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ABSTRACT 

The aim of this thesis is to explore the role of common genetic variation, 

identified through genome-wide association (GWA) studies, in human traits and 

diseases, using height as a model polygenic trait, type 2 diabetes as a model 

common polygenic disease, and maturity onset diabetes of the young (MODY) as 

a model monogenic disease. 

The wave of the initial GWA studies, such as the Wellcome Trust Case-

Control Consortium (WTCCC) study of seven common diseases, substantially 

increased the number of common variants associated with a range of different 

multifactorial traits and diseases. The initial excitement, however, seems to have 

been followed by some disappointment that the identified variants explain a 

relatively small proportion of the genetic variance of the studied trait, and that only 

few large effect or causal variants have been identified. Inevitably, this has led to 

criticism of the GWA studies, mainly that the findings are of limited clinical, or 

indeed scientific, benefit. 

Using height as a model, Chapter 2 explores the utility of GWA studies in 

terms of identifying regions that contain relevant genes, and in answering some 

general questions about the genetic architecture of highly polygenic traits.  

Chapter 3 takes this further into a large collaborative study and the largest 

sample size in a GWA study to date, mainly focusing on demonstrating the 

biological relevance of the identified variants, even when a large number of 

associated regions throughout the genome is implicated by these associations. 

Furthermore, it shows examples of different features of the genetic architecture, 

such as allelic heterogeneity and pleiotropy.  

Chapter 4 looks at the predictive value and, therefore, clinical utility, of 

variants found to associate with type 2 diabetes, a common multifactorial disease 

that is increasing in prevalence despite known environmental risk factors. This is a 

disease where knowledge of the genetic risk has potentially substantial clinical 

relevance.  
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Finally, Chapter 5 approaches the monogenic-polygenic disease bridge in 

the direction opposite to that approached in the past: most studies have 

investigated genes mutated in monogenic diseases as candidates for harboring 

common variants predisposing to related polygenic diseases. This chapter looks at 

the common type 2 diabetes variants as modifiers of disease onset in patients with 

a monogenic but clinically heterogeneous disease, maturity onset diabetes of the 

young (MODY). 
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CHAPTER 1: INTRODUCTION 

 

Adapted from published review article: 

Hana Lango and Michael N Weedon: What will Whole Genome Searches for 

Susceptibility Genes for Common Complex Disease Offer to Clinical Practice? 

Journal of Internal Medicine (2008); 263: 16-27 
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Many human diseases have a genetic component. Some diseases are 

caused entirely by a genetic mutation, and much success has been had in 

identifying the genes that, when mutated, cause these monogenic disorders 1. 

Over 1500 genes for monogenic diseases such as cystic fibrosis and maturity 

onset diabetes of the young (MODY) have been identified 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=OMIM). Identifying these monogenic 

disease genes has led to deep insights into the biology of these and closely 

related diseases, and has led to the development of therapeutic measures 2. 

Monogenic diseases, however, are relatively rare within populations, explaining 

only a small percentage of the overall disease burden. 

In the developed world the majority of disease results from common, but 

complex disorders such as diabetes, obesity, and cancer. Environmental and 

lifestyle factors such as diet, exercise and smoking are important risk factors for 

the development of these diseases; however, twin, family, admixture and migration 

studies have also demonstrated a large genetic component to an individual‟s 

disease risk. Heritably estimates for some common diseases are given in Table 1. 

A heritability of 50% suggests that half of the variation in disease risk for an 

individual in a population can be explained by genetic variation. 

Success in identifying the genes and variants which explain the genetic 

component of common complex disease has been slow, but recent advances in 

the understanding of the genetic architecture of complex traits and diseases, 

together with advances in high-throughput genotyping technology, has led to a 

new era of genetic analyses – genome-wide association studies – which are 

providing novel and important insights into common polygenic disorders. These 

findings could be of substantial clinical importance in the relatively near future. 

Here, we first discuss the genetic architecture of common complex disease. 

We then describe how we go about finding polygenic disease genes using the 

genome-wide association study approach. We go on to present some recent, 

exciting findings in the genetics of complex disease, and introduce height as a 
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model polygenic trait. Finally, we discuss the potential clinical applications of 

finding common disease susceptibility variants and implicated genes. 

 

Table 1. Heritability of some common complex diseases. * males, ** females. 

Disease h2 (95% CI / SE / SD) References 

Age-related maculopathy  

Age-related macular degeneration 

0.45 (CI 0.35-0.53) 

0.46-0.71 

3 

4 

Crohn‟s disease 1.00 (CI 0.80-1.00 5 

Prostate cancer 0.42 (CI 0.29-0.50) 6 

Breast cancer 0.27 (CI 0.04-0.41) 6 

Type 2 diabetes 0.26 (CI 0.0-0.85) 7 

Body mass index 0.54 (SE 0.05) 

0.40 (SD 0.075) 

8 

9 

Coronary artery disease (CAD) 

Death from CAD 

0.49 (SE 0.12) 

0.57 (CI 0.45–0.69)* 

0.38 (0.26–0.50)** 

10 

11 

11 

Hypertension 0.80 (SE 0.19) 12 
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The genetic architecture of common complex disease 

In the search for genetic variants (see Box 1) that predispose to common 

disease, the most powerful strategies depend on the (often unknown) underlying 

genetic model. For monogenic disorders the genetic model can, most often, be 

defined as dominant (where a single mutated gene causes the disease) or 

recessive (where two copies of the disease genes are required). These models 

produce distinct inheritance patterns in families that allow, with sufficiently large 

families, the single highly-penetrant causal mutations to be identified through 

classical linkage studies. This is in contrast to polygenic diseases that strongly 

cluster in families and are highly heritable, but do not demonstrate simple 

inheritance patterns. Figure 1 compares monogenic and polygenic disease 

inheritance. One explanation for the polygenic inheritance pattern is that many 

(tens to hundreds) of common genetic variants (minor allele frequency >1% in the 

population), each with only a modest effect on disease risk (affecting relative risk 

by < 50%) are responsible for the heritability of polygenic disease. This is the 

common disease/common variant hypothesis (CDCV) 13. 

A number of people have argued against the CDCV hypothesis, suggesting 

that rare, modest-risk alleles may explain a large proportion of the variation in 

susceptibility to common disease 14-16, and it is likely that both common and rare 

alleles are important in polygenic disease. However, given the current near 

impossibility of reliably detecting effects of rare alleles (owing to sample size and 

sequencing constraints), studies have focused on finding common disease alleles.  
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Box 1. The nature of genetic variation  

Genetic variation can take the form of chromosomal rearrangements, 

large-scale deletions or insertions, small-scale deletions or insertions, or single 

base pair changes. A polymorphism is defined as a genetic variant that has at 

least two alleles in a population at a frequency of greater than 1%. Single-base 

pair substitution polymorphisms are referred to as single nucleotide 

polymorphisms (SNPs). SNPs account for most of the genetic variation of the 

human genome. There are thought to be 20-30 million SNPs across the human 

genome. Many of these are catalogued in online databases, and are publicly 

accessible. With the recent completion of the human genome project, the 

physical map position of these SNPs is precisely defined. Unlike insertions and 

deletions, SNPs are not thought to mutate very frequently. 
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Figure 1: (a) A typical monogenic pedigree (e.g. MODY). (b) A typical polygenic 

pedigree (e.g. type 2 diabetes).  = male without the disease;  = male with the 

disease;  = female without the disease;  = female with the disease. NN and 

NM are the normal and mutation (disease) genotypes, respectively. Age (age at 

diagnosis) and body mass index are indicated by the top and bottom numbers, 

respectively. 
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Finding susceptibility genes for common complex disease: past 

approaches 

Until very recently, the two major strategies that have been used to identify 

complex disease genes were positional cloning through genome-wide linkage 

scans, and candidate gene association studies. The linkage approach has been 

very successful in identifying genes responsible for monogenic diseases following 

Mendelian pattern of inheritance, but very few linkage studies of diseases with 

polygenic inheritance patterns have provided reproducible evidence for linkage, 

and only a small number of disease genes have been identified through this 

approach 17. 

In their 1996 paper, Risch and Merikangas 18 showed that genetic 

association studies are much more powerful than linkage studies in identifying 

common variants of modest effects. Since then genetic association studies have 

become the method of choice for identifying common gene variants predisposing 

to disease. At their core, genetic association studies of disease are 

straightforward. In its simplest form, when applied to unrelated individuals, the 

frequency of a variant (allele) of a SNP is determined in a sample of subjects with 

a particular disease, and a sample of subjects without the disease. A statistically 

significant higher frequency of a variant of a SNP (or other genetic variant) in the 

cases versus the controls suggests that it is associated with a particular disease. 

There are around 20-30 million SNPs in the human genome and, until 

recently, it was not possible to assay such a large number of variants. Instead, 

many studies used a candidate gene approach and analysed a small number of 

candidate SNPs in these genes. However, most of these studies used sample 

sizes that provided insufficient power to detect the association unless the allele 

had extremely high odds ratio 19. When an association was detected it was usually 

a false-positive or, in a few cases, a true-positive with a greatly overestimated risk 

effect 20, 21. In type 2 diabetes, for example, years of research had identified only 

two reproducibly associated susceptibility variants, in PPARG 22 and KCNJ11 23 
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genes. Lessons have been learned from the poor performance of the candidate 

gene studies (Box 2), and the power of the association approach is now being 

demonstrated with the advent of the large-scale genome-wide association study. 

The era of the genome-wide association study 

We are now in the era of the genome-wide association study, whereby 

using the phenomenon of linkage disequilibrium (LD; association between alleles 

in a population, due to their proximity on a chromosome such that recombination 

at meiosis has not had a chance to “separate” them) and DNA chips that allow the 

assaying of several hundred SNPs simultaneously, we are able to evaluate a large 

proportion of the 20-30 million common genetic variants across the human 

genome. The Affymetrix 500K chip (Affymetrix, Inc., Santa Clara, CA, USA) 

captures ~65% of common variation across the genome, and the Illumina 317K 

chip (Illumina, Inc., San Diego, CA, USA) captures ~75% 24, 25. Coverage of the 

genome for these chips can be substantially increased using the statistical 

technique of imputation, whereby information from a group of typed SNPs and LD 

information from the HapMap (http://www.hapmap.org) can be used to infer 

genotypes at untyped SNPs 26. We now discuss some of the recent exciting 

findings from genome-wide association studies. 
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Box 2. Lessons learned from past approaches 

Many lessons have been learned from past failing of complex trait genetic 

studies, the most important of which are: 

 A large sample size is crucial. Polygenic variants have small effects, which to 

detect reliably requires many thousands of subjects. Past studies used just tens 

to just a few hundred subjects, which will be powered to find nothing but the 

strongest polygenic effects. 

 Statistical significance levels need to be interpreted with much caution. A P-

value of 0.05 in a genome-wide association study cannot be considered 

significant; when genetic association studies test hundreds of thousands of 

variants against many traits a much more stringent threshold is required. P-

values of <5x10-7 and less are required for a SNP to be considered to have 

genome-wide evidence for association.  

 Replication of findings is essential. The multiple hypothesis testing problem 

makes replication of genome-wide association results (in suitably powered 

follow-up studies) essential. 

 An even more powerful approach than an initial GWA scan followed by 

replication is to put all available GWA studies together and perform one large 

meta-analysis of individual studies‟ summary statistics. Such approach 

inevitably requires collaboration between research groups that would otherwise 

compete with each other. The formation of several international consortia has 

already led to meta-analyses of tens of thousands of samples and to the 

identification of a number of novel genome-wide associations. 

 Comprehensive coverage of the common variation across the genome is 

required. By focusing on known biological candidates there is less chance of 

important novel insights into disease pathophysiology. Also, the lack of success 

of this approach in type 2 diabetes for example, bears testament to the lack of 

underlying knowledge of common disease pathophysiology. 
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Recent findings in genome-wide association studies 

One of the largest, most comprehensive GWA study to date was carried out 

by the Wellcome Trust Case-Control Consortium (WTCCC) 27. The WTCCC study 

used the Affymetrix 500K GeneChip and examined 3000 shared controls and 2000 

cases, all of UK Caucasian ancestry, for seven common complex diseases: bipolar 

disorder (BD), coronary artery disease (CAD), Crohn disease, hypertension, 

rheumatoid arthritis (RA), type 1 diabetes and type 2 diabetes 27. The study 

identified 25 independent association signals at a stringent level of significance 

(P<5x10-7). Association signals were identified for all diseases except 

hypertension, where the strongest signal had P=7.7x10-7. This initial analysis of 

the WTCCC study therefore doubled the number of known complex disease 

genes. However, the WTCCC was primarily a hypothesis generating study, with 

only the “low hanging fruit” being convincingly identified in this “first pass” analysis: 

many of the SNPs with P values greater than 5x10-7 will also be disease-causing 

variants. As will be described in the sections below, follow-up studies in sufficiently 

powered replication cohorts, and the combination of findings from several GWA 

scans have confirmed many other complex disease variants.  

Type 2 diabetes 

It is perhaps the results of the first type 2 diabetes genome-wide scans28-32 

that best illustrate the power of the GWA approach for identifying novel genes that 

are important in the etiology of complex disease. Following up the results from the 

initial WTCCC GWA scan 27, we worked closely with the DGI 28 and FUSION 32 

groups, who had performed similar studies. We used the combined information 

from these three studies to prioritise variants for follow-up. Including replication 

samples, these three studies provided data from 14586 cases and 17968 controls. 

The combined analyses identified three entirely novel type 2 diabetes susceptibility 

genes: CDKAL1 (cyclin-dependent kinase 5 [CDK5] regulatory subunit associated 

protein 1-like 1) (OR 1.12, combined P = 4.1x10-11), IGF2BP2 (insulin-like growth 

factor 2 binding protein 2) (OR 1.14, combined P=8.6x10-16), and 

CDKN2A/CDKN2B (cyclin-dependent kinase inhibitor 2 A/B) gene region (OR 
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1.20, combined P=7.8x10-15) and demonstrated that integrating the results from 

multiple genome-scans can aid the prioritisation of signals for replication, and 

allow confirmation of genes at appropriate levels of statistical confidence not 

possible with individual GWA studies. 

Other type 2 diabetes GWA studies have also been published. The 

deCODE study 31 of several European and a Chinese population replicates the 

association of the CDKAL1 variant (OR 1.20 in Europeans and 1.25 in Chinese). 

These four studies also confirm the association of variants near HHEX 

(homeobox, hematopoietically expressed) and SLC30A8 (solute carrier family 30 

[zinc transporter], member 8) genes, originally published by Sladek et al. 29. 

Importantly, as a positive control, associations for variants in PPARG 22, KCNJ11 

23 and TCF7L2 33, originally identified through candidate gene and positional 

cloning methods, were also seen in the GWA scans, with expected odds ratios.   

Of the variants identified through the GWA approach, the two in or near the 

CDKN2A/CDKN2B gene are particularly interesting. CDKN2A encodes P16INK4a, 

and is a known tumor-suppressor gene 34. Mutations of CDKN2A cause diverse 

neoplasias. CDKN2A is an inhibitor of cyclin dependent kinase 4 (CDK4), which is 

important for beta-cell replication 35. Overexpression of Cdkn2a in mice leads to 

decreased islet proliferation, while Cdkn2a knockout mice demonstrate enhanced 

islet proliferation and survival after beta-cell ablation 36. Overexpression of Cdkn2b 

causes islet hypoplasia and diabetes in murine models 37. Together with the 

CDKAL1 association, the CDKN2A/B finding implicates the cyclin-dependent 

kinase pathway in the pathophysiology of type 2 diabetes. 

Another interesting feature of the CDKN2A/B finding is that, as described 

below, variants of the CDKN2A/B gene have also recently been shown to 

predispose to myocardial infarction (MI). Determining why a gene predisposes to 

type 2 diabetes and heart disease may lead to an explanation for the link between 

these two disorders. 
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The CDKN2A/B finding also highlights the power of GWA studies to identify 

variants outside described genes: while one of the signals occurs in the 

CDKN2A/B region, the other (much stronger) association signal occurs >200kb 

from these genes, in a gene desert. This association would not have been picked 

up by a candidate gene approach. Identifying the mechanism by which this variant 

(presumably) affects CDKN2A/B expression will provide new insights into the 

regulation of this important gene(s). 

The other newly identified type 2 diabetes genes are generally involved in 

beta-cell development and function, and insulin secretion 28, 30, 32. For example, the 

HHEX gene is highly expressed in fetal and adult pancreas, and is implicated in 

pancreatic development 38, 39. It is a target of WNT signalling pathway, which has 

been shown to be critical for the development of the pancreas and islets during 

embryonic growth 40. Importantly, TCF7L2 also has an important role in WNT 

signaling, acting as a nuclear receptor for -catenin 41. Together, these findings 

highlight the importance of the WNT signaling pathway in glucose homeostasis. 

Obesity 

In addition to the newly identified type 2 diabetes genes described above, 

the WTCCC study found strong association with FTO (fat mass and obesity 

associated) gene region (OR 1.27, P=2.0x10-8) 30. This finding, which was the 

strongest susceptibility locus outside TCF7L2, showed strong replication in further 

3757 type 2 diabetes cases and 5346 controls from the UK (OR 1.22, P=5.4x10-7) 

30. However, the lack of such strong association in the DGI study 28, which 

matched cases and controls for BMI, and the FUSION study 32, where there was 

minimal BMI differences between cases and controls, suggested that the 

association with type 2 diabetes was caused by the primary effect on adiposity. 

Indeed, adjustment for BMI in the UK replication samples abolished the type 2 

diabetes association (OR 1.03, P=0.44).  

This exciting observation lead to the study of association of FTO gene 

variation with BMI and the risk of being overweight and obese in an additional 
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19424  adults and 10172 children, all of white European origin 42. In the combined 

dataset each additional copy of the rs9939609 risk allele is associated with a BMI 

increase of ~0.4kg/m2 (P=3x10-35). Individuals homozygous for the A allele (16% 

of the population) are at a substantially increased risk of being overweight (OR 

1.38, P=4x10-11) and obese (OR 1.67, P=1x10-14) compared to those homozygous 

for the low-risk T allele (37% of the population). This association was observed in 

children at ages 7-11, but not at birth, and reflects a specific increase in fat 

mass42.  

FTO is a gene of unknown function in an unknown pathway. It seems to be 

widely expressed in both fetal and adult tissues, with highest levels in the brain 42. 

One possibility therefore is that FTO is an important regulator of appetite. This 

would be consistent with the role of monogenic obesity genes, such a Leptin, but 

much work is needed to determine whether this is the case. It is clear though that 

understanding how variants of the FTO gene increase fat-mass will lead to the 

identification of a new obesity pathway, with implications for drug development and 

treatments. 

Age-related macular degeneration 

Age-related macular degeneration (AMD), the main cause of blindness in 

developed countries, is a chronic, common and complex disease characterised by 

progressive destruction of retina‟s central region and drusen formation behind the 

retina (reviewed in 43). Currently, there is no broadly effective therapy available. 

The major environmental risk factor for AMD is smoking (smokers have up to 2.5-

fold increased risk of AMD than non-smokers) 44, 45. One of the first published 

genome-wide case-control studies was by Klein and colleagues 46. Using the 

relatively sparse Affymetrix 100K chip they identified a common variant in the 

complement factor H gene (CFH) as the SNP most strongly associated with AMD 

46. Although this was a small study (96 cases and 50 controls), it increased its 

power by using enriched samples (severe AMD cases and older controls to 

increase the probability of them not developing AMD). A more recent case-control 

candidate gene study replicated the association of CFH gene, and confirmed that 
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individuals homozygous for the most strongly associated risk allele have over 7-

fold higher risk for AMD than those homozygous for the non-risk allele 47. Human 

CFH is a regulator of the innate complement system that responds to infection by 

normally attacking only the diseased cells. Observations of activated complement 

components within drusen of AMD patients, and of strong effects of smoking and 

age on CFH plasma levels, suggest that AMD may result from abnormal 

complement activation in an anomalous inflammatory response 46. Although the 

CFH polymorphisms are non-coding, they may alter the binding of CFH to heparin 

and C-reactive protein 46. Furthermore, since CFH is a member of the complement 

and coagulation cascade pathway, these findings highlight that several different 

complement and coagulation factors may be potential drug targets and justify 

further research. 

Crohn disease 

Crohn disease, most commonly affecting ileum and colon, is a common form of 

idiopathic inflammatory bowel disease (IBD) where genetic predisposition has 

been supported by twin studies showing concordance rate of 50% in monozygotic 

compared to 10% in dizygotic pairs. Previously, years of research effort involving 

linkage, candidate gene and targeted association studies, identified only two 

genuinely associated variants, in CARD15 gene and the IBD5 haplotype. A recent 

GWA study by Rioux and colleagues 48 identified and replicated several new 

susceptibility loci for ileal Crohn disease. The most associated SNP, independently 

identified by a smaller German study 49, was a non-synonymous amino acid 

change in ATG16 autophagy-related 16-like 1 (ATG16L1) gene. The risk allele is a 

major allele (it has a frequency of about 52% and 60% in controls and cases, 

respectively), and individuals carrying one copy are at a 35-45% higher risk of 

developing the disease than those carrying no ATG16L1 risk alleles 48, 49. This 

SNP is in strong LD (r2=0.97) with the strongest signal in the WTCCC scan for 

Crohn disease. Autophagy is a constitutive biological process involved in immune 

pathogen recognition, and the variants in ATG16L1 gene may alter innate immune 

control or antigen presentation in the adaptive immune pathways 48. The WTCCC 
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study identified four novel association signals, all of which have since been 

replicated. These map to IRGM (immunity-related guanosine triphosphatase), 

MST1 (macrophage stimulating 1), NKX2-3 (NK2 transcription factor related, locus 

3), and PTPN2 (protein tyrosine phosphatase, non-receptor type 2) gene regions. 

These novel findings highlight that defects in a number of components of innate 

and adaptive immune pathways, such as those in autophagy and the processing 

of phagocytosed bacteria, are a major cause of Crohn disease. 

Height as a model polygenic trait 

Adult human height is a classic, highly heritable polygenic trait, product of 

many different developmental processes. It is an easily and accurately measured 

phenotype, with data available in large numbers of individuals from virtually every 

disease or population cohort used in GWA studies. This makes height an ideal 

model trait that can be used to study the architecture of polygenic traits in general, 

as well as answer questions about the biological relevance and clinical usefulness 

of associated variants with modest effect sizes identified through GWA studies 

with large sample sizes. Furthermore, the implicated genes should provide 

important insights into the mechanisms of normal growth and development, and 

would be excellent candidate genes for mutations responsible for growth and 

skeletal disorders without known genetic causes. 

Two independent common variants have already been identified by GWA 

studies, in the HMGA2 50 and GDF5-UQCC 51 gene regions. Both studies used 

sample size of several thousand individuals, and it was clear that much larger 

studies would be needed for sufficient power to identify additional common 

variants for human height. 

What benefits can GWAS findings bring to clinical practice 

Identifying the genes and pathways involved in predisposing individuals to 

complex disease is giving us insights into the pathophysiology of these diseases, 

which may eventually lead to the development of novel treatments. These insights 

are the most valuable thing to come out of these genetic studies, and will, in time, 
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without doubt lead to better clinical management and treatment of these diseases. 

But is there any immediate clinical utility of knowing an individual‟s genotypes at 

these disease variants? 

Pharmacogenetics 

Pharmacogenetics is a study of how genetically determined variation affects 

an individual‟s response to drugs. It is well known that adverse side effects and 

therapeutic failure of drugs may both have a strong genetic component 52. If a 

patient‟s genotypes in the relevant genes are known, it may be possible to truly 

personalise medication and optimise treatment by selecting the most effective 

drug and its dose. It has been estimated that adverse drug reactions account for 

6.5% of hospital admissions, 4% of hospital bed capacity, and 0.15% fatalities in 

England, at a projected annual cost to the NHS of £466 million 53. Although a large 

portion of this figure can be attributed to prescription errors and accidental 

overdoses, pharmacogenetics could be used to identify individuals both at a 

highest and lowest risk of developing adverse effects to particular drugs or doses. 

Furthermore, clinical efficacy could be much improved if drugs are prescribed only 

to individuals likely to benefit from them, thus reducing the number of ineffective 

treatments. Pharmacogenetic testing will be particularly desirable in cases where it 

proves to be more effective than the current practice of just careful monitoring of a 

patient‟s response to a drug/dose.  

There are many examples of where this has already happened, such as for 

monogenic types of diabetes. The definition of six different genetic subtypes in 

MODY has led to recognition of different clinical phenotypes 54. Molecular genetics 

is now commonly used as a diagnostic test, and the diagnosis has a dramatic 

effect on the treatment decisions in MODY. Patients with glucokinase mutations 

have life-long mild but stable fasting hyperglycaemia from birth, and require no 

treatment because they essentially have a glucose sensing defect where glucose 

is regulated at a higher level 54. In contrast, patients with HNF1A mutation have a 

progressive hyperglycaemia but are very sensitive to hypoglycaemic effects of 

sulphonylureas 55. The correct diagnosis is very important in this case because 
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many of these patients are misdiagnosed as having type 2 diabetes, in which case 

the most common pharmacological treatment is metformin, but HNF1A patients 

have a four-fold greater response to sulphonylurea gliclazide than to metformin 55. 

The ability to analyse thousands of SNPs in a large number of individuals 

will be essential for defining genetic heterogeneity of diabetes, which could then 

be translated into clinical heterogeneity between the patients. Even if a gene does 

not cause or predispose to a disease, it can still interfere with the drug-targeted 

metabolic pathway and modify the toxicity (effectiveness and side effects) of the 

drug and the clinical response. For example, the putative role of TCF7L2 in beta-

cell function has lead to a hypothesis that TCF7L2 variation may have an effect on 

glycaemic response to sulphonylureas, but not to metformin 56. A study that tested 

this using 747 and 864 metformin users with type 2 diabetes found that, while the 

tested variant had no effect on metformin response, in the sulphonylurea treatment 

group only 40% of patients homozygous for the risk allele reached the target 

HbA1c < 7%, compared to 61% of patients with the other two genotypes (OR 0.46, 

P<0.001) 56. This study provides a strong example of pharmacogenetics in type 2 

diabetes, where a common variant predicts treatment response. If a patient‟s 

genotypes in several of the relevant genes are known, it may be possible to 

personalise medication and optimise treatment.  

Disease prediction 

In type 2 diabetes and other complex polygenic diseases the number of 

confirmed common risk variants is relatively small. This means that, for now, 

molecular genetics cannot be used as a diagnostic test because family history and 

environmental and lifestyle influences, such as BMI, smoking, physical activity and 

social class, have much higher predictive power. One way of assessing predictive 

power of polygenic variant information is to use the area under the ROC curve 

(AUC), which measures the discriminatory power of the test 57. The test is 100% 

accurate when the AUC is 1, and is no better than chance when AUC is 0.5. It has 

been estimated that for an AUC of ~0.8 it will be necessary to genotype 20-25 risk 

variants with allele frequencies greater than 10% and ORs of 1.5 58 . In 
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multifactorial diseases where preventative measures exist, coupled with the low 

cost of genotyping, it may be practically and economically justifiable to identify 

individuals with the highest risk of developing the disease if the preventative 

measures are still effective in such high-risk groups. This should certainly be the 

case in type 2 diabetes where lifestyle factors have a big impact on onset and 

severity of the disease. 

A recent type 2 diabetes case-control study demonstrated that, although 

individual susceptibility variants only moderately increase the risk of type 2 

diabetes and are of limited use in disease prediction, by combining the information 

from the three replicated risk variants (known at the time) it is possible to identify 

individuals at significantly greater risk of developing the disease than when a 

single polymorphism is used 59. Individuals with all six risk alleles had an OR of 

5.71 (95% CI 1.15 to 28.3) compared to those with no risk alleles, and the area 

under the ROC curve for the three polymorphisms was 0.58. This study, however, 

only included variants discovered prior to the availability of the GWA approaches, 

and now it would be interesting to look at the combined predictive value of the 

much increased number of variants identified through GWA studies. 

Conclusions 

Genome-wide association studies are a powerful new approach to 

identifying genes influencing predisposition to common, complex disease. 

