alkaloid acquisition may vary 

amongst species and environmental contexts. For example, maternal provision of 

alkaloids to embryos via the egg has been reported in the aposematic bufonid 

Atelopus chiriquiensis (Pavelka, Kim, & Mosher 1977), and apparently to tadpoles 

via trophic eggs in Oophaga [Dendrobates] pumilio (Stynoski 2012). Nevertheless, 

in many poison frog species, the larval diet comprises alkaloid-free foods (Caldwell 

1993; Caldwell & de Araújo 1998). This is the case with the green and black poison 

frog (Dendrobates auratus) whose tadpoles are palatable to odonate and mosquito 

larvae (Fincke 1994, 1999) and which lacks maternal provision of trophic eggs 

(Summers 1990); as such sequestration of alkaloids during larval stages seems 

unlikely, although this remains to be conclusively demonstrated. Acquisition and 

storage of toxins could be costly (reviewed in Ruxton et al. 2004) especially during 

immature life stages when the anatomical organisation of poison glands is 



31 

incomplete (Angel, Delfino, & Parra 2003; Saporito et al. 2010) and resources 

should be mainly devoted to meet growth demands. In addition other anatomical 

(e.g. mouth size), behavioural (e.g. foraging capacity), and physiological (e.g. 

metabolic rate) factors may constrain the acquisition of toxins in juveniles (Donnelly 

1991; Saporito et al. 2010).  

 Relative investment in growth and aposematic signals is likely to be 

influenced by environmental conditions, such as the quality of the developmental 

diet. High levels of investment in growth or signals may be physiologically costly. In 

particular, rapid growth may incur production of reactive oxygen species (ROS) 

(Alonso-Alvarez et al. 2007; Menon & Rozman 2007). ROS are atoms or molecules 

that are important for intracellular signalling (e.g. Hurd & Murphy 2009), but also 

can cause serious damage to DNA, proteins and lipids (reviewed in Selman et al. 

2012). Where there is an imbalance between ROS production and the capacity of 

the antioxidant defence system to inactivate ROS, a state of oxidative stress 

results (reviewed in Selman et al. 2012). The antioxidant system is complex and 

includes both endogenous (e.g. glutathione, catalase, superoxide dismutase) and 

exogenous, diet-derived components (e.g. vitamin E, carotenoids) (reviewed in 

Selman et al. 2012). However, all antioxidants are potentially limiting resources for 

wild animals, because antioxidants or the resources (amino acids, energy) required 

for their biosynthesis must be obtained in the diet, and/or because antioxidants are 

traded amongst competing physiological demands (reviewed in Selman et al. 

2012). Indeed, all types of pigments responsible for integument colouration in 

animals, including poison frogs (e.g. carotenoids, melanins, pterins) (Fox 1976; 

Hoffman & Blouin 2000; Grether et al. 2004), may function as antioxidants in vivo 
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(McGraw 2005). It has recently become clear that oxidative stress can explain 

variation in the expression of sexual signals (Alonso-Alvarez et al. 2004; Mougeot 

et al. 2010). It therefore seems possible that developmental trade-offs in 

aposematic animals may be modulated by oxidative stress, as affected by diet. 

Previous studies have shown that investment in life history traits such as growth 

rate, development time and size can trade against development of aposematic 

signals (e.g. Grill & Moore 1998; Ojala, Lindström, & Mappes 2007; Lindstedt et al. 

2010). However, whether biomarkers of oxidative stress correlate with warning 

signal production has not been studied before. 

 Here we assessed the effects of variation in food supply during early 

development on post-metamorphic body size and aposematic colouration in the 

green and black poison frog. Dendrobatids undergo a complex early development, 

from an aquatic-cryptic phenotype to a conspicuous terrestrial one, yet only after 

reaching this latter stage does dietary sequestration of toxins begin (Daly et al. 

1994b; Saporito et al. 2009).These characteristics make dendrobatids a good 

model to investigate phenotypic plasticity and resource allocation to aposematic 

signals versus growth during early development. We reared D. auratus larvae on 

either a relatively low or a higher food supply until metamorphosis was complete, 

whereupon we measured morphology and the spectral reflectance of skin in order 

to assess colouration and conspicuousness to predators. We hypothesised that D. 

auratus froglets would show developmental plasticity, and resource allocation to 

growth and aposematic signals would be modulated by oxidative stress. We 

predicted that under high-food provision froglets would grow relatively large, and 

they would reduce investment in warning signalling compared to low-food froglets. 
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We also predicted that there may be a negative correlation between warning signal 

expression and levels of oxidative stress in low-food froglets that were resource 

constrained, whereas no such apparent trade-off would be evident in high-food 

froglets.  

 

3.3. Methods 

 

3.3.1. Capture and Breeding of Adults 

 

Adult D. auratus were collected during April and May 2010, at a shade organic 

coffee plantation in Santa Fe, Veraguas province, central Panama (8°31’ N 

81°03’W) (Figure 1.1). Near the plantation, individuals were randomly paired in 

glass terrariums (26 x 50 x 35 cm), using a simple shelter open on all sides to 

permit natural daylight and temperatures. All terrariums were similarly furnished 

with Sphagnum sp. moss and bromeliads (Catopsis wangerini Mez & Wercklé 

1904) collected from the study site. Water and food were provided ad libitum in 

Petri dishes (diameter: 10 cm), replenished twice daily (07:30 h and 17:00 h). 

Moisture levels inside each terrarium were checked at that time to ensure ~90% 

relative humidity controlled by misting with filtered reverse osmosis water. Food 

consisted of soldierless live termites (Nasutitermes nigriceps Haldeman 1853) 

collected in the field. We used termites because they are part of the natural diet of 

D. auratus (Taigen & Pough 1983; Caldwell 1996) , could be collected in sufficient 
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quantities at our study site, and their nutritional value is comparable to an ant/mite 

diet (Huey & Pianka 1981; Redford & Dorea 1984). Termites are not a source of 

alkaloids for dendrobatids (Daly et al. 1992), but it seems unlikely that a diet of 

exclusively termites would have affected skin levels of alkaloids of the breeding 

frogs since skin alkaloids are known to persist for years in captive D. auratus (Daly 

et al. 1992, 1994b). Temperature and humidity in the terrariums, based on daily 

readings throughout the study, were 24.60 ± 0.22°C (mean ± SE) and 91.04 ± 

0.99%, respectively. Another Petri dish containing a small volume of reverse 

osmosis water, and covered by an upturned black plastic flowerpot, served as a 

site for egg deposition.  

 

3.3.2. Larval rearing and diet manipulation 

 

In total 19 breeding pairs of adults produced fertile clutches, with an average clutch 

size of 5 ± 0.57 eggs and a latency to lay of 12 ± 2.36 days (mean ± SE). A total of 

120 eggs were laid, and clutches were transferred individually to a similar empty 

glass terrarium where they were monitored daily. Some 30 out of 120 eggs (25%) 

showed signs of mould infection and were carefully removed using a sterile plastic 

pipette and discarded; all remaining eggs hatched (90 eggs). Immediately after 

hatching, larvae were carefully transferred to a 700 ml plastic tub containing 100 ml 

reverse osmosis water covered with mosquito net, and by using a split-brood 

design they were randomly assigned to a food supply (treatment) group. Thus, at 

the start of the rearing period the sample sizes in each group were n = 34 
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individuals from n = 13 families in the low-food group, and n = 28 individuals from n 

= 9 families in the high-food group. Larvae were fed daily with King British cichlid 

fish flakes (Fish and Fins Ltd., East Sussex, UK). To standardize presentation only 

red flakes were used, since lab analysis showed that total concentrations of 

carotenoids differed between red and brown flakes (our unpublished data). The 

quantity of food provided was recalculated weekly using the average body mass of 

low-food larvae as a reference (low-food, 8% body mass (w/w); high-food, 15% 

body mass (w/w)). The same or similar levels of food have previously been 

employed to yield differences in growth rates of frog larvae without causing 

starvation (Alford & Harris 1988; LaFiandra & Babbitt 2004). Before providing fresh 

food, any uneaten food was removed. Once each week, 50% of the water in each 

plastic tub was replaced. At the onset of metamorphic climax (developmental stage 

43-46; Gosner 1960) feeding ceases and nutritional needs are instead met by tail 

resorption and catabolism of other body tissues (Lötters et al. 2007). Therefore we 

ceased food provisioning at this point. The two food supply groups had a similar 

duration of the tail resorption period (General Linear Mixed Model (GLMM); with 

food as a fixed factor and family as a random factor; high-food: 6.32 ± 0.21 days; 

low-food: 6.01 ± 0.28 days; food, F1,8 = 1.22, P = 0.30). 

 

3.3.3. Morphometric measurements 

 

At weekly intervals larvae were carefully removed from their tub and blotted dry 

with filter paper before being placed in a Petri dish (diameter: 5 cm) containing a 
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known volume of reverse osmosis water, and weighed to the nearest 0.001g using 

an Ohaus Scout Pro balance (Ohaus Europe GmbH, Switzerland). The dorsum of 

each individual was digitally photographed under standardized conditions with a 

Canon Power Shot G6 (7.1 megapixel) camera (Canon Inc. Japan). A metal ruler 

was included to provide a scale for the image. Snout-vent length (SVL) was 

measured in each individual. SVL is considered an anatomical character that 

shows plasticity under different environmental conditions in anuran larvae (Vences 

et al. 2002; Vonesh & Warkentin 2006). Larvae were photographed daily from the 

first day they climbed out of the water to monitor tail length. When tail length 

stopped decreasing, metamorphic climax was determined to have been reached 

(see Caldwell & de Araújo 2004). All measurements (0.001 mm precision) were 

carried out using ImageJ 1.43q (Rasband 1997). 

 

3.3.4. Analyses of aposematic signals and background spectra 

 

To be discernible to a predator’s eye, prey must contrast against the background 

where they are normally perceived in terms of colour and luminance (perceived 

brightness based on photoreceptor outputs) (Stevens & Ruxton 2012). We 

therefore measured the spectral reflectance of the skin of metamorphosed froglets 

on the day of metamorphic climax using a USB2000 spectrometer (Ocean Optics 

Inc. FL, USA) with a bifurcated 400 µm UV/VIS optic fibre probe connected to a 

pulse xenon lamp (PX-2); at an angle of 45° and corrected for lamp drift using a 

white diffuse spectral standard (WS-1) (Maan & Cummings 2008). Measurements 
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were taken from four body regions in duplicate (head, dorsum, left and right flanks) 

and then averaged for subsequent analyses (Figure A3.1). We did not measure 

the reflectance of the ventral skin which is unlikely to function as an aposematic 

signal in poison frogs (Savage 2002; Maan & Cummings 2008; Wang & Shaffer 

2008). The spectral reflectance of 136 samples of background leaves collected 

from the forest floor was also measured in triplicate and averaged following the 

methodology described above (Figure A3.2). The light that reaches the eye is a 

product of the reflectance spectra of the object observed and the irradiance of 

ambient light (i.e. radiance spectra; Endler 1990), therefore measures of ambient 

light irradiance I(λ) were obtained at several locations in the field where adult frogs 

were captured for use as breeders (see above); n = 90 measurements on a sunny 

day and n = 85 measurements on a cloudy day (Figure A3.3), using a cosine 

corrected irradiance probe (CC-3-UV-T) with 180° field view, connected to an 

USB2000 spectrometer by means of a 400µm UV/VIS optic fibre following the 

method described in (Endler 1993). In all cases spectral reflectance data were 

collected between 300 - 750 nm and averaged to 1 nm intervals for analyses. 

 

3.3.5. Modelling predator vision and froglet conspicuousness 

 

Birds are visual oriented predators of many aposematic species (Collins & Watson 

1983; Lindström et al. 1999a; Exnerová et al. 2008) including poison frogs (Master 

1999). Birds seem able to perceive conspicuousness in poison frogs (Maan & 

Cummings 2012), and domestic chickens (Gallus domesticus) have attacked 
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poison frogs in experiments (Darst et al. 2006). Furthermore birds account for an 

appreciable amount of attacks on artificial aposematic prey in field experiments 

(e.g. Saporito et al. 2007; Noonan & Comeault 2009; Chouteau & Angers 2011). 

Colubrid snakes and spiders have also been reported to predate poison frogs 

(Summers 1999; Gray et al. 2010; Santos & Cannatella 2011) and Gray & Christy 

(2000) reported that the grapsid crab Armases angustum preys on D. auratus 

tadpoles. Therefore, our main results are based on psychophysical models of bird 

vision, but we replicated all analysis based on snake and crab vision following 

methods described in Maan & Cummings (2012), see 3.6 Appendices section. We 

used the Vorobyev-Osorio visual model of colour discrimination (Vorobyev & 

Osorio 1998), which assumes that noise in the photoreceptors limits discrimination. 

Discrimination (conspicuousness) values are JNDs (just noticeable differences), 

with a value of 1 being the threshold for discrimination, and values of between 1 

and 3 generally considered to mean that two objects could only be discriminated 

under ideal viewing conditions (rarely the case in the field) (Stevens et al. 2013). 

This model has been employed to calculate discrimination values in intraspecific 

(Maan & Cummings 2009; Ostrowski & Pröhl 2011; Wang 2011), and interspecific 

studies of poison frogs (Siddiqi et al. 2004; Darst et al. 2006). 

 Since the only bird documented to prey upon poison frogs (Baryphthengus 

martii) is a close relative to passerines (Livezey & Zusi 2007), we used cone 

sensitivity data for the blue tit (Cyanistes caeruleus), as a tetrachromatic visual 

model to calculate predicted photon catches for the different cone types 

(absorbance spectrum templates and oil droplets data from Hart et al. 2000). To 

model snake vision we used a trichromatic visual model from the coachwhip 
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colubrid snake Masticophis flagellum, with calculation of absorptance curves using 

a rhodopsin vitamin-A1 template according to Govardoskii et al. (2000). For crabs 

we used a dichromat visual model based on absorptance curves for the fiddler crab 

Uca tangeri with LW sensitivity curves manually digitized from Jordão, Cronin, & 

Oliveira (2007), and electrophysiological measures for the crab Uca thayeri with 

sensitivity to SW according to Horch, Salmon, & Forward (2002). Details of 

parameters used for the vision models are provided in Table 3.1 and details of 

calculations are provided in 3.6 Appendices section.  
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Table 3.1. Vision system parameters used in bird, snake and crab psychophysical models. 

 Bird  Snake  Crab 

Predator vision modelled 

Blue tit 

(Cyanistes caeruleus) 
 

Coachwhip snake 

(Masticophis flagellum)  

Fiddler crab (composite 

of Uca tangeri and Uca 

thayeri) 

 

Tetrachromat version of 

the Vorobyev-Osorio 

model (Vorobyev & Osorio 

1998) 

 
Trichromat version of the 

Vorobyev-Osorio model 

(see Siddiqi et al. 2004) 

 Dichromat version of the 

Vorobyev-Osorio model 

(see Cummings et al. 

2008) 

Colour perception 

Based on relative 

stimulation of visual cone 

photoreceptors with 

sensitivity to UV (λmax = 

371 nm), short (λmax = 448 

 Based on relative 

stimulation of visual cone 

photoreceptors with 

sensitivity to UV (λmax = 

362 nm), short (λmax = 

 Based on relative 

stimulation of visual cone 

photoreceptors with 

sensitivity to long (λmax = 

593 nm) and short (λmax 
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nm) medium (λmax = 503 

nm, and long (λmax = 563 

nm) wavelengths (Hart et 

al. 2000) 

458 nm) and long (λmax  

= 561 nm) wavelengths 

(Macedonia et al. 2009) 

= 430 nm) wavelengths 

(Horch et al. 2002; 

Jordão et al. 2007) 

Luminance perception 

Based on double cone 

photoreceptors specialized 

in achromatic sensitivity 

(Kelber, Vorobyev, & 

Osorio 2003; Osorio & 

Vorobyev 2005). 

 Achromatic sensitivity 

based on absorbance of 

long wavelength cone 

pigments (Macedonia et 

al. 2009) 

 Achromatic sensitivity 

based on absorbance of 

long wavelength cone 

pigments (Jordão et al. 

2007) 

Weber fraction 0.05 (Siddiqi et al. 2004)  0.05 (Siddiqi et al. 2004)  0.12 (Hempel De Ibarra 

et al. 2000) 

Relative number of 

photoreceptors 

nL = 1.00, nM = 0.99, nS = 

0.71, nUV = 0.37, nD = 1.00 

 nL = 0.85, nS = 0.10, nUV 

= 0.05 (Sillman et al. 

 nL = 1.0, nS = 1.0 

(Cummings et al. 2008) 
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(Hart et al. 2000) 1997) 

Prey detection system 

Mostly based on vision 

(Martin 1999; Fernández-

Juricic & Tran 2007) 

 Mostly olfactory, but 

visual cues may be 

involved (Brodie & 

Tumbarello 1978; Stuart-

Fox, Moussalli, & 

Whiting 2008; 

Macedonia et al. 2009) 

 The use of visual cues 

for prey discrimination is 

unknown. 

Predation events on 

poison frogs reported 

One published report of 

predation in the wild 

(Master 1999); predation 

experiments using captive 

domestic hens (e.g. Darst 

et al. 2006; Darst & 

Cummings 2006), 

 Several accounts of 

predation in the wild 

(Santos & Cannatella 

2011 supporting 

information); predation 

experiments using 

captive snakes (Brodie & 

 One published report of 

predation of tadpoles in 

the wild (Gray & Christy 

2000), apparent use of 

colour discrimination 

mostly for intraspecific 

communication (Detto 
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predation on artificial prey 

in the wild (e.g. Saporito et 

al. 2007; Noonan & 

Comeault 2009; Chouteau 

& Angers 2011) and 

psychophysical models of 

bird vision (e.g. Siddiqi et 

al. 2004; Wang 2011; 

Maan & Cummings 2012) 

suggest that birds are 

predators of poison frogs. 

Tumbarello 1978) 

suggest their likely 

importance as predators. 

 

2007; Cummings et al. 

2008; Baldwin & 

Johnsen 2012). 

 

Note. Further details of modelling and formulas are provided in 3.6 Appendices. 
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3.3.6. Antioxidant activity and oxidative damage 

 

On the day of metamorphic climax 25 froglets from the high-food group and 25 

from the low-food group were sampled at random and euthanized by stepped 

hypothermia and then stored at -80 °C until biochemical analyses. Remaining 

individuals were released into the wild. Samples were thawed, finely chopped 

using scissors, and then weighed to the nearest 0.0001g and 50 mM HEPES (N-

2 hydroxyethylpiperazine-N´-2-ethanesulfonic acid) buffer solution was added on 

a 20% w/v basis. Samples were then homogenized ready for the following 

assays. We used whole frog homogenates to provide an organismal level 

overview of antioxidants and oxidative damage, because individual tissues are 

likely to differ in antioxidant levels and oxidative damage (López-Torres et al. 

