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Abstract

Investigations of the static and dynamic electronic, optical and acoustic properties
of different nanostructures are presented. Magneto-optical Kerr effect (MOKE)
magnetometry has been used to probe the magnetic properties of the magnetic
nanostructures. A time-resolved all-optical pump-probe technique, using femtosecond
laser pulses, has been employed to investigate the ultrafast magnetisation dynamics, and
transient polarisation and reflectivity responses. The magnetic samples studied were
permalloy (NiFe) nanowire arrays and multilayered CoNi/Pt films and nanodot arrays,
while the non-magnetic samples were phase change GeSbTe thin films. These structures
have attracted much attention because their properties can be advantageous in data

storage applications.

Static MOKE measurements of the NiFe nanowires revealed zero coercivity and
remanence, regardless of the direction of the applied magnetic field, with the magnetic
easy axis perpendicular to the axis of the nanowire. This is the result of
antiferromagnetic alignment of the magnetization in adjacent nanowires at remanence.
Time-resolved MOKE (TRMOKE) measurements performed upon the nanowires
showed increasing demagnetisation with increasing pump fluence, with a larger
response being observed when the magnetic field was applied perpendicular to the
nanowire axis. This behaviour, together is believed to result from the formation of
vortices at the end of the nanowires. Moreover, the TRMOKE response revealed
oscillations due to modes of magnetic precession with frequencies that have minima at a
field rather close to the saturation field of the samples. For lower fields, the frequencies
decrease with increasing applied field, while for higher fields, they increase with
increasing applied field. This behaviour is believed to result from the strong dipolar
interactions that can overwhelm the shape anisotropy of an individual nanowire leading
to a switching of the easy axis from parallel to perpendicular to the nanowire axis. The
magnetisation may also break up into domains for field values less than the saturation

value, which results in a decrease in the dipolar coupling with decreasing applied field.

Static MOKE measurements of the CoNi/Pt multilayers showed that the saturation
Kerr rotation increases with increasing packing density of the sample, while the
coercive field decreases after patterning, but increases with decreasing diameter among

the patterned samples. AC-MOKE measurements revealed that increasing pump fluence
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leads to decreasing coercivity and increasing demagnetisation, which is attributed to the
increased heating of the surface of the dots and, thus, an increased temperature. Full
demagnetisation and total loss of coercivity were achieved for all the nanodot arrays.
The AC-MOKE results are in good agreement with the results of TRMOKE
measurements.

Transient polarisation measurements showed a clear specular-optical Kerr effect
(SOKE) response for all the samples. This response appears as a peak at the zero delay
position that has maximum (zero) effect when the pump and probe electric fields lie 45°
(0° or 90°) apart, and is accompanied by longer-lived damped oscillatory modes for the
nanowires and nanodot arrays. A mechanism involving the optically induced electric
polarisation of the nanodots and nanowires has been suggested to explain this response.
Moreover, an epitaxial GeSbTe film revealed a robust dependence of the transient
polarisation upon the sample orientation which suggests a strong influence of the

crystallographic structure for this sample.

The time-resolved reflectivity (TRR) measurements for the nanowire and nanodot
arrays revealed a linear dependence of the amplitude of the transient reflectivity upon
the pump fluence. A number of oscillatory modes with different GHz frequencies were
observed to be superimposed upon an exponentially relaxing background, while a single
mode was observed in the CoNi/Pt continuous film. These oscillations are believed to
result from the excitation of surface acoustic waves (SAW). Two principal mechanisms
have been suggested to explain the excitation of SAWs within the nanodot arrays. A
discrepancy between the experimental and frequencies predicted by an existing model
was found which is believed to be due to the neglect of the sample composition and the
SAW velocity of the nanostructures within this model. The development of a model that
overcomes these weaknesses is suggested for future work. An additional THz frequency
mode was observed within the GeSbTe which is believed to arise from the excitation of
optical and acoustic phonon modes. Further work is required to identify the observed
phonon modes and to relate the associated optically induced linear birefringence to a

specific structural distortion.
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