Genome-wide studies are “hypothesis-free” and allow the identification of 

previously unsuspected genes and pathways in disease aetiology. One of the 

challenges now is to determine how relevant the new variants are for our 

understanding, and eventual treatment, of disease. Considering that little is still 

known about the exact roles of most of these new variants and implicated genes 

and regions, even about the higher-risk ones such as TCF7L2 in type 2 diabetes, 

at the moment they remain just potential targets for predictive testing and drug 

development.  
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In the short-term the greatest value of GWAS is likely to come from 

etiological insights - the effect of variants on disease onset, severity and 

progression, as well as an individual‟s response to treatment. In the long-term, 

there are two major clinical benefits. Firstly, there is a great opportunity to identify 

important new biological pathways, genes and gene interactions, providing us with 

more complete picture of disease aetiology and progression, and the best 

therapeutic targets. Excitingly, there may be cases where there are the same 

targets for more than one disease, such as the CDKN2A/B gene region in type 2 

diabetes and cardiovascular disease. Secondly, once enough variants are 

identified that together explain a clinically useful portion of a disease, it will be 

possible to identify individuals at most risk of developing the disease. Genetic 

testing will be particularly useful where effective prevention is available, and if 

studies show that this genetic knowledge will positively influence individuals‟ 

lifestyle choices. The initial success of many genome-wide association studies has 

certainly brought much excitement to the scientific community, but there will be 

several years before patients see real benefits in clinical practice. 

Aims of the Thesis 

The aim of this thesis is to explore the biological and clinical value of 

common variants identified through genome-wide association studies, by using 

height as a model polygenic trait, type 2 diabetes as a model common, 

multifactorial disease, and HNF1A-MODY as a model monogenic disease.  
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Abstract 

Adult height is a model polygenic trait, but there has been limited success in 

identifying the genes underlying its normal variation. To identify gene variants 

influencing adult height, we used genome-wide association data from 13,665 

individuals and genotyped 39 variants in an additional 16,482 samples. We 

identified 20 variants associated with adult height (P<5x10-7, with 10 reaching 

P<1x10-10). Combined, the 20 SNPs explain ~3% of height variation, with a ~5cm 

difference between the 6.2% of people with =<17 or fewer “tall” alleles compared 

to the 5.5% with >=27. The loci identified implicate genes in hedgehog signaling 

(IHH, HHIP, PTCH1), extracellular matrix (EFEMP1, ADAMTSL3, ACAN) and 

cancer (CDK6, HMGA2, DLEU7) pathways and provide novel insights into human 

growth and development processes. Finally, our results provide insights into the 

genetic architecture of a classic quantitative trait. 



 

Chapter 2 35 

Introduction 

Adult height is a model polygenic trait. It is the ideal phenotype for genetic 

studies of quantitative traits in humans, as it is easily and accurately measured, 

and is highly heritable, with up to 90% of variation in adult height within a 

population being explained by genetic variation 1-5. Final adult height is the result 

of growth and development processes. Identifying genes for human height should 

therefore provide insights into mechanisms of growth and development, as well as 

into the genetic architecture of quantitative traits, and how best to dissect them. 

Despite its strong heritability, there has been little success in identifying the 

specific genetic variants that influence height in the general population 5, 6. Some 

mutations resulting in extreme stature have been identified, but these are rare and 

cannot explain normal variation of adult height 6. Linkage and candidate gene 

association studies have not identified any robustly associated loci. The advent of 

genome-wide association (GWA) studies, however, is providing new opportunities 

for identifying genetic variants influencing adult height. 

Recently, using GWA study data from 4,921 individuals we identified the 

most convincing example of a common variant associated with adult height 7. The 

variant was the only one to reach a level of significance suggestive of true 

association in the GWA study (P=4x10-8), and we confirmed the association in 

19,064 adults from four further studies (P=3x10-11). The variant associated with a 

0.4cm greater height per allele, explained ~0.3% of the population variation of 

height, and occurred in the HMGA2 oncogene. In this study, we extend our 

analyses to a two-staged design of 13,665 individuals with GWA study data and 

16,482 follow-up individuals. 
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Results 

Height loci identified 

We used GWA data from five studies that ranged in size from 1,437 to 

3,560 people of UK ancestry and a sixth study of 2,978 Scandinavian individuals 

for which summary height association statistics have been made publicly available 

(http://www.broad.mit.edu/diabetes/scandinavs/index.html; Supplementary Table 

1). All studies were genotyped using the Affymetrix 500K chip. We compared the 

additive model statistics of 402,951 SNPs that passed quality-control (QC) criteria 

in at least 4 of the 6 studies to those expected under the null distribution using 

quantile-quantile (QQ) plots. Figure 1 shows that the sequential addition of each 

of the six studies resulted in increased deviation of the observed statistics from the 

null distribution. The number of independent SNPs (using a cut-off of less than 0.2 

for the pairwise linkage disequilibrium statistic r2) reaching a P<1x10-5, was 4 

(N=1914), 6 (4892), 12 (6788), 13 (8668), 18 (12228), and 27 (13665) as each 

study was added in, against the expected <4 under the null distribution. 

In the meta-analysis of 13,665 individuals with GWA data, there were many 

more significant associations than expected by chance. For example, we observed 

8 independent signals with a P<5x10-7, where we would expect none under the 

null distribution, and 27 with a P<1x10-5, where we would expect < 4. 

Approximately 23 of these loci are therefore likely to represent true positives. The 

availability of dense genome-wide SNP data allows us to be confident that these 

results are not due to population stratification. First, any individuals of non-

European ancestry were removed. Second, adjusting for residual population 

structure using EIGENSTRAT8 did not affect the distribution of effect sizes 

(Supplementary Figure 1 gives individual study QQ plots before and after 

EIGENSTRAT adjustment). Third, the genomic control inflation factor lambda9 for 

the GWA study meta-analysis was only 1.12, despite the large size of the study 

(there is a strong relationship between sample size and lambda10) and the 

apparently highly polygenic nature of height. Fourth, 12 of the ancestry informative 

markers (AIMS) described by the WTCCC, which vary substantially in allele 
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frequency across the UK, did not associate with height (all P>0.01; the 13th AIM 

did not pass QC criteria in this study; Supplementary Table 2). 

We took forward 39 SNPs into the second stage of our study: the 

genotyping of an additional 16,482 individuals of European ancestry from four 

studies (Supplementary Table 1). Of these, 27 represented all the independent 

(r2<0.2) signals with a P<1x10-5. Eleven of the SNPs represented independent 

regions where there was a SNP with a P<1x10-4 and a gene within flanking 

recombination hotspots in which mutations affect length in mouse studies or cause 

monogenic human phenotypes of extreme stature.  GWA data from CoLaus (one 

of our stage 2 cohorts) became available during the course of our analyses, and 

we also took forward a SNP representing a region with the strongest association 

(P=4x10-8) from that study. Five of the AIMs with the largest differences in allele 

frequency across the UK11 were also genotyped in stage 2 samples.  

In the stage 2 analyses, 20 of the 39 SNPs reached a P<0.005 (with the 

same direction of effect as the GWA data), all of which reached a P<5x10-7 in a 

joint analysis across GWA and stage 2 samples. While this is an arbitrary 

statistical cut-off, we chose to focus on these SNPs for the reasons discussed in 

11, and we note that of the SNPs that reached a P<5x10-7 in 11 and that have been 

subjected to replication efforts, all have been confirmed. The majority of the 20 

SNPs had P-values substantially lower than 5x10-7: 17 of the SNPs reached a 

P<5x10-8 and 10 reached a P<1x10-10 in joint analyses. Of the 19 SNPs that did 

not reach P<5x10-7, 15 had the same direction of effect in stage 2 as in stage 1 

(P=0.02), suggesting that there are true positives amongst these. The details of 

the 20 SNPs are presented in Figure 2 and Table 1, and details of the SNPs that 

did not reach the statistical cut-off are presented in Supplementary Table 3. For 

the 20 SNPs, there was no evidence of heterogeneity across studies when taking 

into account the number of tests (all P>0.008). In both joint and stage 2 only 

analyses, none of the WTCCC AIMS was associated with height providing further 

evidence that population stratification is unlikely to have influenced the results (all 
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P>0.01 see Supplementary Table 2). This means the associations are likely to 

reflect true biological effects on height. 

Implicated genes and their function 

The correlation between SNPs due to linkage disequilibrium (LD) and the 

occurrence of many of the 20 SNPs in non-coding regions means we cannot be 

certain about which genes are involved, but they implicate genes of many different 

functions in several different pathways and processes. In 10 instances, genes 

within the region of interest have previously been implicated in the regulation of 

growth because of known effects from rodent knockouts and/or human 

syndromes. LD plots for each region are presented in Supplementary Figure 2, 

and Table 2 shows the genes most probably affected by the associated SNPs, 

along with the pathways the genes are known to be involved in, and where known, 

the monogenic syndromes caused by mutations in the associated genes and the 

phenotypes from knockout mouse models.  

In two instances, there is evidence that the SNPs we have identified (or 

those in LD with them) influence gene expression. We used data from the publicly 

available “mRNA by SNP Browser 1.0” program described recently 12 to determine 

if any of the SNPs were associated with mRNA expression levels in lymphocytes. 

Rs2282978, which associates with height at P=8x10-23, and occurs in the 4th intron 

of the cyclin-dependent kinase 6 (CDK6) gene associated with expression of 

CDK6 (P=1x10-6). Rs1863913, an r2 = 1 proxy for rs10935120 (height P=7x10-8), 

which occurs in intron 2 of anaphase promoting complex 13 (ANAPC13) and 4.4kb 

upstream of centrosomal protein 63 (CEP63) was associated with ANAPC13 

(P=9x10-18) and CEP63 (P=4x10-12) expression. There was no evidence for any of 

the other SNPs affecting any transcript levels in these lymphoblastoid cell lines. 

The genes implicate a number of biological pathways and processes in the 

normal determination of human height, including: hedgehog signaling (IHH, HHIP, 

PTCH1); basic cell cycle regulation (CDK6, one of the cyclin-dependent kinases 

implicated in cell cycle progression 13); extra-cellular matrix (ADAMTSL3 and 
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EFEMP1); chromatin rearrangement and polycomb proteins (HMGA2 and 

SCMH1). Several of the genes are also disrupted in cancers (e.g. HMGA2, CDK6, 

DLEU7) providing further evidence of a link between normal growth and 

unregulated cell differentiation. For other loci, no gene in the region is an obvious 

candidate for influencing height, and in one case (rs4549631) only a hypothetical 

gene, LOC387103, is within a 750Kb window of the SNP.  

One of the most interesting findings is that rs6060373 (P=2x10-17) is highly 

correlated (HapMap r2 = 0.89) with a functional SNP in the GDF5 gene that has 

recently been convincingly shown to alter the risk of osteoarthritis 14, 15. The allele 

that is associated with higher height associates with a decreased risk of hip and 

knee osteoarthritis. A plausible explanation of these associations is that the variant 

influences the “thickness” of a person‟s cartilage. 

Methodological issues 

We next performed a series of analyses to address additional important 

issues about the genetic architecture of human height. Although our results are 

limited to height, our findings may prove useful in guiding studies of other 

quantitative traits. 

We first tested whether the SNPs representing the 20 loci deviated from an 

additive model or had different effect sizes in males and females. There was 

suggestive evidence for deviation from an additive (per-allele) mode of inheritance 

for two of the variants: rs12735613 (P=0.009) and rs1390401 (P=0.007). There 

was also suggestive evidence that rs6440003, the most strongly associated SNP 

in our study, had a greater effect in females (0.12SD [0.09, 0.14]) than males 

(0.07SD [0.04, 0.09]), P=0.01 (Table 1).  

Adult height is the result of both growth throughout childhood and loss of 

height during the ageing process. We therefore assessed the influence of age on 

the 20 robust associations. We found no evidence that the effects on height were 

different in individuals under age 50 years compared to those aged >50 years (all 

P>0.01; similar results were obtained when we used a cut-off of 40 years of age), 
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or when adjusting for age decade (see Supplementary Table 4). This suggests 

the effects are predominantly on developmental and childhood growth rather than 

driven by processes involved in loss of height, although studies of more young 

adults and children are needed to confirm this. 

It has often been stated that gene-gene interactions may play a prominent 

role in complex traits but there are few, if any, empirical data to show this. We 

looked for any evidence of deviation from an additive model of the joint effects 

between all possible pairs of the 20 loci. When taking into account the number of 

tests, we find no strong evidence for deviation from additivity (all P>0.017; see 

Supplementary Table 5). 

To assess the combined impact of the 20 SNPs on adult height we 

analysed only the UK stage 2 samples. This removes the bias due to the effect of 

the “winners curse” 16, which we observed in our data with 17 of the 20 SNPs 

having a larger effect size in the GWA study compared to our follow-up study 

(P=0.003 in a test against a 50/50 distribution). Figure 3 shows the linear increase 

in the average height of individuals with increasing numbers of “tall” alleles, and 

the normal distribution of the frequency of “tall” alleles. Combined, these 20 SNPs 

explain ~2.9% of the variance in adult height in the UK stage 2 sample. There is a 

0.7SD (~5cm) difference in height between the 6.2% of people with 17 or fewer 

“tall” alleles compared to the 5.5% of people with 27 or more.  

Power and sample size issues are of major importance to the field of 

complex traits genetics. Our results indicate that many tens of thousands of 

individuals will be needed to reliably detect a large proportion of the variance in 

some quantitative traits. In this study, real signals only emerged after combining 

many individually underpowered GWA studies (Figure 1 and Supplementary 

Figure 3). We used the effect sizes observed in the stage 2 samples for each of 

the 20 SNPs to determine how much power we had to detect the associations in 

the GWA study; Figure 4 plots the results. We had low power to detect some of 

the SNPs. For example, for 4 of the SNPs we had less than 10% power to detect 

the associations at a P<1x10-5 in the GWA study. 
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Considerable effort and resources have been devoted to identifying regions 

of the genome that are shared between relatives of similar height more often than 

expected by chance – the linkage approach to gene identification. We analysed 

the overlap between linked regions (LOD >2.0, at 

http://www.genomeutwin.org/stature_gene_map.htm) and our association results 5. 

We assumed a linked region to be a 10Mb window around the peak marker for all 

regions with LOD >2.0. Given the proportion of the genome that these regions 

cover we would have expected 3.5 (5.3x108 base-pairs covered by linkage regions 

/ 3.0x109 base-pairs in the human genome) of the 20 SNPs to have occurred in 

linked regions by chance alone, and we observed 4 (P=0.73); for linked regions 

with LOD scores > 3, the corresponding statistics were: expected 0.80 and 

observed 1, P=0.81. We found no evidence of over-representation of significant 

associations in linked regions (227 SNPs of 79241 SNPs (0.29%) in LOD > 2 

linked regions had P values less than 0.001, compared to 892/323710 (0.28%) in 

non-linked regions, P=0.60. For LOD > 3 linked regions the corresponding figures 

are 48/22036 (0.22%) and 1071/380915 (0.28%), respectively, P=0.08).  
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Discussion 

Our results are consistent with Fisher‟s proposal from 1918 that many 

variants of individually small effect explain the heritability of height 17. The 20 

robustly associated variants alter height by between ~0.2 and 0.6cm per allele, 

based on the stage 2 samples, but explain only ~3% of the variation in height 

within the population.  

Some of the remaining heritability of height will be explained by additional 

SNPs, with small effect. Firstly, we have shown that some of the SNPs which we 

took forward into stage 2, but that did not reach a P<5x10-7 on joint analyses 

probably represent true associations (for example, an excess of SNPs showed the 

same direction of effect in stage 2 as in stage 1, P=0.02). Secondly, we observed 

a large effect of the winners curse 16 and, as such, we had low power to detect 

some of the SNPs in the GWA part of our study, strongly suggesting that there are 

many more common variants of a similar effect size to be found. As Figure 4 

shows, identifying these and variants of even smaller effect will require tens of 

thousands of individuals.  

To further investigate whether there are more height associated SNPs to be 

identified through larger sample size, we compared our results to those presented 

in the accompanying manuscript from Lettre et al. 18 They identify association for 

several of the loci reported in our study (ZBTB38, HMGA2, GDF5, HHIP, 

ADAMTSL3, CDK6), and find suggestive association with a SNP at the FUBP3 

locus (P=8x10-7), which we also followed up and found suggestive evidence for 

(P=2x10-5). FUBP3 therefore likely represents an additional height gene. We 

produced a QQ plot for the P-values observed in the Lettre et al.18 study for the 

most-associated 10,000 SNPs from our study, excluding known loci. The deviation 

of the observed statistics from the null distribution (see Figure 5) clearly 

demonstrates that there are many more height-associated SNPs that remain to be 

identified from GWA studies. While SNPs will explain some of the residual 

variation, it is possible that much of the heritability of height will be explained by 
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rare variants or copy number polymorphisms, which are not captured by the GWA 

approach. 

As we only tested an additive model, and did not perform sex specific 

analyses on a genome-wide level we were biased away from detecting sex-

specific and non-additive effects in this study. However, we did find some weak 

evidence that our most associated SNP had a stronger effect in females (0.12SD 

[0.09, 0.14]) than males (0.07SD [0.04, 0.09]), P=0.01, although this finding needs 

to be replicated. Given that final adult height is highly dichotomized by sex, growth 

trajectories show clear sex differences and sex hormones influence height, further 

studies are needed to investigate more thoroughly the presence of sex-specific 

effects. It will also be important to test for non-additive within and between loci 

effects, and to investigate the role of these and other loci in individuals of non-

European ancestry. 

We found no overlap between previously reported linkage peaks and the 

results from our GWA study. The variants we have identified have small effects, 

and as such it is not surprising that they do not, individually, explain previously 

observed linkage peaks. It may be that some of the linkage peaks are explained 

by low-frequency, relatively high penetrance alleles, which would not be captured 

using the GWA approach. However, our findings do not support the idea that 

genes with common variants associating with height also contain the type of 

variant that is readily identifiable through the linkage approach. 

A limitation of this study is that we have not fine-mapped the identified loci. 

However, ten of the loci we have identified contain genes previously known to be 

involved in growth from rare human syndromes or animal studies, and we have 

shown that common variation in or around these genes influences normal human 

growth. Additionally, two of the variants appear to alter expression of nearby 

genes (CDK6 and ANAPC13). Further fine mapping and functional studies of 

these and the remaining loci will likely provide completely novel insights into 

growth and development. Mutations in these regions may also explain some 

monogenic syndromes for which no genes have currently been identified. The 
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observation that half of the identified loci contained candidate genes suggests that 

combining genome-wide with candidate gene approaches may be a productive 

way for identifying more height loci. 

In conclusion, using 13,665 individuals with genome-wide scan data and 

16,482 follow-up subjects we have identified 20 regions of the genome, common 

variation of which influences adult height. The study highlights several important 

pathways and processes involved in normal growth, and provides insights into the 

genetic architecture of a classic quantitative trait. 



 

Chapter 2 45 

Methods 

Study Descriptions 

Genome-wide association (Stage 1) samples 

Four of the six genome-wide scan studies were part of the UK Wellcome 

Trust Case Control Consortium (WTCCC) and have been described in detail 

previously11. Briefly, these four studies were the type 2 diabetes (WTCCC-T2D), 

hypertension (WTCCC-HT), and coronary artery (WTCCC-CAD) disease branches 

and the national blood service (WTCCC-UKBS) controls. A manuscript describing 

the cohorts used in the Diabetes Genetics Initiative (DGI) 500K genome-wide 

association study for type 2 diabetes has already been published 19 and a 

description of the sample is also available online 

(http://www.broad.mit.edu/diabetes/). The EPIC Obesity case-cohort study 

includes 3,847 participants and is nested within the EPIC-Norfolk Study, a 

population-based cohort study of 25,663 Europid men and women aged 39-79 

years recruited in Norfolk, UK between 1993 and 1997. The cases (N = 1,685) 

were randomly selected from the obese individuals within this cohort and are 

defined as those with a BMI >30 kg/m2. The control-cohort consists of 2,566 

individuals randomly selected from the EPIC-Norfolk study and thus by design, 

381 individuals are part of the control-cohort as well as the case group. 

Basic anthropometric data for all genome-wide studies are presented in 

Supplementary Table 1. Extensive quality control steps were taken to exclude 

poorly performing or non-European descent samples from analyses. For 5 of the 6 

GWA studies these are described in detail in 11, 19. For the EPIC-Obesity study, of 

the 3,847 participants, 277 were excluded (sample call rate <94%: N = 202, 

heterozygosity <23% or >30%: 36, >5.0% discordance in SNP pairs with r2 = 1 in 

HapMap: N = 25, ethnic outlier: N = 8, related individuals (concordance with 

another DNA is >70.0% and <99.0%, 1 selected based on sample call rate): N = 5, 

duplicate (concordance with another DNA is >99.0%, 1 selected based on sample 
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call rate): N = 1), and for 10 individuals no genotype data was available, such that 

3560 individuals were included in the analyses. 

The WTCCC-T2D, WTCCC-HT, DGI and EPIC-Obesity studies measured 

height using standard anthropometric techniques. For WTCCC-CAD and WTCCC-

UKBS height data was self reported from questionnaires. The lack of evidence of 

heterogeneity across all studies for the 20 confirmed loci indicates that the 

inclusion of self-report data has not affected the results appreciably. 

All subjects gave written informed consent and the project protocols were 

approved by the local research ethics committees in the UK. 

Stage 2 samples 

UKT2D GCC 

This study has been described previously 20. All subjects were of self-

reported white European descent, living in the Tayside region of Dundee, UK. 

Height measurements were made as for the WTCCC samples. This study was 

approved by the Tayside Medical Ethics Committee and informed consent was 

obtained from all subjects. 

EFSOCH  

EFSOCH (Exeter Family Study of Childhood Health) is a prospective study 

of parents and children from a consecutive birth cohort 21. Subjects were recruited 

from a postcode-defined region of Exeter, UK between 2000 and 2004 and were of 

self-reported white, European descent. Parental height was measured using a 

stadiometer by the research midwife at 28 weeks gestation. Ethical approval was 

given by the North and East Devon Local Research Ethics Committee and 

informed consent was obtained from the parents of the newborns. 

BRIGHT 

The MRC British Genetics of Hypertension (BRIGHT) study has been 

described previously 22. Briefly, severely hypertensive individuals were recruited 



 

Chapter 2 47 

from the Medical Research Council General Practice Framework and other family-

physician practices in the UK. All subjects were of self-reported white European 

ancestry up to level of grandparents. Height was measured by using a Marsden 

ultrasonic height measure; the standard operating procedure for this is described 

at the MRC BRIGHT study webpage (www.brightstudy.ac.uk). 

CoLaus 

The CoLaus study has been described in detail previously 23. Briefly, it is a 

single-centre, cross-sectional study including a random sample of 6,188 

extensively phenotyped European descent subjects (3,251 women and 2,937 

men) aged 35 to 75 years living in Lausanne, Switzerland. Height was measured 

to the nearest 5mm using a Seca® height gauge (Hamburg, Germany). 

Statistical methods 

Stage 1 analyses 

All GWA studies were genotyped using the Affymetrix 500K chip. For the 

WTCCC studies we used the WTCCC-defined list of 459,446 QC-passed SNPs 11, 

with additional exclusion criteria of a MAF > 0.01, and a Hardy-Weinberg 

Equilibrium P<1x10-4 for each individual GWA study, in our analyses. For the 

EPIC-Obesity study, SNPs included in the analyses have passed the following 

quality control criteria: they (1) were polymorphic (7,532 excluded), (2) have a call 

rate ≥90% (31,067 excluded), (3) show Hardy-Weinberg Equilibrium with a P>10-6 

(25,907 excluded), and (4) have a minor allele frequency of ≥5%. The total number 

of SNPs analysed is 338,830. The DGI data SNP quality control and exclusion 

criteria are reported in detail elsewhere 19, and resulted in the use of 386,731 

SNPs. We note that there is a small familial component to the DGI data, which is 

not taken into account in the betas and standard errors provided in the publicly 

available data that was used in our analyses. The extent of the P-value inflation 

that is caused by this is small (genomic control lambda < 1.1), so will have 

marginal effects on the association results, but we have provided a DGI excluded 
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result in Table 1 to demonstrate the robustness of the associations. We report the 

402,951 SNPs which passed QC in at least 4 of the 6 GWA studies. 

Individual level genotype data were available from only one GWA study 

(WTCCC-T2D); only summary height association statistics were available for the 

other studies. For each GWA study, summary statistics, assuming an additive 

inheritance model, from linear regression using Z-scores (described below) were 

generated using PLINK 24 (WTCCC-T2D, WTCCC-UKBS, WTCCC-CAD, DGI), 

SAS/Genetics 9.1 (SAS Institute Inc., Cary, NC, USA; EPIC-Obesity Study) or 

using R (http://www.R-project.org; WTCCC-HT). 

Stage 2 analyses  

For each stage 2 study the associations between genotype and height z-

score were examined using linear regression (described below). Stage 2 analyses 

were performed in Stata/SE 9.1 for Windows (StataCorp LP, Texas, USA) for all 

studies, except for CoLaus, which were performed using PLINK 24. 

Z-score generation 

Height was normally distributed in all cohorts. For the WTCCC GWA 

studies, UKT2D GCC, BRIGHT and EFSOCH studies, sex-specific height Z-

scores were generated within each study. Details for the DGI are available at 

http://www.broad.mit.edu/diabetes/. For EPIC-Obesity, height z-scores were 

created by sex and age decades (<50, 50<60, 60<70, ≥70). For the CoLaus study, 

height was corrected using a linear model, regressing height simultaneously onto 

age, sex, ancestry principal components 8 and grandparental birthplaces. The 

residuals were rescaled to have variance 1, and then were used as a “corrected” 

phenotype.  

Meta-Analysis 

Meta-analysis statistics were generated using the inverse-variance meta-

analysis method assuming fixed effects. The Q test was used to test for between-
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study heterogeneity. We used Stata/SE 9.1 for Windows (StataCorp LP, Texas, 

USA) for all meta-analysis calculations.  

Eigenstrat Analyses 

For the GWA study, EIGENSTRAT 8 was run in each individual study on the 

full set of markers (~400,000 SNPs). Within each study, similar results were 

obtained when using the first three principal components or the first ten principal 

components. 

Individual level data analyses in Stage 2 samples 

All individual level data analyses were performed in Stata/SE 9.1 for 

Windows (StataCorp LP, Texas, USA). To test for a deviation from an additive 

mode of inheritance for each of the 39 SNPs that we took forward into stage 2, we 

performed a likelihood ratio test of the additive regression model against the full 

2df model.  

To test for a difference in effect size between sexes, we performed a 

likelihood ratio test of the additive model against a model that also included a sex 

by genotype interaction term. To test for an influence of age on the effect size of 

we compared a regression model including dichotomized age (<50 and >= 50) and 

genotype to a model that also included a dichotomized age by genotype 

interaction term. We also performed the same analysis, but using 40 years as a 

cut-off and age deciles rather than dichotomized age. 

For the gene-gene interaction analyses, we assumed additive effects within-

loci, and compared a joint effects model to a model containing an interaction term 

using likelihood ratio tests.  

Combined results plot 

For the combined effect analyses we used only Stage 2 UK subjects to 

reduce the effect of the “winners curse”25. We only used subjects that had been 

successfully genotyped at each of the 20 SNPs that reached a P<5x10-7, and 
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grouped subjects by the total number of “tall” alleles that they carried. The mean 

height (estimated by multiplying the Z-score effect size by 6.82cm, the average SD 

of adult height across the cohorts used in this study) and frequency were then 

plotted using SigmaPlot for Windows Version 10.0 (Systat Software, Germany). 

Quantile-quantile plots and power results 

Quantile-quantile plots were generated using Stata/SE 9.1 for Windows. 

The 95% concentration bands, which are the approximate 95% confidence 

intervals around the null distribution were generated as described by 26. 

Quanto was used for the power calculation 27. To assess the impact of the 

“winners curse” we performed a binomial distribution test of the number of times 

the stage 1 result was greater than the stage 2 result, compared to that expected 

under the null of 50%. 

Linkage analyses 

We used linkage data from the website provided by Perola et al.5 which 

describes all reports in the literature that achieved LOD scores > 2 for height. 

Where a peak marker (or markers) was reported we called a 10Mb window around 

the marker (or markers) a “linked region”. Where no peak marker was reported we 

used the reported DeCode cM coordinates to determine the linked region. To 

compare the observed number of occasions that one of the 20 “real” SNPs 

occurred in a linked region to that expected under the null distribution, we took the 

total number of base-pairs in non-overlapping linked regions and divided it by the 

number of base-pairs in the human genome (http://genome.ucsc.edu from NCBI 

build 36.1 statistics). The expected number of times that the 20 real SNPs 

occurred in linked regions is then 20 x (base-pairs in linked regions / total number 

of base-pairs in the human genome). We used a Poisson test to determine the 

significance of the difference in the number of confirmed SNPs observed under 

linkage peaks compared to the expected number. We did this for SNPs with LODs 

> 3 and those > 2. 
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To determine if there was any over-representation of all associations at 

P<0.001 in linked regions we compared the proportions of these SNPs occurring in 

linked regions to those not occurring in linked regions. Again we performed this for 

a LOD > 2 and a LOD > 3 cut-off. 