1993). Assessment of oxidative stress requires a range of assays that include 

measures of enzymatic and non-enzymatic antioxidants since components of 

antioxidant defences do not act in isolation, but react and compensate for each 

another. In addition, it is imperative to assay oxidative damage since this reflects 

the outcome of oxidative stress (reviewed in Selman et al. 2012). Therefore, we 

assayed oxidative damage in terms of levels of malondialdehyde (MDA), which 

is formed by the β-scission of peroxidised polyunsaturated fatty acids (Agarwal 

& Chase 2002), and has been reported as a physiological marker of oxidative 

stress during larvae metamorphosis (Mahapatra, Mohanty-Hejmadi, & Chainy 

2001; Menon & Rozman 2007). In addition, we assayed superoxide dismutase 
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(SOD), a metalloenzyme that catalyses the dismutation of superoxide into 

oxygen and hydrogen peroxide and form a crucial part of intracellular antioxidant 

defence, for example, during early stages of development in amphibians 

(Montesano et al. 1989; Menon & Rozman 2007). Finally, we assayed total 

antioxidant capacity (TAC), which measures low-molecular weight non-

enzymatic antioxidants such as vitamin E, carotenoids and flavonoids (reviewed 

in Selman et al. 2012). 

Analysis of MDA was performed in duplicate using polypropylene screw 

cap tubes as described previously (Nussey et al. 2009) with some modifications. 

To 10 µl frog homogenate we added 10 µl butylated hydroxytoluene solution 

(BHT; .05% in ethanol), 80 µl phosphoric acid solution (0.44 M), and 20 µl 

thiobarbituric acid (TBA) solution (42 mM). Tubes were capped, vortexed for 5 s, 

then heated for 1 h at 100°C on a dry bath incubator. Tubes were then cooled 

on ice for 5 min. To extract the MDA-TBA complex, 80 µl of n-butanol (HPLC 

grade) was added to each tube, vortexed for 20 s then centrifuged at 15000 x g 

for 3 min at 4 °C to separate the two phases. A 60 µl aliquot of the upper, 

butanol phase, was carefully removed and transferred to an HPLC vial ready for 

HPLC analysis. Samples (40 µl) were injected into a Dionex HPLC system 

(Dionex Co., Camberley, Surrey, UK) fitted with a Hewlett-Packard Hypersil 5 µ 

ODS 100 x 4.6 mm column with a 5 µ ODS guard column. The column 

temperature was set at 37°C. The mobile phase (isocratic, flow rate: 1.0 ml/min) 

consisted of a 40:60 (v/v) mixture of methanol (HPLC grade) and buffer, the 

buffer being 50 mM potassium monobasic phosphate (anhydrous) solution, pH 

adjusted to 6.8 using 5 M potassium hydroxide solution. Fluorescence detection 
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utilized a RF2000 detector (Dionex Co.) set at 515 nm excitation and 553 nm 

emissions. Results are expressed as nmol MDA per g frog tissue. 49 samples 

were assayed in duplicate and repeatability calculated according to Lessells & 

Boag (1987) was high (F48,49 = 8.66, P < 0.001; r = 0.79).  

Total SOD was assayed by measuring the dismutation of superoxide 

radicals generated by xanthine oxidase and hypoxanthine (Cat. No. 706002; 

Cayman Chemical Co., USA). Following kit instructions, we mixed 100 µl of frog 

homogenate (see above) with 100 µl of Buffer Solution (containing 50mM of 

HEPES, 2mM EGTA, 420 mM D-mannitol and 140 mM sucrose, pH adjusted to 

7.2 by adding 5 M potassium hydroxide). After vortexing for 10 s, samples were 

centrifuged at 1500 x g for 5 min at 4°C, and the supernatant was collected and 

diluted 1:20 v/v in kit Sample Buffer, which had itself been previously diluted 

1:10 v/v in HPLC grade water. From this step onwards kit instructions were 

followed exactly. Absorbances were read at 440 nm using a Spectramax M2 

plate reader (Molecular Devices Corp., USA). Results are expressed as units of 

SOD activity per mg frog tissue. 50 samples were assayed in duplicate and 

repeatability calculated according to Lessells & Boag (1987) was high (F49,50 = 

5.42, P < 0.001; r = 0.69). 

TAC was assayed in terms of the capacity of the antioxidants in the 

sample to inhibit oxidation of ABTS® (2,2'-azino-di-[3-ethylbenzthiazoline 

sulphonate]) (Cat No. 70901; Cayman Chemical Co., USA). Frog homogenates 

(see above) were diluted 1:1 (v/v) in 50mM HEPES buffer solution, vortexed for 

10 s, and then centrifuged at 1500 x g for 5 min at 4°C. From this step onwards 
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kit instructions were followed. Absorbances were read at 750 nm using a 

Spectramax M2 plate reader (Molecular Devices Corp., USA). Results are 

expressed as nmol of Trolox equivalents per g of frog tissue. 50 samples were 

assayed in duplicate and repeatability calculated according to Lessells & Boag 

(1987) was high (F49,50 = 25.15, P < 0.001; r = 0.92). 

 

3.3.7. Statistical analyses 

 

Maximum SVL growth rate (SVLGR) was calculated by fitting a logistic curve to 

the data based on weekly changes in SVL, then calculating the first derivative at 

the point of inflection as described in Cavallini (1993). Principal component 

analysis (PCA) was conducted on biomarkers of oxidative balance using a 

varimax rotation. This approach is well suited when there is an a priori 

expectation of distinct groups of variables, for example as in markers of 

oxidative balance (Hõrak & Cohen 2010). The first principal component 

explained 41% of the total variance and was associated with variation in MDA 

and TAC (hereafter, PCMDA&TAC), while the second principal component 

explained 32% of the total variance and was associated with variation in SOD 

(hereafter, PCSOD). Factor loadings for the first principal component were: -0.683, 

-0.549 and -0.481, whereas for the second principal component they were: 

0.024, 0.642 and -0.767 for MDA, TAC and SOD respectively. Since MDA is a 

marker of oxidative damage higher values of PCMDA&TAC indicate higher levels of 

oxidative stress. Similar PCAs were conducted on the relative photon catches of 
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single cones derived from psychophysical models for bird, snake and crab, 

respectively; this removes absolute variation that would otherwise result in the 

first principal component corresponding to overall variation in photon catch 

values (i.e. brightness variation) (Endler & Mielke 2005). For the bird vision 

model the first principal component captured 72% of the variance of single 

cones and was associated with variation in MW and LW versus SW and UV 

wavelengths, so this was used to represent variation in the type of colour 

(hereafter PCCOL). Factor loadings were: 0.534 and 0.533, for MW and LW and -

0.444 and -0.484, for UV and SW, respectively. For the snake vision model the 

first principal component captured 67% of the variance of single cones and was 

associated with variation in UV and SW versus LW; with the following factor 

loadings: 0.581, 0.409 and -0.704, for UV, SW and LW, respectively. For the 

crab vision model the first principal component captured 100% of the variance 

and had the factor loadings: 0.707 and -0.707, for SW and LW, respectively. 

GLMMs were fitted including food supply (treatment) as a fixed factor and 

family as a random factor unless otherwise stated. In certain analyses, SVL, 

SVLGR, PCMDA&TAC or PCSOD were included as covariates, in which case the 

interaction with food supply was also tested. In order to meet parametric 

assumptions JND colour based on bird vision was transformed as (1/JND 

colour)2 and signal luminance and JND colour were log transformed when based 

on the snake and crab vision models. Sample sizes differed slightly between 

analyses because a small number of reflectance spectra showed erratic 

readings (i.e. consistent negative values) or bad calibration and these values 

were therefore excluded from analyses. P < 0.05 was considered statistically 
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significant, and models were simplified by backward elimination starting with the 

interaction term(s) where appropriate. There were no significant effects of 

latency to lay or laying date on any of the above response terms (including all 

possible interactions) (all F < 3.43 and P > 0.13). Therefore, latency to lay and 

laying date are not considered further. Analyses were conducted using R 

v.2.12.1 (R Development Core Team 2010). All values reported in the Results 

are predicted means (± SE) from the statistical models, unless otherwise 

indicated. 

 

3.4. Results 

 

3.4.1. Survival, development time and growth rate 

 

Some 28 of 90 larvae died before they reached metamorphosis, but the 

proportion of individuals that survived was similar in both food supply groups 

(GLMM with binomial errors: χ2 = 0.007, df = 1, P = 0.93). Compared to low-food 

individuals, high-food individuals reached metamorphosis sooner and were 

larger in terms of SVL and body mass (Table 3.2; Table A3.1); while relative 

body mass (i.e. mass controlling for size) was similar in both treatments (food, 

F1,8 = 7.16, P = 0.028; SVL, F1,38 = 173.30, P < 0.001; food x SVL, F1,37 = 0.51, 

P = 0.48). Hereafter, we report results based on body size variation, although 

conclusions were qualitatively the same based on body mass variation. High-
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food individuals grew faster in terms of body size and body mass (Table 3.2; 

Table A3.1). 

 

Table 3.2. Effects of food supply on development time, body size and mass, and 

growth rates in juveniles of the two food supply groups. 

 df F P 

Development time 1,8 26.79 < 0.001 

Body size (SVL) 1,8 29.34  0.004 

Body mass  1,8 48.72 < 0.001 

SVL growth rate 1,8 23.21 0.001 

Body mass growth rate 1,8 29.25 < 0.001 

 

3.4.3. Luminance, colour and conspicuousness 

 

We found no statistically significant effect of food supply on overall luminance, 

JND luminance, colour (PCcol) or JND colour modelled based on bird vision 

(Table 3.3A, Table A3.1). Similar results were found for models based on 

snake and crab vision (Table 3.3A).  

 

3.4.4. Body size, growth and aposematic signals 
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In the high-food group, relatively large individuals at metamorphosis had lower 

luminance based on the bird visual model, while the inverse (small individuals, 

greater luminance) occurred in the low-food group (Table 3.3B; Figure 3.1). A 

similar statistical interaction was found for JND luminance (i.e. luminance 

conspicuousness) (Table 3.3B). A marginally non-significant interaction 

between food supply and body size was found for models based on snake and 

crab vision (Table 3.3B). In contrast, colour (PCCOL) and JND colour 

conspicuousness were not significantly related to body size (Table 3.3B). 

Similar results were found for snake and crab vision (Table 3.3B). Thus, while 

low-food individuals simultaneously maximised their investment in body size and 

signal luminance, high-food individuals that were larger had reduced luminance 

and conspicuousness (Figure 3.1). However, signal luminance and JND 

luminance contrast as perceived by birds, snakes and crabs was not predicted 

by growth rate in terms of SVLGR (Table 3.3C). 
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Table 3.3. Effects of food supply, body size and growth rates on signal luminance and conspicuousness based on 

models of bird, snake and crab vision. 

 
Bird vision 

 
Snake vision 

 
Crab vision 

Source of variation df F P  df F P  df F P 

(A) Warning signalling 

and food supply 

        

Luminance            

food 1,8 0.43 0.53  1,8 0.35 0.57  1,8 0.04 0.84 

JND luminance            
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food 1,8 1.11 0.32  1,8 0.85 0.38  1,8 0.30 0.60 

PCCOL            

food 1,8 0.40 0.54  1,8 0.07 0.80  1,8 0.36 0.56 

JND color            

food 1,8 1.07 0.33  1,8 0.20 0.67  1,8 0.62 0.45 

(B) Warning signalling and body size        

Luminance            

food 1,8 0.32 0.58  1,8 0.35 0.57  1,8 0.04 0.84 

SVL 1,38 0.85 0.36  1,38 0.04 0.83  1,39 0.07 0.79 

food x SVL 1,38 5.20 0.028  1,37 3.48 0.07  1,38 3.60 0.06 

JND luminance            
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food 1,8 1.11 0.32  1,8 0.85 0.38  1,8 0.30 0.60 

SVL 1,38 1.02 0.32  1,38 0.00 0.93  1,39 0.01 0.93 

food x SVL 1,38 4.36 0.043  1,37 2.93 0.09  1,38 3.08 0.08 

Colour (PCCOL)            

food 1,8 0.40 0.54  1,8 0.07 0.80  1,8 0.36 0.56 

SVL 1,39 0.15 0.70  1,38 0.10 0.75  1,39 0.24 0.63 

food x SVL 1,38 0.86 0.36  1,37 1.43 0.24  1,38 0.05 0.81 

JND colour            

food 1,8 1.07 0.33  1,8 0.20 0.67  1,8 0.63 0.45 

SVL 1,39 0.48 0.49  1,38 0.19 0.66  1,39 0.01 0.93 

food x SVL 1,38 0.09 0.76  1,37 0.07 0.79  1,38 1.16 0.29 
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(C) Warning signalling and 

growth rate 

  

    

Luminance            

food 1,8 0.43 0.53  1,8 0.35 0.57  1,8 0.04 0.84 

SVLGR 1,39 0.33 0.57  1,38 0.01 0.92  1,39 0.00 0.97 

food x SVLGR 1,38 0.47 0.49  1,37 0.74 0.40  1,38 0.77 0.39 

JND luminance            

food 1,8 1.11 0.32  1,8 0.85 0.38  1,8 0.30 0.60 

SVLGR 1,39 0.12 0.73  1,38 0.00 0.99  1,39 0.00 0.94 

food x SVLGR 1,38 0.54 0.47  1,37 0.99 0.33  1,38 0.90 0.35 

Note. General Linear Mixed Models with food as a fixed factor and family as a random factor, boldface indicates 
significant values. For the bird model colour contrast was transformed as (1/JND colour)2 and for the snake and crab 
visual models luminance, and JND colour were log transformed in order to meet parametric assumptions. 
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Figure 3.1. Relationship between dorsal luminance (modelled based on bird vision) and snout-vent length 
(SVL) in froglets of the two food supply groups. Filled circles and solid line: high-food, open circles and the 

dashed line: low-food individuals. Lines are predicted from GLMM analyses (see text for details). 
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Although growth rates were higher in the high-food group, markers of oxidative 

balance were similar at the treatment level in both food supply groups (Table 

3.4). We also examined whether oxidative balance was significantly associated 

with variation in growth rates, and whether this differed between food supply 

groups; however, we found no such relationships (Table A3.2). Yet, when 

oxidative stress levels were greater (high PCMDA&TAC) in the high-food treatment, 

signal luminance as perceived by bird, snake and crab predators was also 

higher, while conversely, high oxidative stress levels in the low-food group were 

associated with lower levels of signal luminance (Table A3.3A; Figure 3.2). A 

similar result was found in terms of JND luminance conspicuousness modelled 

based on bird, snake and crab vision (Table A3.3A). There were no significant 

associations between signal colour (PCCOL) or JND colour conspicuousness 

modelled based on bird, snake and crab vision and levels of oxidative stress 

(Table A3.3A). Levels of enzymatic antioxidant activity (PCSOD) were 

independent of signal luminance, JND luminance, colour (PCCOL) or JND colour 

conspicuousness in both food groups (Table A3.3B). 
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Table 3.4. Markers of oxidative balance (mean ± SE) in body homogenates of 

juveniles of the two food supply groups. 

 Food supply 

 High  Low  

   

MDA (nmol g-1) 54.64 ± 2.41 52.13 ± 3.41 

SOD (U SOD mg-1) 540.23 ± 66.20 545.15 ± 93.62 

TAC (µmol Trolox g-1) 0.068 ± 0.005 0.060 ± 0.007 
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Figure 3.2 Relationship between dorsal luminance (modelled based on bird vision) and levels of 
oxidative stress (PCMDA&TAC) in body homogenates of juveniles of the two food supply groups. 
Filled circles and solid line: high-food, open circles and dashed line: low-food individuals. Values 
on the x-axis were multiplied by -1 to facilitate interpretation therefore positive values denote 
higher values of PCMDA&TAC. Lines are predicted from GLMM analyses (see text for details). 
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abundant frogs grew larger, and investment in signalling and hence 

conspicuousness diminished. Signal luminance and levels of oxidative stress 

were positively correlated in high-food froglets, but were negatively correlated in 

low-food froglets suggesting a resource allocation trade-off when food 

availability is relatively low. Resource-limited froglets appeared to 

simultaneously maximise investment in growth and signalling within the limits of 

what they could attain, as constrained by oxidative stress. 

 Luminance and JND luminance (i.e. conspicuousness) of metamorphic D. 

auratus were affected by early nutrition and its interaction with body size. There 

was a positive correlation between body size and warning signal luminance in 

the low-food group, whereas in the high-food group where froglets were 

relatively large on average, body size and signal luminance were negatively 

correlated (Figure 3.1; Table 3.2B). In general models based on snake and 

crab vision generated qualitatively similar results to those based on bird vision, 

with the exception that the interaction between body size and food supply in the 

models which considered effects on signal luminance and JND luminance (i.e. 

conspicuousness) was marginally non-significant. This may be explained by the 

fact that, unlike birds, snakes and crabs do not possess cone cells specialized in 

luminance sensitivity (i.e. double cones; Osorio & Vorobyev 2008), and therefore 

snakes and crabs may be less sensitive to differences in brightness. Some 

snakes in the family Colubridae have evolved resistance to amphibian chemical 

defences (Brodie & Brodie 1999), in particular poison frogs (Brodie & 

Tumbarello 1978; Santos & Cannatella 2011). Therefore, such species would 

not be expected to discriminate amongst prey based on visual cues which 
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advertise the level of chemical defence. Yet, while diurnal crabs seem to be able 

to discriminate conspicuousness in adult Oophaga [Dendrobates] pumilio (Maan 

& Cummings 2012), their sensitivity to detect changes in integument luminance 

contrast may be constrained by their limited visual sensitivity in comparison to 

birds. Crabs have been reported to prey on D. auratus tadpoles (Gray & Christy 

2000), which are cryptically coloured, but whether they prey on frogs post-

metamorphosis is not known. Furthermore, behavioural and experimental 

evidence suggest that in crabs apparent colour discrimination is mainly devoted 

to intraspecific communication (Detto 2007; Cummings et al. 2008; Baldwin & 

Johnsen 2012). In general, birds seem to be better than snakes and crabs at 

decoding information about levels of defences based on the expression of 

aposematic signals in Oophaga [Dendrobates] pumilio (Maan & Cummings 

2012). Whether this finding can be generalised to other species of dendrobatids 

awaits verification. Birds and snakes are candidate predators which may impose 

selection for diversification of defensive strategies in this group (Toledo, Ribeiro, 

& Haddad 2007). However, more work is needed in order to clarify the actual 

predators, their vision capabilities and their role in shaping colour variation in 

poison frogs. 

 As expected, when food was non-limiting (high-food group) larvae grew 

faster and they were larger at metamorphosis. As in other dendrobatids, D. 

auratus undergoes its larval stage inside water-filled pools, where the amount of 

water varies depending on rainfall (Caldwell & de Araújo 2004). Rapid 

development may enable individuals to avoid desiccation and predation during 

this vulnerable stage of life when chemical defences are lacking (Caldwell 1993). 
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Larger froglets are likely to have greater energy in the first few, critical days 

following metamorphic climax, when they must begin to forage to acquire 

chemical defences. In addition, if body size differences persist to sexual maturity, 

there could be important implications for reproductive success. In particular, 

larger males are better able to compete for mates (Summers 1989), and larger 

females may benefit in terms of higher fecundity and mate guarding (Wells 1977; 

Summers & Earn 1999). The likelihood of surviving until maturity is probably 

dependent upon rapidly obtaining toxic substances after metamorphosis (Daly et 

al. 1994b; Saporito et al. 2010). A larger froglet may have a greater foraging 

capacity when searching for toxic prey on the forest floor (Santos & Cannatella 

2011). 

 While selection appears to have favoured large body size in adult 

poison frogs (Hagman & Forsman 2003), it is unclear how selection might shape 

developmental strategies in terms of relative allocations of resources to growth 

versus signal expression in immature, palatable D. auratus. Indeed, we found no 

significant effects of food supply on signal luminance, colour or corresponding 

conspicuousness at the treatment level. In visual oriented predators, texture and 

shape discrimination of small objects seems to be mediated by luminance 

contrast (Jones & Osorio 2004), and thus luminance is thought to be used by 

birds in motion detection of prey (Osorio & Vorobyev 2005). Distance may also 

influence how a signal is perceived by potential predators; for example, when 

viewed from afar a small target may be camouflaged yet when viewed in near 

proximity it may be readily discriminable because of its colouration (Tullberg, 

Merilaita, & Wiklund 2005; Bohlin, Tullberg, & Merilaita 2008). During close-up 
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inspection a highly conspicuous signal could deter predators and thus enable 

individuals to forage in the open and facilitate the acquisition of toxins from the 

diet (Speed et al. 2010). 

 Following detection the colour contrast of a prey may influence 

predator wariness and ultimately guide its decision whether to attack (Guilford 

1986; Lindström et al. 1999; Osorio & Vorobyev 2005; reviewed in Stevens & 

Ruxton 2012). Indeed, larger body size is likely to amplify the aversive effect of 

the colour component of warning signals (Forsman & Merilaita 1999). This could 

explain why high-food froglets did not reduce investment in the colour of their 

warning signal. Once detected froglets may rely on automimicry (i.e. 

resemblance of adults in terms of colouration) to deter predators (Brower, 

Brower, & Corvino 1967; Speed, Ruxton, & Broom 2006). Toxic adults will have 

already educated predators to avoid individuals with similar appearance (Speed 

et al. 2012), thus allowing automimics to coexist in a population (Darst et al. 

2006). It is interesting that high-food froglets did not have greater colouration 

than low-food froglets. This could be explained by the fact that predators are 

wary of novel coloured prey (Mappes et al. 2005), and empirical evidence 

suggests there is strong selection against rare phenotypes in natural populations 

(Noonan & Comeault 2009; Wennersten & Forsman 2009; Chouteau & Angers 

2011). Alternatively, there may be stabilizing selection on colouration because of 

its importance in intraspecific signalling at adulthood. In dendrobatids mate 

selection, intraspecific competition and territorial defence are known to be 

influenced by variation in skin coloration (Maan & Cummings 2008; Ostrowski & 

Pröhl 2011; Crothers, Gering, & Cummings 2011). Indeed, uniformity in dorsal 



64 

skin colour and pattern within populations of the strawberry poison frog 

(Oophaga [Dendrobates] pumilio) has been attributed in part to sexual selection 

(Summers et al. 1999; Siddiqi et al. 2004; Summers, Cronin, & Kennedy 2004; 

Reynolds & Fitzpatrick 2007; Maan & Cummings 2008). 

 Whether aposematic signals provide fine-scale, honest information 

about defensive capacity remains a matter of controversy (Stevens & Ruxton 

2012). Theoretical models have predicted that more toxic prey should invest less 

in signalling, because they have better chances of surviving attacks and should 

therefore avoid the conspicuousness costs of signals (Leimar et al. 1986; Speed 

& Ruxton 2005a, 2007). However recent resource competition models have 

suggested that aposematic signals and defences should correlate positively 

under conditions where such traits utilize a shared resource that is in limited 

supply (Blount et al. 2009; Lee et al. 2011). One such resource could be 

antioxidants, which have been suggested to be necessary both to produce 

signals and to prevent oxidative stress caused by the production or storage of 

toxic chemicals (Blount et al. 2009). Nevertheless, these models do not take into 

account the fact that many aposematic species undergo a process of colour 

change during development (e.g. Grant 2007; Tullberg et al. 2008) and may 

have little or no secondary defence at this time (Nylin et al. 2001; Nishida 2002; 

Saporito et al. 2010). Therefore, an interesting direction for future studies will be 

to investigate whether signal colour and luminance in froglets persists, and how 

aposematic signals correlate with levels of defensive alkaloids at adulthood. 



65 

 One intriguing possibility is that well-nourished larger froglets, 

which we found to have reduced signal luminance, are better foragers and thus 

become most toxic as adults. If so, this could result in a negative signal-defence 

correlation as some theoretical studies have predicted (Leimar et al. 1986; 

Speed & Ruxton 2007; Blount et al. 2009), and as observed in some empirical 

studies (Darst et al. 2006; Wang 2011; Blount et al. 2012). In captivity at least, 

considerable sequestration of dietary alkaloids is readily achieved before 

adulthood in D. auratus (Daly et al. 1994b). Rates of toxin accumulation may be 

lower in the wild, but this requires investigation. Moreover, in resource-limited 

environments if toxin sequestration causes oxidative stress and this trades 

against signal production or maintenance, as hypothesised (Blount et al. 2009), 

then positive signal-defence correlations may be expected at adulthood. Several 

recent studies have reported such correlations either within, or across, 

aposematic species (e.g. Summers & Clough 2001; Bezzerides et al. 2007; 

Cortesi & Cheney 2010; Blount et al. 2012). However, the importance of 

resource availability in determining the sign of signal-defence correlations has 

only recently begun to be studied (Blount et al. 2012) and further empirical data 

are needed. 

 Metamorphosis in amphibians is characterized by increased ROS 

production (Inoue et al. 2004). Indeed significantly higher levels of lipid 

peroxidation and antioxidants have been found during this period in amphibians 

(Menon & Rozman 2007), and similarly, a positive correlation between levels of 

TAC and MDA has been reported previously in a study of European 

greenfinches Carduelis chloris (Hõrak et al. 2007). Therefore high levels of 
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PCMDA&TAC suggests that non-enzymatic antioxidants were accumulated and/or 

released in response to oxidation of cellular lipids during metamorphosis; in 

contrast, SOD functions largely within cells (Stead & Park 2000) therefore its 

direct role in defence against lipid oxidation is unlikely. Growth is accompanied 

by formation of ROS as by-products of metabolism (Sies 1997), and rapid 

growth in particular has been linked to elevated oxidative damage or depleted 

antioxidant capacity in various taxa (e.g. Alonso-Alvarez et al. 2007; Nussey et 

al. 2009). However, we did not find any association between growth rate and 

levels of oxidative damage in tissue homogenates in either food supply group. 

Thus individuals may have optimized their growth in relation to their antioxidant 

defence capability, and the dietary availability of antioxidants was sufficient in 

both food supply groups to enable all individuals to cope with ROS resulting 

from growth. 

 In high-food froglets, size at metamorphosis correlated negatively with 

luminance (Figure 3.1). This reduction in luminance seems likely to have been 

facultative, rather than the consequence of a resource allocation trade-off, 

because there was no correlation between growth rate and luminance in either 

food group. Moreover, any trade-off in the allocation of resources to warning 

signals versus body size would be expected to apply equally or to a greater 

extent in the low-food group. On the contrary, body size and luminance were 

positively correlated in low-food froglets. In the high-food group higher levels of 

oxidative stress were associated with high luminance, whereas in the low-food 

group relatively high levels of oxidative stress were associated with low 

luminance. We think a likely explanation for this finding is that ROS-induced 
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oxidative stress constrained the ability to produce bright signals in the low-food 

group. Non-enzymatic antioxidant pigments are commonly responsible for skin 

pigmentation in poison frogs (Fox 1976), and oxidative stress may have 

depleted antioxidant pigments in low-food individuals, which in turn impaired 

signal production. Aposematic signal expression in particular can trade-off with 

growth, development time and body size (e.g. Grill & Moore 1998; Ojala et al. 

2007; Lindstedt et al. 2010). However, our results suggest that resource-limited 

individuals need not always trade-off investment in somatic versus aposematic 

traits; instead it may be beneficial to become as big and bright as possible within 

the constraints of resource supply. 

 

3.5.1. Conclusion 

 

In conclusion, this study highlights the influence of developmental nutrition and 

oxidative stress on resource allocation to growth and aposematic signals. In 

particular, we found that when resources were abundant, individuals grew 

relatively large but reduced investment in signal luminance. These results 

generate predictions as to the likely importance of body size and aposematic 

signal expression as determinants of survival in wild froglets. Data to test these 

predictions are currently lacking and this is an important topic for further work. 
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3.6. Appendices: Supplementary Methods and Results 

 

3.6.1. Description of bird vision model 

 

Calculations were done based on a set of functions in Matlab R2009a (The 

MathWorks Inc, USA). The model starts by calculating the cone quantum 

catches (qi) for each photoreceptor class for froglets and ambient radiance 

spectra as 

 

������ =	 	 
(��
����� λ)�(λ)�ᵢ(λ)�λ, 

 

Equation 3.1 Calculation of cone quantum catches of photoreceptors of the bird vision model. 

 

here ��(�)  represents the absorptance spectrum for each of the four 

photoreceptor cone classes of the bird integrated over 1 nm intervals from 300 

to 750 nm. 
(�)	and �(�) represent the reflectance spectrum of the froglet´s skin 

and the irradiance spectra measured in the field respectively. Resulting photon 

quantum catches were standardized in order to account for variation in light 

conditions, using the von Kries transformation adaptation coefficient. This 

method assumes that photoreceptors adjust their sensitivity in proportion to the 

background light environment 
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������
=	�	 ��(�)�(�)����

����� ���, . 

Equation 3.2 Von Kries transformation adaptation coefficient of photoreceptors of the bird vision 
model 

 

 This procedure ensures that colour perception relies on colour constancy, 

whereby the visual system removes variation in ambient light so that colours 

look similar under variable light conditions (Cuthill 2006). Therefore, the adjusted 

quantum catch data for each photoreceptor class was calculated as 

 

� = ������	!	������,  

Equation 3.3 Adjusted quantum catches of each photoreceptor of the bird vision model. 

 

 Values of relative single cone quantum catches were then included in a 

Principal Component Analysis (see 3.3.7. Statistical analyses). 

 Following calculations of quantum catches, the model assumes that the 

signal of each cone channel is proportional to the logarithm of the adjusted 

quantum catches; as such the contrast between a pair of stimuli was calculated 

as the quotient of adjusted photon quantum catches 
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∆� = #$% &� �('($%	)*+,-(.)/&� 0(1.,2%($34�	)*+,-(.)/ 
 

Equation 3.4 Calculation of contrast between a pair of stimuli of each photoreceptor of the bird 
vision model. 

 

 The Vorobyev-Osorio colour discrimination model is based on evidence 

that colour discrimination is determined by noise arising in the photoreceptors 

and is independent of light intensity. Noise in each photoreceptor channel (+�) 
was calculated as 

 

+� =	 5�64�  

Equation 3.5 Calculation of noise in each photoreceptor of the bird vision model. 

 

 Where 5� was taken as 0.05 and represents the Weber fraction of the 

most abundant cone type (Siddiqi et al. 2004) and 4� is the relative number of 

receptor types in the retina of the blue tit (Hart et al. 2000) (47 = 	1.00, 	4; =
	0.99, 4= = 0.71, 4?@ = 0.37).  Colour (chromatic) discrimination in the 

tetrachromatic visual model was calculated as JND values using the following 

equation 
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BCD	1�(�	,$#$( = E (+?@+=)0(∆�7 − ∆�;)0 + (+?@+;)0(∆�7 − ∆�=)0 + (+?@+7)0(∆�; − ∆�=)0+(+=+;)0(∆�7 − ∆�?@)0 + (+=+7)0(∆�; − ∆�?@)0 + (+;+7)0(∆�= − ∆�?@)0(+?@+=+;)0 + (+?@+=+7)0 + (+?@+;+7)0 + (+=+;+7)0
H

 

Equation 3.6 Just noticeable differences (JND´s) for colour discrimination of the bird vision 
model. 

 

 Since in our model, overall perceived luminance is considered to arise 

from stimulation of double cone photoreceptors, luminance discrimination was 

evaluated as 

 

BCD	1�(�	#3I�4.4,+ = J∆�K+K L  

Equation 3.7 Just noticeable differences (JND´s) for luminance discrimination of the bird vision 
model. 

 

 Overall variation in colour was based on values from single cone photon 

catch scores (and a Principal Component Analysis of them) and variation in 

overall luminance was based on double cone photon catch scores (∆qD). Colour 

and luminance discrimination (conspicuousness) was based on JND values. 

 

3.6.2. Description of snake vision model 
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Calculations were done based on a set of functions in Matlab R2009a (The 

MathWorks Inc, USA). The model starts by calculating the cone quantum 

catches (qi) for each photoreceptor class for froglets and ambient radiance 

spectra as 

 

��MN OP
=	 	 
(��

����� λ)�(λ)��(λ)�λ, 
 

Equation 3.8 Calculation of cone quantum catches of photoreceptors of the snake vision model 

 

here ��(�)  represents the absorptance spectrum for each of the three 

photoreceptor cone classes (i.e. UV, SW and LW) integrated over 1 nm intervals 

from 300 to 750 nm. 
(�)	and �(�) represent the reflectance spectrum of the 

froglet´s skin and the irradiance spectra measured in the field respectively. 

Resulting photon quantum catches were standardized in order to account for 

variation in light conditions, using the von Kries transformation adaptation 

coefficient. This method assumes that photoreceptors adjust their sensitivity in 

proportion to the background light environment 
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��MN OP =	�	 ��(�)�(�)����
����� ���,  

Equation 3.9 Von Kries transformation adaptation coefficient of photoreceptors of the snake 
vision model 

 

 This procedure ensures that colour perception relies on colour constancy, 

whereby the visual system removes variation in ambient light so that colours 

look similar under variable light conditions (Cuthill 2006). Therefore, the adjusted 

photon quantum catch data for each photoreceptor class was calculated as 

 

� = ��MN OP	!	��MN OP,  

Equation 3.10 Adjusted quantum catches of each photoreceptor of the snake vision model. 

 

 Values of the relative single cone quantum catches were then included in 

a Principal Component Analysis (see 3.3.7. Statistical analyses).  

 Following calculations of quantum catches, the model assumes that the 

signal of each cone channel is proportional to the logarithm of the adjusted 

quantum catches; as such the contrast between a pair of stimuli was calculated 

as the quotient of adjusted quantum catches 
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∆� = #$% &� �('($%	)*+,-(.)/&� 0(1.,2%($34�	)*+,-(.)/ 
 

Equation 3.11 Calculation of contrast between a pair of stimuli of each photoreceptor of the 
snake vision model. 

 

 The Vorobyev-Osorio visual discrimination model is based on evidence 

that color discrimination is determined by noise arising in the photoreceptors and 

is independent of light intensity. Noise in each photoreceptor channel (+�) was 

calculated as 

 

+� =	 5�64�  

 

Equation 3.12 Calculation of noise in each photoreceptor of the snake vision model. 

 

 Where 5�  was taken as 0.05 according to Siddiqi et al. (2004) and 

represents the Weber fraction of the most abundant cone type and 4�  is the 

relative number of receptor types in the retina of the snake (data for Thamnophis 

sirtalis, Sillman et al. 1997) (47 = 	0.85, 4= = 0.10, 4?@ = 0.05) . Colour 

(chromatic) discrimination in the trichromatic visual model was calculated as 

JND values using the following equation 
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BCD	)4.2+	,$#$3( = S(+?@)0(∆�7 − ∆�=)0 + (+=)0(∆�7 − ∆�?@)0 + (+7)0(∆�?@ − ∆�=)0(+?@+=)0 + (+?@+7)0 + (+=+7)0H
 

 

Equation 3.13 Just noticeable differences (JND´s) for colour discrimination of the snake vision 
model. 

 

 We considered overall perceived luminance in snakes as in other 

vertebrates to arise from stimulation of LW cone photoreceptors with sensitivity 

in the long wavelength part of the spectra; therefore luminance discrimination 

was evaluated as 

 

BCD	)4.2+	#3I�4.4,+ = J∆�7+7 L  

Equation 3.14 Just noticeable differences (JND´s) for luminance discrimination of the snake 
vision model. 

 

 Overall variation in colour was based on values from single cone photon 

catch scores (and a Principal Component Analysis of them) and variation in 

overall luminance was based on LW cone photon catch scores (∆qL). Colour 

and luminance discrimination (conspicuousness) was based on JND values. 

 

3.6.3. Description of crab vision model 
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Similar calculations were done based on a set of functions in Matlab R2009a 

(The MathWorks Inc, USA). The model starts by calculating the cone quantum 

catches (qi) for each photoreceptor class for froglets and ambient radiance 

spectra as 

 

��T� � =	 	 
(��
����� λ)�(λ)�ᵢ(λ)�λ, 

Equation 3.15 Calculation of cone quantum catches of photoreceptors of the crab vision model. 

 

here ��(�)  represents the absorptance spectrum for each of the two 

photoreceptor cone classes (i.e. SW and LW)  integrated over 1 nm intervals 

from 300 to 750 nm. Resulting photon quantum catches were standardized in 

order to account for variation in light conditions, using the von Kries 

transformation adaptation coefficient. This method assumes that photoreceptors 

adjust their sensitivity in proportion to the background light environment 

 

��T� � =	�	 ��(�)�(�)����
����� ���, 

Equation 3.16 Von Kries transformation adaptation coefficient of photoreceptors of the crab 
vision model. 
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 This procedure ensures that colour perception relies on colour constancy, 

whereby the visual system removes variation in ambient light so that colours 

look similar under variable light conditions (Cuthill 2006). Therefore, the adjusted 

photon quantum catch data for each photoreceptor class was calculated as 

 

� = ��T� �	!	��T� �, 
Equation 3.17 Adjusted quantum catches of each photoreceptor of the crab vision model. 

 

 Values of the relative single cone quantum catches were then included in 

a Principal Component Analysis (see 3.3.7. Statistical analyses). 

 Following calculations of quantum catches, the model assumes that the 

signal of each cone channel is proportional to the logarithm of the adjusted 

quantum catches; as such the contrast between a pair of stimuli was calculated 

as the quotient of adjusted quantum catches 

 

∆� = #$% &� �('($%	)*+,-(.)/&� 0(1.,2%($34�	)*+,-(.)/ 
Equation 3.18 Calculation of contrast between a pair of stimuli of each photoreceptor of the crab 
vision model. 

 

 The Vorobyev-Osorio visual discrimination model is based on evidence 

that colour discrimination is determined by noise arising in the photoreceptors 
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and is independent of light intensity. Noise in each photoreceptor channel (+�) 
was calculated as 

 

+� =	 5�64�  

 

 

Equation 3.19 Calculation of noise in each photoreceptor of the crab vision model. 