Stage 2 genotyping 

Genotyping of the UKT2D GCC, BRIGHT and EFOSCH samples was 

performed by KBiosciences (Hoddesdon, UK) using their own novel system of 

fluorescence-based competitive allele-specific PCR (KASPar). Details of assay 

design are available from the KBiosciences website 

(http://www.kbioscience.co.uk). The CoLaus study is a GWA study (for which 

GWA data were not available in time for this study to be involved in stage one) and 

is described in detail elsewhere (Firman et al. Submitted). 



 

Chapter 2 52 

Acknowledgements 

Michael Weedon is a Vandervell Foundation Research Fellow. Cecilia Lindgren is 
a Nuffield Dept of Medicine Scientific Leadership Fellow. Rachel Freathy is funded 
by a Diabetes UK research studentship. Sven Bergmann is supported by the 
Giorgi-Cavaglieri Foundation and the Swiss National Science Foundation (Grant # 
3100AO-116323/1), which also supports Jacques S. Beckmann (grant #310000-
112552/1). We would like to thank Murielle Bochud, Zoltán Kutalik, Gerard 
Waeber, Kijoung Song and Xin Yuan for their contribution to the Lausanne study. 
The WTCCC CAD cohort collection was supported by grants from the British Heart 
Foundation, Medical Research Council, and National Health Service Research & 
Development. NJS holds a Chair supported by the British Heart Foundation. We 
thank the Wellcome Trust for funding. CW is funded by the British Heart 
Foundation (grant number; FS/05/061/19501). The BRIGHT study is supported by 
the Medical Research Council (grant number; G9521010D) and the British Heart 
Foundation (grant number PG02/128). 

Author Contributions 

MNW, HL, CML, CW, DME, MM, JRBP, SS, IP, members of the DGI, WTCCC, the 
GEM consortium, SB, TJ, and DMW were responsible for analyzing, quality control 
checking, and cleaning the data from the individual GWA studies. CW, RMF, BS, 
MNW and HL were responsible for analysis of the stage 2 samples. MNW 
performed the meta-analyses. ASH and NJS are principal investigators from the 
WTCCC-CAD study. MC and MF are principal investigators from the WTCCC-HT 
study. WHO is principal investigator of the WTCCC-UKBS study. ATH and MIM 
are principal investigators for the WTCCC-T2D study. JSB, PV, VM are principal 
investigators of the CoLaus study. MC, MF, AD, PBM are principal investigators on 
the BRIGHT study. ATH is principal investigator of the EFSOCH study. CNAP and 
ADM are principal investigators of the Tayside UKT2D-GCC study. MNW, HL, 
ATH, MIM and TMF wrote the manuscript. ATH, MIM, MNW, and TMF designed 
and led the study. All authors read and approved the final manuscript. 



 

Chapter 2 53 

Figure 1. QQ plots for the 402,951 SNPs from the genome-wide association 
meta-analysis as more studies are added in. A: N = 1914 (WTCCC-T2D); B: N 
= 4892 (adding DGI); C: N=6788 (adding WTCCC-HT); D: N=8668 (adding 
WTCCC-CAD); E: N=12228 (adding EPIC-Obesity); F: N=13665 (adding WTCCC-
UKBS). Blue line is the observed P values. The black line is the expected line 
under the null distribution. The grey bands are 95% concentration bands which are 
an approximation to the 95% confidence intervals around the expected line. 
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Figure 2. Manhattan plot for the 402,951 SNPs from the stage 1 genome-wide 
association meta-analysis of the WTCCC-T2D, DGI, WTCCC-HT, WTCCC-
CAD, EPIC-Obesity and WTCCC-UKBS studies. The red dots are the SNPs that 
reached a P<5x10-7 in a joint analysis of stage 1 and stage 2 samples.  
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Figure 3. The combined impact of the 20 SNPS with a P<5x10-7. Subjects have 
been classified according to the number of height increasing alleles at each of the 
20 SNPS, and the mean height for each group is plotted (blue dots). The black line 
is a linear regression line through these points. The grey bars represent the 
proportion of the sample, with increasing numbers of „tall‟ alleles. The approximate 
height difference in cm, was obtained by multiplying the mean Z-score height for 
each group, by 6.82cm (the approximate average SD of height across the samples 
used in this study).  
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Figure 4 (a) The power of the genome-wide study to identify the variants that 
had a P<5x10-7 in the joint analysis at P<1x10-5 using the effect size 
estimates from the follow-up samples only and, (b) the sample size required 
o identify these variants using the effect size estimates from the follow-up 
samples only at a P<5x10-7 with 80% power. Effect sizes ranged from 0.083SD 
with minor allele frequency ~0.44 for rs6440003 to 0.033SD with minor allele 
frequency of 0.35 for rs8099594. 

 



 

Chapter 2 57 

Figure 5. QQ plot for the P-values from the accompanying Lettre et al.18 
study of the most associated 10,000 SNPs from our study (excluding the DGI 
component to make the observations independent), including (dark blue 
dots) and excluding known loci (light blue dots). The black line is the expected 
line under the null distribution. The grey band is the 95% concentration bands 
which are an approximation to the 95% confidence intervals around the expected 
line. 
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Table 1. Results for the 20 SNPs taken forward into stage 2 that reached P<5x10-7 in joint analyses. The results are 
ordered by the joint-analyses P value. Chromosome positions are based on NCBI build 125. The alleles all refer to the positive 
strand. Betas are per each additional copy of allele 1. Minor allele frequency (MAF) based on the minor allele (bold and 
underlined in the alleles column) in the WTCCC-T2D study. R2 (% variation explained) is for follow-up sample only, and does 
not include CoLaus. The additive model test and sex test P values do not include data from DGI or CoLaus. * r2 = 1 proxies 
used in the stage 2 studies because of assay design issues. Candidate gene is given when monogenic human and/or mouse 
phenotypes and/or expression results clearly implicate a gene. An overall P-value excluding DGI is given because of the small 
related component of DGI and to provide evidence independent from the accompanying manuscript by Lettre et al.18  
 

SNP 
Candidate 

Gene 
Chromosome 

(position) 
Alleles 

(1/2) 
MAF 

Additive 
model 
test P  

Sex test 
P 

Male SD difference 
(95% CI) 

Female SD 
Difference (95% CI) 

R
2
 

GWA 
Study P 

Follow-
up P 

Hetero-
geneity 

P 

Overall P 
excluding 

DGI 
Overall P 

rs6440003 ZBTB38 3 (142576907) A/G 0.44 0.80 0.01 0.07 (0.04, 0.09) 0.12 (0.09, 0.14)  0.32 1.3x10
-14

 8.7x10
-12

 0.52 2.7x10
-23

 1.8x10
-24

 

rs2282978 

/ rs42046 * 
CDK6 7 (91898623) C/T 0.33 0.14 0.69 0.09 (0.06, 0.12) 0.08 (0.05, 0.11)  0.28 5.0x10

-11
 5.1x10

-13
 0.98 3.1x10

-21
 7.8x10

-23
 

rs1042725 HMGA2 12 (64644614) C/T 0.49 0.70 0.34 0.05 (0.03, 0.08) 0.07 (0.05, 0.10)  0.25 5.9x10
-9

 8.6x10
-11

 0.50 1.1x10
-14

 2.5x10
-18

 

rs6060373 GDF5 20 (33377622) A/G 0.38 0.17 0.70 -0.08 (-0.11, -0.05) -0.07 (-0.10, -0.04)  0.21 2.2x10
-12

 1.6x10
-7

 0.27 2.0x10
-15

 1.7x10
-17

 

rs16896068 LCORL 4 (17621109) A/G 0.16 0.31 0.99 -0.07 (-0.11, -0.03) -0.07 (-0.11, -0.03) 0.12 1.0x10
-4

 2.5x10
-10

 0.06 2.0x10
-13

 2.4x10
-13

 

rs4549631 LOC387103 6 (127008001) C/T 0.50 0.62 0.85 0.06 (0.03, 0.08) 0.05 (0.03, 0.08)  0.11 1.2x10
-8

 4.6x10
-6

 0.47 2.9x10
-11

 4.7x10
-13

 

rs3791675 EFEMP1 2 (56022960) C/T 0.23 0.43 0.34 0.09 (0.05, 0.12) 0.06 (0.03, 0.10)  0.12 7.1x10
-8

 6.0x10
-6

 0.54 1.5x10
-12

 2.2x10
-12

 

rs2814993 C6orf106 6 (34726871) A/G 0.15 0.18 0.87 0.09 (0.05, 0.13) 0.10 (0.06, 0.14)  0.20 8.9x10
-9

 5.7x10
-5

 0.04 4.0x10
-11

 4.1x10
-12

 

rs10512248 PTCH1 9 (95339258) G/T 0.31 0.14 0.10 0.05 (0.02, 0.07) 0.08 (0.05, 0.11)  0.19 1.5x10
-6

 6.0x10
-6

 0.82 1.0x10
-9

 4.2x10
-11

 

rs12735613 SPAG17 1 (118596015) A/G 0.24 0.0090 0.02 -0.08 (-0.11, -0.05) -0.03 (-0.06, 0.00)  0.09 3.4x10
-8

 8.2x10
-5

 0.51 2.0x10
-9

 4.4x10
-11

 

rs11107116 SOCS2 12 (92480972) G/T 0.23 0.047 0.73 -0.04 (-0.07, -0.01) -0.05 (-0.08, -0.02)  0.06 2.5x10
-5

 5.6x10
-6

 0.41 2.3x10
-8

 5.6x10
-10

 

rs6854783 / 

rs2055059 * 
HHIP 4 (146000684) A/G 0.43 0.17 0.50 0.06 (0.03, 0.08) 0.04 (0.01, 0.017)  0.10 1.2x10

-5
 3.2x10

-5
 0.24 2.2x10

-8
 2.1x10

-9
 

rs1390401 ZNF678 1 (224104685) A/G 0.18 0.0067 0.34 0.04 (0.01, 0.08) 0.07 (0.03, 0.10) 0.09 4.3x10
-6

 2.0x10
-4

 0.58 1.4x10
-6

 5.4x10
-9

 

rs3116602 DLEU7 13 (50009356) G/T 0.21 0.88 0.02 -0.04 (-0.07, 0.00) -0.09 (-0.12, -0.06)  0.07 5.6x10
-6

 1.8x10
-4

 0.82 6.1x10
-9

 6.8x10
-9

 

rs6686842 SCMH1 1 (41199964) C/T 0.44 0.30 0.97 -0.05 (-0.08, -0.02) -0.05 (-0.08, -0.02)  0.14 8.6x10
-6

 3.3x10
-4

 0.57 4.9x10
-7

 1.7x10
-8

 

rs10906982 ADAMTSL3 15 (82371586) A/T 0.48 0.33 0.92 0.05 (0.02, 0.07) 0.04 (0.02, 0.07)  0.07 5.4x10
-7

 2.1x10
-3

 0.57 5.3x10
-7

 1.7x10
-8

 

rs6724465 IHH 2 (219769351) A/G 0.10 0.96 0.85 -0.06 (-0.10, -0.02) -0.05 (-0.10, -0.01)  0.04 3.1x10
-5

 2.8x10
-4

 0.52 2.2x10
-6

 2.1x10
-8

 

rs10935120 
ANAPC13 or 

CEP63 
3 (135715790) A/G 0.33 0.10 0.63 -0.06 (-0.09, -0.03) -0.05 (-0.08, -0.02)  0.10 2.2x10

-6
 3.1x10

-3
 0.57 8.7x10

-7
 7.3x10

-8
 

rs8041863 ACAN 15 (87160693) A/T 0.47 0.90 0.21 0.04 (0.01, 0.06) 0.06 (0.03, 0.09)  0.03 2.2x10
-5

 8.6x10
-4

 0.02 4.9x10
-9

 8.1x10
-8

 

rs8099594 DYM 18 (45245158) A/G 0.35 0.69 0.53 0.05 (0.02, 0.08) 0.04 (0.01, 0.07)  0.01 7.8x10
-6

 4.1x10
-3

 0.008 1.6x10
-8

 3.1x10
-7
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Table 2. Candidate genes in the 20 loci, together with monogenic syndromes and mouse models associated with the 
genes. Candidate gene is given when monogenic human and/or mouse phenotypes and/or expression results clearly implicate 
a gene, otherwise nearest gene is given, unless no gene within 500kb window around SNP. Information on each gene was 
obtained either from the OMIM (http://www.ncbi.nlm.nih.gov/sites/entrez?db=OMIM) or Jackson lab (http://www.jax.org/) 
websites. * Details are from Uniprot summaries.  
 

SNP 
Candidate or 

nearest gene(s) 

Monogenic syndrome 
caused by mutation in 

gene 

Knockout mouse 
phenotype 

Details* 

rs6440003 
Zinc finger and BTB 
domain-containing 

protein 38 (ZBTB38) 
- - Transcription factor. 

rs2282978 
Cyclin-dependent 
Kinase-6 (CDK6) 

- 15% smaller embryos 
Involved in the control of the cell cycle. 

Interacts with D-type G1 cyclins. 

rs1042725 

High-mobility group 
A2  

(HMGA2) 

Disruption causes tall 
stature, extreme bone 
and dental overgrowth, 
and multiple lipomas. 

Pygmy mice 

Belongs to the non-histone 
chromosomal high mobility group 

(HMG) protein family. HMG proteins 
function as chromatin architectural 

factors. 

rs6060373 
Growth 

Differentiation Factor 
5 (GDF5) 

Chondrodysplasia 
(abnormally short and 

deformed limbs); 
brachydactyly (short 

digits) DuPan 
syndrome; multiple 

synostoses syndrome. 

Homozygous null 
mutants demonstrate 

skeleton defects, such as 
reduced or absent limb 

bones and joints. 

Involved in bone formation. Also 
known as Cartilage-derived 
morphogenetic protein 1. 
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rs16896068 

Ligand-dependent 
nuclear receptor 
corepressor-like 
protein (LCORL) 

- - May act as transcription activator. 

rs4549631 LOC387103 - - Not known 

rs3791675 

EGF-Containing 
Fibulin-like 

extracellular matrix 
protein 1 (EFEMP1) 

Doyne honeycomb 
retinal dystrophy; no 

obvious skeletal 
defects. 

Normal phenotype 
Extra-cellular matrix. Belongs to the 

fibulin family. 

rs2814993 C6orf106 - - Not known 

rs10512248 
Patched, drosophilia, 

homolog of, 1 
(PTCH1) 

Gorlin syndrome (basal 
cell carcinoma); 

holoprosencephaly. 

Homozygous null mice 
die during 

embryogenesis, 
heterozygotes larger 

than normal, with hind 
limb defects.  

Hedgehog signalling. Acts as a 
receptor for sonic hedgehog (SHH), 
Indian hedgehog (IHH) and desert 

hedgehog (DHH). 

rs12735613 
Sperm associated 

antigen 17 (SPAG17) 
- - Not known 

rs11107116 
Suppressor of 

cytokine signaling 2 
(SOCS2) 

- 

Homozygous null mice 
grow more rapidly. Males 

are 40% heavier than 
wild-type littermates; The 
increase in weight results 
from general increase in 

visceral organ weight 
and long bone length. 

SOCS family proteins form part of a 
classical negative feedback system 

that regulates cytokine signal 
transduction. SOCS2 appears to be a 

negative regulator in the growth 
hormone/IGF1 signaling pathway. 
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rs6854783 
Hedgehog interacting 

protein (HHIP) 
- 

Ectopic expression in 
transgenic mice results in 

severe skeletal defects 
similar to those observed 

in IHH mutants. 

Hedgehog signalling. Modulates 
hedgehog signaling through direct 

interaction with members of the 
hedgehog family including SHH, IHH 

and DHH. 

rs1390401 
Zinc finger protein 

678 (ZNF678) 
- - 

Transcription factor. Belongs to the 
Krueppel C2H2-type zinc-finger 

protein family by similarity. 

rs3116602 

Deleted in 
lymphocytic 
leukaemia, 7 

(DLEU7) 

- - Not known 

rs6686842 
Sex comb on midleg 
homolog 1 (SCMH1) 

- 

Homozygous null mice 
present with multiple 
defects including of 

skeleton.  

Polycomb protein. A constituent of the 
mammalian Polycomb repressive 

complexes 1 involved in chromatin 
modifications 

rs10906982 
ADAMTS-like protein 

3 (ADAMTSL3) 
- - 

Extra-cellular matrix. Strongly similar 
to members of the ADAMTS family but 
lacks metalloprotease and disintegrin-

like domains. 

rs6724465 
Indian hedgehog 

(IHH) 

Brachydactyly; 
acrocapitofemoral 

dysplasia (cone-shaped 
ends of hand and hip 

bones). 

Homozygous null mice 
display impaired 

chondrocyte proliferation 
and maturation, resulting 

in dwarfism and 
numerous skeletal 

abnormalities. 

Hedgehog signalling. Intercellular 
signal essential for a variety of 

patterning events during development. 
Binds to the patched (PTC) receptor. 
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rs10935120 
Anaphase promoting 
complex subunit 13 

(ANAPC13) 
- - 

Cell cycle. Component of the 
anaphase promoting 

complex/cyclosome (APC/C), a cell 
cycle-regulated E3 ubiquitin ligase that 
controls progression through mitosis 
and the G1 phase of the cell cycle. 

rs8041863 Aggrecan (ACAN) 

Autosomal dominant 
spondyloepiphyseal 

dysplasia type 
Kimberley, 

characterised by 
severe, premature 

osteoarthritis. 

Homozygous mutants 
are dwarfed at birth. 

Extra-cellular matrix. A member of the 
aggrecan/versican proteoglycan 

family. Part of the extra-cellular matrix 
in cartilaginous tissue. 

rs8099594 Dymeclin (DYM) 

Autosomal recessive 
disorder characterized 
by abnormal skeletal 

development and 
mental retardation. 

- 
May have a role in process of 

intracellular digestion of proteins or in 
proteoglycan metabolism. 
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Supplementary Table 1. Characteristics of samples used in this study. 
 

  N % Male 

Males: age 
at study 

(yrs; 
mean, SD) 

Females: age 
at study (yrs; 

mean, SD) 

Males: average 
height (cm; mean, 

SD) 

Females: average 
height (cm; mean, SD) 

a) GWAS WTCCC-T2D 1914 58.2 59.0 (9.9) 57.9 (10.4) 175.5 (7.0) 161.5 (6.6) 

 WTCCC-HT 1896 39.9 56.5 (10.9) 57.8 (11.1) 174.3 (7.4) 161.3 (6.4) 

 WTCCC-CAD 1880 79.4 60.0 (8.0) 60.3 (8.5) 173.8 (6.9) 159.8 (6.7) 

 
WTCCC-

UKBS 
1437 48.2 45.4 (11.8) 41.4 (12.6) 178.2 (6.7) 164.7 (6.5) 

 EPIC-Obesity 3560 45.7 59.8 (9.0) 58.8 (8.9) 173.7 (6.7) 160.9 (6.0) 

 DGI (T2D) 1511 50.6 63.1 (10.3) 65.4 (10.5) 174.3 (6.4) 161.1 (6.2) 

 DGI (Controls) 1467 48.6 58.4 (10.5) 59.2 (10.3) 175.6 (6.2) 162.4 (5.9) 

b) Replication 
samples 

UKT2D-GCC 6698 54.0 61.8 (10.7) 60.6 (11.7) 175.2 (6.9) 161.2 (6.7) 

 EFSOCH 1929 49.5 32.9 (6.0) 30.4 (5.2) 177.9 (6.6) 165.0 (6.3) 

 BRIGHT 2446 39.0 58.7 (9.7) 59.0 (9.1) 175.6 (7.0) 162.3 (6.6) 

 CoLaus 5409 47.1 52.9 (10.8) 53.9 (10.7) 175.0 (7.4) 162.6 (6.7) 
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Supplementary Table 2. Results for 12 UK ancestry informative markers described by the WTCCC. The beta refers to the 
effect of each additional copy of allele 1. Only five of the AIMS were taken into the replication cohorts. Chromosome positions 
are based on NCBI build 125. The alleles all refer to the positive strand. *rs6644913 is also described as an AIM by the 
WTCCC, but did not pass quality control criteria. 
 

SNP Chromosome 
Alleles 

(1/2) 

Stage 1  

beta 

Stage 
1 P  

Stage 2 

beta 

Stage 
2 

P 

Overall 

beta 

Overall 

P 

rs1042712 2q21 C/G -0.038 0.04 -0.002 0.89 -0.017 0.32 

rs7696175 4p14 C/T 0.010 0.43 0.009 0.40 0.009 0.81 

rs1460133 4q28 C/T 0.002 0.90 - - - - 

rs9378805 6p25 A/C -0.005 0.67 0.015 0.16 0.006 0.45 

rs3873375 6p21 C/T 0.016 0.21 - - - - 

rs11790408 9p24 G/T 0.012 0.35 - - - - 

rs12295525 11p15 C/T 0.020 0.33 - - - - 

rs12797951 11q13 G/T -0.004 0.79 - - - - 

rs10774241 12p13 A/G 0.007 0.64 -0.013 0.35 -0.004 0.90 

rs17449560 14q12 C/G 0.023 0.25 - - - - 

rs3760843 19q13 A/T 0.027 0.08 - - - - 

rs2143877 20q12 A/G 0.008 0.55 0.004 0.76 0.006 0.52 
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Supplementary Table 3. Results for the SNPs taken forward into stage 2 which did not reach a P<5x10-7 in joint 
analysis. The results are ordered by the joint-analyses P value. Chromosomes positions are based on NCBI build 125. The 
alleles all refer to the positive strand. Betas are per each additional copy of allele 1. Minor allele frequency (MAF) based on the 
minor allele (bold and underlined in the alleles column) in the WTCCC-T2D study. R2 is for follow-up sample only, and does not 
include CoLaus. The additive model test, and sex test P values do not include data from DGI or CoLaus. * Failed in Broad, 
EPIC-Obesity and CoLaus.  
 

SNP 
Chromosome 

(position) 

Alleles 
(1/2) 

MAF 
Additive 
model 
test P  

Sex 
test P 

Male SD  

difference  

(95% CI) 

Female SD 
Difference (95% 

CI) 

R2 
(%) 

GWA 
Study P 

Follow-
up P 

Overall 
P 

rs11049407* 12 (28225631) A/G 0.30 0.24 0.82 0.06 (0.02, 0.09)  0.05 (0.02, 0.08) 0.06 2.5x10-5 1.0x10-2 4.1x10-6 

rs508521 6 (116853934) A/G 0.28 0.12 0.63 -0.05 (-0.08, -0.02) -0.06 (-0.09, -0.03) 0.05 3.3x10-6 4.9x10-2 5.1x10-6 

rs509035 3 (173646151) A/G 0.31 0.20 0.92 0.04 (0.01, 0.07) 0.04 (0.01, 0.07) 0.02 9.4x10-6 4.8x10-2 8.5x10-6 

rs6598287 15 (98359299) C/T 0.40 0.68 0.79 0.05 (0.02, 0.07)  0.04 (0.01, 0.07) 0.03 4.0x10-6 0.08 1.1x10-5 

rs7030440 9 (130470174) A/G 0.33 0.86 0.83 -0.03 (-0.06, 0.00)  -0.03 (-0.06, 0.00) 0.01 4.8x10-6 0.11 2.0x10-5 

rs450902 12 (118723761) A/G 0.34 0.85 0.17 0.05 (0.02, 0.08)  0.02 (-0.01, 0.05) 0.03 2.6x10-5 0.12 5.3x10-5 

rs4934353 10 (89379558) A/G 0.24 0.76 0.48 -0.03 (-0.06, 0.00)  -0.05 (-0.08, -0.01) 0.02 8.3x10-5 7.0x10-2 6.3x10-5 

rs2096196 1 (200664650) C/T 0.44 0.78 0.05 0.02 (-0.01, 0.04)  0.05 (0.03, 0.08) 0.01 1.3x10-6 0.40 9.3x10-5 

rs2043314 19 (35805410) C/T 0.48 0.18 0.60 -0.04 (-0.07, -0.01) -0.03 (-0.06, 0.00) 0.01 2.6x10-6 0.28 9.4x10-5 

rs7567851 2 (178510227) C/G 0.08 0.33 0.91 0.06 (0.01, 0.11)  0.05 (0.00, 0.10) <0.01 5.8x10-6 0.15 1.1x10-4 

rs17001086 19 (10978436) C/T 0.11 0.41 0.40 -0.04 (-0.08, 0.00)  -0.07 (-0.11, -0.03) 0.04 7.8x10-5 0.13 1.8x10-4 

rs4527833 8 (130830826) C/T 0.48 0.71 0.91 0.03 (0.00, 0.06)  0.03 (0.00, 0.05) <0.01 7.8x10-6 0.40 3.8x10-4 

rs12625434 20 (18369779) C/T 0.50 0.05 0.89 -0.03 (-0.06, 0.00)  -0.03 (-0.06, 0.00) <0.01 8.5x10-6 0.39 5.6x10-4 

rs211389 10 (32334017) G/T 0.12 0.72 0.73 -0.03 (-0.07, 0.01)  -0.04 (-0.08, 0.01) <0.01 1.1x10-6 0.92 7.3x10-4 
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rs3806089 6 (71027464) C/T 0.10 0.98 0.66 -0.04 (-0.08, 0.00)  -0.05 (-0.10, -0.01) <0.01 3.3x10-5 0.69 1.4x10-3 

rs1556263 9 (113544161) C/T 0.47 0.007 0.13 0.04 (0.02, 0.07)  0.01 (-0.01, 0.04) <0.01 7.0x10-6 0.83 3.8x10-3 

rs12539316 7 (72422549) A/G 0.28 0.97 0.92 -0.03 (-0.06, 0.00)  -0.03 (-0.06, 0.00) <0.01 1.4x10-5 0.22 4.4x10-3 

rs17082799 5 (92344239) A/G 0.04 0.22 0.98 -0.03 (-0.11, 0.04)  -0.04 (-0.11, 0.04) <0.01 6.6x10-6 0.22 0.055 

rs4130172 2 (43028076) C/T 0.37 0.91 0.67 0.03 (0.00, 0.06)  0.04 (0.00, 0.07) <0.01 4.1x10-6 0.23 0.059 
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Supplementary Table 4. Effect of age on height associations for all 39 SNPs 
taken into stage 2. The results do not include data from DGI and CoLaus. Effect 
size estimates are given per additional height-increasing allele. Decade cut offs 
were <=30, 31 to 40, 41 to 50, 51 to 60, 61 to 70 and > 70 years of age.  
 