 

 Where 5� was taken as 0.12 based on physiological receptor noise data 

according to Hempel De Ibarra et al. (2000) for honeybees Apis mellifera and 4� 
is the relative number of receptor types that for our purposes were set as 

(47 = 	0.5, 4= = 0.5)  following (Cummings et al. 2008). Colour (chromatic) 

discrimination in the dichromatic visual model was calculated as JND values 

using the following equation 

 

BCD,(.1	,$#$3( = S(∆�= − ∆�7)0(+=)0 + (+7)0H
 

Equation 3.20 Just noticeable differences (JND´s) for colour discrimination of the crab vision 
model. 
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 We considered overall perceived luminance in crab to arise from 

stimulation of LW cone photoreceptors with sensitivity in the long wavelength 

part of the spectra, luminance discrimination was evaluated as 

 

BCD,(.1	#3I�4.4,+ = J∆�7+7 L 

Equation 3.21 Just noticeable differences (JND´s) for luminance discrimination of the crab 
vision model. 

 

 Overall variation in colour was based on values from single cone photon 

catch scores (and a Principal Component Analysis of them) and variation in 

overall luminance was based on LW cone photon catch scores (∆qL). Colour 

and luminance discrimination (conspicuousness) was based on JND values. 
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Table A3.1. Development time, growth and growth rates (mean ± SE) in 

juveniles of the two food supply groups. 

 Food supply 

 High  Low  

   

Development time (days) 59.40 ± 1.81 63.93 ± 0.87 

Body size (SVL, mm) 16.389 ± 0.229 15.5 ± 0.164 

Body mass (mg) 491 ± 18 408 ± 12 

SVL growth rate (mm day-1) 0.258 ± 0.011 0.219 ± 0.008 

Body mass growth rate 

(mg day-1) 

23.53 ± 1.16 18.99 ± 0.81 

Note. Development time was calculated from hatching until metamorphosis 
was completed. 
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Table A3.2. Effects of food supply and growth rate on oxidative balance. 

Source of variation df F P 

PCMDA&TAC    

food 1,8 1.23 0.30 

SVLGR 1,29 0.18 0.67 

food x SVLGR 1,28 0.75 0.39 

PCSOD    

food 1,8 0.09 0.77 

SVLGR 1,28 0.04 0.83 

food x SVLGR 1,27 0.49 0.49 

Note. General Linear Mixed Models with food as a fixed factor and 
family as a random factor; boldface indicates significant value. 
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Table A3.3. Effects of food supply and oxidative balance on aposematic signals. 

 Bird vision  Snake vision  Crab vision 

Source of variation d.f. F P  d.f. F P  d.f. F P 

(A) Warning signalling and 

oxidative balance (PCMDA&TAC)  

        

Luminance            

food 1,8 0.43 0.53  1,8 0.18 0.68  1,8 0.81 0.39 

PCMDA&TAC 1,28 0.03 0.86  1,27 0.11 0.74  1,28 0.23 0.63 

food x PCMDA&TAC 1,28 18.47 <0.001  1,27 19.57 <0.001  1,28 22.15 <0.001 

JND luminance            

food 1,8 0.25 0.63  1,8 0.06 0.81  1,8 0.07 0.80 
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PCMDA&TAC 1,28 0.85 0.36  1,27 0.73 0.40  1,28 0.87 0.36 

food x PCMDA&TAC 1,28 24.64 <0.001  1,27 17.58 0.003  1,28 20.55 <0.001 

Colour (PCCOL)            

food 1,8 0.40 0.54  1,8 0.07 0.80  1,8 0.36 0.56 

PCMDA&TAC 1,29 0.00 0.94  1,28 0.00 0.98  1,29 0.10 0.76 

food x PCMDA&TAC 1,28 0.01 0.92  1,27 0.29 0.60  1,28 0.08 0.77 

JND colour            

food 1,8 1.07 0.33  1,8 0.20 0.67  1,8 0.62 0.45 

PCMDA&TAC 1,29 0.49 0.49  1,28 0.02 0.88  1,29 0.19 0.66 

food x PCMDA&TAC 1,28 0.10 0.75  1,27 2.26 0.14  1,28 0.31 0.58 

(B) Warning signalling and         
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oxidative balance (PCSOD) 

Luminance            

food 1,8 0.43 0.53  1,8 0.35 0.57  1,8 0.04 0.84 

PCSOD 1,29 0.48 0.49  1,28 0.02 0.90  1,29 0.16 0.69 

food x PCSOD 1,28 2.01 0.17  1,27 2.91 0.10  1,28 3.67 0.06 

JND luminance            

food 1,8 1.11 0.32  1,8 0.85 0.38  1,8 0.30 0.60 

PCSOD 1,29 1.29 0.26  1,28 0.88 0.35  1,29 1.10 0.30 

food x PCSOD 1,28 2.39 0.13  1,27 2.15 0.15  1,28 3.04 0.09 

Colour (PCCOL)            

food 1,8 0.40 0.54  1,8 0.07 0.80  1,8 0.36 0.56 
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PCSOD 1,29 1.90 0.18  1,28 1.51 0.23  1,29 0.93 0.34 

food x PCSOD 1,28 0.03 0.87  1,27 0.05 0.82  1,28 0.31 0.58 

JND colour            

food 1,8 1.07 0.33  1,8 0.20 0.67  1,8 0.62 0.45 

PCSOD 1,29 0.00 0.95  1,28 0.08 0.78  1,29 0.06 0.80 

food x PCSOD 1,28 2.11 0.16  1,27 1.32 0.26  1,28 1.75 0.20 

Note. General Linear Mixed Models with food as a fixed factor and family as a random factor; boldface indicates 
significant value. For the snake and crab visual models, luminance and JND colour were log transformed to meet 
parametric assumptions. 
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Figure A3.1 Mean reflectance spectra of froglets on the day of metamorphic climax in high (solid 
line; n=28 individuals) and low food groups (dashed line; n=34 individuals). Reflectance spectra 
are average measurements taken from four body regions (head, dorsum, left and right flanks). 
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Figure A3.2 Mean reflectance spectra of natural background samples (n = 136). Samples were 
leaf litter collected from the sites where adult frogs used for breeding were captured. 

 

 

 

  

0

5

10

15

20

25

300 350 400 450 500 550 600 650 700 750

R
e
fl

e
c
ta

n
c
e
 (

%
)

Wavelength (nm)



88 

 

 

Figure A3.3 Mean irradiance spectra of ambient light at the study site (n = 90 measurements on 
a sunny day and n = 85 measurements on a cloudy day). 
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Chapter 4. Body size but not warning signal luminance 
influences predation risk in recently 
metamorphosed poison frogs3 

 

4.1. Abstract 

 

During early development many species have bright and conspicuous warning 

appearance, but have yet to acquire chemical defences, a phenotypic state 

which presumably makes them vulnerable to predation. Body size, and signal 

luminance, are known to be sensitive to variation in early nutrition. However, the 

relative importance of these traits as determinants of predation risk in juveniles 

is not known. To address this question we utilised computer-assisted design 

(CAD) and information on putative predator visual sensitivities to produce 

artificial stimuli of post-metamorphic froglets that varied in terms of body size 

and signal luminance. We then deployed artificial prey in the field and measured 

rates of attack by birds and unknown predators. Our results indicate that body 

size was a significant predictor of artificial prey survival. Rates of attack by bird 

predators were significantly higher on smaller models. However, predation by 

birds did not differ between artificial prey of varying signal luminance. This 

suggests that at the completion of metamorphosis smaller froglets are at a 

selective disadvantage, possibly because predators can discern they have 
                                                

3
 This chapter has been submitted as: Flores, E. E., Stevens, M., Moore, A. J., Rowland, H. M., 

Vasquez, L., De La Cruz, J., Croxford, G., and Blount, J. D. Body size but not warning signal 
luminance influences predation risk in recently metamorphosed poison frogs. Animal Behaviour. 
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relatively low levels of chemical defence compared to larger froglets. There is 

likely to be a premium on efficient foraging, giving rise to rapid growth and the 

acquisition of toxins from dietary sources in juvenile poison frogs. 

 

4.2. Introduction 

 

Aposematic species are distasteful or otherwise unprofitable, and signal this 

property to predators with conspicuous colouration. Aposematism exploits the 

innate aversion of visually oriented predators towards conspicuous or novel 

colours, which results in increased predator wariness, enhanced avoidance 

learning rates, and thus reduced predation risk for the prey (Guilford 1986; 

Ruxton et al. 2004). Body size, colour and brightness contrast are key 

components of warning signals with the potential to influence predators’ learning 

and avoidance (Ruxton et al. 2004; Stevens & Ruxton 2012). Visual oriented 

predators in particular are known to avoid large body size and large pattern 

elements of warning signals (Gamberale & Tullberg 1998; Gamberale-Stille 

2000; Lindstedt, Lindström, & Mappes 2008). Indeed, larvae of some 

aposematic insects aggregate as a strategy to increase aversion in predators 

because in this way the signal size is enhanced (Gamberale & Tullberg 1998; 

Gamberale-Stille 2000; Riipi et al. 2001). Furthermore, colour and brightness 

contrast are known to facilitate detection, rejection and learning about warning 

signals in predators (Gamberale-Stille 2001; Ham et al. 2006; Aronsson & 

Gamberale-Stille 2012). Since predators can vary in their visual sensitivity 



91 

(Aidala et al. 2012; Moore et al. 2012), and how the cognitive and learning 

processes associated with visual stimuli take place (Kelber et al. 2003; Endler & 

Mappes 2004; Osorio & Vorobyev 2005; Stevens, Stoddard, & Higham 2009), 

any variation in the components of aposematic signals may be of critical 

importance for the survival of juveniles. For example, predators may attack 

novel aposematic prey more often (Noonan & Comeault 2009), monomorphism 

in warning signalling can result from anti-apostatic selection (Allen & Greenwood 

1988) or polymorphic signal design may be selected when the community of 

predators is variable (Endler & Mappes 2004). However, predators can monitor 

the level of toxins they ingest rather than avoid toxic prey completely (Skelhorn 

& Rowe 2006). The propensity for some predators to attack prey despite the 

presence of warning colouration may impose a particular selective pressure on 

immature aposematic organisms, in which chemical defences have not yet been 

developed or acquired, thus exposing them to high predation risk (see Gray & 

Christy 2000; Sime et al. 2000; Nylin et al. 2001). In particular bird predators 

have been shown to taste-reject aposematic prey based on their level of 

chemical defences despite their similar warning appearance (Skelhorn & Rowe 

2006). 

 Empirical evidence suggests that birds are important predators of 

aposematic species (e.g. Benson 1972; Exnerová et al. 2008) including poison 

frogs. Master (1999) reported that rufous motmots (Baryphthengus martii) prey 

upon poison frogs, while domestic hens (Gallus domesticus) have been shown 

to distinguish differences in conspicuousness and toxicity in poison frogs during 

predation experiments (Darst et al. 2006; Darst & Cummings 2006). 
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Psychophysical models of bird vision have confirmed that birds can discern 

differences in terms of colour and brightness of poison frogs (Maan & Cummings 

2012), and thus variation in appearance may be important in influencing 

predation risk. In birds, aversion towards large and conspicuously coloured 

warning signals can be at least partly innate (Darst et al. 2006; Exnerová et al. 

2007), and may result from dietary conservatism (Marples et al. 1998), and/or 

from previous learning experiences (Roper & Redston 1987; Roper 1994). Thus 

warning signal colour or brightness, and body size, can both affect aversion in 

birds (Forsman & Merilaita 1999; Jones & Osorio 2004). Nevertheless, the 

colour, brightness and size of a signal may independently influence the 

perceptual psychology of birds and therefore affect rates of attack (Schuler & 

Roper 1992; Gamberale-Stille & Tullberg 1999; Exnerová et al. 2010). Colour is 

generally thought to primarily guide the detection and 

classification/discrimination of large objects and should be relatively constant 

under variable ambient light conditions (Osorio et al. 1999; Osorio & Vorobyev 

2005). Luminance (‘lightness’) information is used in encoding object boundaries 

and texture, and detection of small targets and movement, and will be more 

affected by changes in ambient light (Campenhausen & Kirschfeld 1998; Jones 

& Osorio 2004). Therefore, colour is likely to be important in learning of prey 

appearance and categorisation of prey types, whereas luminance and colour 

contrast may be important in initial detection and avoidance (Stevens & Ruxton 

2012). There is some evidence that luminance contrast can also play a role in 

avoidance learning in praying mantids (Prudic et al. 2007). How important the 

role of luminance is for birds during avoidance learning under natural and 
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variable field conditions is not known. However, unlearnt avoidance of 

undefended prey in the field by wild birds is enhanced by greater luminance 

contrast levels (Stevens et al. 2007) and so luminance contrast may be 

important in deterring predators. 

 Determining the consequences of specific aspects of aposematic signals 

for predation risk is difficult, because predator-prey interactions involving 

aposematic prey are rarely observed in the wild (though see Finkbeiner et al. 

2012) alternative experimental approaches that allow for the manipulation of 

aposematic phenotypes while at the same time measuring the responses of 

predators are more common. Artificial stimuli (models) made of plasticine or clay, 

for example, have been used to assess predation on aposematic amphibians 

(e.g. Saporito et al. 2007; Noonan & Comeault 2009; Chouteau & Angers 2011), 

reptiles (e.g. Brodie 1993; Wüster et al. 2004; Niskanen & Mappes 2005) and 

insects (e.g. Remmel & Tammaru 2009; Ihalainen & Lindstedt 2012). 

Observation of imprints left by predators (e.g. bites, beak marks) enables the 

identification of ‘predation’ at different spatial and temporal scales. Nevertheless, 

it can be challenging to run experiments using artificial prey, for example 

because of the need to correctly simulate prey coloration according to the visual 

sensitivities of putative predators. Visual systems are highly variable among taxa 

(Osorio & Vorobyev 2008), and thus it is important to consider which predator(s) 

the experiment will target, taking into consideration the ecological and 

evolutionary context. 



94 

 During early development, resource allocation to growth and warning 

colouration can be constrained in aposematic prey, as affected by the quantity 

or quality of nutrition (e.g. Grill & Moore 1998; Ojala et al. 2005; Blount et al. 

2012; Flores et al. 2013). Poison frogs are a group of aposematic animals that 

show high intraspecific variation in warning colouration (Lötters et al. 2007) but 

the consequences of variable signal design during immature stages is unclear. 

Indeed, we recently reported that availability of food during larval development in 

green and black poison frogs (Dendrobates auratus) can affect body size and 

signal luminance in post-metamorphic froglets (Flores et al. 2013). Specifically, 

froglets with access to relatively little food appeared to simultaneously maximise 

body size and luminance within the constraints of what they could attain. In 

contrast, froglets with access to greater amounts of food, which were larger on 

average, reduced their investment in signal luminance without changing signal 

colour as compared to smaller individuals. This suggests the possibility that 

having both large body size and high signal luminance may attract the attention 

of predators and thus raise predation risk. Such alternative developmental 

strategies as influenced by food supply seem likely to be adaptations to 

minimise predation risk (Ojala et al. 2007; Higginson & Ruxton 2009). 

Nevertheless the relative importance of body size and signal luminance as 

determinants of survival in juvenile froglets in the wild has not been tested 

before. More broadly, the role of achromatic contrast in warning signals in 

deterring predators, as opposed to colour, has rarely been explored, especially 

in a natural system. 
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 Here, we present the results of a field study using clay models of D. 

auratus froglets. Artificial prey varied in either body size (Experiment 1), or 

signal luminance as perceived by birds (Experiment 2), in order to test the 

effects of these two traits on rates of attack by bird predators. Based on the fact 

that recent metamorphic froglets lack secondary defences, and therefore 

detectability risk impairs survival at this stage we predicted that (1) larger 

froglets would have lower survival than smaller froglets. We also predicted that 

(2) individuals with greater signal luminance should have lower survival.  

  

4.3. Methods 

 

4.3.1. Production of artificial stimuli 

 

Artificial prey were designed to resemble recently metamorphosed juveniles of D. 

auratus, which were themselves derived from a field-based diet manipulation 

experiment carried out at Santa Fe, Veraguas province, during 2010 as 

described in Flores et al. (2013). Levels of body size (snout-vent length; SVL) 

and luminance (lightness sensitivity based on photon catches) of artificial prey 

were based on the results of an earlier diet manipulation experiment, in which 

dorsal luminance varied in relation to a statistical interaction between SVL and 

food supply. In essence, in froglets with a relatively high-food supply, above a 

certain body size we observed a reduction in signal luminance (Flores et al. 
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2013). Body contour and design of black dorsal pattern as seen from above 

were standardised, being measured using Image J 1.43q (Rasband 1997) based 

on a digital image of the dorsum of one randomly chosen metamorphic froglet 

collected at the field site. The image was taken with a Canon Power shot G6 

(7.1 megapixel) digital camera (Canon Inc. Japan) and later scaled to the 

experimental SVL values (Figure A4.1). The proportion of the dorsum covered 

by black patterning was calculated using Image J 1.43q based on digital images 

of the dorsum of each experimental froglet in the high-food and the low-food 

supply groups, respectively. The proportion of the dorsum covered in black 

patterning did not differ significantly between food groups (General Linear Mixed 

Model (GLMM); with food as fixed factor and family as random factor; food: F1,8 

= 3.27, P = 0.11; mean ± SE = 0.58 ± 0.01 %, N = 62). This proportion was 

therefore used for all artificial prey. Dorsal signals are considered more 

important than ventral ones in warning signalling in dendrobatids (Wang & 

Shaffer 2008; Maan & Cummings 2012) and thus we included only a black 

dorsal pattern in artificial prey. 

 

4.3.2. Experiment 1, effect of body size variation 

 

Five prey phenotypes (S1 – S5) were designed to be equally spaced in 

increments of size (i.e. 0.846 mm) along the distribution of SVL values (Table 

4.1). Since we were only interested in the effect of body size, we kept the values 

of single cone photon catches (colour) and double cone photon catches 
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(luminance) constant, according to the average of both food supply groups. In 

our design the prey phenotype ‘S2’ corresponds to the threshold value, as 

indicated in Flores et al. (2013), after which high-food supply froglets exhibited 

reduced signal luminance. To prepare the artificial prey, non-toxic, Sculpey III® 

clay (Polyform Products Co. IL, USA) and Fimo soft® clay (Staedtler Mars, 

GmbH & Co. Nürnberg, Germany) were manually mixed. Clay was weighed to 

the nearest 0.001g using an Ohaus Scout Pro balance (Ohaus Europe GmbH, 

Switzerland). Sculpey clay types were: 001 White, 042 Black and 1629 Granny 

Smith. Fimo clay types were: 26 Cherry Red and 37 Blue. To prepare 100 g of 

the average colour and luminance for Experiment 1, clay was mixed as follows: 

63g of 1629 Granny Smith, 19g of 042 Black, 7g of 26 Cherry Red, 3.5g of 001 

White, 3.5g of 37 Blue, 2.5g of 001 White and 2.5g of 042 Black. 

 

Table 4.1. Artificial prey phenotypes in terms of snout-vent length (SVL) used 

for Experiment 1. 

Artificial prey phenotype (SVL, mm) 

S1 S2 S3 S4 S5 

14.45 15.30 16.14 16.99 17.84 

 

4.3.3. Experiment 2, effect of signal luminance 
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To determine the effect of luminance variation, the median values of SVL in the 

upper (75-100%) interquartile range for the high and low food supply groups 

were calculated. We held body size constant, and calculated the upper median 

SVL values averaged across the two food supply groups (16.7 mm) for the 

artificial prey. The corresponding luminance values were then predicted from the 

results of a GLMM (Flores et al. 2013), thus: 

 

Luminance (high food) = 0.26 – 0.005(SVL) 

Equation 4.1. Modelled equation used to predict the luminance values based on snout-vent 
length (SVL) in froglets of the high-food treatment. 

 

Luminance (low food) = - 0.17 + 0.023(SVL) 

Equation 4.2. Modelled equation used to predict the luminance values based on snout-vent 
length (SVL) in froglets of the high-food treatment. 

 

 

 This design resulted in two levels of luminance: High = 0.21 and Low = 

0.17, enabling us to test the effect of signal luminance on predation risk in large 

individuals. These levels represent luminance photon catches of real froglets, 

and span 4 JNDs in terms of contrast against a banana leaf background. 

Luminance values for the artificial prey were obtained by adding clay to 100 g of 

the average colour mixture of Experiment 1 artificial prey, as follows: 4 g of 001 

White to obtain value High luminance, and 2g of 001 White to obtain value Low 

luminance. 
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4.3.4. Digital design of artificial prey and mould preparation 

 

Artificial prey were digitally designed using SolidWorks 3D CAD 2011 SP 4.0 

software (Dassault Systèmes SolidWorks Corp., Massachusetts, USA), 

simulating a D. auratus individual in a natural sitting posture. Digital files were 

exported in STL format ready for the manufacturing process and transferred to a 

Roland MDX 500 automatic milling machine (Roland DGA Corp., California, 

USA) by means of Mayka Expert 7.0 software (PicaSoft, France). Moulds for 

each specific size class were drilled in two steps to increase precision using a 

3.0 mm ball nose on a 15.0 x 15.0 x 2.5 cm (L x W x H) block of resin board. 

Individual artificial prey were made by pressing the experimental mixed clay into 

the specific mould, carefully extruding the clay, and finishing by removing any 

excess of clay with a scalpel. The black dorsal pattern and eyes were manually 

applied using non-toxic black poster paint (Sargent Art Inc, Hazleton PA, USA). 

Front and hind legs were manually attached using the appropriate mixed clay for 

Experiment 1 and Experiment 2, respectively. In order to deploy the models they 

were glued to the blade of a standard shaped 15 x 10 cm piece of dry banana 

leaf, which is a typical substrate at our study site, using a small dab of Loctite 

Epoxi-mil epoxy adhesive (Henkel corporation, Düsseldorf, Germany). 

 

4.3.5. Colour and luminance discrimination 
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In birds colour and luminance discrimination are likely based on the sensitivity of 

single and double cone cell photoreceptors, respectively (Osorio & Vorobyev 

2005, 2008). We used a variation of the Vorobyev-Osorio (V-O) visual model of 

colour discrimination (Vorobyev & Osorio 1998), which has been employed to 

calculate discrimination values (i.e. just noticeable differences - JNDs) in intra- 

and interspecific studies of poison frogs (e.g. Wang 2011; Maan & Cummings 

2012). A JND value of 1 is considered as the threshold for discrimination, and 

values between 1 and 3 mean that two objects can probably only be 

discriminated under good viewing conditions (Siddiqi et al. 2004). To calculate 

predicted photon catches for the single and double cones and discrimination of 

artificial prey against banana leaves as an ecologically realistic background, we 

measured the spectral reflectance of clay in triplicate using a portable Jaz 

spectrometer (Ocean Optics Inc. FL, USA) with a bifurcated 400 µm UV/VIS 

fibre optic probe connected to an internal Jaz PX pulsed short arc xenon lamp 

(Ocean Optics Inc. FL, USA). Measurements were made at an angle of 45°, and 

corrected for lamp drift using a white diffuse spectral standard (WS-1) (Maan & 

Cummings 2008). We measured the spectral reflectance of 12 dry banana 

leaves used as substrate for the artificial prey in triplicate and averaged them 

following the methodology described above (Figure A4.2). We also measured 

ambient light irradiance at several locations in the field during 2010, N = 90 

measurements on a sunny day and N = 85 measurements on a cloudy day, 

using a cosine corrected irradiance probe (CC-3-UV-T) with 180° field view 

connected to an USB2000 spectrometer (Ocean Optics Inc. FL, USA) by means 
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of a 400µm UV/VIS fibre optic cable following the method described in Endler 

(1993) (Figure A4.3). The only known bird predator of D. auratus (i.e. 

Baryphthengus martii) is a close relative of higher passerine birds (Livezey & 

Zusi 2007), therefore we employed the UV-sensitive blue tit (Cyanistes 

caeruleus) as a tetrachromatic visual model (absorbance spectrum templates, 

oil droplets data and relative number of receptor types from Hart et al. 2000). 

Spectra were integrated over 1 nm intervals from 300 to 750 nm; details of 

calculations are provided in 4.6 Appendices section. 

 

4.3.6. Similarity between artificial prey and froglets 

 

JND luminance and colour contrast did not differ significantly between the black 

pattern painted on artificial prey (N = 12) and the natural black pattern of 

randomly selected froglets (N = 10) derived from the experiment described in 

Flores et al. (2013) (JND luminance: GLM, F1,20 = 0.01, P = 0.94; log(JND 

colour): GLM, F1,20 = 1.71, P = 0.20; Figure A4.4). Similarly, JND luminance did 

not differ significantly between mixed clay and the same experimental froglets 

(JND clay ± SE = 4.51 ± 0.60, N = 10; JND frog ± SE = 5.34 ± 0.85, N = 10; JND 

luminance: GLM, F1,18 = 0.51, P = 0.48). A qualitatively similar result was found 

for JND colour contrast (JND clay ± SE = 12.28 ± 0.68, N = 10; JND frog ± SE = 

12.55 ± 0.96, N = 10; log(JND colour): GLM, F1,18 = 0.24, P = 0.63) (Figure 

A4.5). Dorsal skin in dendrobatids mostly lacks UV reflectance (Summers et al. 

2003; Noonan & Comeault 2009), and similarly experimental froglets did not 
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show appreciable levels of UV reflectance in their dorsal skin (Flores et al. 2013). 

Accordingly we found that the UV reflectance of our mixed clay was low (UV 

mixed clay ± SE: 0.077 ± 0.002, N =10), therefore it was unlikely to influence our 

results. JND colour discrimination was not significantly different among artificial 

prey (F1,6 = 5.55, P = 0.06; Table A4.1). However JND luminance discrimination 

was significantly different among artificial prey (F1,6 = 685.8, P < 0.001; Table 

A4.1). In general all JND values were discriminable to a bird predator (all JNDs 

> 3). 

 

4.3.7. Deployment of models 

 

Artificial prey were randomly deployed in the field between April - September 

2011 at a shade organic coffee plantation in Santa Fe, Veraguas province, 

central Panama (8°31’ N 81°03’W). For Experiment 1 we deployed a total of N = 

600 models, and for Experiment 2 a total of N = 240 models. We used a 

randomized block design, in which each block (N = 6), contained either N = 100 

models (20 of each phenotype for Experiment 1) or N = 40 models (20 of each 

phenotype for Experiment 2), deployed randomly along non-linear transects, 

maintaining an approximate minimal distance of 10 m among models and 50 m 

among blocks (Cuthill et al. 2005; Stevens, Hardman, & Stubbins 2008b; 

Rowland et al. 2008). Blocks were deployed one at a time, with all the models in 

a single block deployed the same day early in the morning. Monitoring of models 

was performed on a daily basis 24 h after deployment following the same order 
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and for a total of seven days. Experiment 2 started at the same study site two 

weeks after Experiment 1 had concluded, in order to minimize any possible 

effects of learning by predators. 

 

4.3.8 Statistical analyses 

 

Analyses were conducted using R v.2.12.1 (R Development Core Team 2010). 

Survival analysis was performed using Cox proportional-hazards regression 

(Cox 1972). This non-parametric survival analysis allows inclusion of censored 

records (i.e. non-avian predation) providing more information to the survival 

function (Cuthill et al. 2005). Models with U or V-shaped beak marks (Brodie 

1993; Hegna et al. 2011) were classified as attacked by birds and were 

therefore removed, photographed, and recorded as dead. Models attacked by 

mammals, with unidentified marks, complete disappearances and those which 

were not attacked were recorded as censored. We were not interested in any 

effect of block per se and its inclusion as a factor did not qualitatively change the 

results reported here. In Experiment 1, when there was a significant effect of 

prey size on survival, planned comparisons based on the Wald statistic between 

pairs of prey were conducted and the hazard ratio with corresponding 

confidence intervals between pairs also reported. In Experiment 2, the effect of 

luminance on large prey was also tested using the Wald test. Here the hazard 

ratio represents the multiplicative average effect of one category of prey with 

respect to the other on the hazard related to the incidence of being killed or risk 
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of mortality. To test whether the probability of attack by birds differed between 

Experiments 1 and 2, we conducted a binomial logistic regression including the 

estimates of effects (i.e. odds ratio) (see Hegna et al. 2011). Here the odds ratio 

represents the ratio of the odds of attack in Experiment 1 to the odds in 

Experiment 2. P < 0.05 was considered statistically significant in all analyses. 

 

4.4. Results 

 

4.4.1. Experiment 1: effect of body size on predation risk 

 

A total of 44 out of 597 artificial prey were attacked by birds (7%) (Figure 4.1 & 

Figure 4.2) whereas 34 prey were attacked by unknown predators (6%), while 

three models could not be re-found and were classed as censored. Overall 

smaller prey survived less than larger prey (Figure 4.2; Cox regression; Wald 

X2
4
 = 11.14, P = 0.025). Survival of the smallest prey was not significantly 

different from the threshold sized prey (S1 vs S2; hazard ratio = 1.35, CI95% = 

0.64 – 2.86, Wald X2
1
 = 0.63, P = 0.43), although the threshold sized prey 

survived significantly less well compared to the next size category (S2 vs S3; 

hazard ratio = 0.24, CI95% = 0.08 – 0.71, Wald X2
1
 = 6.57, P = 0.01). Survival of 

prey in category S3 was not significantly different from category S4 (hazard ratio 

= 1.52, CI95% = 0.43 – 5.40, Wald X2
1
 = 0.43, P = 0.51), and a similar result was 

found for categories S4 versus S5 (hazard ratio = 0.99, CI95% = 0.32 – 3.07, 
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Wald X2
1
 = 0, P = 0.98). Survival of models attacked by unknown predators 

occurred independently of size (Wald X2
4
 = 5.96, P = 0.20). 

 

 

Figure 4.1 Juvenile D. auratus artificial prey on banana leaf substrate, with beak mark imprints. 
Inset showing an original intact model. 
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Figure 4.2 Cumulative survivorship curves for five categories of body size of artificial prey over 7 
days. See Table 1 for details of size categories. Smaller artificial prey representing the threshold 
size (S2) survived significantly less compared to larger prey. Vertical bars in the legend 
represent the planned comparisons conducted between pairs of artificial prey categories; ns: no 
significant. 
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4.4.2. Experiment 2: effect of signal luminance on predation risk 

 

There were a total of 8 out of 235 models attacked by birds (3%), and 21 models 

were attacked by unknown predators (9%), while 5 models could not be re-found 

and were classed as censored. Signal luminance was not a significant predictor 

of survival in larger artificial prey (High vs Low; hazard ratio = 2.96, CI95% = 

0.60 – 14.69; Wald X2
1
 = 1.77, P = 0.18). Similar results were found when 

attacks by unknown predators were considered (Wald X2
1
 = 0.58, P = 0.44). 

 The probability of attacks in Experiment 1 was two fold higher when 

compared to Experiment 2 (odds ratio = 2.16, CI95% = 1.10 – 4.15; Wald X2
1
 = 

5.07, P = 0.024), which may imply that the failure to detect any effect in 

luminance was due to lack of statistical power because of the lower predation 

rates in Experiment 2. 

 

4.5. Discussion 

 

We found that larger body size in artificial frogs resulted in greater survival 

compared to smaller models. It is known that both pattern element size and 

body size of prey enhance the effectiveness of warning signals, but this is to our 

knowledge the first evidence that body size per se affects signal efficiency. Our 

study suggests that post-metamorphic body size in D. auratus could be under 

selection pressure imposed by bird predators. Contrary to our predictions, 



108 

predation by birds did not differ between artificial prey varying in terms of signal 

luminance, which could result from relaxed selection on this aposematic trait 

during early life stages or lack of statistical power in our design. Use of artificial 

prey has proven to be a useful technique for understanding how predators 

respond to variation in warning signals (Benson 1972; Lindström 1999b; 

Chouteau & Angers 2011). Several previous studies have taken into account the 

visual system of the potential predator in the design of artificial prey (Stevens et 

al. 2007, 2008b; Rowland et al. 2008), although ours is the first study to have 

used this approach in poison frogs. 

 

4.5.1. Effect of body size 

 

We found that birds avoided attacking larger artificial prey. This is contrary to the 

prediction that larger prey would suffer greater predation because of increased 

detectability  (Roberts, Taylor, & Uetz 2006; Lindstedt et al. 2008). Body size 

has been shown to be a predictor of detectability in early larval stages of the 

caterpillar Orgyia antiqua (e.g. Sandre et al. 2007). However, attack rates by 

bird predators have been found to be negatively correlated with body size in 

artificial prey of this species (Mänd, Tammaru, & Mappes 2007). This could be 

related to the increased effect of the warning signal in larger prey (Remmel & 

Tammaru 2011). One possible explanation for our results, therefore, is that 

larger artificial prey were more aversive to bird predators because predators 

have an innate wariness of large warning signals (Gamberale & Tullberg 1996, 
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1998). That is not to say that larger froglets benefit from reduced attack rates by 

birds because they truly resemble adults (i.e. automimicry, Speed et al. 2006). 

This seems an unlikely explanation, because it has been found that well-

resourced froglets (relatively high food supply) grew large but reduced their 

investment in the luminance component of the warning signal (Flores et al. 

2013). Such a reduction in warning signalling would not be expected if large 

juveniles were automimics of adults, this requires further examination. 

 Body size in particular seems to be under strong selection imposed by 

visual-hunting predators, in those species that acquire warning colouration early 

in life such as D. auratus (Gamberale & Tullberg 1996; Forsman & Merilaita 

1999). Interestingly, artificial prey in the size category representing the smallest 

(S1 = 14.45 mm) and the threshold value (S2 = 15.30 mm) had lower survival. 

We found that the threshold value represented a shift point in our experiment 

after which survival increased with body size (see Figure 4.2). This result 

supports the idea of a perceptual size threshold beyond which survival increases 

or is maintained without further beneficial effects of increments in body size (e.g. 

Forsman & Herrström 2004). However the size category immediately after the 

threshold value represented an increment of 5.4%, which is not necessarily the 

minimal perceptual difference to which bird predators in the wild can effectively 

show aversion (see Swaddle 1999). Notably, the smallest and the threshold size 

categories in our experimental design were similar to that reported as an 

average SVL for recent metamorphic D. auratus froglets in the wild (range: 

14.0 – 14.8 mm; Eaton 1941; Pope 1941). In poison frogs body size has been 

reported to correlate positively with the strength of warning signals (Hagman & 
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Forsman 2003; Santos & Cannatella 2011), suggesting an association between 

these phenotypic traits as one mechanism for the evolution of aposematism. 

This association has been strongly linked to diet specialization in terms of the 

acquisition of alkaloid-bearing arthropods (Santos & Cannatella 2011). 

Consequently we may expect small juveniles in the population to be more 

vulnerable than those with larger body size, due to a lower capacity to acquire 

and store secondary defences (Daly et al. 2002; Saporito et al. 2010). Since 

birds are capable of differentiating prey of different sizes (Gamberale & Tullberg 

1996; Grieco 2002), and also seem to detect differences in alkaloid defence 

levels in poison frogs (Darst et al. 2006; Darst & Cummings 2006), it could be 

that birds at our study site selectively attack froglets that are smaller than a 

certain threshold, and therefore similar in body size to recent metamorphic, less 

defended froglets. 

 

4.5.2. Effect of luminance 

 

Although luminance contrast can be an effective warning signal alone (Prudic et 

al. 2007), our results show that luminance variation did not significantly explain 

differences in the survival of artificial prey. As demonstrated previously, 

conspicuous signalling does not necessarily reduce attack rates in small prey 

(Niskanen & Mappes 2005; Mänd et al. 2007). It could be that lack of mobility of 

the artificial prey impaired the perception of luminance by bird predators; 

however, levels of JND luminance of the two artificial prey phenotypes in 
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Experiment 2 against a banana leaf background were discriminable to the 

modelled bird vision system (i.e. both > 3.0) (see Table A4.1). One possibility is 

that the relatively small luminance differences amongst artificial prey did not 

reach the threshold at which birds can discern and respond in terms of different 

attack rates. This will require further experimentation. Luminance perception can 

be strongly affected by environmental light conditions (Osorio & Vorobyev 2005), 

especially in the tropical forest understory where gaps of light and shadows are 

common (Théry 2001). Therefore, the complex background environment of the 

forest floor may have rendered birds unable to discern differences in luminance, 

or it at least was not a reliable cue to be used in discrimination. It should also be 

noted that in complex habitats other factors can interact to influence the 

perception of prey, e.g. distance, shadows and countershading (Tullberg et al. 

2005; Rowland et al. 2008); this requires further study. Another possibility is that 

selection imposed by birds at our study site on signal luminance is weak (see 

Ojala et al. 2007). Colour signals should be more stable under variable 

environmental conditions (Osorio & Vorobyev 2005); therefore, birds make use 

luminance contrast for initial detection while post-detection assessment of 

aposematic signals requires colour contrast. Birds seem to show innate 

wariness towards conspicuous colours that are generally associated with 

aposematic species (Schuler & Roper 1992; Lindström et al. 1999a; Exnerová et 

al. 2007). Thus, empirical studies have demonstrated that birds in particular 

seem to select against variation in signal colour and pattern in poison frogs in 

the wild (Noonan & Comeault 2009; Chouteau & Angers 2011; Hegna, Saporito, 
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& Donnelly 2012), although these studies did not specifically test for variation in 

luminance contrast while the colour of the signal was kept constant.  

  

4.5.3. Conclusions 

 

Size-dependent predation risk may impose selection pressures on anti-predator 

strategies employed during non-defended life stages in aposematic species. For 

example, it could be beneficial to remain small if size correlates positively with 

detectability (Higginson & Ruxton 2009), in particular where predators are naïve 

with respect to prey defences. However, we found that the smallest prey had the 

lowest survival prospects. It therefore seems likely that there could be a trade-off 

between time spent foraging and the risk of predation in juveniles of diurnal 

aposematic species such as D. auratus. In this species attaining larger body 

size at metamorphosis may facilitate the acquisition of toxic defences thereafter 

via foraging, because larger individuals may have a higher aerobic capacity 

(Santos & Cannatella 2011). It would be interesting to observe how investment 

in aposematic signalling may change as a functionally significant level of 

secondary defences is achieved during post-metamorphic development. Less 

conspicuous but more toxic juveniles would likely have reduced encounter rates 

with predators, but in the event of an attack they are more likely to survive 

(Leimar et al. 1986; Speed & Ruxton 2007). 
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 Despite the relatively small differences in luminance amongst artificial 

prey used in this study, the failure to detect a significant effect of luminance on 

predation rates could be due to low statistical power. Future experimental 

designs may consider using a larger sample size and/or a longer elapsed time to 

measure predation rates in the wild. 