SNP 
SNP overall SD 

difference (95% CI) 

SNP + age 
(decade) SD 

difference (95% CI) 

Age test P 
(cut-off 
40yrs) 

Age test P 
(cut-off 
50yrs) 

rs6440003 0.090 (0.07, 0.11)  0.088 (0.07, 0.11)  0.34 0.71 

rs2282978 0.086 (0.06, 0.11)  0.084 (0.06, 0.10)  0.94 0.54 

rs1042725 0.063 (0.04, 0.08)  0.063 (0.04, 0.08)  0.39 0.43 

rs6060373 0.076 (0.06, 0.10)  0.076 (0.06, 0.10)  0.50 0.97 

rs16896068 0.071 (0.05, 0.10) 0.069 (0.04, 0.09)  0.08 0.05 

rs4549631 0.056 (0.04, 0.08)  0.054 (0.04, 0.07)  0.30 0.79 

rs3791675 0.075 (0.05, 0.10)  0.074 (0.05, 0.10)  0.48 0.47 

rs2814993 0.096 (0.07, 0.12)  0.096 (0.07, 0.12)  0.13 1.00 

rs10512248 0.063 (0.04, 0.08)  0.062 (0.04, 0.08)  0.44 0.38 

rs12735613 0.059 (0.04, 0.08)  0.059 (0.04, 0.08)  0.93 0.20 

rs11107116 0.045 (0.02, 0.07)  0.047 (0.02, 0.07)  0.88 0.41 

rs6854783 0.049 (0.03, 0.07)  0.050 (0.03, 0.07)  0.78 0.65 

rs1390401 0.053 (0.03, 0.08) 0.048 (0.02, 0.07) 0.32 0.89 

rs3116602 0.061 (0.04, 0.08)  0.061 (0.04, 0.08)  0.32 0.31 

rs6686842 0.051 (0.03, 0.07)  0.050 (0.03, 0.07)  0.64 0.68 

rs10906982 0.046 (0.03, 0.06)  0.045 (0.03, 0.06)  0.11 0.43 

rs6724465 0.058 (0.03, 0.09)  0.059 (0.03, 0.09)  0.86 0.07 

rs10935120 0.055 (0.03, 0.07)  0.052 (0.03, 0.07)  0.74 0.92 

rs8041863 0.048 (0.03, 0.07)  0.048 (0.03, 0.07)  0.48 0.29 

rs8099594 0.045 (0.02, 0.07)  0.047 (0.03, 0.07)  0.36 0.51 

rs11049407 0.054 (0.03, 0.08)  0.054 (0.03, 0.08)  0.22 0.06 

rs508521 0.055 (0.03, 0.08)  0.056 (0.04, 0.08)  0.23 0.87 

rs509035 0.039 (0.02, 0.06)  0.041 (0.02, 0.06)  0.62 0.99 

rs6598287 0.044 (0.03, 0.06)  0.047 (0.03, 0.07)  0.30 0.69 

rs7030440 0.031 (0.01, 0.05)  0.030 (0.01, 0.05)  0.45 0.28 

rs450902 0.036 (0.02, 0.06)  0.037 (0.02, 0.06)  0.12 0.17 

rs4934353 0.037 (0.02, 0.06)  0.037 (0.02, 0.06)  0.96 0.83 

rs2096196 0.034 (0.02, 0.05)  0.036 (0.02, 0.05)  0.10 0.24 

rs2043314 0.036 (0.02, 0.06)  0.037 (0.02, 0.06)  0.47 0.73 

rs7567851 0.057 (0.02, 0.09)  0.060 (0.03, 0.09)  0.24 0.75 

rs17001086 0.055 (0.03, 0.09)  0.056 (0.03, 0.09)  0.93 0.99 

rs4527833 0.027 (0.01, 0.05)  0.027 (0.01, 0.05)  0.39 0.36 
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rs12625434 0.031 (0.01, 0.05)  0.027 (0.01, 0.05)  0.48 0.93 

rs211389 0.031 (0.00, 0.06)  0.032 (0.00, 0.06)  0.39 0.64 

rs3806089 0.046 (0.01, 0.08)  0.052 (0.02, 0.08)  0.28 0.79 

rs1556263 0.030 (0.01, 0.05)  0.028 (0.01, 0.05)  1.00 0.53 

rs12539316 0.030 (0.01, 0.05)  0.033 (0.01, 0.05)  0.82 0.48 

rs17082799 0.035 (-0.02, 0.09)  0.026 (-0.03, 0.08)  0.71 0.85 

rs4130172 0.030 (0.01, 0.05)  0.031 (0.01, 0.05)  0.47 0.65 
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Supplementary Table 5. Interaction results for each of the 20 SNPs that 
reached P<5x10-7 in joint analyses. The beta refers to the multiplicative effect of 
each additional copy of the “tall” alleles at each of the pairs of SNPs. 
 
SNP1 SNP2 Interaction beta (95% CI) Interaction P 

rs4549631 rs16896068 -0.046 (-0.084, -0.008) 0.017 

rs1042725 rs10906982 0.032 (0.005, 0.059) 0.021 

rs2814993 rs6060373 0.048 (0.007, 0.09) 0.022 

rs2814993 rs4549631 0.045 (0.004, 0.085) 0.030 

rs6686842 rs16896068 0.041 (0.002, 0.079) 0.039 

rs12735613 rs4549631 0.033 (0.002, 0.065) 0.039 

rs6686842 rs2282978 -0.030 (-0.061, 0) 0.049 

rs3791675 rs1042725 -0.031 (-0.063, 0.001) 0.054 

rs6686842 rs1390401 0.034 (-0.001, 0.069) 0.058 

rs6854783 rs11107116 -0.031 (-0.064, 0.002) 0.067 

rs6440003 rs6854783 -0.025 (-0.052, 0.003) 0.077 

rs3791675 rs10906982 -0.029 (-0.06, 0.003) 0.078 

rs10935120 rs4549631 0.025 (-0.004, 0.055) 0.090 

rs3116602 rs16896068 0.039 (-0.007, 0.085) 0.093 

rs6060373 rs16896068 0.033 (-0.006, 0.071) 0.096 

rs12735613 rs3791675 0.031 (-0.006, 0.068) 0.097 

rs6854783 rs2282978 0.024 (-0.006, 0.054) 0.120 

rs3791675 rs2814993 0.036 (-0.01, 0.083) 0.124 

rs11107116 rs1390401 0.033 (-0.009, 0.074) 0.125 

rs10512248 rs10906982 -0.022 (-0.051, 0.006) 0.128 

rs6686842 rs6440003 -0.021 (-0.049, 0.006) 0.131 

rs3791675 rs6440003 0.024 (-0.008, 0.056) 0.138 

rs8041863 rs6060373 -0.021 (-0.048, 0.007) 0.140 

rs6440003 rs3116602 0.024 (-0.009, 0.057) 0.155 

rs2282978 rs8099594 -0.022 (-0.053, 0.009) 0.171 

rs11107116 rs3116602 0.027 (-0.013, 0.067) 0.183 

rs12735613 rs2814993 0.031 (-0.015, 0.078) 0.187 

rs3791675 rs11107116 -0.026 (-0.064, 0.013) 0.188 

rs2814993 rs3116602 -0.032 (-0.08, 0.016) 0.189 

rs11107116 rs6060373 -0.022 (-0.055, 0.011) 0.191 

rs6854783 rs4549631 -0.018 (-0.046, 0.009) 0.193 

rs6440003 rs8099594 -0.019 (-0.047, 0.01) 0.193 

rs6724465 rs10935120 -0.031 (-0.079, 0.016) 0.194 

rs2282978 rs3116602 0.022 (-0.014, 0.058) 0.233 

rs12735613 rs6440003 -0.019 (-0.05, 0.012) 0.238 

rs6724465 rs2814993 0.039 (-0.027, 0.106) 0.244 

rs8099594 rs1390401 0.022 (-0.015, 0.058) 0.246 

rs3791675 rs16896068 -0.025 (-0.068, 0.018) 0.248 

rs10512248 rs8099594 -0.018 (-0.048, 0.013) 0.252 

rs4549631 rs2282978 0.017 (-0.012, 0.047) 0.253 

rs3791675 rs1390401 0.023 (-0.017, 0.064) 0.258 
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rs2282978 rs6060373 -0.018 (-0.048, 0.013) 0.258 

rs1042725 rs1390401 0.020 (-0.015, 0.054) 0.270 

rs2814993 rs10906982 -0.022 (-0.063, 0.018) 0.274 

rs3116602 rs6060373 0.019 (-0.015, 0.053) 0.274 

rs6854783 rs1042725 0.015 (-0.012, 0.043) 0.275 

rs4549631 rs8041863 0.015 (-0.012, 0.042) 0.277 

rs6440003 rs10512248 -0.016 (-0.045, 0.013) 0.281 

rs2282978 rs8041863 0.016 (-0.013, 0.046) 0.282 

rs10512248 rs16896068 0.021 (-0.018, 0.061) 0.288 

rs6724465 rs1390401 0.031 (-0.026, 0.088) 0.292 

rs3116602 rs8041863 -0.017 (-0.051, 0.016) 0.301 

rs11107116 rs8099594 -0.018 (-0.052, 0.016) 0.302 

rs6854783 rs1390401 0.018 (-0.017, 0.053) 0.308 

rs6440003 rs2814993 0.021 (-0.019, 0.061) 0.308 

rs4549631 rs1390401 -0.018 (-0.052, 0.017) 0.311 

rs10935120 rs6854783 -0.015 (-0.044, 0.014) 0.311 

rs8099594 rs16896068 0.020 (-0.019, 0.06) 0.314 

rs6686842 rs4549631 0.014 (-0.014, 0.042) 0.326 

rs6440003 rs16896068 0.018 (-0.019, 0.056) 0.338 

rs6724465 rs10906982 0.022 (-0.023, 0.067) 0.339 

rs8041863 rs8099594 0.014 (-0.015, 0.042) 0.339 

rs6724465 rs8041863 -0.022 (-0.066, 0.023) 0.340 

rs6686842 rs1042725 -0.013 (-0.041, 0.014) 0.345 

rs2282978 rs11107116 -0.017 (-0.052, 0.019) 0.349 

rs12735613 rs10512248 -0.016 (-0.049, 0.018) 0.360 

rs3791675 rs6724465 0.025 (-0.028, 0.078) 0.360 

rs10935120 rs16896068 0.018 (-0.022, 0.058) 0.373 

rs6440003 rs2282978 0.013 (-0.016, 0.043) 0.373 

rs6686842 rs6854783 0.012 (-0.016, 0.041) 0.386 

rs8041863 rs16896068 0.016 (-0.021, 0.054) 0.389 

rs6440003 rs4549631 -0.012 (-0.039, 0.015) 0.392 

rs3791675 rs3116602 -0.017 (-0.055, 0.022) 0.393 

rs4549631 rs8099594 -0.012 (-0.041, 0.016) 0.393 

rs6724465 rs6060373 -0.020 (-0.067, 0.027) 0.398 

rs10935120 rs10906982 -0.012 (-0.041, 0.016) 0.401 

rs6440003 rs1390401 -0.015 (-0.049, 0.02) 0.401 

rs6686842 rs10906982 0.012 (-0.016, 0.039) 0.409 

rs2814993 rs10512248 0.018 (-0.025, 0.06) 0.416 

rs6854783 rs6060373 -0.012 (-0.04, 0.017) 0.416 

rs10906982 rs16896068 0.015 (-0.022, 0.052) 0.427 

rs6686842 rs11107116 0.013 (-0.02, 0.047) 0.430 

rs1042725 rs8041863 -0.011 (-0.038, 0.016) 0.438 

rs4549631 rs10906982 0.011 (-0.017, 0.038) 0.441 

rs6686842 rs10935120 -0.012 (-0.042, 0.018) 0.441 

rs4549631 rs1042725 -0.011 (-0.038, 0.017) 0.442 

rs4549631 rs11107116 -0.013 (-0.046, 0.02) 0.443 
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rs12735613 rs10906982 -0.012 (-0.043, 0.019) 0.452 

rs12735613 rs16896068 0.016 (-0.027, 0.06) 0.465 

rs6854783 rs8099594 0.011 (-0.018, 0.039) 0.473 

rs2814993 rs16896068 -0.020 (-0.075, 0.035) 0.474 

rs3791675 rs10512248 -0.012 (-0.046, 0.022) 0.486 

rs3791675 rs6854783 -0.011 (-0.043, 0.021) 0.491 

rs3116602 rs8099594 0.012 (-0.023, 0.047) 0.495 

rs6854783 rs10512248 0.010 (-0.019, 0.039) 0.507 

rs2282978 rs16896068 -0.014 (-0.054, 0.027) 0.508 

rs6440003 rs1042725 0.009 (-0.018, 0.036) 0.509 

rs1042725 rs6060373 -0.009 (-0.037, 0.019) 0.509 

rs10906982 rs6060373 -0.009 (-0.037, 0.019) 0.518 

rs6686842 rs12735613 0.010 (-0.022, 0.042) 0.522 

rs10935120 rs1390401 0.011 (-0.025, 0.048) 0.543 

rs3791675 rs8099594 -0.010 (-0.044, 0.023) 0.543 

rs10512248 rs8041863 -0.009 (-0.038, 0.02) 0.550 

rs4549631 rs6060373 0.008 (-0.019, 0.036) 0.553 

rs10512248 rs1042725 -0.009 (-0.037, 0.02) 0.554 

rs6686842 rs2814993 0.012 (-0.029, 0.053) 0.554 

rs6724465 rs3116602 -0.017 (-0.073, 0.04) 0.558 

rs3791675 rs6060373 -0.009 (-0.042, 0.023) 0.572 

rs8099594 rs6060373 0.008 (-0.021, 0.038) 0.578 

rs10512248 rs1390401 0.010 (-0.027, 0.047) 0.594 

rs10935120 rs2282978 -0.009 (-0.04, 0.023) 0.597 

rs6686842 rs3791675 -0.008 (-0.041, 0.024) 0.609 

rs3791675 rs2282978 0.009 (-0.026, 0.044) 0.618 

rs11107116 rs10906982 0.008 (-0.024, 0.041) 0.626 

rs6724465 rs2282978 -0.012 (-0.061, 0.037) 0.626 

rs2814993 rs1042725 0.010 (-0.03, 0.05) 0.627 

rs6854783 rs8041863 0.007 (-0.021, 0.034) 0.627 

rs12735613 rs2282978 -0.008 (-0.043, 0.026) 0.630 

rs2282978 rs10512248 -0.008 (-0.039, 0.023) 0.631 

rs2814993 rs1390401 0.012 (-0.039, 0.062) 0.646 

rs1042725 rs16896068 -0.009 (-0.046, 0.029) 0.654 

rs6854783 rs2814993 0.009 (-0.032, 0.05) 0.659 

rs1042725 rs8099594 0.006 (-0.022, 0.035) 0.660 

rs10935120 rs8099594 -0.007 (-0.037, 0.024) 0.666 

rs10512248 rs11107116 -0.007 (-0.042, 0.027) 0.680 

rs10935120 rs6440003 0.006 (-0.023, 0.035) 0.694 

rs3116602 rs10906982 -0.007 (-0.04, 0.027) 0.700 

rs12735613 rs1390401 -0.008 (-0.047, 0.032) 0.704 

rs12735613 rs8099594 0.006 (-0.027, 0.039) 0.710 

rs2282978 rs1390401 0.007 (-0.031, 0.045) 0.712 

rs12735613 rs3116602 0.007 (-0.031, 0.046) 0.715 

rs6060373 rs1390401 0.006 (-0.029, 0.041) 0.721 

rs6724465 rs4549631 0.008 (-0.037, 0.054) 0.723 
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rs10935120 rs8041863 -0.005 (-0.034, 0.024) 0.733 

rs8041863 rs1390401 -0.006 (-0.04, 0.029) 0.746 

rs10935120 rs10512248 0.005 (-0.026, 0.036) 0.754 

rs3116602 rs1390401 -0.006 (-0.048, 0.035) 0.763 

rs6686842 rs6060373 0.004 (-0.024, 0.033) 0.766 

rs10935120 rs2814993 0.006 (-0.036, 0.049) 0.768 

rs12735613 rs6854783 0.005 (-0.027, 0.036) 0.768 

rs2282978 rs1042725 0.004 (-0.025, 0.034) 0.769 

rs6686842 rs6724465 -0.007 (-0.053, 0.039) 0.770 

rs12735613 rs8041863 -0.004 (-0.036, 0.027) 0.782 

rs1042725 rs3116602 0.004 (-0.029, 0.038) 0.790 

rs10512248 rs6060373 -0.004 (-0.033, 0.025) 0.790 

rs12735613 rs6724465 -0.007 (-0.059, 0.045) 0.802 

rs6724465 rs6854783 0.006 (-0.04, 0.051) 0.807 

rs10906982 rs8041863 0.003 (-0.024, 0.03) 0.819 

rs6724465 rs16896068 0.007 (-0.056, 0.07) 0.825 

rs6686842 rs10512248 -0.003 (-0.033, 0.026) 0.838 

rs10935120 rs11107116 0.003 (-0.031, 0.038) 0.844 

rs6854783 rs10906982 0.003 (-0.025, 0.03) 0.845 

rs2814993 rs8099594 -0.004 (-0.047, 0.038) 0.845 

rs4549631 rs10512248 0.003 (-0.026, 0.032) 0.847 

rs10935120 rs6060373 -0.003 (-0.033, 0.027) 0.847 

rs12735613 rs6060373 -0.003 (-0.036, 0.029) 0.848 

rs6724465 rs11107116 0.005 (-0.048, 0.058) 0.850 

rs6686842 rs3116602 0.003 (-0.03, 0.037) 0.850 

rs6440003 rs11107116 -0.003 (-0.036, 0.029) 0.852 

rs11107116 rs16896068 -0.004 (-0.049, 0.041) 0.853 

rs6686842 rs8041863 -0.003 (-0.03, 0.025) 0.854 

rs1390401 rs16896068 -0.004 (-0.052, 0.043) 0.857 

rs10906982 rs8099594 0.002 (-0.026, 0.031) 0.867 

rs3791675 rs4549631 -0.003 (-0.034, 0.029) 0.868 

rs12735613 rs1042725 0.003 (-0.029, 0.034) 0.871 

rs2814993 rs8041863 0.003 (-0.036, 0.043) 0.871 

rs6724465 rs1042725 0.004 (-0.041, 0.049) 0.872 

rs6440003 rs6060373 0.002 (-0.026, 0.03) 0.876 

rs2282978 rs10906982 0.002 (-0.027, 0.032) 0.878 

rs11107116 rs8041863 -0.002 (-0.035, 0.03) 0.887 

rs3791675 rs10935120 -0.002 (-0.036, 0.031) 0.892 

rs10935120 rs1042725 -0.002 (-0.031, 0.027) 0.895 

rs10512248 rs3116602 0.002 (-0.033, 0.037) 0.898 

rs4549631 rs3116602 -0.002 (-0.036, 0.031) 0.905 

rs1042725 rs11107116 -0.002 (-0.034, 0.031) 0.909 

rs2814993 rs2282978 0.003 (-0.041, 0.046) 0.909 

rs10935120 rs3116602 -0.002 (-0.037, 0.033) 0.909 

rs6686842 rs8099594 -0.002 (-0.031, 0.028) 0.910 

rs6440003 rs10906982 -0.002 (-0.029, 0.026) 0.911 



 

Chapter 2 76 

rs6724465 rs8099594 0.002 (-0.045, 0.049) 0.922 

rs6440003 rs8041863 -0.001 (-0.028, 0.026) 0.934 

rs6724465 rs6440003 0.002 (-0.043, 0.047) 0.943 

rs12735613 rs10935120 0.001 (-0.033, 0.035) 0.946 

rs6854783 rs16896068 -0.001 (-0.039, 0.037) 0.951 

rs12735613 rs11107116 -0.001 (-0.039, 0.037) 0.970 

rs2814993 rs11107116 0.001 (-0.047, 0.049) 0.970 

rs3791675 rs8041863 0.001 (-0.031, 0.032) 0.973 

rs6724465 rs10512248 0.001 (-0.048, 0.049) 0.984 

rs10906982 rs1390401 0 (-0.034, 0.035) 0.987 

rs6854783 rs3116602 0 (-0.033, 0.034) 0.995 
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Supplementary Figure 1. A comparison of EIGENSTRAT adjusted P-values to unadjusted P-values for each individual 
genome-wide association study. The adjustment is based on the first ten principal components obtained from EIGENSTRAT. 
Using the first three principal components produced similar results. The green dots represent the 20 SNPs which reached a 
P<5x10-7 in the overall analysis. DGI data were unavailable. 
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Supplementary Figure 2. LD Plots for the regions around SNPs that have a 
joint analysis P<5x10-7. Red dots are GWAS association P values. The grey bars 
represent recombination rates. The LD triangle is based on the r2 statistic, with 
darker shading of blue indicating higher r2 values. 
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Supplementary Figure 3. Manhattan plots for the 402,951 SNPs from the 
genome-wide association meta-analysis as more studies are added in. A: N = 
1914 (WTCCC-T2D); B: N = 4892 (adding DGI); C: N=6788 (adding WTCCC-HT); 
D: N=8668 (adding WTCCC-CAD); E: N=12228 (adding EPIC-Obesity); F: 
N=13665 (adding WTCCC-UKBS). Red dots represent SNPs that achieved a 
P<5x10-7 in the joint analysis with stage 2 samples. The solid black horizontal line 
is the P=5x10-7 line. 
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Supplementary Note 

Membership of WTCCC, DGI and Cambridge GEMS consortia 

Wellcome Trust Case Control Consortium: 

Management Committee: Paul R Burton1, David G Clayton2, Lon R Cardon3, Nick 
Craddock4, Panos Deloukas5, Audrey Duncanson6, Dominic P Kwiatkowski3,5, Mark I 
McCarthy3,7, Willem H Ouwehand8,9, Nilesh J Samani10, John A Todd2, Peter Donnelly 
(Chair)11 

Analysis Committee: Jeffrey C Barrett3, Paul R Burton1, Dan Davison11, Peter 
Donnelly11, Doug Easton12, David Evans3, Hin-Tak Leung2, Jonathan L Marchini11, Andrew 
P Morris3, Chris CA Spencer11, Martin D Tobin1, Lon R Cardon (Co-chair)3, David G 
Clayton (Co-chair)2 

UK Blood Services & University of Cambridge Controls: Antony P Attwood5,8, James 
P Boorman8,9, Barbara Cant8, Ursula Everson13, Judith M Hussey14, Jennifer D Jolley8, 
Alexandra S Knight8, Kerstin Koch8, Elizabeth Meech15, Sarah Nutland2, Christopher V 
Prowse16, Helen E Stevens2, Niall C Taylor8, Graham R Walters17, Neil M Walker2, 
Nicholas A Watkins8,9, Thilo Winzer8, John A Todd2, Willem H Ouwehand8,9 

1958 Birth Cohort Controls: Richard W Jones18, Wendy L McArdle18, Susan M Ring18, 
David P Strachan19, Marcus Pembrey18,20 

Bipolar Disorder (Aberdeen): Gerome Breen21, David St Clair21; (Birmingham): Sian 
Caesar22, Katherine Gordon-Smith22,23, Lisa Jones22; (Cardiff): Christine Fraser23, Elaine 
K Green23, Detelina Grozeva23, Marian L Hamshere23, Peter A Holmans23, Ian R Jones23, 
George Kirov23, Valentina Moskvina23, Ivan Nikolov23, Michael C O‟Donovan23, Michael J 
Owen23, Nick Craddock23; (London): David A Collier24, Amanda Elkin24, Anne Farmer24, 
Richard Williamson24, Peter McGuffin24; (Newcastle): Allan H Young25, I Nicol Ferrier25 

Coronary Artery Disease (Leeds): Stephen G Ball26, Anthony J Balmforth26, Jennifer H 
Barrett26, D Timothy Bishop26, Mark M Iles26, Azhar Maqbool26, Nadira Yuldasheva26, 
Alistair S Hall26; (Leicester): Peter S Braund10, Paul R Burton1, Richard J Dixon10, 

Massimo Mangino10, Suzanne Stevens10, Martin D Tobin1, John R Thompson1, Nilesh J 
Samani10 

Crohn’s Disease (Cambridge): Francesca Bredin27, Mark Tremelling27, Miles Parkes27; 
(Edinburgh): Hazel Drummond28, Charles W Lees28, Elaine R Nimmo28, Jack Satsangi28; 
(London): Sheila A Fisher29, Alastair Forbes30, Cathryn M Lewis29, Clive M Onnie29, 
Natalie J Prescott29, Jeremy Sanderson31, Christopher G Mathew29; (Newcastle): Jamie 
Barbour32, M Khalid Mohiuddin32, Catherine E Todhunter32, John C Mansfield32; (Oxford): 
Tariq Ahmad33, Fraser R Cummings33, Derek P Jewell33 

Hypertension (Aberdeen): John Webster34; (Cambridge): Morris J Brown35, David G 
Clayton2; (Evry, France): G Mark Lathrop36; (Glasgow): John Connell37, Anna 
Dominiczak37; (Leicester): Nilesh J Samani10; (London): Carolina A Braga Marcano38, 
Beverley Burke38, Richard Dobson38, Johannie Gungadoo38, Kate L Lee38, Patricia B 
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Munroe38, Stephen J Newhouse38, Abiodun Onipinla38, Chris Wallace38, Mingzhan Xue38, 
Mark Caulfield38; (Oxford): Martin Farrall39 

Rheumatoid Arthritis: Anne Barton40, The Biologics in RA Genetics and Genomics Study 
Syndicate (BRAGGS) Steering Committee*, Ian N Bruce40, Hannah Donovan40, Steve 
Eyre40, Paul D Gilbert40, Samantha L Hider40, Anne M Hinks40, Sally L John40, Catherine 
Potter40, Alan J Silman40, Deborah PM Symmons40, Wendy Thomson40, Jane 
Worthington40 

Type 1 Diabetes: David G Clayton2, David B Dunger2,41, Sarah Nutland2, Helen E 
Stevens2, Neil M Walker2, Barry Widmer2,41, John A Todd2 

Type 2 Diabetes (Exeter): Timothy M Frayling42,43, Rachel M Freathy42,43, Hana Lango 
Allen42,43, John R B Perry42,43, Beverley M Shields43, Michael N Weedon42,43, Andrew T 
Hattersley42,43; (London): Graham A Hitman44; (Newcastle): Mark Walker45; (Oxford): 
Kate S Elliott3,7, Christopher J Groves7, Cecilia M Lindgren3,7, Nigel W Rayner3,7, Nicholas 
J Timpson3,46, Eleftheria Zeggini3,7, Mark I McCarthy3,7 

Tuberculosis (Gambia): Melanie Newport47, Giorgio Sirugo47; (Oxford): Emily Lyons3, 
Fredrik Vannberg3, Adrian VS Hill3 

Ankylosing Spondylitis: Linda A Bradbury48, Claire Farrar49, Jennifer J Pointon48, Paul 
Wordsworth49, Matthew A Brown48,49 

AutoImmune Thyroid Disease: Jayne A Franklyn50, Joanne M Heward50, Matthew J 
Simmonds50, Stephen CL Gough50 

Breast Cancer: Sheila Seal51, Breast Cancer Susceptibility Collaboration (UK)*, Michael 
R Stratton51,52, Nazneen Rahman51 

Multiple Sclerosis: Maria Ban53, An Goris53, Stephen J Sawcer53, Alastair Compston53 

Gambian Controls (Gambia): David Conway47, Muminatou Jallow47, Melanie Newport47, 
Giorgio Sirugo47; (Oxford): Kirk A Rockett3, Dominic P Kwiatkowski3,5 

DNA, Genotyping, Data QC and Informatics (Wellcome Trust Sanger Institute, 
Hinxton): Suzannah J Bumpstead5, Amy Chaney5, Kate Downes2,5, Mohammed JR 
Ghori5, Rhian Gwilliam5, Sarah E Hunt5, Michael Inouye5, Andrew Keniry5, Emma King5, 
Ralph McGinnis5, Simon Potter5, Rathi Ravindrarajah5, Pamela Whittaker5, Claire 
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Abstract 

Most common human traits and diseases have a polygenic pattern of 

inheritance: DNA sequence variants at many genetic loci influence phenotype. 

Genome-wide association (GWA) studies have identified >600 variants associated 

with human traits 1, but these typically explain small fractions of phenotypic 

variation, raising questions about the utility of further studies. Here, using 183,727 

individuals, we show that hundreds of genetic variants, in at least 180 loci, 

influence adult height, a highly heritable and classic polygenic trait 2,3. The large 

number of loci reveals patterns with important implications for genetic studies of 

common human diseases and traits. First, the 180 loci are not random, but instead 

are enriched for genes that are connected in biological pathways (P=0.002), and 

that underlie skeletal growth defects (P<0.001). Second, the likely causal gene is 

often located near the most strongly associated variant: in 13 of 21 loci containing 

a known skeletal growth gene, that gene was closest to the associated variant. 

Third, at least 19 loci have multiple independently associated variants, suggesting 

that allelic heterogeneity is a frequent feature of polygenic traits, that 

comprehensive explorations of already-discovered loci should discover additional 

variants, and that an appreciable fraction of associated loci may have been 

identified. Fourth, associated variants are enriched for likely functional effects on 

genes, being over-represented amongst variants that alter amino acid structure of 

proteins. Our data explain ~10% of the phenotypic variation in height, and we 

estimate that unidentified common variants of similar effect sizes would increase 

this figure to ~16% of phenotypic variation (~20% of heritable variation). Although 

approaches that more comprehensively survey low frequency variants are needed 

to fully dissect the genetic architecture of polygenic human traits, our findings 

indicate that GWA studies can identify large numbers of loci that implicate 

biologically relevant genes and pathways.  
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In Stage 1 of our study, we performed a meta-analysis of GWA data from 

46 studies, comprising 133,653 individuals of recent European ancestry, to identify 

common genetic variation associated with adult height. To enable meta-analysis of 

studies across different genotyping platforms, we performed imputation of 

2,834,208 single nucleotide polymorphisms (SNPs) present in the HapMap Phase 

2 European-American reference panel 4 (Supplementary Methods). After 

applying quality control filters, each individual study tested the association of adult 

height with each SNP using an additive model (Supplementary Methods). The 

individual study statistics were corrected using the genomic control (GC) method 

5,6 and then combined in a meta-analysis. We then applied a second GC correction 

on the meta-analysis statistics, although this approach may be overly conservative 

when there are many real signals of association (Supplementary Methods). We 

detected 207 loci (defined as 1Mb on either side of the most strongly associated 

SNP) as potentially associated with adult height (P<5x10-6, a threshold at which 

we would only expect 5 by chance).  