 In conclusion our results indicate that variation in body size as 

consequence of early nutrition (see Flores et al. 2013) has consequences for 

survival. The results highlight a potential selection pressure imposed by bird 

predators against small size in juvenile D. auratus at metamorphosis completion. 

Contrary to our expectations it seems that achieving larger body size at 

metamorphosis confers a selective advantage, possibly because birds associate 

larger body size with a likelihood of the presence of chemical defence (Maan & 

Cummings 2012). Nevertheless, since conspicuous appearance alone is not 

sufficient to confer complete protection against predators (Endler & Mappes 

2004; Mappes et al. 2005), large juveniles may in principle face increased 

inspection and ‘handling’ by predators (Riipi et al. 2001; Mänd et al. 2007). This 

raises the possibility that larger post-metamorphic froglets in natural populations 

have, in fact, attained higher levels of secondary defences, a hypothesis that 

needs to be further explored. 
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4.6. Appendices: Supplementary Methods and Results 

 

4.6.1. Modelling predator vision and artificial prey conspicuousness 

 

Calculations were done based on a set of functions in Matlab R2009a (The 

MathWorks Inc, USA). In birds colour perception stems from the comparison of 

the relative stimulation of the different single cones sensitive to ultraviolet (UV), 

short (SW), medium (MW) and long (LW) wavelengths with opponent colour 

channels (Kelber et al. 2003). Meanwhile luminance sensitivity (achromatic) 

appears to be based on the stimulation of the double cone photoreceptors 

(Kelber et al. 2003; Osorio & Vorobyev 2005). We used the blue tit (Cyanistes 

caeruleus), which has an ultraviolet shifted ultrashortwave cone type, as a 

tetrachromatic visual model to calculate predicted photon catches for the 

different cone types. For luminance, we used an extension of the model using 

double cones (Siddiqi et al. 2004). The model starts by calculating the cone 

quantum catches (qi) for each photoreceptor class for froglets or clay and 

ambient radiance spectra as (Equation 3.1): 

 

������ =	 	 
(��
����� λ)�(λ)�ᵢ(λ)�λ, 
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here ��(�)  represents the absorptance spectrum for each of the four 

photoreceptor cone classes of the bird integrated over 1 nm intervals from 300 

to 750 nm 
(�)	and �(�) represent the reflectance spectrum of the froglet´s skin 

or clay and the irradiance spectra measured in the field respectively. Resulting 

photon quantum catches were standardized in order to account for variation in 

light conditions, using the von Kries transformation adaptation coefficient. This 

method assumes that photoreceptors adjust their sensitivity in proportion to the 

background light environment (Equation 3.2): 

 

������ =	�	 ��(�)�(�)����
����� ���, 

 

 This procedure ensures that colour perception relies on colour constancy, 

whereby the visual system removes variation in ambient light so that colours 

look similar under variable light conditions (Cuthill 2006). Therefore, the adjusted 

quantum catch data for each photoreceptor class was calculated as (Equation 

3.3): 

 

� = ������	!	������ 
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 Following calculations of quantum catches, the model assumes that the 

signal of each cone channel is proportional to the logarithm of the adjusted 

quantum catches; as such the contrast between a pair of stimuli was calculated 

as the quotient of adjusted photon quantum catches (Equation 3.4): 

 

∆� = #$% &� �('($%	$(	,#.U	)*+,-(.)/&� 0(1.,2%($34�	)*+,-(.)/ 
 

 The Vorobyev-Osorio colour discrimination model is based on evidence 

that colour discrimination is determined by noise arising in the photoreceptors 

and is independent of light intensity. Noise in each photoreceptor channel (+�) 
was calculated as (Equation 3.5): 

 

+� =	 5�64� 
 

where 5�  was taken as 0.05 and represents the Weber fraction of the most 

abundant cone type (Siddiqi et al. 2004) and 4�  is the relative number of 

receptor types in the retina of the blue tit (Hart et al. 2000) (47 = 	1.00, 	4; =
	0.99, 4= = 0.71, 4?@ = 0.37, 4K = 1.00).	Colour (chromatic) discrimination in the 
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tetrachromatic visual model was calculated as JND values using the following 

equation (Equation 3.6): 

 

BCD	1�(�	,$#$(
= E (+?@+=)0(∆�7 − ∆�;)0 + (+?@+;)0(∆�7 − ∆�=)0 + (+?@+7)0(∆�; − ∆�=)0+(+=+;)0(∆�7 − ∆�?@)0 + (+=+7)0(∆�; − ∆�?@)0 + (+;+7)0(∆�= − ∆�?@)0(+?@+=+;)0 + (+?@+=+7)0 + (+?@+;+7)0 + (+=+;+7)0

H
 

 

 Since in our model, overall perceived luminance is considered to arise 

from stimulation of double cone photoreceptors, luminance discrimination was 

evaluated as (Equation 3.7): 

 

BCD	1�(�	#3I�4.4,+ = J∆�K+K L 

 

Colour and luminance discrimination (conspicuousness) was based on JND 

values.  
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Table A4.1. JNDs of artificial prey from Experiment 1 (effect of body 

size) and Experiment 2 (effect of signal luminance) against banana leaf 

background. JNDs were calculated as the discrimination between two 

spectral stimuli following the V-O model (see 4.7 Appendices for 

details of vision model). Values are mean ± SE. 

 

 N JND luminance JND colour 

  Experiment 1 

 10 4.51 ± 0.60 12.28 ± 0.68 

  Experiment 2 

LL 5 3.49 ± 0.10 8.50 ± 0.17 

LH 3 7.81 ± 0.16  7.84 ± 0.28 
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Figure A4.1 Dorsal view of the metamorphic juvenile used to design the contour and black 
dorsal pattern of 3D artificial prey. Each division in the scale represent 1 mm. 
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Figure A4.2 Mean reflectance spectra of banana leaves (sample N = 12) used as natural 
substrates for the artificial prey. 
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Figure A4.3 Mean irradiance spectra of ambient light at the study site. Values are those 
measured during fieldwork in 2010. 

 

0

10

20

30

40

50

60

70

300 350 400 450 500 550 600 650 700 750

R
e
la

ti
v
e
 I
rr

a
d

ia
n

c
e

Wavelength (nm)



122 

 

Figure A4.4 Comparison of overall conspicuousness of the black pattern painted on artificial 
prey (N = 12) and those of randomly selected froglets (N = 10) against a banana leaf substrate 
as viewed by a bird predator. The x-axis is JND colour contrast, and the y-axis JND luminance 
contrast. Ellipses show 95% confidence interval for artificial (black line) and experimental 
froglets (green line). Black and green squares are the mean ± SE for artificial prey and 
experimental froglets from Flores et al. (2013). 
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Figure A4.5 Comparison of overall conspicuousness of the mixed clay of artificial prey 
(Experiment 1) (N = 10) and those of randomly selected froglets (N = 10) against the banana 
leaves substrate as viewed by a bird predator. The x-axis is JND colour contrast, and the y-axis 
JND luminance contrast. Ellipses show 95% confidence interval for mixed clay (black line) and 
experimental froglets (green line). Black and green squares are the mean ± SE for mixed clay of 
artificial prey (Experiment 1) and experimental froglets from Flores et al. (2013). 
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Chapter 5. Relationships amongst aposematic signals, 
foraging capacity and toxic defences: 
behavioural observations of juveniles of a 
poison frog in the wild 

 

5.1. Abstract 

 

For immature aposematic individuals that have weak or absent chemical 

defences there might be a trade-off between time spent exposed while foraging 

and survival following encounters with predators. Phenotypic traits such as body 

size and the expression of aposematic signals might be expected to modulate 

the risk of attack by predators. Indeed, experiments using artificial prey juveniles 

of the green and black poison frog (Dendrobates auratus) has shown that 

smaller individuals suffer higher rates of attack by birds. D. auratus develops its 

chemical defences through the post-metamorphic diet, which suggests that 

larger, relatively well-fed juveniles are chemically better defended. I investigated 

this possibility in D. auratus in the wild. I found that aposematic colouration was 

independent of body size, while both feeding rates and levels of chemical 

defence were correlated with body size. Expression of aposematic signals and 

levels of chemical defences were not correlated. These results suggest that 

larger post-metamorphic froglets which have greater foraging efficiency may be 

at a selective advantage conferred by their superior levels of chemical defences. 
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5.2. Introduction 

 

Evolution of the aposematic syndrome allows species to exploit a novel niche, 

as for example in the shift from nocturnal to diurnal patterns of activity (Santos et 

al. 2003; Merilaita & Tullberg 2005). Here, aposematic signals help to reduce 

predation risk during the acquisition of food (Speed et al. 2010). In anurans, for 

example, those species that have foraging widely often possess aposematic 

colouration and/or toxic defences, while more sedentary species lack chemical 

defences and behave cryptically (Pough & Taigen 1990). Nevertheless foraging 

behaviour can be risky if the link between conspicuous warning colours and 

toxic defences is decoupled. For example, during early stages of life aposematic 

species may lack secondary defences (e.g. Daly et al. 1994a; Nylin et al. 2001; 

Saporito et al. 2010) and their colourful external appearance may be 

incompletely developed (Grant 2007; Tullberg et al. 2008). Where toxic 

defences come from dietary sources (Speed et al. 2012) there must be a 

premium on efficient foraging in order to sequester secondary defences quickly, 

which may entail a trade-off between foraging and survival following encounters 

with predators. This trade-off may constrain the time animals devote to obtaining 

food (Kotler & Blaustein 1995). This is of critical importance because if metabolic 

demands are not properly met during early growth, animals may face fitness 

consequences at maturity (Metcalfe & Monaghan 2003). 

 The days following metamorphosis can be highly risky for immature 

individuals of aposematic species, especially if they lack secondary defences 
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(e.g. Roznik & Johnson 2009). Those individuals that achieve a larger body size 

at metamorphosis will likely experience higher survival rates in the wild (Berven 

1990), because body size may correlate with physiological condition and hence 

foraging performance (Pough & Kamel 1984). Indeed, I have shown that larger 

post-metamorphic green and black poison frogs Dendrobates auratus have 

lower rates of attack by birds in an artificial prey experiment (Chapter 4). One 

possible explanation for this result is that predators associate larger body size 

with greater levels of diet-derived chemical defence. This seems possible 

because juvenile poison frogs are known to sequester chemical defences from 

dietary alkaloid-rich arthropods, mainly mites and ants (Donnelly 1991). 

However, whether larger juvenile D. auratus are better defended has not been 

studied before. An association between body size and levels of chemical 

defences is not inevitable. Diversity and concentration of alkaloids in D. auratus 

are widely variable among individuals (Daly, Myers, & Whittaker 1987; Daly et al. 

1994a). This variability may be a consequence of variation in the abundance 

and kind of arthropods, individual differences in alkaloid sequestration ability 

(Saporito et al. 2006, 2007a, 2012), as well as individual variation in foraging.  

 Another potential reason why attack rates on relatively large juveniles are 

low (Chapter 4), is that the effect of warning signals on predator behaviour is 

enhanced by large body size (Mänd et al. 2007; Lindstedt et al. 2008). That is, a 

larger aposematic signals cause stronger stimulation of the perceptual system in 

visual-hunting predators making prey less acceptable (e.g. Mappes & Alatalo 

1997; Riipi et al. 2001; Nilsson & Forsman 2003). 
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 Warning signals are expected to be relatively invariable within species in 

order to facilitate predator learning and aversion (Beatty et al. 2004; Sherratt 

2008). Nevertheless, it is becoming increasingly apparent that there is often 

considerable variation in warning signals, which has been shown to correlate 

with levels of chemical defences within and across aposematic species (Darst et 

al. 2006; Bezzerides et al. 2007; Cortesi & Cheney 2010; Wang 2011; Maan & 

Cummings 2012). A recent resource competition model has predicted levels of 

warning signal expression and chemical defence to be positively correlated 

within species (i.e. ‘honest’ signalling) when nutritional resources are limiting. On 

the other hand, where resources are abundant it should pay for individuals to 

maximise toxin levels while reducing investment in signalling (Blount et al. 2009; 

Lee et al. 2011). This is because signalling itself carries a conspicuousness cost, 

and highly defended individuals are likely to survive any attack unharmed 

(Blount et al. 2009; Lee et al. 2011). However, these ‘resource competition 

models’ ignore the fact that many aposematic species juveniles have 

incompletely developed defences while being coloured. We have found that 

individuals with a relatively high food supply which had large body size reduced 

their investment in the luminance component of warning signals (Chapter 3). 

Therefore, it is clear that development of aposematic signals is sensitive to 

variation in early nutrition (Grill 1999; Ojala et al. 2007; Blount et al. 2012). 

However, how warning signals and levels of chemical defences correlate in 

juveniles is unclear. 

 In the present study I conducted behavioural observations of foraging 

activity and exposure time of immature D. auratus in the wild, and related this to 
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body size, warning signalling and levels of chemical defences. Based on the 

results of earlier work (Chapters 3 & 4) I predicted that: (1) larger individuals will 

have reduced luminance contrast compared to smaller individuals; (2) larger 

juveniles will have higher levels of chemical defences and a greater foraging 

rate compared to smaller juveniles; and (3) larger, more toxic juveniles will 

spend more time exposed on the forest floor. I also examined whether there was 

any evidence of ‘honest’ (or ‘dishonest’) signalling in this sample of wild 

juveniles. 

 

5.3. Methods 

 

At the study site in Veraguas Province, Panama (Figure 1.1), 30 juveniles of D. 

auratus were monitored between 07:30 - 11:00 h, in the period August to 

October 2011. Juveniles were identified visually but also verifying that their body 

size had SVL less than the minimum size of a random sample of adults in the 

population (juveniles: n = 30, SVL = 16.05 ± 0.59 mm (range: 10.11 – 22.63 

mm); adults: n = 30, SVL = 34.28 ± 0.41 mm (range: 29.91 – 37.62 mm)). Once 

a juvenile was discovered in the field it was observed from a distance to avoid 

disturbance (≥ 2 m) for exactly 1 h, using binoculars when needed. During this 

time feeding attempts (snapping behaviour) were counted using a tally counter. 

Snapping behaviour is generally used in anurans, including dendrobatids, as an 

indicator of prey capture (Jaeger, Hailman, & Jaeger 1976; Whitfield & Donnelly 

2006; Meuche, Linsenmair, & Pröhl 2011). The time each animal spent visible 
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during the period (as opposed to the time it was in a burrow, under leaves or 

under cover) (see Jaeger and Hailman 1981) was also recorded using a 

chronometer. After observation the juveniles were captured and carefully 

transferred to the field lab for other measurements. 

 

5.3.2. Morphometrics 

 

At the field lab juveniles were weighed to the nearest 0.001g using an Ohaus 

Scout Pro balance (Ohaus Europe GmbH, Switzerland). The dorsum of each 

individual was digitally photographed under standardized conditions with a 

Canon Power Shot G6 (7.1 megapixel) camera (Canon Inc. Japan). A metal 

ruler was included to provide a scale for the image. Snout-vent length (SVL) was 

measured in each individual image using ImageJ 1.43q (Rasband 1997). 

 

5.3.3. Analyses of aposematic signals and background spectra 

 

Spectral reflectance R(λ) of the skin of each juvenile was measured in triplicate 

soon after capture in four body regions: head, dorsum, and right and left flanks, 

using a Jaz spectrometer (Ocean Optics Inc. FL, USA) with a bifurcated 400 µm 

UV/VIS fibber optic probe connected to an internal Jaz PX pulsed short arc 

xenon lamp (Ocean Optics Inc. FL, USA) at an angle of 45° and corrected for 
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lamp drift using a white diffuse spectral standard (WS-1) (Maan & Cummings 

2008) and then averaged for subsequent analyses (Figure A5.1). Additionally, 

spectral reflectance of leaf substrate samples (n= 3 per juvenile) collected along 

the foraging path of each focal juvenile was measured in triplicate and averaged 

following the same methodology described above (Figure A5.2). As a measure 

of ambient light irradiance �(�) data from 175 locations in the field (see Chapter 

3) were collected using a cosine corrected irradiance probe (CC-3-UV-T) with 

180° field view, connected to an USB2000 spectrometer by means of a 400µm 

UV/VIS optic fibre following the method described in Endler (1993) (Figure 

A5.3). In all cases spectral reflectance data between 300 - 750 nm were 

employed and averaged to 1 nm intervals prior to analyses. 

 

5.3.4. Modelling predator vision and conspicuousness 

 

Juveniles of D. auratus are active during the day, and therefore it is very likely 

that they may encounter visual predators during their foraging time. To 

characterize the conspicuousness of each juvenile a passerine bird vision model 

as a putative predator was employed (see Chapter 3 § 3.3.5). I used the 

tetrachromatic version of the Vorobyev-Osorio visual model of colour 

discrimination (Vorobyev & Osorio 1998), which assumes that noise in the 

photoreceptors limits discrimination. Discrimination (conspicuousness) values 

are JNDs (just noticeable differences), with a value of 1 being the threshold for 

discrimination, and values of between 1 and 3 generally considered to mean that 
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two objects can only be discriminated under ideal viewing conditions (rarely the 

case in the field). Calculations were done based on a set of functions in Matlab 

R2009a (The MathWorks Inc, USA). 

 In birds colour perception stems from the comparison of the relative 

stimulation of the different single cones sensitive to ultraviolet (UV), short (SW), 

medium (MW) and long (LW) wavelengths with opponent colour channels 

(Kelber et al. 2003). Meanwhile luminance sensitivity (achromatic) appears to be 

based on the stimulation of the double cone photoreceptors (Kelber et al. 2003; 

Osorio & Vorobyev 2005). Since the only bird documented to prey upon poison 

frogs, the Rufous Motmot (Baryphthengus martii), is a close relative of higher 

passerine birds (Livezey & Zusi 2007), the cone sensitivities of the passerine 

blue tit (Cyanistes caeruleus), which has an ultraviolet shifted ultrashortwave 

cone type, were used as a tetrachromatic visual model to calculate predicted 

photon catches for the different cone types (absorbance spectrum templates 

and oil droplet data from Hart et al. 2000). For luminance an extension of the 

model using double cones was used (Siddiqi et al. 2004). The model starts by 

calculating the cone quantum catches (qi) for each photoreceptor class for the 

juvenile and ambient radiance spectra as (Equation 3.1): 

 

������ =	 	 
(��
����� λ)�(λ)�ᵢ(λ)�λ, 
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here ��(�)  represents the absorptance spectrum for each of the four 

photoreceptor cone classes of the bird integrated over 1 nm intervals from 300 

to 750 nm. 
(�) and �(�) represent the reflectance spectrum of the juvenile´s 

skin and the irradiance spectra measured in the field, respectively. Resulting 

photon quantum catches were standardized in order to account for variation in 

light conditions, using the von Kries transformation adaptation coefficient. This 

method assumes that photoreceptors adjust their sensitivity in proportion to the 

background light environment (Equation 3.2): 

 

������ =	�	 ��(�)�(�)����
����� ���, 

 

 This procedure ensures that colour perception relies on colour constancy, 

whereby the visual system removes variation in ambient light so that colours 

look similar under variable light conditions (Cuthill 2006). Therefore, the adjusted 

quantum catch data for each photoreceptor class was calculated as (Equation 

3.3): 

 

� = ������	!	������, 
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Values of relative single cone quantum catches were then included in a Principal 

Component Analysis (PCA) (see 5.3.7 Statistical analyses). 

 Following calculations of quantum catches, the model assumes that the 

signal of each cone channel is proportional to the logarithm of the adjusted 

quantum catches; as such the contrast between a pair of stimuli was calculated 

as the quotient of adjusted photon quantum catches (Equation 3.4): 

 

∆� = #$% &� �(V3W+4�#+	)*+,-(.)/&� 0(1.,2%($34�	)*+,-(.)/ 
 

 The Vorobyev-Osorio colour discrimination model is based on evidence 

that colour discrimination is determined by noise arising in the photoreceptors 

and is independent of light intensity. Noise in each photoreceptor channel (+�) 
was calculated as (Equation 3.5): 

 

+� =	 5�64� 
 

where 5�  was taken as 0.05 and represents the Weber fraction of the most 

abundant cone type and 4� is the relative number of receptor types in the retina 

of the blue tit (Hart et al. 2000) (47 = 	1.00, 	4; = 	0.99, 4= = 0.71, 4?@ =
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0.37, 4K = 1.00). Colour (chromatic) discrimination in the tetrachromatic visual 

model was calculated as JND values using the following equation (Equation 

3.6): 

 

BCD	1�(�	,$#$(
= E (+?@+=)0(∆�7 − ∆�;)0 + (+?@+;)0(∆�7 − ∆�=)0 + (+?@+7)0(∆�; − ∆�=)0+(+=+;)0(∆�7 − ∆�?@)0 + (+=+7)0(∆�; − ∆�?@)0 + (+;+7)0(∆�= − ∆�?@)0(+?@+=+;)0 + (+?@+=+7)0 + (+?@+;+7)0 + (+=+;+7)0

H
 

 

 Because overall perceived luminance is considered to arise from 

stimulation of double cone photoreceptors in our model, luminance 

discrimination was evaluated as (Equation 3.7): 

 

BCD	1�(�	#3I�4.4,+ = J∆�K+K L 

 

 Overall variation in colour was based on values from single cone photon 

catch scores (and a Principal Component Analysis of them) and variation in 

overall luminance was based on double cone photon catch scores (∆qD). Colour 

and luminance discrimination (conspicuousness) were based on JND values. 
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5.3.5. Alkaloid extraction 

 

On the day of capture each juvenile was euthanized by stepped hypothermia 

and then skinned. Skins were stored in 2 ml polypropylene screw cap vials at -

80°C until biochemical analyses. The protocol for extraction and analysis of 

alkaloid compounds followed that of Saporito et al. (2006) with some 

modifications. Individual skin samples were weighed and macerated x 3, each 

time 1:10 (w/v) with methanol (MeOH). The extract was diluted 1:1 (v/v) with 

distilled water. The final solution was extracted x 3, each time 1:1 (v/v) with 

chloroform (CHCl3) vortexed for 20 s and then centrifuged at 1600 x g for 3 min 

at 4°C. To eliminate excess water anhydrous sodium sulphate (Na2SO4) from 

the combined extract was added in amount sufficient to allow formation of 

clumps that were then retained during filtration using Whatman cellulose filter 

paper (GE Healthcare Co., USA). The final extract was evaporated to dryness in 

a vacuum drier and then redissolved by adding 10 ml of n-hexane. The hexane-

chloroform layer was extracted x 3, each time with 2 ml of 0.1N hydrochloric acid 

(HCl) vortexed for 20 s and centrifuged as described before, then the hexane 

layer (containing neutral materials such as fatty acid esters and other lipids) was 

carefully removed. The acid layer was adjusted to pH 9.0 with 5M potassium 

hydroxide (KOH) and then extracted x 3, each time with 3 ml of chloroform. 

Na2SO4 was added to the combined extract to remove excess water, which was 

filtered and evaporated in a vacuum as described before to yield the alkaloid 
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fractions. The concentrated alkaloid fraction was dissolved in methanol, 

vortexed for 20 s, so that 50 µl of this fraction corresponded to 50 mg of wet skin 

tissue. 

 

5.3.6. Alkaloid identification and quantification 

 

The alkaloid fractions were characterized by gas chromatography in combination 

with mass spectrometry (GC-MS). GC-MS analysis was performed on an Agilent 

7890A GC system (Agilent Technologies, UK Limited) with an Agilent J&W 

capillary 30 m x 0.25 µm DH-5 (5% Phenyl)-methylpolysiloxane phase fused 

silica column (Agilent Technologies, UK Limited) connected to an Agilent 7000 

triple quadrupole mass spectrometer with 70-eV electron impact ionization. The 

working temperature program of the oven during the analysis was 80°C held for 

2 min and then 10°C min-1 up to 320°C and held for 1 min, over a total of 27 min, 

using helium as carrier gas at a constant flow rate of 1.2 ml min-1. The sample of 

alkaloid fractions (2 µl) was injected into the column using the pulsed splitless 

mode. Mass spectra were obtained in scan mode from 40 to 600 amu. Resulting 

mass spectra were surveyed with AMDIS (Stein 1999) and confirmation of 

individual alkaloid peaks was done with the aid of the NIST MS Search 2.0 

library and retention times and relative ion abundance compared with those data 

published for anuran alkaloids ((Daly, Spande, & Garraffo 2005). Alkaloids were 

quantified in relation to a calibration curve constructed by using known 

concentrations of a standard of the alkaloid decahydroquinoline (DHQ) 195A 
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(Sigma-Aldrich Co. Ltd., UK), and obtained under the same chromatographic 

conditions. DHQ is an alkaloid found in populations of D. auratus in Panama 

(Daly et al. 2000). Chemical defences were calculated as: total concentration of 

alkaloids (µg) per 50 mg of skin; total number of alkaloids; and total number of 

alkaloid classes. Eleven classes were identified: Izidine, 3,5-Disubstituted 

indolizidine, 5,8-Disubstituted indolizidine, Pyrrolizidine, Allopumiliotoxin, 

Decahydroquinoline, Histrionicotoxin, Pumiliotoxin, Pyrrolidine, Tryciclic and 

Unclassified. In addition, alkaloid class diversity was calculated using a Shannon 

diversity index (X) (Shannon & Weaver 1949) as: 

 

X = −Y*� ln *�N
���  

 

Equation 5.1 Shannon – Weaver diversity index. 

 

where 4 represents the total number of alkaloid classes and *� is the proportion 

relative to 4 of a certain alkaloid �. The X index is a good indicator of diversity 

and represents here the evenness and abundance of the different alkaloid 

classes in each juvenile´s skin. 

 

5.3.7. Statistical analyses 

 



138 

Analyses were conducted using R v.2.12.1. (R Development Core Team 2010). 

We conducted a PCA using a varimax rotation on the relative photon catches of 

single cones, as this removes absolute variation that would otherwise result in 

the first principal component corresponding to overall variation in photon catch 

values (i.e. brightness variation) (Endler & Mielke 2005). The first principal 

component explained 66% of the variance of single cones and was associated 

with variation in MW and LW versus SW and UV wavelengths, so this was used 

to represent sensitivity of colour perception (hereafter PCCOL). Factor loadings 

were: -0.511 and -0.526, for MW and LW and 0.413 and 0.539, for UV and SW, 

respectively. 

 We conducted Pearson´s correlations to test relationships amongst 

variables. To meet parametric assumptions feeding rate, alkaloid concentration 

and number of alkaloids were log transformed prior to analysis. General linear 

models (GLMs) were employed to test for the interactive effects of SVL and 

warning signals (signal luminance, PCCOL, JND luminance and JND colour 

contrasts) on levels of chemical defences. Non-linear relationships were 

modelled by including a quadratic term into the model to test hypothesis based 

on the resources competition model of Blount et al. (2009). P < 0.05 was 

considered statistically significant , and backward simplification was conducted 

on full models by continuous deletion of non-significant terms resulting in the 

most parsimonious model (Crawley 2007). All values reported in the Results are 

predicted means (± SE), unless otherwise indicated. 
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5.4. Results 

 

5.4.1. Do larger juveniles have reduced signal luminance? 

 

Body size was not related to signal luminance (Pearson´s correlation: r = 0.18, n 

= 30, P = 0.32), JND luminance contrast (r = -0.05, n = 30, P = 0.77), signal 

colour (PCCOL) (r = -0.25, n = 30, P = 0.18), or JND colour contrast (r = 0.23, n = 

30, P = 0.21). Since the relationship between body size and signal expression 

may be non-linear we also fitted quadratic models, but did not find any 

significant relationships between body size and signal luminance (GLM: SVL, 

F1,28 = 1.00, P = 0.32; SVL2, F1,27 = 2.99, P = 0.09), signal colour (PCCOL) (GLM: 

SVL, F1,28 = 1.90, P = 0.18; SVL2, F1,27 = 0.02, P = 0.89), JND luminance 

contrast (GLM: SVL, F1,28 = 0.08, P = 0.77; SVL2, F1,27 = 0.12, P = 0.73), or JND 

colour contrast (SVL, F1,28 = 1.65, P = 0.21; SVL2, F1,27 = 0.21, P = 0.65). 

 

5.4.2. Do larger juveniles have higher levels of chemical defences and 

greater feeding rates? 

 

Body size was positively correlated with total alkaloid concentration (r = 0.57, n 

= 30, P < 0.001; Figure 5.1a), number of alkaloids (r = 0.75, n = 30, P < 0.001, 
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Figure 5.1b), alkaloid diversity (r = 0.70, n = 30, P < 0.001, Figure 5.1c) and 

feeding rate (r = 0.49, n = 30, P = 0.005). Feeding rate was not itself significantly 

correlated with alkaloid concentration (r = 0.21, n = 30, P = 0.27). However, 

feeding rate was positively correlated with number of alkaloids (r = 0.39, n = 30, 

P = 0.03) and alkaloid diversity (r = 0.37, n = 30, P = 0.04).  

  

 

Figure 5.1 Chemical defences: (a) alkaloid concentration, (b) number of alkaloids and (c) 
diversity of alkaloids, were associated with body size (SVL); all P < 0.05. 
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5.4.3. Do larger and more chemically defended juveniles spend more time 

exposed? 

 

On average juveniles spent 82 % (43.05 ± 2.46 min, range: 20.75 – 60 min) of 

their time exposed on the forest floor. Nevertheless, time spent exposed was not 

significantly correlated with body size (r = 0.23, n = 30, P = 0.22), alkaloid 

concentration (r = 0.14, n = 30, P = 0.46), alkaloid number (r = 0.20, n = 30, P = 

0.28), alkaloid diversity (r = 0.15, n = 30, P = 0.41) or feeding rate (r = 0.03, n = 

30, P = 0.86). Similarly, time spent exposed was not significantly correlated with 

signal colour (r = 0.28, n = 30, P = 0.13), signal luminance (r = -0.22, n = 30, P = 

0.25), JND luminance contrast (r = -0.13, n = 30, P = 0.48), or JND colour 

contrast (r = -0.19, n = 30, P = 0.31). 

 

5.4.4. Do juveniles signal honestly? 

 

I assessed whether body size affected the correlation between chemical 

defences and warning signals using a GLM including body size as a covariate. 

In all cases the interaction term between signal expression and body size, and 

the main effect of signal expression, was not a significant predictor of chemical 

defence (Table 5.1).  
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Table 5.1. Relationship between warning signals and body size and levels of 

chemical defences. 

 Source of variation df F P 

A) Alkaloid concentration 

 SVL 1,28 13.78 < 0.001 

 PCcol 1,27 0.00 0.98 

 SVL x PCcol 1,26 1.55 0.22 

 SVL 1,28 13.78 < 0.001 

 luminance 1,27 0.30 0.60 

 SVL x luminance 1,26 0.21 0.65 

 SVL 1,28 13.78 < 0.001 

 JND luminance 1,27 0.20 0.66 

SVL x JND luminance 1,26 0.29 0.59 

 SVL 1,28 13.78 < 0.001 

 JND colour 1,27 0.00 0.95 

 SVL x JND colour 1,26 0.13 0.72 

B) Number of alkaloids 
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 SVL 1,28 37.91 < 0.001 

 PCcol 1,27 0.35 0.56 

 SVL x PCcol 1,26 1.51 0.23 

 SVL 1,28 37.91 < 0.001 

 luminance 1,27 0.60 0.44 

 SVL x luminance 1,26 0.67 0.42 

 SVL 1,28 37.91 < 0.001 

 JND luminance 1,27 0.00 0.94 

SVL x JND luminance 1,26 0.12 0.73 

 SVL 1,28 37.91 < 0.001 

 JND colour 1,27 0.21 0.65 

 SVL x JND colour 1,26 0.04 0.84 

C) Alkaloid diversity 

 SVL 1,28 27.09 < 0.001 

 PCcol 1,27 0.45 0.51 

 SVL x PCcol 1,26 0.68 0.42 

 SVL 1,28 27.09 < 0.001 
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 luminance 1,27 0.35 0.56 

 SVL x luminance 1,26 1.24 0.28 

 SVL 1,28 27.09 < 0.001 

 JND luminance 1,27 0.04 0.84 

SVL x JND luminance 1,26 0.83 0.37 

 SVL 1,28 27.09 < 0.001 

 JND colour 1,27 0.56 0.46 

 SVL x JND colour 1,26 0.03 0.86 

Note. General Linear Models of the effect of warning signals and body size 
on levels of chemical defences, boldface indicates significant value. Alkaloid 
concentration and number of alkaloids were log transformed to meet 
parametric assumptions. Signal expression and their interaction with body 
size (SVL) were not significant predictors of alkaloid concentration or alkaloid 
diversity in juveniles; all P > 0.05. 

 

5.5. Discussion 

 

Body size of juvenile D. auratus is positively correlated with feeding rate and 

levels of chemical defence. Surprisingly, there was no other relationship 

between body size and the expression of warning signals or between body size 

or warning signal and time spent exposed on the forest floor. Finally, warning 

signalling is independent of chemical defence.  
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 As predicted body size was positively correlated with levels of chemical 

defence. This finding supports the suggestion that larger post-metamorphic 

froglets are at a selective advantage, because bird predators associate large 

body size with greater secondary defences (Chapter 4). Nevertheless during 

immature stages of life aposematic animals may have relatively weak secondary 

defences compared to adults (Daly et al. 2002; Nishida 2002). The diurnal and 

active behaviour of juveniles of D. auratus may expose them to predators such 

as spiders (see Summers 1999a; Santos & Cannatella 2011 supporting 

information) that do not necessarily rely on colour vision when hunting 

(Szelistowski 1985; Orlando & Schmid 2011). Such encounters can result in 

traumatic injuries (Gray, Ouellet, & Green 2002). Although these traumatic 

injuries may not be the result of predatory attempts, they may have fitness 

consequences (Gray & Christy 2000). It has been demonstrated that the 

presence of alkaloids in the skin of adult D. auratus, rather than their 

conspicuous colouration, is responsible for the survival of individuals following 

attack by the tarantula spider Sericopelma rubronitens (Gray et al. 2010) and by 

the garter snake Thamnophis sirtailis (Brodie & Tumbarello 1978). Similarly, 

ants and wandering spiders seem to be deterred by the chemical defences of 

the strawberry poison frog Oophaga [Dendrobates] pumilio (Fritz, Rand, & 

DePamphilis 1981; Szelistowski 1985). Therefore, there must be a premium on 

the rapid acquisition of chemical defences in juvenile poison frogs, to confer 

protection against both visual- and non-visual hunting predators. 

 Larger juveniles also had more individual types of alkaloids and a higher 

diversity of alkaloid classes than smaller juveniles. In dendrobatids ontogenetic 
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changes in feeding behaviour associated for example with body size, and intra- 

and inter-specific competition for food, can affect the amount and types of prey 

consumed (Lima & Magnusson 1998, 2000), which in turn may result in 

selective sequestration of alkaloids (Saporito et al. 2012). Variation in the profile 

of secondary defences may have no adaptive significance if all chemical 

compounds are equally toxic (Pasteels, Grégoire, & Rowell-Rahier 1983). 

However, this seems unlikely, at least in poison frogs. The vast majority of skin 

samples of juveniles had alkaloids belonging to the Izidine, Decahydroquinolines 

(DHQ), and Pumiliotoxin (PTX) classes (unpublished data). Pyrrolizidine 

alkaloids belong to the class Izidine and in general are effective against 

invertebrate predators like spiders and ants (Brown 1984; Eisner & Eisner 1991; 

Hare & Eisner 1993), but may be ineffective against birds (Yosef, Carrel, & 

Eisner 1996). Juveniles of D. auratus raised in captivity and fed on leaf-litter 

arthropods had Pyrrolizidines as the major alkaloid in their skins; however wild-

caught adults showed minor or trace levels of this alkaloid (Daly et al. 1994a). 

DHQs have been shown to have low toxicity in vertebrates mainly via blocking of 

neuronal receptors (Daly, Garraffo, & Spande 1999). PTXs are highly toxic 

alkaloids which interrupt sodium-channel activity in vertebrates (Daly et al. 2005). 

Indeed D. auratus is able to metabolically transform PTX 251D from dietary 

sources, into the potentially more toxic compound Allopumiliotoxin (Daly et al. 

2003). I lack evidence of the relative effectiveness of specific alkaloids against 

predators, but a possible explanation for high levels of individual variability in 

alkaloid profiles is that a complex mixture of components acts synergistically, or 

alternatively, possession of a large number of different compounds confers 
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better defence against a diverse array of predators (Ruxton et al. 2004; Skelhorn 

& Rowe 2005). By acquiring a more diverse array of alkaloids, juvenile 

aposematic organisms may enhance avoidance learning, especially if predators 

taste the prey before ingestion (Brower 1984; Nishida 2002). For example, birds 

are known to handle aposematic animals with care and to associate 

distastefulness with toxicity (Darst & Cummings 2006; Skelhorn & Rowe 2010). 

 Body size was positively correlated with feeding rate. Similarly, in poison 

frogs of the genus Mantella, body size (SVL) has been shown to be positively 

correlated with the amount of prey consumed (Clark et al. 2006). It is probable 

that larger (perhaps older) juveniles are more familiar with the environment, and 

consequently more efficient at detecting and capturing prey than smaller 

individuals (Donnelly 1991). In poison frogs a high capacity for aerobic exercise 

required during active foraging (Taigen & Pough 1983; Pough & Taigen 1990) 

has been linked to the evolution of fast metabolic rates (Santos 2012), which in 

turn would be balanced by high energy gain from increased acquisition of food 

(Jaeger & Barnard 1981). Consequently larger juveniles would be able to move 

greater distances and spend more time searching and capturing alkaloid-rich 

arthropods, especially if they are not evenly distributed in the environment 

(Pough & Taigen 1990). Diet specialization, in particular of alkaloid-rich 

arthropods, may require the ingestion of large quantities of prey items because 

of their low nutritional value (Huey & Pianka 1981). In addition, the increased 

acquisition of toxic alkaloids would demand higher energy intake for transport, 

storage and maintenance of secretory apparatus and detoxification mechanisms 

(Matsui et al. 2000; Dobler 2001; Angel et al. 2003). In instances when alkaloid 
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sources fluctuate temporarily and seasonally (Bower 1992; Saporito et al. 2006) 

individuals might have limited access to secondary defences, in which case 

selection will favour larger juveniles as they will be better competitors when 

searching for food. 