To identify loci robustly associated with adult height, we took forward at 

least one SNP (Supplementary Methods) from each of the 207 loci reaching 

P<5x10-6 into an additional 50,074 samples (Stage 2). In the joint analysis of our 

Stage 1 and Stage 2 studies, SNPs representing 180 loci reached genome-wide 

significance (P<5x10-8; Figure 1 and Supplementary Table 1). Additional tests, 

including genotyping of a randomly-selected subset of 33 SNPs in an independent 

sample of individuals from the tails of the height distribution 7, provided further 

validation of our results, with all but two SNPs showing consistent direction of 

effect (sign test P<7x10-8) (Supplementary Methods and Supplementary Table 

2). Similarly, 206 of the 207 lead SNPs had consistent directions of effect in 

Stages 1 and 2 (sign test P<10-62), indicating that there are almost certainly 

additional associated variants amongst the loci that narrowly missed genome-wide 

significance. 

Genome wide association (GWA) studies can be susceptible to false 

positive associations from population stratification 7. We therefore performed a 
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family-based analysis, which is immune to population stratification in 7,336 

individuals from two cohorts with pedigree information. Alleles representing 150 of 

the 180 genome-wide significant loci were associated in the expected direction 

(sign test P<6x10-20; Supplementary Table 3). The estimated effects on height 

were essentially identical in the overall meta-analysis and the family-based sample 

(Supplementary Table 3). Together with several other lines of evidence 

(Supplementary Methods), this indicates that stratification is not substantially 

inflating the test statistics in our meta-analysis.  

The large number of associated loci allowed us to address a number of 

questions about the genetic architecture of height, which will likely provide useful 

insights about other polygenic traits. One of the most important issues arising from 

GWA studies has been the question of missing heritability 8. To date, common 

genetic variants have typically explained only a small proportion of the heritable 

component of phenotypic variation. This is particularly true for height, where >80% 

of the variation within a given population is estimated to be attributable to additive 

genetic factors 9,10,11, but over 40 previously published variants explain only 3 to 

5% of the variance 12,13,14,15,16,17,18,19. One possible explanation is that many 

common variants of small effects contribute to phenotypic variation, and current 

GWA studies remain underpowered to detect the majority of common variants. 

Using a set of five studies independent from the GWA study discovery samples, 

we found that the 180 associated SNPs explained on average 10.5% (range 

between studies 7.9-11.2%) of the variance in adult height, compared with 4.7% 

(3.7-5.6%) of the variance explained by the previously known loci 

(Supplementary Methods). Thus, the identified genome-wide significant loci from 

the increase in sample size resulted in a doubling of phenotypic variation 

explained.  

We considered the possibility that additional loci not reaching stringent 

thresholds of genome-wide significance even in this large sample could contribute 

to additional heritability. We, therefore, tested how much more of the variation in 

height could be explained by a more inclusive set of variants, using an approach 
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recently described for schizophrenia 20. We showed that including SNPs 

associated with height at lower significance levels (in the range of 0.05>P>5x10-8) 

increased the variance explained to 13.3% (range 9.7-16.8%) in the same five 

study set (Figure 2a) (Supplementary Methods). 

As a separate approach, we used a recently developed method (Park et al., 

submitted) to estimate the total number of independent height-associated variants 

that are likely to exist with effect sizes similar to the ones described by our study. 

We obtained this estimate using the distribution of effect sizes observed in Stage 2 

and the power to detect an association in Stage 1, given these effect sizes 

(Supplementary Methods). The cumulative distribution of height loci, including 

those we identified and others as yet undetected, is shown in Figure 2b. We 

estimate that there are 697 loci (95% confidence interval (CI): 483, 1040) with 

effects equal or greater than those identified, which together would explain 

approximately 15.7% of the phenotypic variation in height or 19.6% (95% CI: 16.2-

25.6) of height heritability (Supplementary Table 4). We estimated that a sample 

size of 500,000 would be needed to detect 99.6% of these loci at P<5x10-8. It is 

important to note that this figure does not account for variants that have effect 

sizes smaller than those observed in the current study and, therefore, 

underestimates the contribution of undiscovered common loci to phenotypic 

variation. 

GWA studies have identified few, if any, examples of non-additive effects. 

We therefore assessed dominant, recessive, and pairwise interaction effects for 

the 180 associated variants in a subset of 103,034 analyzed individuals. We found 

no evidence of deviation from an additive model of inheritance, either for single 

variants or pairwise between variants (Supplementary Methods). In addition, 

there was no evidence for heterogeneity between sexes for the 180 variants 

(Supplementary Table 1). We also assessed all pairwise joint effects genome-

wide, using a smaller subset of 10,500 individuals genotyped at 343,249 SNPs 

(Supplementary Methods) and saw no evidence of genome-wide pairwise 

interaction (Supplementary Methods and Supplementary Tables 5 and 6). 
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These results therefore do not support a role for non-additive models of 

inheritance substantially contributing to variation in height.  

A further possible source of missing heritability is allelic heterogeneity – the 

presence of multiple, independent variants influencing a trait at the same locus. 

Because we only considered the most strongly associated variant within each of 

the 2Mb loci, it is possible that additional variants in those loci could be 

contributing to phenotypic variation in height. We performed genome-wide 

conditional analyses in a subset of the studies used in Stage 1, including a total of 

106,336 analyzed individuals. Each participating study repeated the primary GWA 

analysis but additionally adjusted for the SNPs representing the 207 loci 

associated at P<5x10-6 (Supplementary Methods). We then meta-analysed these 

studies in the same way as for the primary GWA study meta-analysis. In this 

conditional analysis, 19 SNPs within the 207 loci were associated with height at 

P<3.3x10-7 (a Bonferroni-corrected significance threshold calculated from the 

~15% of the genome covered by the 207 2Mb loci; Supplementary Methods; 

Table 1, Figure 3). The distances of the second signals to the lead SNPs 

suggested that both are likely to be affecting the same gene, rather than being 

coincidentally in close proximity. At 17 of 17 loci (excluding two contiguous loci in 

the HMGA1 region), the second signal occurred within 500kb, rather than between 

500kb and 1 Mb, of this lead SNP (binomial test P=2x10-5). Further analyses of 

allelic heterogeneity may identify additional variants that increase the proportion of 

variance explained. For example, within the 207 2Mb loci, a total of 48 

independent SNPs (19 at P<3.3x10-7 plus an additional 29) reached P<1x10-5 

when we would expect <2 by chance at this level of significance. Finally, this 

analysis can only detect two independent signals at each locus, and at some loci, 

there are likely to be multiple independent signals that will require additional 

rounds of conditional analysis to be robustly identified. 

Whilst GWA studies have identified many variants robustly associated with 

common human diseases and traits, the biological significance of these variants, 

and the genes on which they act, is often unclear. We used the large number of 
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height loci to address two further questions of potential relevance to all polygenic 

traits: the extent to which associated variants are over-represented amongst 

putatively functional variants, and the extent to which associated loci contain 

genes of known relevance to the phenotype.  

We first tested the overlap between the 180 height-associated variants and 

missense polymorphisms, the putative functional variants, and copy number 

variants (CNVs). Height variants were 1.7-fold more likely to be closely correlated 

(r2 0.8 in HapMap CEU) with nonsynonymous SNPs (P=0.004) (Supplementary 

Methods, Supplementary Table 7), but there was no correlation with CNV-

tagging SNPs (Supplementary Methods). We also noted five loci where the 

height associated variant was strongly correlated (r2>0.8) with variants associated 

with other traits and diseases (at P<5x10-8), including bone mineral density, 

rheumatoid arthritis, type 1 diabetes, psoriasis and obesity, suggesting that these 

variants have pleiotropic effects on human phenotypes (Supplementary 

Methods; Supplementary Table 8). 

To address the extent to which height variants cluster near biologically relevant 

genes, we performed a number of analyses. First, we tested whether the signals of 

association cluster near genes mutated in human syndromes characterized by 

abnormal skeletal growth. We limited this analysis to the 652 genes occurring 

within the recombination hotspot-bounded regions surrounding each of the 180 

index SNPs. We showed that the 180 loci associated with variation in normal 

height contained 21 of 241 genes (8.7%) found to underlie such syndromes 

(Supplementary Table 9), compared to a median of 8 (range 1-19) genes 

identified in 1,000 matched control sets of regions (P<0.001). Interestingly, in 13 of 

these 21 loci the closest gene to the most associated height SNP in the region is 

the growth disorder gene, and in 9 of these cases, the most strongly associated 

height SNP is located within the growth disorder gene itself (Supplementary 

Methods; Supplementary Table 10). These results suggest that GWA studies 

may provide more clues about the identity of the functional genes at each locus 

than previously suspected.  
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Next, we investigated whether significant and relevant biological 

connections exist between the genes within the 180 loci, using two different 

approaches. We used the GRAIL text-mining algorithm to search for connectivity 

between genes near the associated SNPs, based on existing literature 21. Of the 

180 loci, 42 contained genes that were connected by existing literature to genes in 

the other associated loci (the pair of connected genes appear in articles that share 

scientific terms more often than expected at P<0.01). For comparison, when we 

used GRAIL to score 1,000 sets of 180 SNPs not associated with height (but 

matched for number of nearby genes, gene proximity, and allele frequency), we 

only observed 2 sets with 42 or more loci with a connectivity P<0.01, thus 

providing strong statistical evidence that the height loci are functionally related 

(P=0.002) (Figure 4a). For the 42 regions with GRAIL connectivity P<0.01, the 

implicated genes and SNPs are highlighted in Figure 4b. The most strongly 

connected genes include those in the Hedgehog, TGF-beta, and growth hormone 

pathways. 

Finally, we used a novel implementation of gene set enrichment analysis 

(GSEA) (Meta-Analysis Gene-set Enrichment of variaNT Associations, MAGENTA 

(Segrè et al., in revision)) and the biological process classification from the 

INGENUITY, KEGG, PANTHER and Gene Ontology databases to perform 

pathway analysis (Supplementary Methods). This analysis revealed 17 different 

biological pathways and 14 molecular functions nominally enriched (P<0.05) for 

associated genes, many of which lie within the validated height loci. These gene-

sets include previously reported12,14 (e.g. Hedgehog signaling) and novel (e.g. 

TGF-beta signaling, histones, and growth and development-related) pathways and 

molecular functions (Supplementary Table 11). These results provide 

complementary evidence for some of the genes and pathways highlighted in the 

GRAIL analysis. For instance, genes such as TGFB2 and LTBP1-3 highlight a role 

for the TGF-beta signaling pathway in regulating human height, consistent with the 

recent implication of this pathway in Marfan syndrome 22. 
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We have identified over a hundred novel loci that influence the classic, 

polygenic trait of normal variation in human height, bringing the total to 180. Our 

results have potential implications for studies seeking to understand the genetic 

component to common diseases and traits. We show that loci identified by GWA 

studies highlight relevant genes: the 180 loci associated with height are non-

randomly clustered within biologically relevant pathways and are enriched for 

genes that are involved in growth-related processes, that underlie syndromes of 

abnormal skeletal growth, and that even encode therapies or targets for therapies 

that modulate growth (GH1, IGF1R, CYP19A1, ESR1). The large number of loci 

with clearly relevant genes suggests that the remaining loci could provide potential 

clues to important and novel biology.  

We provide the strongest evidence yet that the causal gene will often be 

located near the most strongly associated DNA sequence variant. At the 21 loci 

containing a known growth disorder gene, that gene was on average 81 kb from 

the associated variant, and in over half of the loci, it was the closest gene to the 

associated variant. Despite recent doubts about the benefits of GWA studies 23, 

this finding suggests that GWA studies are useful mapping tools to highlight genes 

that merit further study. The presence of multiple variants within associated loci 

(allelic heterogeneity), could help localize the relevant genes within these loci. 

By increasing our sample size to over 100,000 individuals, we identified 

common variants that account for 10.5% of phenotypic variation, with another ~6% 

of the phenotypic variance explained by common variants of similar effects yet to 

be discovered. Although 10.5% of phenotypic variation (13% of genetic variation) 

accounted for by the 180 loci is larger than predicted under some models 23, this 

figure suggests that GWA studies, as currently implemented and when applied to 

realistic sample sizes, may not explain a majority of the estimated 80% 

contribution of genetic factors to variation in height. This conclusion supports the 

idea that biological insights, rather than predictive power, will be the main outcome 

of this initial wave of GWA studies, and that new approaches, which could include 

sequencing studies or GWA studies targeting variants of lower frequency, will be 
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needed to account for more of the “missing” heritability. Our finding that many loci 

exhibit allelic heterogeneity suggests that many as yet unidentified causal variants 

will map to the loci already identified in GWA studies, and that the fraction of 

causal loci that have been identified could be substantially greater than the fraction 

of causal variants that have been identified. 

The observed contributions of common and rare variants to heritability will 

be dependent on the particular phenotype, as well as on the power of future 

studies to detect both common and rare variants with modest effects. We note 

that, in our studies, many associated variants are tightly correlated with common 

nonsynonymous SNPs, which would not be expected if these associated common 

variants were proxies for collections of rare causal variants, as has been proposed 

24. Although a substantial contribution to heritability by less common and/or quite 

rare variants may be more plausible, our data do not rule out the regulation of 

height by a large number of common variants of very small effect. 

In summary, our findings indicate that additional approaches, including 

those aimed at less common or rare variants, will likely be needed to dissect more 

completely the genetic component to complex human traits. Our results also 

strongly demonstrate that GWA studies can identify large numbers of loci that 

together implicate biologically relevant pathways and mechanisms. We envision 

that thorough exploration of the genes at associated loci through additional 

genetic, functional, and computational studies will lead to novel insights into 

human height and other polygenic traits and diseases.  
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Methods summary 

The primary meta-analysis (Stage 1) included 46 GWA studies of 133,653 

individuals. The in-silico follow up (Stage 2) included 15 studies of 50,074 

individuals. All studied individuals were of European ancestry and >99.8% were 

adults. Details of genotyping, quality control, and imputation methods of each 

study are given in Supplementary Methods Tables 1 and 2. Each study provided 

summary results of a linear regression of age-adjusted, within-sex Z scores of 

height against the imputed SNPs, and an inverse-variance meta-analysis was 

performed in METAL (http://www.sph.umich.edu/csg/abecasis/METAL/). Validation 

of selected SNPs was performed through direct genotyping in an extreme height 

panel (N=3,190) using Sequenom iPLeX, and in 492 Stage 1 samples using the 

KASPar SNP System. Family-based testing was performed using QFAM, a linear 

regression-based approach that uses permutation to account for dependency 

between related individuals 25, and FBAT, which uses a linear combination of 

offspring genotypes and traits to determine the test statistic26. We used a 

previously described method to estimate the amount of genetic variance explained 

by the nominally associated loci (using significance threshold increments from 

P<5×10-8 to P<0.05) 20. To predict the number of height susceptibility loci, we took 

the height loci that reached a significance level of P<5x10-8 in Stage 1 and 

estimated the number of height loci that are likely to exist based on the distribution 

of their effect sizes observed in Stage 2 and the power to detect their association 

in Stage 1. Gene-by-gene interaction, dominant, recessive and conditional 

analyses are described in detail in Supplementary Methods. Empirical 

assessment of enrichment for coding SNPs used permutations of random sets of 

SNPs matched to the 180 height-associated SNPs on the number of nearby 

genes, gene proximity, and minor allele frequency. GRAIL and GSEA methods 

have been described previously 21 (Segre et al., submitted). To assess possible 

enrichment for genes known to be mutated in severe growth defects, we identified 

such genes in the OMIM database (Supplementary Table 10), and evaluated the 

extent of their overlap with the 180 height-associated regions through comparisons 
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with 1000 random sets of regions with similar gene content (+10%). The design of 

the study, SNPs taken forward and additional analyses are summarised below. 
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Table 1: Secondary signals at associated loci after conditional analysis. 19 independent SNPs reached a P<3.3x10-7, a 
Bonferroni significance threshold based on the proportion of the genome covered by the 207 loci. The results are based on a 
subset of 106,336 individuals. aHapMap CEU phase II release 23 was used; bthis is the nearest gene or a known skeletal growth 
disorder gene in the locus (underlined). Positions are based on NCBI build 36. *nearest conditioned SNP where second signal 
occurs within 1Mb of two conditioned SNPs. 
 

Second signal 
SNP 

Conditioned 
SNP Chr 

Second signal 
SNP position 

Distance of conditioned 
SNP from index SNP 

(bp) HapMap
a 
r
2
 

Second signal 
P-value after 
conditioning 

Second signal 
P-value pre-
conditioning Gene

b
 

rs2280470 rs16942341 15 87196630 6721 0.009 1x10
-14

 1x10
-15

 ACAN 

rs10859563 rs11107116 12 92644470 141835 0.003 3x10
-12

 8x10
-10

 SOCS2 

rs750460 rs5742915 15 72028559 95127 0.004 4x10
-12

 7x10
-08

 PML 

rs6938239 rs2780226* 6 34791613 484583 0.019 6x10
-12 

9x10
-14 

HMGA1 

rs7652177 rs572169 3 173451771 196650 0.006 7x10
-11

 1x10
-11

 GHSR 

rs7916441 rs2145998 10 80595583 196119 0.112 6x10
-10

 3x10
-07

 PPIF 

rs3792752 rs1173727 5 32804391 61887 0.02 7x10
-10

 4x10
-08

 NPR3 

rs10958476 rs7460090 8 57258362 98355 0.02 1x10
-09

 5x10
-13

 SDR16C5 

rs2353398 rs7689420 4 145742208 45594 0.022 2x10
-09

 1x10
-10

 HHIP 

rs2724475 rs6449353 4 17555530 87056 0.098 2x10
-09

 8x10
-16

 LCORL 

rs2070776 rs2665838 17 59361230 41033 0.15 9x10
-09

 1x10
-14

 GH region 

rs1401796 rs227724 17 52194758 60942 0.005 2x10
-08

 7x10
-07

 NOG 

rs4711336 rs2780226* 6 33767024 540046 0.111 3x10
-08

 5x10
-08

 HMGA1 

rs6892884 rs12153391 5 170948228 187815 0 4x10
-08

 2x10
-05

 FBXW11 

rs1367226 rs3791675 2 55943044 21769 0.204 4x10
-08

 0.1245 EFEMP1 

rs2421992 rs17346452 1 170507874 187964 0.019 5x10
-08

 1x10
-05

 DNM3 

rs225694 rs7763064 6 142568835 270147 0.001 1x10
-07

 2x10
-06

 GPR126 

rs10187066 rs12470505 2 219223003 393610 0.022 2x10
-07

 5x10
-08

 IHH 

rs879882 rs2256183 6 31247431 241077 0.016 2x10
-07

 8x10
-08

 MICA 
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Figure Legends 

Figure 1. 180 loci associated with adult height variation. (A) Karyogram 

displaying the genome location of the 180 height SNPs identified from the primary 

meta-analysis (green) and the 19 secondary signals (red) discovered in the 

conditional analysis to be associated with height. The closest genes to the SNPs 

(gray) are followed by a MIM (blue) label if the gene underlies a skeletal growth-

related Mendelian disorder described in OMIM. (B) Quantile-quantile plot of SNPs 

after Stage 1 GIANT GC-corrected meta-analysis (black), after removal of SNPs 

near 47 loci previously shown to associated with height in Caucasians (blue), and 

after removal of SNPs near 180 loci shown to associate with height in this study 

(red). All SNPs near (2Mb window) or in linkage disequilibrium (r2 ≥0.01) with the 

47 or 180 index height SNPs were excluded to draw the blue and red distributions, 

respectively. 

Figure 2. Phenotypic variance explained by common variants. (A) Variance 

explained is higher when SNPs not reaching genome-wide significance are 

included in the prediction model. The y-axis represents the proportion of variance 

explained at different P-value thresholds from Stage 1 meta-analysis. Results are 

given for five studies that were not part of the GWA discovery set (Stage 1). 

*Proportion of variation explained by 180 SNPs reaching genome-wide 

significance in Stage 1+2 meta-analysis. (B) Cumulative number of susceptibility 

loci expected to be discovered, including those we have already identified and 

others as yet undetected, by the expected percentage of phenotypic variation 

explained and sample size required assuming a GC correction utilized. The 

projections are based on loci that achieved a significance level of P<5x10-8 in the 

initial scan and the distribution of their effect sizes in Stage 2. The dotted red line 

corresponds to expected phenotypic variance explained by the 110 loci that 

reached genome-wide significance in Stage 1, were replicated in Stage 2 and had 

at least 1% power. 
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Figure 3. Example regional association plots of loci with secondary signals 

from conditional analysis before and after conditioning. The plots are 

centered on the conditioned SNP (shown as the yellow diamond) at the locus. The 

secondary signal SNP is highlighted as the pink diamond. r2 is based on the CEU 

HapMap II samples. The blue line and right hand Y axis represent CEU HapMap II 

based recombination rates. LD Plots were created by LocusZoom 

(http://csg.sph.umich.edu/locuszoom/). 

Figure 4. Loci associated with height contain genes related to each other. (A) 

180 SNPs associated with adult height variation. The y-axis plots GRAIL P-values 

on a log scale. The histogram on the left side corresponds to the distribution of 

GRAIL P-values for 1,000 sets of 180 matched SNPs. The scatter plot on the right 

represents GRAIL results for the 180 height SNPs found in this study (blue dots). 

The black horizontal line marks the median of the GRAIL P-values (P=0.14). The 

top 10 keywords linking the genes were: „growth‟, „kinase‟, „factor‟, „transcription‟, 

„signaling‟, „binding‟, „differentiation‟, „development‟, „insulin‟, „bone‟. (B) Graphical 

representation of the connections between SNPs and corresponding genes for the 

42 SNPs with GRAIL P<0.01. Thicker and redder lines imply stronger literature-

based connectivity. 
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Figure 1A: Genome locations of the 199 height SNPs associated with height. 
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Figure 1B: Quantile-quantile plot for height. 
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Figure 2A: Proportion of phenotypic variance explained. 

 
 
Figure 2B: Predicted number of height loci. 
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Figure 3. Examples of secondary signals before and after conditional 
analysis. 
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Figure 4: GRAIL analysis 
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Supplementary Methods 

1. Primary genome-wide association meta-analysis (Stage 1) 

In Stage 1, we combined the height summary statistics from 46 genome-

wide association (GWA) studies in a meta-analysis of 133,653 individuals (60,587 

males and 73,066 females).  

1.1 Description of individual cohorts and genotyping methods 

Descriptive characteristics, study design, sample size, sample quality 

control (QC) and anthropometric measurement technique for the studies included 

in Stage 1 are provided in Supplementary Methods Table 1. All individuals were 

Caucasians of European ancestry. Approximately 45% of the individuals were 

male, and the ages ranged from 14 to 103 years (99.7% of the samples were >18 

years old). All participants provided written informed consent and the studies were 

approved by the respective Local Research Ethics committees or Institutional 

Review Boards.  

Details on the genotyping platform used and genotype quality control 

procedures employed for each study are presented in Supplementary Methods 

Table 2.  

1.2 Imputation  

All cohorts were genotyped using commercially available Affymetrix 

(Affymetrix, Inc., Santa Clara, CA, USA), Illumina (Illumina, Inc., San Diego, CA, 

USA) genotyping arrays, or custom Perlegen (Perlegen Sciences, Inc., Mountain 

View, CA, USA) arrays. Quality control was performed independently for each 

study. To facilitate meta-analysis, each group performed genotype imputation 

using BIMBAM1, IMPUTE2, or MACH3 and genotypes from the Phase II CEU 

HapMap4. Each imputation software estimates an overall imputation quality score 

for each SNP. For example, IMPUTE calculates the „proper info‟ statistic which is a 

measure of the observed statistical information for the estimate of allele frequency 
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of the SNP, while MACH calculates the „rsq_hat‟, which is the estimated r2 

between each imputed genotype and its true underlying genotype. Study-specific 

details are presented in Supplementary Methods Table 2. 

1.3 GWA analyses in individual cohorts 

Details on study-specific analysis software are summarized in 

Supplementary Methods Table 2. Each GWA study tested association between 

each imputed or genotyped SNP and sex-standardized height, assuming an 

additive inheritance model and adjusting for age and other appropriate covariates 

specific to the study (e.g. genotype-based principal components). Studies with 

unrelated individuals tested association under a linear regression framework. 

Studies with related samples used variance component or other linear mixed 

effects modeling to account for relatedness in the regression. The uncertainty of 

the imputed genotypes was taken into account in the association analysis using 

methods appropriate for the imputation software used.  

The genomic control (GC) inflation factor was calculated for each of the 

GWA scans separately. The average GC inflation factor was 1.03 

(Supplementary Methods Table 2). Genomic control correction was applied to 

results for each study prior to meta-analysis by multiplying SNP standard errors by 

the square root of the inflation factor. 

1.4 Quality control checks of individual studies 

Where applicable, the Stage 1 studies calculated separate summary GWA 

data in males and females and disease cases and controls. Except for studies with 

related individuals, we used the sex-specific summary results. Each file going into 

meta-analysis had the following information (columns): SNP, strand, N (sample 

size), effect allele (allele to which regression coefficient refers), other allele, EAF 

(effect allele frequency), imputation (posterior probability of imputed genotype, 

available from some programs), information type (imputation software used), 

information (imputation quality scores), P-value, beta (regression coefficient), 

standard error, and NxMAF (sample size multiplied by minor allele frequency). 
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Each file was processed through a cleaning script that performed several quality 

checks, including calculating the number of markers, ranges of test statistics, the 

genomic correction inflation factor, and NxMAF. From each study we excluded 

monomorphic SNPs and SNPs with poor imputation quality: rsq_hat < 0.3 

(BIMBAM and MACH) or proper info < 0.4 (IMPUTE).  

1.5 Meta-analysis of GWA studies 

A total of 2,836,010 autosomal SNPs were meta-analyzed across 98 input 

files (many of the 50 cohorts had separate male-female and/or case-control files). 

We did not apply a minor allele frequency cut-off, but we did apply an arbitrary cut-

off of NxMAF > 3 (equivalent to a minor allele count of 6) to guard against 

extremely rare variants present in only one or two samples (possible 

genotyping/imputation errors or private mutations), for which regression 

coefficients are not estimated well using the standard statistical methods 

employed in most GWA statistical programs.  

We used the inverse-variance fixed effects meta-analysis method to 

combine the results from the individual studies. For comparison purposes, we also 

performed a sample size weighted Z-score-based fixed effects meta-analysis. The 

correlation coefficient between the log10 of the P-values of the inverse variance 

and sample size weighted meta-analysis was 0.99. SNP selection for follow-up 

was based on the meta-analysis of the inverse variance meta-analysis results. 

Meta-analyses were performed using the software program METAL 

(www.sph.umich.edu/csg/abecasis/metal).  

1.6 Overall genomic control correction  

After genomic control applied in each study the overall genomic control 

inflation factor ( GC) for the meta-analysis was 1.42. The possibility that such high 

inflation is due to effects of population stratification or genotyping biases alone is 

unlikely, considering the different results presented in Supplementary section 4 

which argue against this. In an attempt to identify other sources for such inflation, 
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we removed all SNPs within 1Mb from the leading SNP in loci with SNPs reaching 

P<5x10-8, which yielded a similarly high GC=1.33. Next, in a simulated phenotype 

dataset we evaluated the potential role of multiple causal variants failing to reach 

genome-wide significance. Using a model comprising 120,000 subjects, 294,831 

SNPs, and 1000 causal variants, the GC increased in a near linear way from 1.15 

to 1.32, as heritability (h2) increased from 0.2 to 0.8. Alternatively, increasing the 

number of causal variants from 100 to 4000 while keeping heritability constant (at 

0.52) increased the GC from 1.1 to 1.6 5. The latter observed data are consistent 

with a model containing many causal variants that are in LD with multiple SNPs 

resulting in inflated test statistics. Although our data imply that a second GC 

correction on the meta-analysis statistics may be overly conservative, we decided 

to apply anyway a second genomic control correction to the meta-analysis 

standard errors and P-values. 

1.7 Selection of SNPs for subsequent analyses 

SNP selection criteria for validation by genotyping, in silico replication, and 

all additional analyses and simulations, based on the results of Stage 1 GWA 

meta-analysis, are described below. 

2. In silico follow-up (Stage 2) 

2.1 SNP selection  

We took forward for replication 309 SNPs. These included the 207 index 

SNPs representing each of the 207 2Mb loci reaching P<5x10-6 in Stage 1 and 

102 SNPs that lie within the same 2Mb windows as the 207, but which were poorly 

correlated (r2<0.05) with the index SNP in CEU HapMap II samples. No minimum 

sample size was used for SNPs taken forward for replication, although we note 

that the minimum N for the 207 variants taken forward from Stage 1 to Stage 2 

was 78,550 (for SNP rs11714558 that reached Stage 1+2 P-value of 1.7x10-10). 

Subsequent analyses are based on the index SNPs from the 207 loci and the 19 
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SNPs within the 2 Mb windows that were confirmed to be independent by the 

conditional analysis described below. 

2.2 Description of Stage 2 populations 

Our in silico replication (Stage 2) included 50,074 individuals (12,651 

males, 37,423 females) from 15 additional GWA studies. Approximately 26% of 

the subjects were male (one large study was entirely female), and ages ranged 

from 17 to 113 years (all but 5 individuals were >18 years old). Brief study 

descriptions, details on sample quality control, genotyping and imputation 

methods, and descriptive statistics, are provided in Supplementary Methods 

Tables 1-3.  

2.3 Quality control checks of individual studies in Stage 2 

The Stage 2 studies provided the same summary GWA statistics as Stage 

1 studies, but only for the requested 309 SNPs. In addition to the QC checks 

performed in the stage 1 studies (section 1.4 above), we checked the direction of 

effects for the 309 SNPs in replication studies compared to the overall effects in 

the Stage 1 meta-analysis. In only one of the cohorts (Sorbs), fewer than 50% of 

the SNPs had effects in the same direction (47% for males, N=371; 50% for 

females, N=536). As expected, the largest study showed greatest consistency with 

the stage 1 meta-analysis results: 98% of SNPs in the same direction in the 

WGHS, N=32,099). We meta-analyzed these studies in METAL assuming a fixed 

effects model. When we examined the heterogeneity between Stage 2 studies, 

only one SNP (rs7567288) had a heterogeneity P-value smaller that that expected 

by chance (Phet = 5.6x10-6) (see Supplementary Table 1).  

3. Meta-analysis of Stage 1 and Stage 2 

The overall meta-analysis combined Stage 1 and Stage 2 results for the 

309 SNPs using a fixed effects model. No SNP showed evidence of heterogeneity 

between Stage 1 and Stage 2 after accounting for the number of tests performed, 
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and only a single SNP had the opposite direction of effect in Stage 2 compared to 

Stage 1. 

4. Validation analyses for genotyping and population stratification  

4.1 Imputation validation 

To validate genotype imputation, we directly genotyped 27 height 

associated SNPs from the 207 loci in 492 subjects from the WTCCC-T2D study. 

These 27 SNPs were tested because they were not present on any of the most 

commonly used arrays (used by >2 studies) and did not have any perfect directly-

typed proxies (HapMap r2=1). We also genotyped a random subset of 18 

additional height associated SNPs from these 207 loci in the same samples. 

Genotyping was performed by Kbioscience (Herts, UK) using a KASPar-based 

singleplex assay (details of which are available on their website 

www.kbioscience.co.uk/chemistry/chemistry_Kasp_intro.htm). Forty-three SNPs 

passed genotyping quality control (HWE P>0.01; genotype success rate > 0.9; 

duplicate error rate <0.5%). We assessed imputation quality by determining the 

correlation between the directly ascertained genotypes and the genotype dosages 

produced by IMPUTE (the imputation program used in WTCCC-T2D). We then 

compared the observed R2 to the proper_info statistic produced by IMPUTE (which 

is essentially a predicted R2 between imputed genotype and actual genotype). The 

correlation between the predicted and the observed R2 was high for both the 

random set of SNPs (r=0.92) and for SNPs that were not well captured (r=0.84). 

This suggests that imputation uncertainty has been appropriately accounted for in 

our analyses. 

4.2 Direct genotyping in subjects from tails of height distribution 

For additional validation, we genotyped randomly chosen SNPs 

representing 33 of the 207 associated loci in an independent samples of 2,181 

European-American and 1,009 Polish subjects from the tails of the height 

distribution (5-10th and 90-95th percentile)6. These height case-control samples 

and the genotyping methods have been described previously6. For both panels, all 
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individuals were self-described "white" or "Caucasian." For the US panel, all 

subjects were born in the US, and all of their grandparents were born in either the 

US or Europe. All subjects in the Polish panel were born in Poland, and all 

grandparents were born in Europe or Russia. All subjects gave informed consent, 

and approval was obtained from the Institutional Review Board of Children's 

Hospital, Boston. Statistical analysis was performed using a Cochran-Mantel-

Haenszel test, as implemented in PLINK7. The data set was stratified according to 

the country of origin of the grandparents to account for population stratification 

within the European American height panel6. 

Power to replicate the direction of effect of the top 180 height SNPs in the 

extreme height panel was calculated using the Genetic Power Calculator 

(http://pngu.mgh.harvard.edu/~purcell/gpc/) based on the following assumptions: a 

sample size of 3,190 equally divided between individuals in the lower tail (5th-10th 

percentile) and the upper tail (90th-95th percentile) of the height distribution, 

variance explained between 0.005-0.3% of the height variation (consistent with our 

effect size estimates of Stage 2 data, using the equation from quantitative genetics 

σ2
g = 2*p*q*α2, where σ2

g is the additive genetic variance, p and q are the allele 

frequencies, and α is the effect size in SD units), and 3 different minor allele 

frequencies. Under these assumptions, power is minimally affected by minor allele 

frequency. 

Variance 
explained 

MAF=5% MAF=25% MAF=50% 

0.005% 56% 56% 56% 

0.01% 62% 62% 62% 

0.05% 88% 88% 88% 

0.1% 97% 97% 97% 

0.2% >99% >99% >99% 

0.3% >99% >99% >99% 
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4.3 Family-based association analyses 

The family-based analysis performed to assess the influence of population 

stratification as a potential source of false positive associations in the discovered 

180 loci, comprised the Framingham Heart (FramHS) and the Erasmus Rucphen 

Family-based (ERF) studies. The design of the studies has been described 

elsewhere8,9. The family-based analyses was performed in FramHS (n=5,510) 

using the QFAM --within procedure from PLINK, running 100,000 permutations to 

account for the dependence between related individuals. Effect sizes and 

directions in FramHS were the betas reported by PLINK from the within 

component but p values were empirical, based on the permutation testing. The 

extended pedigree of ERF was broken into nuclear families (totaling 1,826 

individuals) and analyzed with FBAT10 which uses a linear combination of offspring 

genotypes and traits to determine the test statistic. For imputed SNPs, only those 

with MACH rsq_hat>0.3 were analyzed, using the best guess genotypes from 

dosages (for FramHS, directly genotyped proxies were also analyzed for 

comparison and gave similar results). P-values were meta-analyzed using a 

weighted Z-score–based meta-analysis implemented in METAL; if data were only 

available from one study, the P-value from that study was used. Weights were 

defined based on effective sample size (actual sample size/lambda, where lambda 

is the genomic control inflation factor calculated from the GWA data of the family-

based samples when ignoring relatedness). The direction of the effect allele in the 

FHS/ERF meta-analysis was compared to that observed in the GIANT meta-

analysis using an exact sign-test statistic based on a binomial distribution. The 

average estimated effect sizes were essentially identical in the GIANT meta-

analysis and the FramHS family-based sample (Supplementary Table 3), 

suggesting that there is minimal if any inflation of the GIANT effect sizes due to 

stratification. 

4.4 Other population stratification analyses 

We checked if the 180 height-associated variants included ancestry 

informative marker (AIM) SNPs previously identified as highly informative of the 
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sub-structure in European populations. We tested the correlations between height 

loci and 683 AIMs from 3 different sources11,12,13. These included AIMs from both 

the HLA and lactase loci. The largest HapMap CEU r2 correlations between height 

SNPs and AIMs were observed for the GDF5 and EFEMP1 variants (r2 = 0.3 and 

0.35, respectively). All other pairwise correlations, including those at the HLA 

locus, had r2<0.2.  

We also assessed the absolute values of EIGENSTRAT14 loading scores 

along the principal component of ancestry that corresponds roughly to the North-

South intra-European axis that is correlated with height6 (absolute values of 

loading scores are a measure of allele frequency differentiation along this axis). 

The absolute values of loading scores for the height-associated SNPs was not 

significantly greater than those of 1,000 sets of allele frequency matched SNPs 

(P=0.08). We also compared Fst values (a measure of the proportion of genetic 

diversity due to differences among populations) for the 180 SNPs with sets of 

matched SNPs and the Fst values of the height-associated SNPs were not different 

when calculated by cohort, although they were nominally significantly higher 

(P=0.04) when grouped by country. Together with the family-based analysis, these 

results strongly suggest that the observed associations with height are unlikely to 

be appreciably affected by population stratification. 

5. Percentage variation explained and number of loci 

5.1 Estimation of variance explained and polygene analysis 

We used a method recently proposed by the International Schizophrenia 

Consortium15 to evaluate the amount of phenotypic variance explained by our 

associated loci in an independent validation set including the Fingesture (Finland), 

RS-II & RS-III (Netherlands), GOOD (Sweden) and QIMR (Australia or UK origin) 

studies. To avoid the influence of potential cryptic relatedness between discovery 

and validation set, a “leave one out” analysis was performed, namely excluding in 

the discovery set in turn, all studies from one of the four European countries of the 

validation set (Finland, Netherlands, Sweden and UK). 
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The method followed three steps: 1) selection of markers to build a prediction 

model, 2) scoring each individual based on model and 3) estimation of variation 

explained using the scores as predictor.  

First, we re-ran the meta-analysis using the “leave one out” approach and 

selected the SNPs that were genotyped in each validation study. For each of these 

four meta-analysis, a list of independent SNPs associated with height at various P-

value thresholds (from P<5×10-8 to P<0.05) was computed (using the clumping 

procedure implemented in PLINK, with an LD-based threshold of r2≥0.05, and a 

physical distance of 1 Mb from the top hit). 

Second, using the selected SNPs from the revised meta-analyses 

described above, we performed profile scoring for each individual of the five 

validation studies as implemented in PLINK, where: 

Scorei=∑j=1 to m b j xij , where 
m= number of SNPs 
b j =effect of allele at locus j  
xij=number of reference alleles of individual i at locus j 

Third, the measure of variance explained (adjusted R2) is estimated from a 

linear regression model incorporating the score as the predictor and the age-

adjusted standardized height residuals as outcome.  

This approach was applied for the estimation of variance explained by the 43 

previously published loci, the discovered 180 genome-wide significant loci and the 

polygene results incorporating different sets of markers at different significance 

thresholds.  

5.2 Prediction of number of susceptibility loci 

We utilized a new method (Park et al, submitted) to estimate the number of 

susceptibility loci that are likely to exist based on the distribution of effect sizes 

observed for established height loci and the power to detect those effects in the 

original scan. To be conservative and obtain unbiased estimates of the effect 

sizes, we only utilized the 118 loci that reach a significance threshold of P<5x10-8 
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in the Stage 1 meta-analysis, and the Stage 2 replication data was used to 

estimate the effect sizes for these loci.  Power was calculated based on the 

sample size for Stage 1 accounting for the number of SNPs that could be identified 

with the particular effect size. Only SNPs that had a power of at least 1% were 

used in the predication. The phenotypic variance explained was estimated by 

summing the product of each effect size and the number of loci predicted with that 

particular effect size. The genetic variance explained was estimated assuming 

heredity accounts for 80% of the variance in height. A parametric bootstrap 

method was used to obtain an estimate of the variability of the estimated number 

of loci.  

6. Gene by gene (GxG) interaction, dominant and recessive analyses 

6.1 Associated loci analyses 

To perform the GxG, dominant and recessive analyses for just the 

associated loci, each individual study extracted genotype imputation dosages for 

each of the 207 lead SNPs from the Stage 1 meta-analysis (based on 2Mb 

distance pruning; P<5x10-6). These dosages were also used for the conditional 

analysis described below. 

An R-script (available on request) was provided to each individual study 

and was run using the extracted dosages. The allele coding was such that the 

height increasing allele (based on the Stage 1 meta-analysis) was always the 

dosage increasing allele (i.e. the height increasing allele was coded as allele 2). 

For the additive dosage and pairwise interaction (Y=b0+b1.A+b2.B+b3.AB+e; Test 

of b3 = 0) analyses, the dosages were then regressed against residuals of sex-

standardized Z-score height, adjusted for age and appropriate covariates (e.g. 

principal components), as with the primary GWA study, under the appropriate 

models. For the additive best-guess (performed for quality control purposes), 

recessive, dominant and dominance deviation analyses “best guess” genotypes 

were assigned based on genotype dosage, and these genotypes were similarly 

regressed against Z-score height under the appropriate model. 
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We meta-analysed individual study results using METAL. We performed 

meta-analyses for the additive, dominant, recessive, dominant deviation and 

pairwise interaction terms. We excluded SNPs from individual studies where 

NxMAF < 10 and/or imputation quality was < 0.4. We also re-ran the meta-

analyses excluding SNPs with a NxMAF < 30 and imputation quality < 0.9, 

because deviation from additivity is harder to detect if the genotype has not been 

accurately imputed. The results were essentially the same. As an additional quality 

check we compared the additive dosage and additive best guess results from this 

meta-analysis to that from obtained from the primary Stage 1 meta-analysis files, 

and the correlation were very high (r>0.99). Results for the single SNP models, 

and the top results from the GxG interaction analysis are presented in 

Supplementary Table 5 and 6. 

6.2 Genome-wide joint effect analysis 

For the genome-wide analysis we used 10,618 individuals from four 

WTCCC studies (T2D, CAD, HT, NBS) and the EPIC-obesity study where we had 

access to individual level genotype data and study and sex-standardised, age-

adjusted height Z-scores. All the studies were genotyped using the Affymetrix 

500K platform (Affymetrix, Inc., Santa Clara, CA, USA). After quality control 

(including genotype success rate >95%; MAF>1% and HWE P>0.0001), 343,249 

autosomal SNPs were used in the analysis. 

As a genome-wide pairwise interaction analysis was not computationally 

feasible we performed two separate analyses. First, we performed a pairwise 

analysis of all SNPs with individual SNP P<0.01 with each other 

(Y=b0+b1.A+b2.B+b3.AB+e; Test of b3 = 0). Second, we performed a genome-

wide pairwise analysis testing the full model (an 8 d.f. model). SNP pairs 

generated here will include those driven by main effects as well as interaction. 

Therefore, we removed the 9 strongest single SNPs which accounted for a large 

fraction of the associated pairs, and assessed additive by additive interaction of 

the remaining pairs with a joint effects P<1x10-8 using PLINK. A total of 371 pairs 

of SNPs with an additive by additive interaction P<1x10-5 were taken forward into 
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replication in 16,100 samples from 4 cohorts, 3 of which (Rotterdam, CoLaus, 

DGI) were genotyped on the Affymetrix 500K platform (Affymetrix, Inc., Santa 

Clara, CA, USA). The fourth replication study, CGEMS, was genotyped on the 

Illumina platform (Illumina, Inc., San Diego, CA, USA), and where a SNP was not 

available an r2 > 0.8 proxy was used. Of the 371 SNP pairs that were taken 

forward into replication, none showed strong evidence of replication (top PReplication 

= 0.01; top POverall = 1x10-6; N~26,000). 

7. Conditional analyses 

To perform the conditional analysis, each individual study repeated the 

Stage 1 GWAS analysis, but included a set of 225 imputation dosages as 

covariates (those from the 180 SNPs representing the novel loci, plus 27 SNPs 

from the remaining loci reaching P<5x10-6 in stage 1 and an additional 18 SNPs 

with P<8x10-6). For quality control purposes, the files obtained from each of the 

individual studies were put through the same checks as for the Stage 1 analysis 

(described in section 1.4). Additional checks were performed to ensure that each 

of the 225 conditioned SNPs was no longer associated with height (all P>0.2) and 

that SNPs outside the 225 conditioned loci had similar P-values and effect sizes to 

the primary stage 1 analysis. Meta-analysis was performed in the same way as for 

the GWA studies in Stage 1 (including a NxMAF>3 cut-off and double GC 

correction).  

8. Functional variant analyses 

8.1 Non-synonymous enrichment analysis 

For all 180 height SNPs, we retrieved all proxy SNPs in linkage 

disequilibrium (r2≥0.8 in HapMap phase II CEU) and annotated them according to 

whether they were missense, nonsense or neither. Annotation was based on the 

NCBI build 36.1. In total for the 180 height SNPs, we identified 2,550 proxies, 

including 0 nonsense and 31 missense SNPs. We repeated this analysis using 

1,000 sets of 180 SNPs that were matched based on allele frequency (+ 2.0%), 

nearby number of genes (+ 10% of seed SNP count), and gene proximity (+ 20kb). 
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Among these sets, the ranges for the number of proxies, nonsense SNPs, and 

missense SNPs were, respectively, 2566-4640, 0-1, and 8-49. After accounting for 

the number of proxy SNPs in each set, there were only four sets with a ratio 

(number of nonsynonymous SNPs / total number of proxies) equal or above the 

ratio observed for the 180 height SNPs (ratio: 0.0122, range of ratios observed in 

matched sets: 0.0024-0.0133). Similar results were obtained using a logistic 

regression framework, where control SNPs were matched only on allele frequency 

but the other matching parameters were used as covariates; here the “exposure” 

is being a height-associated SNP and the “outcome” is having a missense SNP as 

a proxy. 

8.2 Association with CNVs 

We used two different inventories of CNV that are in strong LD (HapMap 

CEU r2>0.8) with a near-by non-overlapping HapMap SNP. There a total of 1330 

unique CNV tags,  1138 from the Conrad et al. GSV data set16 and 261 from 

analysis of the HapMap 2 data by McCarroll et al.17. We looked to identify those 

CNV-tagging SNPs that were highly correlated with one of the 199 index SNPs 

representing 180 confirmed height loci, but there was no such overlap between 

our and the CNV datasets. We then looked at the overlap between the CNV-

tagging SNPs and our genome-wide Stage 1 results with P<5x10-8. The only 

overlap occurred at DLEU7 and chromosome 4 (near HHIP) loci; however, in both 

cases the height index SNP had much better P-value than the CNV-tagging SNP, 

and the index SNP was only either in weak LD (at DLEU7 locus, r2=0.56) or not at 

all correlated (at chromosome 4 locus) with the CNV tag. 

8.3 Association with other traits 

We downloaded from the NHGRI GWA study catalogue 

(http://www.genome.gov/26525384; accessed on 12th February 2010) all SNPs 

associated with diseases and traits other than height at genome-wide significance 

level of P<5x10-8. We then identified all SNPs that mapped within 1Mb of at least 

one height SNP and had some correlation (HapMap CEU r2>0.1) with the index 
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height SNP for each of the 180 associated loci. There were 22 such overlapping 

loci, some associated with multiple other traits and diseases (Supplementary 

Table 8). At 6 of the loci the height and „other‟ trait SNP were either identical or 

strongly correlated (r2>0.8). For one of these loci, LIN28B, the height effect is likely 

to be secondary to the large effect on pubertal timing, but the remaining five are 

likely to represent true pleiotropic effects.  

9. Biological enrichment analyses 

9.1 OMIM analysis 

We searched the Online Mendelian Inheritance in Man (OMIM) database 

and identified 241 genes that underlie human syndromes characterized by 

abnormal skeletal growth (Supplementary Table 9). The gene list was initially 

obtained using search keywords „short stature‟, „overgrowth‟, „skeletal dysplasia‟, 

and „brachydactyly‟, and was manually curated blindly to our results. We then 

grouped the 180 height-associated SNPs into 175 non-overlapping gene regions 

(to avoid double counting), containing a total of 652 genes. For each region, we 

set the genomic boundaries using linkage disequilibrium cutoffs (r2 0.3 from the 

index height SNP) and then next recombination hotspots. Although these 175 

regions contained only ~3.3% of all human genes, they included 21 genes from 

the curated OMIM height gene list (8.7%). We assessed the significance of this 

result by permutation: we generated 1,000 sets of 175 regions with similar gene 

content (±10%) and counted, in each set, the number of OMIM height genes within 

the regions. In these 1,000 permutations, the median number of OMIM height 

genes was 8 and the range was 1-19 (empirical P-value for an overlap of 21 OMIM 

genes is P<0.001). 

9.2 Text-mining using GRAIL 

The GRAIL algorithm was recently described18. As in the OMIM analysis, 

we used LD and recombination hotspots to define boundaries on the left and right 

of each height index SNP. This identified 652 genes in 175 regions (five regions 



 

Chapter 3 135 

were overlapping when using our criteria to define genomic interval around height 

index SNP). 

9.3 Pathway analysis 

We applied an adaptation of the gene set enrichment analysis (GSEA) 

framework (Meta-Analysis Gene-set Enrichment of variaNT Associations, 

MAGENTA (Segrè et al., submitted)) to the height meta-analysis to determine 

whether the 180 height SNPs cluster near genes that belong to specific biological 

pathways and potentially to discover new pathways that may be enriched for 

modest height associations not yet identified. Specifically, for each gene in the 

genome we calculated a corrected gene association P-value based on the most 

significant SNP height association P-value of all SNPs in the gene region (110 kb 

upstream and 40 kb downstream to gene‟s most extreme transcript start and end 

sites, respectively), accounting for confounding effects such as gene size, number 

of SNPs per gene and linkage-related properties. Genes were grouped into 

pathways using annotations from the KEGG, PANTHER, and INGENUITY 

databases, downloaded from the Molecular Signatures Database (MsigDB, 

http://www.broad.mit.edu/gsea/msigdb/collections.jsp). Molecular function gene-

sets were downloaded from the PANTHER website (http://www.pantherdb.org/). 

For each pathway, enrichment of highly ranked gene scores above the 95th 

percentile of all gene scores in the height meta-analysis, was evaluated compared 

to 10,000 randomly sampled gene sets of identical size from the genome. Results 

from this analysis show strong enrichment for genes that belong to the hedgehog 

signalling pathway (nominal GSEA P=0.0009, FDR=0.078) and the histone 

molecular function category (nominal GSEA P=0.0001, FDR=0.0028), many of 

which are near the top GIANT height SNPs. In total, there were 20 pathways, 

including the TGF-beta pathway, and 14 molecular function sets that were 

nominally significant (P=0.05) in our GSEA using MAGENTA (Supplementary 

Table 11). 
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10. URLs 

Bayesian Imputation Based Association Mapping, BIMBAM, 

http://quartus.uchicago.edu/~yguan/bimbam/index.html;  

population stratification detection software, EIGENSTRAT, 

http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm;  

genotype imputation program, IMPUTE, 

http://www.stats.ox.ac.uk/~marchini/software/gwas/impute.html;  

Markov chain haplotyping package, MACH, 

http://www.sph.umich.edu/csg/abecasis/MACH; MACH2QTL, 

http://www.sph.umich.edu/csg/abecasis/MACH/download;  

pedigree analysis package, MERLIN, 

http://www.sph.umich.edu/csg/abecasis/Merlin;  

meta-analysis tool for GWASs, METAL, 

http://www.sph.umich.edu/csg/abecasis/Metal/index.html;  

whole-genome association analysis package, PLINK, 

http://pngu.mgh.harvard.edu/~purcell/plink;  

whole-genome association analysis of imputed data, ProbABEL, 

http://mga.bionet.nsc.ru/~yurii/ABEL;  

statistical computer software, R, http://www.r-project.org;  

whole-genome association analysis package, SNPTEST, 

http://www.stats.ox.ac.uk/~marchini/software/gwas/snptest.html. 
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Supplementary Table 1. Association results for Stage 1 (discovery GWAS), Stage 2 (in-silico replication), Stage 1+2 combined, 
and Stage 1+2 sex-specific meta-analyses, for the 180 independent signals that reached genome-wide significance (P<5x10-8) in 
the combined Stage 1+2 analysis. I2 represents the % heterogeneity of effect size between Stage 1 studies. Phet is the heterogeneity 
P-value. 
 