 Feeding rate was correlated with the number and diversity of alkaloids, 

but not with total alkaloid concentrations. This may reflect the high variability in 

alkaloid content of dietary sources (Bower 1992). Food acquisition reflects the 

necessity to meet metabolic demands during growth (Killen, Brown, & Gamperl 

2007) in addition to sequestration of chemical defences. It may also be relevant 

that the exact age of the observed juveniles was unknown, given that feeding 

behaviour may change during the course of development. In aposematic 

animals the individual profile of diet-derived secondary defences may reflect 

genetic differences, spatial and temporal variation in prey availability, and 

variation in predation risk (reviewed in Speed et al. 2012). 

 It was previously found that larger, better nourished post-metamorphic D. 

auratus had reduced signal luminance (Chapter 3). In contrast, in the present 

study of wild juveniles there was no significant relationship between body size 

and signal luminance. This discrepancy cannot simply be attributed to a 

difference in the size range of juveniles in the two studies. Body size did not 

differ significantly between the wild juveniles (range: 10.11 – 22.63 mm) and the 

high-food experimental group of post-metamorphic froglets described in the 

earlier work (Chapter 3) (range: 14.20 – 18.68 mm) (Two sample t-test: t56 = 

0.30, P = 0.38). Similarly, body size did not differ significantly between the 



149 

observed juveniles and the low-food group described in Chapter 3 (range: 

13.79 – 16.97 mm) (Two sample t-test: t62 = -1.23, P = 0.89). Therefore, the size 

variation of wild juveniles spanned that of the experimental froglets in the earlier 

study. Possibly, the discrepancy exists because the sample of wild juveniles 

spanned a relatively wide variation in ages, and colouration may change across 

seasons (Nylin et al. 2001; Tullberg et al. 2008), with ontogeny (Hoffman & 

Blouin 2000; Grant 2007), and in relation to variation in dietary intake of 

pigments (Fox 1976; Nijhout 1991; Bezzerides et al. 2007). This requires further 

study. 

 Contrary to my expectations levels of chemical defences and warning 

signals did not affect time the juveniles spent exposed on the forest floor. This 

could be because the need to feed in juveniles is so strong that it outweighs the 

risk of predation. Furthermore, there may be a learning component to the 

propensity to take risks by spending time exposed, which can only be gained 

through interactions with predators during development. 

Larger juveniles had higher levels of chemical defences, but this was not 

related to warning signalling. Previous studies have found positive correlations 

(e.g. Summers & Clough 2001; Bezzerides et al. 2007; Cortesi & Cheney 2010) 

or negative correlations (e.g. Darst et al. 2006; Wang 2011) between these two 

aposematic traits within- or across species. The lack of any significant 

relationships between warning signalling and levels of chemical defences may 

reflect a high degree of heterogeneity in the chemical content of dietary sources, 

as previously reported in aposematic species (Bower 1992; Saporito et al. 2009). 
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Furthermore, it is likely that levels of chemical defences are lower in juveniles 

than adults (Daly et al. 1992, 2002), while it is also apparent that warning signal 

expression differs amongst age classes. Specifically, JND luminance contrast of 

the wild juveniles in this study (n = 30, JND = 26.57 ± 2.24 (mean ± SE)) was 

higher than that of a random sample of adult frogs from the same population (n 

= 30; 15 females and 15 males; JND = 12.76 ± 1.15) (GLM; F1,58 = 29.98, P < 

0.001). JND colour contrast, on the other hand, did not differ significantly 

between the wild juveniles and adults (GLM; F1,58 = 2.21, P = 0.14).  

 Interestingly, it has recently been reported that brighter adult poison frogs 

(Oophaga [Dendrobates] pumilio) are more toxic, i.e. there is honest signalling 

based on brightness variation (Maan & Cummings 2012).We do not know 

whether brighter adult D. auratus are also more toxic, but an intriguing possibility 

is that, by having high levels of brightness on average, juvenile D. auratus are in 

effect automimics of the most toxic adults in the population. However, it also has 

been shown that polymorphic batesian poison frog mimics tend to mimic the less 

toxic model when they co-occur in sympatry with multiple potential models in a 

population (Darst & Cummings 2006).This warrants further study. 

 

5.5.1. Conclusions 

 

Aposematic appearance must ultimately allow prey to acquire food despite the 

risk of being detected by predators. I have shown that large body size in juvenile 
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D. auratus was related to higher feeding rates and greater accumulation of 

chemical defences. This finding supports the results from Chapter 4, in which 

larger individuals were found to be less likely to suffer attacks by bird predators. 
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5.6. Appendices: Supplementary information 

 

Figure A5.1 Mean reflectance spectra of the dorsal skin of juveniles observed in the field during 
the experiment (n = 30). Reflectance spectra are average measurements taken from four body 
regions (head, dorsum, left and right flanks). 

 

 

 

 

0

5

10

15

20

25

30

300 350 400 450 500 550 600 650 700 750

%
 R

e
fl

e
c
ta

n
c
e

Wavelength (nm)



153 

 

Figure A5.2 Mean reflectance spectra of natural background samples (n = 90). Three samples 
were collected along the foraging path of each observed juveniles at the study site. 
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Figure A5.3 Mean irradiance spectra of ambient light at the study site (n = 90 measurements on 
a sunny day and n = 85 measurements on a cloudy day). Values are those measured during 
fieldwork in 2010 (see Chapter 3). 
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Chapter 6. General discussion 
 

Aposematism was first defined more than a century ago (Wallace 1867), 

yet, today the causes and consequences of variation in external appearance of 

aposematic species are still topics of debate and research (Guilford & Dawkins 

1993; Gamberale & Tullberg 1998; Lindström 1999b; Endler & Mappes 2004). 

Here I have described an ontogenetic change in egg and larvae pigmentation in 

D. auratus for the first time (Chapter 2) and examined the effects of 

environmental conditions (i.e. variation in food supply) during early development 

on investment in growth versus aposematic signal expression (Chapter 3) and 

the fitness consequences of such variation in terms of survival (predation risk) in 

the wild (Chapter 4). Finally, correlations among aposematic traits were 

explored jointly with the concept of honesty in immature D. auratus in the wild 

(Chapter 5). In this section I summarise the key findings of this thesis to 

examine the consequences of variation in signal design in terms of selection and 

propose additional explanations and new ideas for further study. 

 

6.1. Phenotypic plasticity of aposematic traits early in life 

 

Plasticity in traits that are associated with aposematism fuels adaptation 

to different biotic and abiotic conditions (e.g. Lindstedt et al. 2009; Mochida 2011; 

Michie et al. 2011; Rodríguez et al. 2012). As such these plastic phenotypes can 

be subject to selection by means of natural selection, sexual selection, or both 
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(e.g. Rudh et al. 2007; Reynolds & Fitzpatrick 2007; Brown et al. 2010; Santos 

2012). Variance in integument colouration could have fitness consequences in 

aposematic species, not least because unfamiliar novel phenotypes in an 

aposematic population can result in biased predation on that unfamiliar 

phenotype (Mappes et al. 2005; Noonan & Comeault 2009; Wennersten & 

Forsman 2009). This is likely to be most problematic for immature stages when 

aposematism is not yet fully developed (Nylin et al. 2001; Grant 2007; Saporito 

et al. 2010). An example of atypical coloration is found in unusually pale eggs 

and tadpoles seen in some dendrobatid species, Ranitomeya [Dendrobates] 

vanzolinii and Ranitomeya [Dendrobates] flavovitatta (Brown et al. 2011) and D. 

auratus (Flores, Moore, & Blount 2012). Further study will be needed to examine 

whether this colour is associated with greater or lower predation rates. 

Taxonomy of the family Dendrobatidae has been the subject of continuous 

debate in regard to trait polymorphisms (Grant et al. 2006; Santos et al. 2009; 

Brown et al. 2011), such as oocyte and larval pigmentation, that are used to 

identify species (Grant et al. 2006; Köhler 2011). In Chapter 2 we proposed 

hypotheses that may explain such variation and its adaptive significance. Adding 

to that discussion in particular, white pigmentation of eggs causes strong 

contrast (Cott 1940) against the leaf litter background where D. auratus eggs are 

normally deposited (Wells 1978), making them easier to detect. While it seems 

unlikely that this white colour is aposematic, we cannot entirely rule out this 

possibility because of the potential that maternally-derived toxins are transferred 

to the eggs. The aposematic bufonid Atelopus chiriquiensis lays pale yellow 

eggs in which mothers deposit highly toxic alkaloids (Pavelka et al. 1977), 
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perhaps as protective strategy against parasites or predators. This maternal 

allocation of initial secondary defence may be a plastic adaptation to seasonal or 

spatial patterns of predation and pathogenic risk. Although no chemical defence 

in eggs or tadpoles of D. auratus has been reported, maternal allocation of 

alkaloids in trophic eggs that are fed to tadpoles in Oophaga [Dendrobates] 

pumilio (Stynoski 2012) suggests that this could in theory also be found in other 

poison frogs. Perhaps females sequester more chemical defences during the 

breeding season to transfer defence to their eggs (Kellner & Dettner 1995). If the 

conspicuous appearance of pale eggs and larvae is accompanied by secondary 

defence and is shared among individuals in the population, reinforcing 

avoidance and reluctance to attack by predators, then this may lead to an 

evolutionary stable strategy (Leimar et al. 1986). These ideas are speculative 

and would require detailed examination. 

 While several causes might have produced abnormal pigmentation of the 

eggs (McGraw 2005; Griffith et al. 2006; McGraw 2008; Galván & Alonso-

Alvarez 2009, 2010), and diet may influence pigmentation of immature stages 

(see Chapter 1 § 1.2), the immature phenotype at metamorphic completion is 

typical of adult external colour and pattern (Chapters 2 & 3). The mechanisms 

for this ontogenetic change may include the up-regulation of hormones and the 

activation of specific genes at more advanced stages of development (Hayes 

and Menendez 1999, Lee et al 2009). Nonetheless, integument colour and 

pattern at metamorphic completion seem to be under strong stabilising selection 

(Chapters 2 & 3). Colour and pattern are two important components of 

aposematic signals (Ruxton et al. 2004), that have been shown to have heritable, 
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plastic variation in response to environmental factors (e.g. Liebert & Brakefieldtt 

1990; Hazel 2002; Sword 2002; Ojala, Lindström, & Mappes 2007). In Chapter 

3, signal luminance was affected by early nutrition. Design of dorsal patterning is 

known to vary among populations of D. auratus (Lötters et al. 2007), but its 

effectiveness in enhancing predator aversion or reducing detection via disruption 

of the body contour (Stevens 2007) remains unknown. 

Visually-oriented predators use luminance contrast (perceived level of 

brightness) as an initial detection mechanism of small targets (Osorio & 

Vorobyev 2005), but also as a reliable signal of the toxicity of prey (Prudic et al. 

2007; Maan & Cummings 2012). The possibly strategic reduction in signal 

luminance contrast observed in larger post-metamorphic individuals (Chapter 3), 

in fact is apparently unimportant for selection (Chapter 4). This could be 

because information conveyed by signal luminance alone is less reliable than 

colour contrast for bird predators at this early stage. On the other hand, if 

predation pressure is relaxed in relation to this component of the aposematic 

signal (Endler & Mappes 2004), any variation in luminance contrast will be less 

important than variation in colour contrast, because colour makes individuals 

distinguishable from cryptic species (Holloway, Gilbert, & Brandt 2002; Sherratt 

& Beatty 2003; Rowe et al. 2004) resulting in weak selection for luminance 

contrast.  

 

6.2. Honesty and automimicry of the aposematic signal 

 



159 

In the wild, larval stages of poison frogs may experience food limitation 

due for example to kin competition, and poor characteristics of breeding sites 

(Caldwell & de Araújo 1998, 2004; Summers & McKeon 2004). In a diet 

manipulation experiment we found that under limited food supply froglets 

maximised their investment in both body size and luminance contrast within the 

limits of what they could attain, resulting in a positive correlation between these 

traits (Chapter 3). This investment in warning signalling was associated with 

reduced body levels of non-enzymatic antioxidants. Such a reduction in 

antioxidant defence might be expected to have deleterious consequences for 

the capacity to store alkaloids post-metamorphosis. In poison frogs, alkaloids 

are harboured in glands located in the same skin tissue where antioxidant 

pigment granules, responsible for imparting integument colour, are also 

deposited (Angel et al. 2003; Saporito et al. 2010). It is likely that antioxidant 

pigments are required to reduce the somatic damage incurred through the 

accumulation of chemical defences (Ahmad 1992). Therefore, there is a 

possibility that investment in signalling impairs the increasing sequestration of 

chemical defences in those brighter juveniles after metamorphosis, although this 

requires explicit study. Nevertheless, the physiological pathways involving 

specific molecules in trade-offs between resource allocation to warning 

signalling and chemical defences, are as yet unknown in poison frogs (Maan & 

Cummings 2012). In addition, we cannot rule out the possibility that levels of 

food supply experienced by high-food D. auratus tadpoles (Chapter 3) were 

beyond the conditions which exist in nature. If so, it would be difficult to assess 
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the adaptive significance of the observed reduction in signal luminance contrast 

in larger, high-food individuals.  

In this study I did not find evidence for or against honest signalling in 

immature individuals of D. auratus. Although variation in chemical defences 

correlated positively with body size in juveniles, there were no significant 

correlations between expression of aposematic signals and body size or 

chemical defences (Chapter 5). This is at odds with empirical evidence showing 

honest signalling (Bezzerides et al. 2007; Maan & Cummings 2012; Blount et al. 

2012) and/or dishonest signalling (Wang 2011; Blount et al. 2012) in aposematic 

species. Juveniles signalled relatively strongly in terms of luminance contrast 

compared to adults in the population. By being brighter on average compared to 

adults, one intriguing possibility is that juveniles are automimics of the better 

defended, brightest adults in the populations. This is on the assumption that 

adults signal honestly about the strength of chemical defences based on 

variation in luminance contrast, a possibility which warrants study. 

Despite the fact that genetic (Hazel 2002; Holloway et al. 2002; Tullberg 

et al. 2008) and environmental factors (Grill 1999; Lindstedt et al. 2009; Blount 

et al. 2012) may affect expression of specific aposematic traits during early life; 

in juveniles there was no significant variation in colour compared to aposematic 

adults in the population (Chapters 2 & 3). Hence, it seems possible that 

immature individuals might exploit the protection gained from adult forms in the 

population without investing in secondary defences (Brower et al. 1967; Ruxton 

et al. 2004; Speed et al. 2006). In an interesting example, the reversion to a 
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normal-pigmented phenotype at metamorphosis (Chapter 2) may be an 

indication that the best strategy for juveniles on reaching the terrestrial stage is 

to bear some resemblance to conspicuously coloured adults in the population 

(Darst et al. 2006) instead of turning into a dull cryptically coloured phenotype. 

This plastic ontogenetic colour change would appear to exemplify an 

automimicry strategy, because after metamorphosis juveniles do not have 

secondary defences.  

Nonetheless, mimicking the external appearance of a defended form may 

reduce the fitness of automodels (truly aposematic prey) due to sampling errors 

by predators (Mappes & Alatalo 1997b). Automimics are expected to be able to 

coexist in a population if predators exert negative-frequency dependent 

selection, reducing the fitness of automimics compared to automodels (Speed et 

al. 2006, 2012). A peak in frequency of immature D. auratus can be predicted 

after the breeding season, but at any given moment in time they will be less 

abundant than adults. But if juveniles gain enough protection from automimicry, 

why do they need to forage for toxic substances? Two main reasons for this can 

be mentioned: 1) predators can vary in their sensory abilities and visual systems, 

and may not necessarily rely on visual cues alone when hunting; therefore, there 

is a need to sequester toxic substances quickly during immature stages 

(Chapter 5); and 2) if unreliable signallers increase in frequency in the 

population then apostatic selection will result in deterioration of the signalling 

system (Sherratt & Beatty 2003; Franks, Ruxton, & Sherratt 2009). In any case 

predators are expected to pay a high cost if mistakenly taking a defended 

individual (Dawkins & Guilford 1991), and at any given time the frequency of 
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adults (automodels) in the population will be higher than juveniles (automimics), 

and hence the reliability of the signal is expected to be maintained while 

juveniles develop the same diet as adults. 

 

6.3. Concluding remarks  

 

Here it has been shown that early environmental conditions can lead to 

plastic changes in the aposematic traits of D. auratus (Chapters 2 & 3). 

Although, previous research has found that life history traits may trade against 

expression of aposematic signals during early development (Grill & Moore 1998; 

Ojala et al. 2007; Lindstedt et al. 2010), the evidence presented in this thesis 

supports for the first time the suggestion that resource allocation to warning 

signalling may be physiologically constrained by oxidative damage (Chapter 3) . 

It seems likely that integument colouration is an important cue for signal 

reliability as assessed by birds and other less visual-oriented predators such as 

snakes. Although juveniles do not resemble adults exactly, predators probably 

generalise to avoid warningly coloured individuals (Gamberale-Stille & Tullberg 

1999; Darst & Cummings 2006; Ihalainen et al. 2008; Aronsson & Gamberale-

Stille 2012). Thus, the best strategy for predators could be to rely on body size 

as an index of likely toxin levels, and by doing so select against those smaller 

juveniles who are less capable of acquiring toxic defences efficiently (Chapters 

4 & 5).  



163 

The lack of relationship between aposematic colouration and toxicity in 

juveniles not only reflects decoupling between these traits at immature stages, 

but suggests that the best strategy for survival to maturity may be to resemble 

the most toxic individuals in the population (i.e. automimicry) (Chapter 5), 

especially if variability of dietary toxins and/or genetic factors impair the 

adequate sequestration of toxins in juveniles (Daly et al. 2003; Saporito et al. 

2012). Larger, more active and hence more conspicuous prey are likely to 

experience higher detection rates (Roberts et al. 2006; Mänd et al. 2007; 

Lindstedt et al. 2008), but the concominant risk of predation will be diminished 

by an enhanced deterrence signal in large individuals (Lindström et al. 1999b; 

Niskanen & Mappes 2005; Mänd et al. 2007; Higginson & Ruxton 2009), which 

have greater capacity to rapidly acquire toxic defences (Chapter 5; Peters 1983). 

Although ontogenetic colour change has been reported from immature to mature 

stages in species of poison frogs (Hoffman & Blouin 2000), for D. auratus 

acquiring large body size after metamorphosis and resemblance of adult 

external appearance seem to be key determinants for survival.  
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