SNP a Chr Position (bp) 
Nearest/OMIM 
height gene b 

Effect 
/other 
allele c 

Frequency 
(effect 
allele) 

STAGE 1 
up to 133,653 samples 

STAGE 2 
up to 50,074 samples 

STAGE 1 + STAGE 2 
up to 183,727 

samples 

STAGE 1 + STAGE 2 SEX-SPECIFIC 
up to 73,238 males and 110,489 females 

Beta P-value d I2 Phet Beta P-value d Beta P-value d Beta (M) 
P-value d 

(M) 
Beta (F) 

P-value d 
(F) 

Phet 
(MvsF) 

rs425277 1 2059032 PRKCZ T/C 0.28 0.024 1.70E-06 0 0.73 0.019 3.10E-03 0.022 2.10E-08 0.017 5.90E-03 0.027 6.70E-08 0.15 

rs2284746 1 17179262 MFAP2 C/G 0.48 -0.035 5.60E-15 17.77 0.07 -0.049 2.50E-16 -0.04 3.90E-29 -0.041 1.60E-13 -0.039 1.80E-18 0.76 

rs1738475 1 23409478 HTR1D C/G 0.59 0.022 1.90E-06 0 0.69 0.031 1.60E-07 0.025 3.00E-12 0.02 2.80E-04 0.028 5.20E-10 0.25 

rs4601530 1 24916698 CLIC4 T/C 0.26 -0.024 2.00E-06 15.60 0.10 -0.036 1.10E-07 -0.028 2.20E-12 -0.03 6.50E-07 -0.025 5.20E-07 0.47 

rs7532866 1 26614131 LIN28 A/G 0.67 0.022 3.30E-06 0 0.54 0.02 2.60E-03 0.021 3.40E-08 0.017 4.30E-03 0.025 1.30E-07 0.23 

rs2154319 1 41518357 SCMH1 T/C 0.75 -0.034 4.30E-10 0 0.86 -0.025 4.90E-04 -0.03 1.80E-12 -0.024 2.70E-04 -0.035 4.60E-11 0.13 

rs17391694 1 78396214 GIPC2 T/C 0.12 0.04 5.90E-07 7.76 0.27 0.045 5.60E-06 0.042 1.70E-11 0.041 7.00E-06 0.042 5.90E-08 0.95 

rs6699417 1 88896031 PKN2 T/C 0.61 0.022 1.70E-06 0 0.89 0.02 8.60E-04 0.021 5.00E-09 0.02 3.10E-04 0.02 6.40E-06 0.99 

rs10874746 1 93096559 RPL5 T/C 0.37 -0.022 1.70E-06 0 0.55 -0.027 7.90E-06 -0.024 6.70E-11 -0.024 1.30E-05 -0.022 7.30E-07 0.78 

rs9428104 1 118657110 SPAG17 A/G 0.24 -0.038 8.90E-13 0 0.98 -0.048 6.40E-12 -0.041 5.60E-23 -0.039 9.10E-10 -0.043 4.10E-17 0.55 

rs11205277 1 148159496 SF3B4 A/G 0.58 -0.045 1.20E-18 0.02 0.48 -0.048 8.10E-15 -0.046 4.80E-32 -0.042 9.60E-12 -0.049 2.00E-24 0.36 

rs17346452 1 170319910 DNM3 T/C 0.73 -0.038 3.30E-14 0 0.79 -0.045 4.00E-11 -0.04 1.40E-23 -0.037 1.10E-09 -0.042 6.60E-17 0.56 

rs1325598 1 175058872 PAPPA2 A/G 0.43 -0.026 1.60E-08 0 0.88 -0.016 9.60E-03 -0.022 1.10E-09 -0.025 4.10E-06 -0.021 2.70E-06 0.52 

rs1046934 1 182290152 TSEN15 A/C 0.64 -0.046 6.40E-22 0 0.80 -0.042 2.30E-11 -0.044 2.10E-31 -0.043 8.60E-14 -0.044 1.10E-20 0.94 

rs10863936 1 210304421 DTL A/G 0.53 -0.022 6.20E-07 3.05 0.40 -0.02 8.40E-04 -0.021 1.90E-09 -0.029 5.40E-08 -0.017 1.10E-04 0.06 

rs6684205 1 216676325 TGFB2 A/G 0.71 -0.033 2.00E-11 0 0.61 -0.019 4.00E-03 -0.028 1.50E-12 -0.032 7.20E-08 -0.026 8.50E-08 0.41 

rs11118346 1 217810342 LYPLAL1 T/C 0.47 -0.026 2.20E-09 9.57 0.22 -0.023 2.00E-04 -0.025 1.90E-12 -0.018 9.50E-04 -0.03 3.10E-11 0.05 

rs10799445 1 225978506 JMJD4 A/C 0.77 0.031 1.20E-08 0 0.51 0.033 2.80E-06 0.032 2.40E-13 0.026 4.00E-05 0.036 7.10E-12 0.21 

rs4665736 2 25041103 DNAJC27 T/C 0.54 0.034 1.40E-13 0 0.97 0.021 4.30E-04 0.029 7.30E-16 0.022 5.30E-05 0.034 3.40E-14 0.08 

rs6714546 2 33214929 LTBP1 A/G 0.28 -0.025 2.20E-06 0 0.99 -0.026 1.70E-04 -0.026 1.60E-09 -0.019 3.40E-03 -0.029 2.70E-08 0.19 

rs17511102 2 37814117 CDC42EP3 A/T 0.91 -0.06 1.30E-12 0 0.67 -0.061 1.70E-07 -0.06 1.60E-18 -0.061 1.80E-09 -0.06 1.20E-12 0.9 

rs2341459 2 44621706 C2orf34 T/C 0.27 0.028 3.60E-08 0 0.75 0.02 4.40E-03 0.025 7.90E-10 0.031 2.40E-07 0.021 4.70E-05 0.14 

rs12474201 2 46774789 SOCS5 A/G 0.35 0.023 1.00E-06 0 0.62 0.036 1.00E-08 0.028 2.60E-13 0.026 6.10E-06 0.028 2.90E-09 0.78 

rs3791675 2 55964813 EFEMP1 T/C 0.23 -0.05 2.40E-20 22.09 0.03 -0.059 3.20E-17 -0.053 2.50E-35 -0.055 1.20E-17 -0.052 3.60E-23 0.71 

rs11684404 2 88705737 EIF2AK3 T/C 0.67 -0.027 6.40E-09 14.78 0.12 -0.029 2.60E-06 -0.028 9.90E-14 -0.03 7.10E-08 -0.025 4.20E-08 0.46 
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up to 73,238 males and 110,489 females 

Beta P-value d I2 Phet Beta P-value d Beta P-value d Beta (M) 
P-value d 

(M) 
Beta (F) 

P-value d 
(F) 

Phet 
(MvsF) 

rs7567288 2 134151294 NCKAP5 T/C 0.8 -0.031 6.70E-08 0 0.92 -0.033 8.40E-06 -0.032 2.10E-12 -0.029 2.10E-05 -0.033 4.10E-09 0.6 

rs7567851 2 178392966 PDE11A C/G 0.08 0.041 7.50E-07 25.21 0.01 0.028 9.50E-03 0.037 3.30E-08 0.033 8.20E-04 0.038 3.60E-06 0.7 

rs1351164 2 217980143 TNS1 T/C 0.79 0.028 3.70E-07 0 0.87 0.044 2.70E-09 0.034 2.10E-14 0.033 4.30E-07 0.032 5.90E-09 0.83 

rs12470505 2 219616613 CCDC108/IHH T/G 0.9 0.048 1.30E-10 0 0.67 0.028 5.80E-03 0.041 8.90E-12 0.059 1.40E-10 0.032 2.50E-05 0.01 

rs2629046 2 224755988 SERPINE2 T/C 0.55 0.025 2.20E-08 0 0.89 0.023 1.00E-04 0.024 7.90E-12 0.019 3.80E-04 0.027 7.20E-10 0.2 

rs2580816 2 232506210 NPPC T/C 0.19 -0.041 1.80E-12 0 0.80 -0.051 4.60E-11 -0.045 5.80E-22 -0.05 9.30E-13 -0.041 1.70E-12 0.23 

rs12694997 2 241911659 SEPT2 A/G 0.24 -0.027 1.80E-07 3.06 0.40 -0.018 1.40E-02 -0.024 1.20E-08 -0.021 1.10E-03 -0.025 1.40E-06 0.61 

rs2597513 3 13530836 HDAC11 T/C 0.9 -0.039 1.10E-07 9.85 0.22 -0.031 1.40E-03 -0.036 7.40E-10 -0.036 4.90E-05 -0.038 1.10E-07 0.83 

rs13088462 3 51046753 DOCK3 T/C 0.94 -0.054 3.10E-07 0 0.80 -0.048 2.90E-04 -0.052 3.80E-10 -0.057 4.70E-06 -0.048 2.40E-06 0.56 

rs2336725 3 53093779 RTF1 T/C 0.55 -0.026 3.50E-08 8.25 0.26 -0.028 5.20E-06 -0.027 9.70E-13 -0.028 1.00E-06 -0.026 1.30E-08 0.85 

rs9835332 3 56642722 C3orf63 C/G 0.46 -0.022 8.70E-07 8.66 0.25 -0.032 5.70E-08 -0.026 5.30E-13 -0.026 2.10E-06 -0.025 2.10E-08 0.91 

rs17806888 3 67499012 SUCLG2 T/C 0.88 0.04 1.10E-07 7.76 0.28 0.028 3.70E-03 0.036 2.10E-09 0.036 7.10E-05 0.035 1.20E-06 0.93 

rs9863706 3 72520103 RYBP T/C 0.22 -0.03 1.50E-08 0 0.69 -0.033 4.70E-06 -0.031 4.10E-13 -0.034 2.50E-07 -0.03 1.80E-08 0.6 

rs6439167 3 130533446 C3orf47 T/C 0.21 -0.034 7.20E-10 0 0.89 -0.035 2.40E-06 -0.034 8.90E-15 -0.026 1.10E-04 -0.039 4.80E-13 0.09 

rs9844666 3 137456906 PCCB A/G 0.25 -0.028 3.10E-08 0 0.77 -0.017 1.70E-02 -0.024 3.50E-09 -0.016 8.60E-03 -0.029 1.80E-08 0.09 

rs724016 3 142588260 ZBTB38 A/G 0.56 -0.067 4.50E-52 20.23 0.05 -0.075 2.90E-36 -0.07 3.10E-86 -0.066 8.80E-35 -0.071 5.70E-60 0.42 

rs572169 3 173648421 GHSR T/C 0.31 0.036 9.90E-14 3.61 0.38 0.03 3.40E-06 0.033 2.80E-18 0.03 2.80E-07 0.036 4.20E-14 0.4 

rs720390 3 187031377 IGF2BP2 A/G 0.39 0.031 1.60E-10 19.54 0.05 0.026 1.80E-05 0.029 1.90E-14 0.036 4.40E-10 0.026 3.20E-08 0.14 

rs2247341 4 1671115 SLBP/FGFR3 A/G 0.36 0.025 6.80E-08 17.58 0.08 0.026 3.80E-05 0.025 1.50E-11 0.027 1.60E-06 0.024 1.80E-07 0.67 

rs6449353 4 17642586 LCORL T/C 0.85 0.071 1.30E-27 0 0.69 0.081 2.60E-20 0.075 7.10E-46 0.074 2.10E-21 0.076 3.20E-32 0.88 

rs17081935 4 57518233 POLR2B T/C 0.2 0.031 4.80E-08 6.60 0.30 0.028 1.80E-04 0.03 3.70E-11 0.038 1.70E-08 0.025 6.60E-06 0.09 

rs7697556 4 73734177 ADAMTS3 T/C 0.47 0.022 1.30E-06 0 0.71 0.038 2.90E-10 0.028 2.00E-14 0.03 4.80E-08 0.026 5.00E-09 0.56 

rs788867 4 82369030 PRKG2/BMP3 T/G 0.68 -0.039 1.80E-15 0 0.52 -0.05 2.10E-14 -0.043 8.90E-28 -0.042 9.00E-13 -0.042 1.60E-18 0.95 

rs10010325 4 106325802 TET2 A/C 0.49 0.021 2.30E-06 0 0.68 0.028 3.20E-06 0.024 3.90E-11 0.025 2.40E-06 0.022 3.40E-07 0.64 

rs7689420 4 145787802 HHIP T/C 0.16 -0.069 1.40E-29 10.51 0.20 -0.08 1.40E-23 -0.073 6.20E-51 -0.07 8.90E-22 -0.075 1.10E-35 0.61 

rs955748 4 184452669 WWC2 A/G 0.24 -0.024 2.20E-06 0 0.52 -0.019 5.70E-03 -0.023 4.40E-08 -0.027 1.50E-05 -0.019 1.60E-04 0.29 

rs1173727 5 32866278 NPR3 T/C 0.4 0.036 4.00E-15 1.45 0.44 0.032 1.10E-07 0.034 1.60E-21 0.038 4.60E-12 0.031 3.10E-12 0.27 

rs11958779 5 55037656 SLC38A9 A/G 0.7 -0.028 8.00E-09 0 0.92 -0.026 4.90E-05 -0.027 1.80E-12 -0.028 1.20E-06 -0.027 2.30E-08 0.8 

rs10037512 5 88390431 MEF2C T/C 0.56 0.027 3.80E-09 22.57 0.03 0.04 2.20E-11 0.032 2.00E-18 0.035 1.70E-10 0.029 1.40E-10 0.3 

rs13177718 5 108141243 FER T/C 0.07 -0.041 4.10E-06 12.78 0.16 -0.037 2.20E-03 -0.04 3.00E-08 -0.051 2.30E-06 -0.034 1.30E-04 0.16 
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rs1582931 5 122685098 CEP120 A/G 0.47 -0.025 2.10E-08 0 0.98 -0.019 1.90E-03 -0.023 1.50E-10 -0.019 3.50E-04 -0.026 8.10E-09 0.31 

rs274546 5 131727766 SLC22A5 A/G 0.4 -0.028 8.50E-10 0 0.92 -0.032 1.50E-07 -0.029 7.30E-16 -0.035 2.00E-10 -0.025 1.50E-08 0.13 

rs526896 5 134384604 PITX1 T/G 0.73 0.032 1.90E-09 2.86 0.40 0.029 3.20E-05 0.03 2.30E-13 0.024 1.70E-04 0.035 1.70E-11 0.15 

rs4282339 5 168188818 SLIT3 A/G 0.2 -0.035 3.40E-10 4.07 0.37 -0.038 3.10E-07 -0.036 6.60E-16 -0.034 4.40E-07 -0.037 1.70E-11 0.69 

rs12153391 5 171136043 FBXW11 A/C 0.25 -0.033 8.70E-10 0 0.83 -0.024 5.20E-04 -0.03 3.60E-12 -0.027 2.10E-05 -0.032 2.00E-09 0.57 

rs889014 5 172916720 BOD1 T/C 0.36 -0.029 4.50E-10 8.66 0.25 -0.032 2.10E-07 -0.03 9.40E-16 -0.032 9.70E-09 -0.028 8.30E-10 0.51 

rs422421 5 176449932 FGFR4/NSD1 T/C 0.22 -0.033 1.40E-09 27.96 0.01 -0.028 1.40E-04 -0.031 1.10E-12 -0.03 7.10E-06 -0.034 5.20E-10 0.64 

rs6879260 5 179663620 GFPT2 T/C 0.39 -0.028 5.60E-10 0 0.79 -0.01 9.70E-02 -0.022 1.60E-09 -0.02 3.40E-04 -0.025 3.00E-08 0.41 

rs3812163 6 7670759 BMP6 A/T 0.54 -0.037 6.70E-16 23.10 0.03 -0.035 4.30E-09 -0.036 1.20E-23 -0.033 2.80E-09 -0.039 1.50E-18 0.36 

rs1047014 6 19949472 ID4 T/C 0.75 -0.029 1.10E-07 0 0.55 -0.037 1.80E-07 -0.032 1.80E-13 -0.033 7.80E-07 -0.032 4.10E-09 0.9 

rs806794 6 26308656 Histone cluster A/G 0.7 0.053 5.50E-26 22.95 0.03 0.051 4.30E-15 0.052 1.20E-39 0.046 2.50E-14 0.057 5.30E-31 0.12 

rs3129109 6 29192211 OR2J3 T/C 0.39 -0.026 3.30E-08 16.96 0.09 -0.041 1.60E-11 -0.032 2.40E-17 -0.029 2.60E-07 -0.032 3.30E-12 0.64 

rs2256183 6 31488508 MICA A/G 0.45 0.035 2.70E-14 0 0.54 0.051 8.30E-17 0.04 7.80E-29 0.043 4.40E-14 0.037 3.60E-17 0.43 

rs6457620 6 32771977 HLA locus C/G 0.51 -0.024 3.60E-08 0 0.98 -0.037 2.50E-10 -0.029 2.10E-16 -0.03 2.50E-08 -0.028 1.00E-10 0.81 

rs2780226 6 34307070 HMGA1 T/C 0.92 -0.079 1.00E-18 20.61 0.05 -0.072 1.70E-10 -0.076 8.10E-28 -0.077 1.90E-12 -0.076 2.00E-19 0.96 

rs6457821 6 35510783 PPARD/FANCE A/C 0.02 -0.121 1.80E-11 3.24 0.40 -0.068 8.00E-03 -0.104 2.10E-12 -0.084 2.20E-04 -0.112 3.40E-10 0.29 

rs9472414 6 45054484 SUPT3H/RUNX2 A/T 0.22 -0.031 2.40E-08 26.80 0.01 -0.019 8.70E-03 -0.026 1.80E-09 -0.029 6.90E-06 -0.026 1.70E-06 0.66 

rs9360921 6 76322362 SENP6 T/G 0.89 -0.048 4.60E-11 17.19 0.08 -0.033 5.00E-04 -0.042 2.60E-13 -0.045 1.20E-07 -0.04 1.40E-08 0.62 

rs310405 6 81857081 FAM46A A/G 0.52 0.03 3.60E-11 0 0.89 0.02 8.10E-04 0.026 2.20E-13 0.023 2.60E-05 0.03 1.30E-11 0.25 

rs7759938 6 105485647 LIN28B T/C 0.68 -0.042 8.70E-18 6.39 0.30 -0.051 4.10E-15 -0.045 8.30E-31 -0.04 8.70E-12 -0.048 5.20E-23 0.26 

rs1046943 6 109890634 ZBTB24 A/G 0.58 0.022 8.60E-07 0 0.67 0.016 7.20E-03 0.02 2.50E-08 0.024 1.20E-05 0.019 1.90E-05 0.46 

rs961764 6 117628849 VGLL2 C/G 0.42 -0.023 2.40E-07 0 0.87 -0.026 1.20E-05 -0.024 1.30E-11 -0.024 1.20E-05 -0.025 8.90E-09 0.79 

rs1490384 6 126892853 C6orf173 T/C 0.5 0.037 3.20E-16 15.83 0.10 0.028 1.80E-06 0.034 3.90E-21 0.037 5.30E-12 0.033 3.40E-14 0.55 

rs6569648 6 130390812 L3MBTL3 T/C 0.76 -0.036 8.90E-12 16.88 0.08 -0.047 1.20E-11 -0.04 1.10E-21 -0.046 5.10E-13 -0.035 8.40E-12 0.14 

rs7763064 6 142838982 GPR126 A/G 0.29 -0.045 6.40E-19 6.91 0.29 -0.055 7.20E-17 -0.048 1.10E-33 -0.044 2.10E-13 -0.051 5.30E-26 0.29 

rs543650 6 152152636 ESR1 T/G 0.4 -0.032 1.40E-09 16.12 0.11 -0.037 2.10E-09 -0.034 1.20E-17 -0.029 3.30E-06 -0.036 1.30E-13 0.36 

rs9456307 6 158849430 TULP4 A/T 0.06 -0.05 4.60E-07 0.20 0.47 -0.045 1.20E-03 -0.048 2.20E-09 -0.041 7.90E-04 -0.053 6.20E-08 0.38 

rs798489 7 2768329 GNA12 T/C 0.3 -0.052 8.50E-25 0 0.55 -0.042 1.70E-10 -0.048 1.90E-33 -0.051 4.50E-17 -0.046 5.10E-21 0.53 

rs4470914 7 19583047 TWISTNB T/C 0.18 0.033 3.80E-08 5.76 0.32 0.023 3.40E-03 0.029 9.20E-10 0.03 4.80E-05 0.029 5.50E-07 0.93 

rs12534093 7 23469499 IGF2BP3 A/T 0.22 -0.03 5.60E-08 3.09 0.39 -0.04 4.10E-08 -0.034 2.00E-14 -0.032 1.70E-06 -0.033 5.30E-10 0.84 
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rs1708299 7 28156471 JAZF1 A/G 0.3 0.042 1.50E-17 14.38 0.12 0.038 5.80E-09 0.04 5.80E-25 0.036 4.10E-10 0.044 3.30E-20 0.25 

rs6959212 7 38094851 STARD3NL T/C 0.32 -0.023 2.80E-06 0 0.52 -0.025 1.30E-04 -0.024 1.60E-09 -0.021 3.40E-04 -0.024 5.90E-07 0.66 

rs42235 7 92086012 CDK6 T/C 0.31 0.055 7.30E-28 21.51 0.04 0.062 1.90E-20 0.057 7.70E-47 0.046 1.60E-14 0.063 3.70E-37 0.01 

rs822552 7 148281567 PDIA4 C/G 0.74 -0.03 1.30E-07 0 0.48 -0.017 2.70E-02 -0.025 2.60E-08 -0.032 2.30E-06 -0.022 9.40E-05 0.24 

rs2110001 7 150147955 TMEM176A C/G 0.69 -0.033 9.80E-10 17.78 0.08 -0.028 4.40E-05 -0.031 3.30E-13 -0.029 3.40E-06 -0.032 4.40E-10 0.71 

rs1013209 8 24172249 ADAM28 T/C 0.25 -0.029 4.50E-08 10.06 0.21 -0.019 7.30E-03 -0.025 1.60E-09 -0.026 4.80E-05 -0.026 8.90E-07 0.95 

rs7460090 8 57356717 SDR16C5 T/C 0.87 0.055 9.60E-16 0 0.70 0.064 7.70E-13 0.058 8.20E-27 0.051 7.00E-10 0.064 1.10E-21 0.16 

rs6473015 8 78341040 PEX2 A/C 0.72 -0.032 1.70E-10 12.48 0.16 -0.023 5.80E-04 -0.029 6.90E-13 -0.03 8.90E-07 -0.028 9.00E-09 0.84 

rs6470764 8 130794847 GSDMC T/C 0.2 -0.047 5.90E-17 17.64 0.07 -0.056 3.40E-13 -0.05 1.70E-28 -0.05 1.60E-13 -0.05 4.10E-18 0.95 

rs12680655 8 135706519 ZFAT C/G 0.6 0.03 4.80E-11 16.69 0.09 0.024 7.50E-05 0.028 1.60E-14 0.025 5.10E-06 0.029 3.70E-11 0.45 

rs7864648 9 16358732 BNC2 T/G 0.32 0.025 4.90E-07 3.83 0.37 0.017 7.80E-03 0.022 2.10E-08 0.027 5.40E-06 0.019 9.70E-05 0.23 

rs11144688 9 77732106 PCSK5 A/G 0.11 -0.055 1.50E-09 0 0.52 -0.04 9.10E-04 -0.049 9.60E-12 -0.044 3.30E-05 -0.057 3.90E-10 0.28 

rs7853377 9 85742025 C9orf64 A/G 0.77 -0.026 3.10E-06 0 0.65 -0.021 3.50E-03 -0.024 4.50E-08 -0.018 6.10E-03 -0.027 5.00E-07 0.26 

rs8181166 9 88306448 ZCCHC6 C/G 0.53 0.025 1.10E-07 26.48 0.01 0.028 3.90E-06 0.026 2.70E-12 0.019 8.30E-04 0.031 8.20E-12 0.07 

rs2778031 9 90025546 SPIN1 T/C 0.24 0.027 3.60E-07 0 0.81 0.037 2.40E-07 0.031 9.00E-13 0.031 1.50E-06 0.029 2.20E-08 0.78 

rs9969804 9 94468941 IPPK A/C 0.44 0.028 5.60E-10 0 0.61 0.033 1.90E-08 0.03 7.70E-17 0.028 1.50E-07 0.029 7.30E-11 0.92 

rs1257763 9 95933766 PTPDC1 A/G 0.04 0.069 2.50E-06 0 0.95 0.07 1.00E-04 0.069 9.90E-10 0.063 2.10E-04 0.075 1.00E-07 0.55 

rs473902 9 97296056 PTCH1/FANCC T/G 0.92 0.074 1.70E-14 0 0.61 0.05 6.80E-05 0.065 2.30E-17 0.061 6.70E-08 0.068 9.80E-13 0.62 

rs7027110 9 108638867 ZNF462 A/G 0.23 0.034 1.30E-10 0 0.85 0.025 3.80E-04 0.031 2.30E-13 0.032 4.80E-07 0.03 8.90E-09 0.72 

rs1468758 9 112846903 LPAR1 T/C 0.25 -0.026 1.50E-06 0 0.59 -0.026 1.90E-04 -0.026 1.40E-09 -0.031 1.20E-06 -0.022 2.50E-05 0.24 

rs751543 9 118162163 PAPPA T/C 0.72 0.029 4.50E-08 0 0.86 0.021 3.40E-03 0.026 6.50E-10 0.027 2.50E-05 0.026 6.70E-07 0.89 

rs7466269 9 132453905 FUBP3 A/G 0.64 0.036 1.20E-14 37.95 0.00 0.024 7.50E-05 0.032 2.60E-17 0.032 2.70E-08 0.032 2.30E-12 0.92 

rs7849585 9 138251691 QSOX2 T/G 0.33 0.032 3.40E-11 14.89 0.12 0.024 1.50E-04 0.029 4.70E-14 0.031 1.70E-07 0.028 3.30E-09 0.69 

rs7909670 10 12958770 CCDC3 T/C 0.44 -0.022 1.30E-06 0 0.85 -0.02 7.30E-04 -0.021 3.20E-09 -0.028 3.60E-07 -0.016 2.60E-04 0.06 

rs2145998 10 80791702 PPIF A/T 0.49 -0.025 2.70E-08 2.75 0.40 -0.027 3.80E-06 -0.026 3.60E-13 -0.027 4.80E-07 -0.025 2.60E-08 0.68 

rs11599750 10 101795432 CPN1 T/C 0.38 -0.023 7.60E-07 0 0.82 -0.036 6.90E-09 -0.028 1.60E-13 -0.023 3.40E-05 -0.03 9.00E-11 0.32 

rs2237886 11 2767307 KCNQ1 T/C 0.11 0.043 3.10E-08 6.34 0.31 0.05 1.00E-06 0.046 2.20E-13 0.037 7.50E-05 0.05 4.30E-11 0.25 

rs7926971 11 12654616 TEAD1 A/G 0.55 -0.024 7.30E-08 0 0.91 -0.019 1.40E-03 -0.023 4.40E-10 -0.025 3.50E-06 -0.02 8.30E-06 0.4 

rs1330 11 17272605 NUCB2 T/C 0.35 0.024 4.40E-07 17.47 0.08 0.019 2.10E-03 0.022 4.90E-09 0.02 4.70E-04 0.024 3.10E-07 0.56 

rs10838801 11 48054856 PTPRJ/SLC39A13 A/G 0.69 -0.031 1.80E-10 12.10 0.17 -0.02 1.90E-03 -0.027 3.50E-12 -0.024 5.40E-05 -0.031 7.70E-11 0.27 
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SNP a Chr Position (bp) 
Nearest/OMIM 
height gene b 

Effect 
/other 
allele c 

Frequency 
(effect 
allele) 

STAGE 1 
up to 133,653 samples 

STAGE 2 
up to 50,074 samples 

STAGE 1 + STAGE 2 
up to 183,727 

samples 

STAGE 1 + STAGE 2 SEX-SPECIFIC 
up to 73,238 males and 110,489 females 

Beta P-value d I2 Phet Beta P-value d Beta P-value d Beta (M) 
P-value d 

(M) 
Beta (F) 

P-value d 
(F) 

Phet 
(MvsF) 

rs1814175 11 49515748 FOLH1 T/C 0.34 0.023 2.60E-06 0 0.62 0.02 1.60E-03 0.022 1.60E-08 0.016 5.60E-03 0.027 2.20E-08 0.13 

rs5017948 11 51270794 OR4A5 A/T 0.18 0.027 4.70E-06 9.62 0.23 0.026 1.60E-03 0.027 3.10E-08 0.016 3.10E-02 0.036 1.60E-09 0.02 

rs3782089 11 65093395 SSSCA1 T/C 0.06 -0.058 5.90E-09 0 0.63 -0.057 1.40E-05 -0.058 3.60E-13 -0.071 2.00E-09 -0.049 7.70E-07 0.13 

rs7112925 11 66582736 RHOD T/C 0.35 -0.023 8.50E-07 0 0.48 -0.023 2.00E-04 -0.023 9.00E-10 -0.026 5.90E-06 -0.022 2.30E-06 0.57 

rs634552 11 74959700 SERPINH1 T/G 0.14 0.041 1.40E-09 2.32 0.42 0.035 4.40E-05 0.039 3.50E-13 0.036 7.00E-06 0.04 1.60E-09 0.69 

rs494459 11 118079885 TREH T/C 0.41 0.021 4.90E-06 19.42 0.05 0.02 1.10E-03 0.02 1.70E-08 0.023 1.90E-05 0.019 2.30E-05 0.5 

rs654723 11 128091365 FLI1 A/C 0.62 0.024 6.70E-07 0 0.93 0.028 8.00E-06 0.025 3.60E-11 0.026 4.70E-06 0.025 1.30E-07 0.82 

rs2856321 12 11747040 ETV6 A/G 0.64 -0.03 1.50E-10 0 0.99 -0.029 4.00E-06 -0.029 4.50E-15 -0.029 4.10E-07 -0.03 8.10E-11 0.83 

rs10770705 12 20748734 SLCO1C1 A/C 0.33 0.031 4.60E-11 0 0.75 0.036 2.20E-08 0.033 8.00E-18 0.031 8.40E-08 0.033 3.80E-12 0.77 

rs2638953 12 28425682 CCDC91 C/G 0.68 0.036 8.40E-14 2.95 0.40 0.026 5.40E-05 0.032 6.70E-17 0.024 3.10E-05 0.038 1.10E-15 0.04 

rs2066807 12 55026949 STAT2 C/G 0.93 -0.052 9.60E-09 0 0.71 -0.058 1.90E-06 -0.054 1.00E-13 -0.047 2.20E-05 -0.056 1.30E-10 0.49 

rs1351394 12 64638093 HMGA2 T/C 0.49 0.054 7.80E-34 24.54 0.02 0.073 1.60E-34 0.06 1.70E-65 0.054 1.40E-23 0.063 9.00E-48 0.14 

rs10748128 12 68113925 FRS2 T/G 0.35 0.035 3.80E-11 20.87 0.04 0.042 1.20E-10 0.038 2.10E-20 0.043 1.10E-11 0.034 8.10E-12 0.23 

rs11107116 12 92502635 SOCS2 T/G 0.22 0.052 1.70E-23 10.02 0.21 0.05 2.20E-12 0.052 1.40E-34 0.044 4.70E-12 0.057 1.90E-27 0.1 

rs7971536 12 100897919 CCDC53/GNPTAB A/T 0.46 -0.025 1.10E-07 0 0.64 -0.034 4.30E-08 -0.028 8.20E-14 -0.029 3.40E-07 -0.027 1.30E-08 0.75 

rs11830103 12 122389499 SBNO1 A/G 0.78 -0.035 3.80E-10 0 0.76 -0.035 2.50E-06 -0.035 3.90E-15 -0.041 1.40E-09 -0.032 4.50E-09 0.27 

rs7332115 13 32045548 PDS5B/BRCA2 T/G 0.62 -0.025 7.60E-08 0 0.86 -0.02 1.10E-03 -0.023 5.50E-10 -0.02 4.80E-04 -0.026 1.70E-08 0.37 

rs3118905 13 50003335 DLEU7 A/G 0.29 -0.052 3.00E-25 0 0.58 -0.063 3.10E-22 -0.056 1.10E-45 -0.05 4.00E-17 -0.06 1.60E-34 0.15 

rs7319045 13 90822575 GPC5 A/G 0.4 0.029 4.50E-10 0 0.89 0.019 1.80E-03 0.025 1.20E-11 0.027 8.40E-07 0.024 1.40E-07 0.6 

rs1950500 14 23900690 NFATC4 T/C 0.29 0.032 3.90E-11 0 0.95 0.038 8.70E-09 0.034 2.20E-18 0.038 2.00E-10 0.031 1.60E-10 0.32 

rs2093210 14 60027032 SIX6 T/C 0.58 -0.034 2.30E-12 0 0.56 -0.029 3.90E-06 -0.032 6.20E-17 -0.028 2.10E-06 -0.036 1.90E-14 0.23 

rs1570106 14 67882868 RAD51L1 T/C 0.2 -0.026 4.90E-06 0.50 0.47 -0.026 4.70E-04 -0.026 8.10E-09 -0.023 5.40E-04 -0.027 1.70E-06 0.67 

rs862034 14 74060499 LTBP2 A/G 0.36 -0.023 1.10E-06 12.90 0.15 -0.037 1.90E-09 -0.028 7.30E-14 -0.032 1.90E-08 -0.024 2.10E-07 0.24 

rs7155279 14 91555634 TRIP11 T/G 0.36 -0.029 8.90E-10 21.48 0.04 -0.016 9.20E-03 -0.024 1.40E-10 -0.028 8.70E-07 -0.022 1.10E-06 0.38 

rs16964211 15 49317787 CYP19A1 A/G 0.05 -0.051 2.50E-06 14.06 0.13 -0.049 1.60E-04 -0.05 1.70E-09 -0.067 8.10E-08 -0.036 5.30E-04 0.04 

rs7178424 15 60167551 C2CD4A T/C 0.47 -0.024 2.20E-07 0 0.62 -0.017 6.20E-03 -0.021 5.60E-09 -0.02 2.50E-04 -0.021 1.50E-06 0.88 

rs10152591 15 67835211 TLE3 A/C 0.91 0.045 3.50E-08 0 0.50 0.034 1.50E-03 0.041 2.70E-10 0.033 8.60E-04 0.046 6.60E-09 0.28 

rs12902421 15 69948457 MYO9A T/C 0.97 -0.069 1.70E-06 0 0.51 -0.051 3.70E-03 -0.062 2.90E-08 -0.049 2.80E-03 -0.072 2.50E-07 0.25 

rs5742915 15 72123686 PML T/C 0.54 -0.031 3.00E-10 0 0.71 -0.031 5.30E-07 -0.031 1.00E-15 -0.039 3.90E-11 -0.027 1.10E-08 0.08 

rs11259936 15 82371586 ADAMTSL3 A/C 0.48 -0.042 2.20E-21 3.92 0.37 -0.047 1.10E-15 -0.044 1.70E-35 -0.036 1.50E-11 -0.049 1.00E-29 0.03 
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SNP a Chr Position (bp) 
Nearest/OMIM 
height gene b 

Effect 
/other 
allele c 

Frequency 
(effect 
allele) 

STAGE 1 
up to 133,653 samples 

STAGE 2 
up to 50,074 samples 

STAGE 1 + STAGE 2 
up to 183,727 

samples 

STAGE 1 + STAGE 2 SEX-SPECIFIC 
up to 73,238 males and 110,489 females 

Beta P-value d I2 Phet Beta P-value d Beta P-value d Beta (M) 
P-value d 

(M) 
Beta (F) 

P-value d 
(F) 

Phet 
(MvsF) 

rs16942341 15 87189909 ACAN T/C 0.03 -0.134 1.30E-17 24.62 0.03 -0.124 4.50E-11 -0.13 3.80E-27 -0.139 1.60E-14 -0.122 1.40E-16 0.43 

rs2871865 15 97012419 IGF1R C/G 0.88 0.054 1.10E-12 32.60 0.002 0.062 3.50E-10 0.057 2.90E-21 0.052 1.80E-08 0.058 2.80E-15 0.54 

rs4965598 15 98577137 ADAMTS17 T/C 0.68 -0.035 1.40E-13 0 0.81 -0.015 2.30E-02 -0.028 4.30E-13 -0.024 5.10E-05 -0.032 9.70E-12 0.21 

rs11648796 16 732191 NARFL A/G 0.74 -0.031 2.40E-07 0 0.87 -0.039 6.90E-08 -0.034 1.20E-13 -0.032 7.40E-06 -0.035 5.60E-10 0.71 

rs26868 16 2189377 CASKIN1 A/T 0.46 0.03 3.50E-08 0 0.78 0.04 2.40E-10 0.034 9.00E-17 0.036 1.20E-08 0.034 9.80E-12 0.73 

rs1659127 16 14295806 MKL2 A/G 0.34 0.024 2.90E-06 0 0.79 0.033 5.20E-07 0.027 1.10E-11 0.025 7.90E-05 0.027 2.90E-08 0.7 

rs8052560 16 87304743 CTU2/GALNS A/C 0.79 0.039 1.40E-08 0 0.63 0.015 7.40E-02 0.029 3.30E-08 0.025 2.20E-03 0.032 1.10E-06 0.47 

rs4640244 17 21224816 KCNJ12 A/G 0.61 0.028 2.00E-07 13.00 0.15 0.017 1.20E-02 0.024 2.30E-08 0.023 2.80E-04 0.025 1.70E-06 0.78 

rs3110496 17 24941897 ANKRD13B A/G 0.33 -0.023 1.60E-06 0 0.69 -0.021 1.10E-03 -0.022 7.30E-09 -0.03 1.10E-07 -0.016 6.40E-04 0.04 

rs3764419 17 26188149 ATAD5/RNF135 A/C 0.39 -0.037 8.90E-16 16.60 0.09 -0.032 1.50E-07 -0.035 1.80E-21 -0.034 1.30E-09 -0.036 7.80E-16 0.67 

rs17780086 17 27367395 LRRC37B A/G 0.15 0.035 4.40E-08 10.44 0.21 0.017 5.50E-02 0.028 2.60E-08 0.03 9.40E-05 0.028 5.30E-06 0.85 

rs1043515 17 34175722 PIP4K2B A/G 0.45 -0.022 1.30E-06 0 0.80 -0.024 6.60E-05 -0.023 2.90E-10 -0.028 2.00E-07 -0.019 2.20E-05 0.15 

rs4986172 17 40571807 ACBD4 T/C 0.35 -0.028 7.10E-09 30.83 0.003 -0.037 2.50E-09 -0.032 2.30E-16 -0.035 1.70E-09 -0.03 3.10E-10 0.41 

rs2072153 17 44745013 ZNF652 C/G 0.3 0.026 6.70E-08 0 0.86 0.013 4.30E-02 0.021 3.50E-08 0.031 1.60E-07 0.016 8.30E-04 0.03 

rs4605213 17 46599746 NME2 C/G 0.34 0.023 9.30E-07 0 0.88 0.018 5.90E-03 0.021 2.70E-08 0.026 5.40E-06 0.018 2.10E-04 0.21 

rs227724 17 52133816 NOG A/T 0.65 -0.027 1.20E-08 0 0.92 -0.034 6.60E-08 -0.03 7.40E-15 -0.035 8.10E-10 -0.027 1.10E-08 0.2 

rs2079795 17 56851431 TBX2 T/C 0.33 0.04 1.20E-16 0 0.81 0.04 1.50E-09 0.04 2.10E-24 0.033 7.80E-09 0.044 8.10E-20 0.12 

rs2665838 17 59320197 CSH1/GH1 C/G 0.73 -0.037 2.00E-13 11.25 0.19 -0.052 7.00E-14 -0.042 5.10E-25 -0.042 2.20E-11 -0.042 3.00E-17 0.92 

rs11867479 17 65601802 KCNJ16/KCNJ2 T/C 0.34 0.024 4.90E-07 0 0.87 0.026 5.40E-05 0.025 1.50E-10 0.023 7.00E-05 0.026 6.70E-08 0.68 

rs4800452 18 18981609 CABLES1 T/C 0.79 0.048 2.40E-17 0 0.84 0.056 1.20E-14 0.051 4.20E-30 0.052 7.40E-15 0.05 8.40E-20 0.8 

rs9967417 18 45213498 DYM C/G 0.58 -0.038 2.60E-16 30.04 0.004 -0.039 3.20E-10 -0.038 9.30E-25 -0.041 3.40E-13 -0.036 1.30E-15 0.44 

rs17782313 18 56002077 MC4R T/C 0.76 -0.025 3.50E-06 13.42 0.14 -0.035 1.20E-06 -0.028 3.80E-11 -0.03 4.00E-06 -0.025 1.20E-06 0.55 

rs12982744 19 2128193 DOT1L C/G 0.6 -0.033 2.80E-12 0 0.97 -0.027 1.10E-05 -0.03 3.40E-16 -0.028 4.90E-07 -0.032 3.80E-12 0.6 

rs7507204 19 3379834 NFIC C/G 0.24 0.028 2.30E-07 0 0.88 0.049 2.10E-11 0.036 4.30E-16 0.025 1.70E-04 0.041 2.60E-14 0.05 

rs891088 19 7135762 INSR A/G 0.74 -0.025 1.70E-06 2.38 0.41 -0.035 1.80E-07 -0.029 2.40E-12 -0.025 6.10E-05 -0.031 1.10E-09 0.45 

rs4072910 19 8550031 ADAMTS10 C/G 0.46 -0.029 2.50E-07 0 0.76 -0.034 2.20E-07 -0.031 3.60E-13 -0.025 1.30E-04 -0.033 3.10E-10 0.31 

rs2279008 19 17144303 MYO9B T/C 0.74 0.031 2.40E-07 0 0.63 0.018 9.50E-03 0.025 2.50E-08 0.022 2.00E-03 0.027 5.00E-07 0.48 

rs17318596 19 46628935 ATP5SL A/G 0.36 0.029 3.00E-09 0 0.79 0.037 2.10E-08 0.032 5.00E-16 0.043 1.30E-13 0.024 8.00E-07 0.01 

rs1741344 20 4049800 SMOX T/C 0.63 -0.026 3.50E-08 16.74 0.09 -0.016 1.00E-02 -0.023 3.30E-09 -0.02 4.10E-04 -0.024 2.60E-07 0.55 

rs2145272 20 6574218 BMP2 A/G 0.65 -0.039 5.90E-16 19.29 0.06 -0.04 4.60E-10 -0.039 2.10E-24 -0.039 1.50E-11 -0.04 2.30E-17 0.85 
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SNP a Chr Position (bp) 
Nearest/OMIM 
height gene b 

Effect 
/other 
allele c 

Frequency 
(effect 
allele) 

STAGE 1 
up to 133,653 samples 

STAGE 2 
up to 50,074 samples 

STAGE 1 + STAGE 2 
up to 183,727 

samples 

STAGE 1 + STAGE 2 SEX-SPECIFIC 
up to 73,238 males and 110,489 females 

Beta P-value d I2 Phet Beta P-value d Beta P-value d Beta (M) 
P-value d 

(M) 
Beta (F) 

P-value d 
(F) 

Phet 
(MvsF) 

rs7274811 20 31796842 ZNF341 T/G 0.23 -0.04 6.80E-14 7.93 0.26 -0.042 1.10E-09 -0.041 5.90E-22 -0.044 1.60E-11 -0.039 1.30E-13 0.52 

rs143384 20 33489170 GDF5 A/G 0.58 -0.064 4.90E-39 21.58 0.04 -0.061 9.10E-22 -0.063 1.00E-58 -0.066 9.30E-30 -0.061 8.30E-38 0.47 

rs237743 20 47336426 ZNFX1 A/G 0.21 0.034 7.20E-10 0 0.69 0.053 3.10E-13 0.041 1.30E-20 0.035 1.20E-07 0.043 6.80E-16 0.28 

rs2834442 21 34612656 KCNE2 A/T 0.65 0.027 7.30E-09 0 0.80 0.024 9.70E-05 0.026 5.10E-12 0.025 9.10E-06 0.026 1.00E-08 0.9 

rs4821083 22 31386341 SYN3 T/C 0.84 0.033 4.80E-08 0 0.70 0.027 1.40E-03 0.031 3.10E-10 0.036 1.40E-06 0.028 4.20E-06 0.41 

 

a SNPs most likely to be representing a previously published height locus are highlighted in green.  

b Gene regions are named after the gene nearest to the index SNP. A near-by (within 500kb from the index SNP) OMIM height gene (defined as 
a gene that when mutated results in a monogenic skeletal growth defect) is also included if it is not the nearest. All OMIM height genes are 
highlighted in blue.  

c Alleles are indexed to the forward strand of NCBI Build 36.  

d All p-values are based on the inverse-variance weighted meta-analysis model (fixed effects). 
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Supplementary Table 2. Association results for 33 SNPs selected randomly among the 180 SNPs that reached genome-wide 
significance (P=5x10-8) in the Stage 1 meta-analysis and genotyped in European American (N=2,181) and Poland (N=1,009) 
extreme height panels. Results are combined using a Cochran-Mantel-Haenszel test.  
 

   GIANT height meta-analysis  Results in extreme height panels  

GIANT height 
SNP 

Chr Position 
Effect 
allele 

Other 
allele 

Effect 
size 

(Stage 1) 

Stage 1+2 
P-value 

 
Effect 
allele 

Other 
allele 

OR [95% CI] 
1-tailed 
P-value 

Comment 

rs143384 20 33489170 A G -0.0639 9.954E-59  G A 1.2 [1.08-1.33] 0.0002 Same direction, 1-tailed P-value <0.05 

rs2580816 2 232506210 T C -0.0412 5.837E-22  T C 0.8 [0.7-0.91] 0.0002 Same direction, 1-tailed P-value <0.05 

rs1738475 1 23409478 C G 0.0216 2.952E-12  G C 0.86 [0.78-0.96] 0.002 Same direction, 1-tailed P-value <0.05 

rs12474201 2 46774789 A G 0.0233 2.581E-13  A G 1.16 [1.04-1.29] 0.003 Same direction, 1-tailed P-value <0.05 

rs1351164 2 217980143 T C 0.0279 2.081E-14  C T 0.84 [0.74-0.96] 0.004 Same direction, 1-tailed P-value <0.05 

rs822552 7 148281567 C G -0.0302 2.613E-08  G C 1.15 [1.03-1.29] 0.007 Same direction, 1-tailed P-value <0.05 

rs7849585 9 138251691 T G 0.0324 4.724E-14  T G 1.13 [1.02-1.26] 0.011 Same direction, 1-tailed P-value <0.05 

rs1257763 9 95933766 A G 0.0685 9.865E-10  A G 1.33 [1.04-1.69] 0.012 Same direction, 1-tailed P-value <0.05 

rs12534093 7 23469499 A T -0.0298 2.019E-14  A T 0.87 [0.77-0.98] 0.012 Same direction, 1-tailed P-value <0.05 

rs2871865 15 97012419 C G 0.0535 2.862E-21  G C 0.83 [0.71-0.98] 0.013 Same direction, 1-tailed P-value <0.05 

rs310405 6 81857081 A G 0.03 2.245E-13  G A 0.89 [0.81-0.99] 0.016 Same direction, 1-tailed P-value <0.05 

rs10037512 5 88390431 T C 0.0267 2.011E-18  C T 0.82 [0.69-0.99] 0.018 Same direction, 1-tailed P-value <0.05 

rs1814175 11 49515748 T C 0.023 1.645E-08  T C 1.11 [1-1.24] 0.02 Same direction, 1-tailed P-value <0.05 

rs16942341 15 87189909 T C -0.1335 3.807E-27  T C 0.74 [0.55-1.01] 0.03 Same direction, 1-tailed P-value <0.05 

rs4665736 2 25041103 T C 0.0335 7.29E-16  C T 0.92 [0.83-1.02] 0.05 Same direction, 1-tailed P-value <0.05 

rs6684205 1 216676325 A G -0.0328 1.473E-12  G A 1.09 [0.97-1.22] 0.07 Same direction 

rs7567288 2 134151294 T C -0.0309 2.071E-12  C T 1.11 [0.97-1.26] 0.07 Same direction 

rs7697556 4 73734177 T C 0.0219 1.958E-14  T C 1.07 [0.96-1.18] 0.11 Same direction 

rs11599750 10 101795432 T C -0.023 1.604E-13  T C 0.94 [0.85-1.05] 0.13 Same direction 

rs2066807 12 55026949 C G -0.052 1.025E-13  G C 1.12 [0.92-1.35] 0.13 Same direction 

rs751543 9 118162163 T C 0.0287 6.537E-10  C T 0.94 [0.84-1.05] 0.13 Same direction 

rs7532866 1 26614131 A G 0.0222 3.372E-08  G A 0.94 [0.85-1.05] 0.14 Same direction 

rs11118346 1 217810342 T C -0.0264 1.879E-12  T C 0.96 [0.87-1.06] 0.20 Same direction 

rs6439167 3 130533446 T C -0.0338 8.925E-15  T C 0.93 [0.75-1.15] 0.24 Same direction 

rs274546 5 131727766 A G -0.0278 7.254E-16  A G 0.97 [0.87-1.07] 0.26 Same direction 

rs10863936 1 210304421 A G -0.022 1.922E-09  G A 1.03 [0.93-1.14] 0.27 Same direction 
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rs9360921 6 76322362 T G -0.0479 2.552E-13  G T 1.05 [0.89-1.25] 0.28 Same direction 

rs4986172 17 40571807 T C -0.0283 2.333E-16  T C 0.97 [0.87-1.08] 0.29 Same direction 

rs9456307 6 158849430 A T -0.0499 2.239E-09  A T 0.98 [0.78-1.22] 0.42 Same direction 

rs572169 3 173648421 T C 0.0355 2.765E-18  T C 1.02 [0.84-1.24] 0.42 Same direction 

rs2110001 7 150147955 C G -0.0328 3.319E-13 
 

G C 0.99 [0.88-1.1] 0.61 
Opposite direction (1-tailed P-value 

adjusted accordingly) 

rs8052560 16 87304743 A C 0.0392 3.324E-08 
 

C A 1.08 [0.95-1.23] 0.89 
Opposite direction (1-tailed P-value 

adjusted accordingly) 
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Supplementary Table 3. Family-based association results for the 180 confirmed height SNPs in the Framingham Heart Study 
(FHS) and the Erasmus Rucphen Family (ERF) study. For each study, and the meta-analysis FHS+ERF, we compare the direction 
of effect observed with respect to the effect of the height-increasing allele in the GIANT meta-analysis. 
 

SNP 

GIANT meta-analysis  FHS (family-based test)  ERF (family-based test)  
Meta-analysis FHS+ERF 

(family-based test) 

Height 
Increasing 

allele 
BETA P-value   

Direction of 
effect relative 

to GIANT 
P-value 

BETA 
relative to 

GIANT 
  

Direction of 
effect relative 

to GIANT 
P-value   

Direction of 
effect relative 

to GIANT 
P-value 

rs724016 G 0.067 4.5E-52  Same 0.02 0.066  Same 0.61  Same 0.02 

rs143384 G 0.064 4.9E-39  Same 3.5E-03 0.081  Same 0.65  Same 4.8E-03 

rs1351394 T 0.054 7.8E-34  Same 1.3E-03 0.089  Same 0.73  Same 2.3E-03 

rs7689420 C 0.069 1.4E-29  Same 0.06 0.068  Same 0.03  Same 0.01 

rs42235 T 0.055 7.3E-28  Opposite 0.91 -0.003  Opposite 0.85  Opposite 0.85 

rs6449353 T 0.071 1.3E-27  Same 0.04 0.070  Same 0.43  Same 0.03 

rs806794 A 0.053 5.5E-26  Same 1.7E-03 0.106  Same 0.02  Same 1.2E-04 

rs3118905 G 0.052 3.0E-25  Same 0.36 0.027  Same 0.57  Same 0.28 

rs798489 C 0.052 8.5E-25  Same 0.09 0.052  Same 0.04  Same 0.02 

rs11107116 T 0.052 1.7E-23  Same 0.05 0.065  Same 0.33  Same 0.03 

rs1046934 C 0.046 6.4E-22  Same 0.03 0.062  Same 0.89  Same 0.05 

rs11259936 C 0.042 2.2E-21  Same 0.06 0.053  Same 0.90  Same 0.09 

rs3791675 C 0.050 2.4E-20  Same 0.67 0.014  Same 0.25  Same 0.38 

rs7763064 G 0.045 6.4E-19  Same 0.43 0.023  Same 0.23  Same 0.22 

rs2780226 C 0.079 1.0E-18  Same 6.4E-04 0.171  Same 0.02  Same 4.9E-05 

rs11205277 G 0.045 1.2E-18  Same 0.12 0.043  Same 2.0E-03  Same 0.01 

rs7759938 C 0.042 8.7E-18  Same 0.15 0.041  Same 0.65  Same 0.13 

rs16942341 C 0.134 1.3E-17  Same 2.5E-03 0.236  Same 0.59  Same 3.1E-03 

rs1708299 A 0.042 1.5E-17  Same 4.5E-03 0.090  Same 0.29  Same 2.6E-03 

rs4800452 T 0.048 2.4E-17  Same 0.01 0.082  Same 0.49  Same 0.01 

rs6470764 C 0.047 5.9E-17  Same 0.22 0.041  Same 0.87  Same 0.24 

rs2079795 T 0.040 1.2E-16  Same 0.09 0.049  Same 0.69  Same 0.09 

rs9967417 G 0.038 2.6E-16  Same 0.22 0.031  Same 0.67  Same 0.20 

rs1490384 T 0.037 3.2E-16  Same 0.03 0.060  Opposite 0.45  Same 0.10 
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SNP 

GIANT meta-analysis  FHS (family-based test)  ERF (family-based test)  
Meta-analysis FHS+ERF 

(family-based test) 

Height 
Increasing 

allele 
BETA P-value   

Direction of 
effect relative 

to GIANT 
P-value 

BETA 
relative to 

GIANT 
  

Direction of 
effect relative 

to GIANT 
P-value   

Direction of 
effect relative 

to GIANT 
P-value 

rs2145272 G 0.039 5.9E-16  Same 0.01 0.069  Same 0.88  Same 0.02 

rs3812163 T 0.037 6.7E-16  Same 0.80 0.007  Same 0.18  Same 0.42 

rs3764419 C 0.037 8.9E-16  Same 0.09 0.046  Same 0.49  Same 0.07 

rs7460090 T 0.055 9.6E-16  Opposite 0.96 -0.002  Same 0.19  Same 0.60 

rs788867 G 0.039 1.8E-15  Same 0.56 0.017  Same 0.36  Same 0.36 

rs1173727 T 0.036 4.0E-15  Same 0.03 0.058  Same 0.40  Same 0.02 

rs2284746 G 0.035 5.6E-15  Same 0.69 0.011  Same 0.09  Same 0.28 

rs7466269 A 0.036 1.2E-14  Same 0.20 0.036  Same 0.05  Same 0.04 

rs473902 T 0.074 1.7E-14  Same 0.26 0.056  Same 0.83  Same 0.26 

rs2256183 A 0.035 2.7E-14  Same 0.79 0.008  Opposite 0.94  Same 0.84 

rs17346452 C 0.038 3.3E-14  Same 0.92 0.003  Same 0.21  Same 0.52 

rs7274811 G 0.040 6.8E-14  Same 0.01 0.080  Same 0.42  Same 0.01 

rs2638953 C 0.036 8.4E-14  Same 0.07 0.056  Opposite 0.97  Same 0.11 

rs572169 T 0.036 9.9E-14  Same 0.60 0.015  Same 0.03  Same 0.17 

rs4665736 T 0.034 1.4E-13  Same 0.28 0.030  Same 0.11  Same 0.09 

rs4965598 C 0.035 1.4E-13  Same 0.02 0.069  Same 0.52  Same 0.02 

rs2665838 G 0.037 2.0E-13  Same 0.09 0.051  Same 0.40  Same 0.06 

rs9428104 G 0.038 8.9E-13  Same 0.06 0.057  Opposite 0.19  Same 0.27 

rs2871865 C 0.054 1.1E-12  Same 0.10 0.074  Same 0.08  Same 0.02 

rs17511102 T 0.060 1.3E-12  Same 0.23 0.062  Same 0.50  Same 0.17 

rs2580816 C 0.041 1.8E-12  Same 0.37 0.031  Opposite 0.67  Same 0.54 

rs2093210 C 0.034 2.3E-12  Same 0.20 0.036  Same 0.07  Same 0.05 

rs12982744 G 0.033 2.8E-12  Same 0.69 0.012  Opposite 0.46  Same 0.97 

rs6569648 C 0.036 8.9E-12  Same 0.06 0.058  Same 0.46  Same 0.04 

rs6457821 C 0.121 1.8E-11  Opposite 0.93 -0.009  Same 0.26  Same 0.69 

rs6684205 G 0.033 2.0E-11  Same 0.47 0.021  Same 0.08  Same 0.16 

rs7849585 T 0.032 3.4E-11  Opposite 0.91 -0.003  Same 0.19  Same 0.64 

rs310405 A 0.030 3.6E-11  Opposite 0.81 -0.007  Same 0.16  Same 0.70 
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SNP 

GIANT meta-analysis  FHS (family-based test)  ERF (family-based test)  
Meta-analysis FHS+ERF 

(family-based test) 

Height 
Increasing 

allele 
BETA P-value   

Direction of 
effect relative 

to GIANT 
P-value 

BETA 
relative to 

GIANT 
  

Direction of 
effect relative 

to GIANT 
P-value   

Direction of 
effect relative 

to GIANT 
P-value 

rs10748128 T 0.035 3.8E-11  Opposite 0.65 -0.014  Same 0.35  Same 0.99 

rs1950500 T 0.032 3.9E-11  Same 0.28 0.033  Same 0.29  Same 0.15 

rs10770705 A 0.031 4.6E-11  Opposite 0.29 -0.031  Opposite 0.60  Opposite 0.24 

rs9360921 G 0.048 4.6E-11  Same 0.52 0.029  Opposite 0.65  Same 0.70 

rs12680655 C 0.030 4.8E-11  Opposite 0.50 -0.019  Same 0.39  Opposite 0.82 

rs12470505 T 0.048 1.3E-10  Same 0.22 0.053  Same 0.45  Same 0.15 

rs7027110 A 0.034 1.3E-10  Same 0.16 0.046  Opposite 0.81  Same 0.24 

rs2856321 G 0.030 1.5E-10  Same 0.32 0.028  Same 0.56  Same 0.25 

rs720390 A 0.031 1.6E-10  Same 0.10 0.048  Same 0.19  Same 0.04 

rs6473015 C 0.032 1.7E-10  Same 0.55 0.017  Opposite 0.62  Same 0.74 

rs10838801 G 0.031 1.8E-10  Same 0.01 0.075  Same 0.04  Same 1.7E-03 

rs5742915 C 0.031 3.0E-10  Same 0.05 0.059  Same 0.25  Same 0.02 

rs4282339 G 0.035 3.4E-10  Same 0.34 0.032  Same 0.75  Same 0.32 

rs2154319 C 0.034 4.3E-10  Same 0.27 0.035  Same 0.01  Same 0.03 

rs7319045 A 0.029 4.5E-10  Same 0.01 0.078  Same 0.57  Same 0.01 

rs889014 C 0.029 4.5E-10  Same 0.38 0.025  Same 0.70  Same 0.34 

rs6879260 C 0.028 5.6E-10  Same 0.99 0.000  Same 0.13  Same 0.50 

rs9969804 A 0.028 5.6E-10  Same 0.47 0.021  Opposite 0.71  Same 0.62 

rs237743 A 0.034 7.2E-10  Same 0.24 0.041  Same 0.05  Same 0.06 

rs6439167 C 0.034 7.2E-10  Same 0.12 0.049  Same 0.73  Same 0.12 

rs274546 G 0.028 8.5E-10  Same 0.01 0.066  Opposite 0.41  Same 0.07 

rs12153391 C 0.033 8.7E-10  Same 0.55 0.018  Same 0.15  Same 0.25 

rs7155279 G 0.029 8.9E-10  Opposite 0.74 -0.009  Same 0.53  Opposite 0.98 

rs2110001 G 0.033 9.8E-10  Same 0.15 0.042  Same 0.03  Same 0.03 

rs422421 C 0.033 1.4E-09  Same 9.0E-05 0.126  Same 0.05  Same 1.2E-05 

rs543650 G 0.032 1.4E-09  Same 0.27 0.037  Same 0.51  Same 0.20 

rs634552 T 0.041 1.4E-09  Same 0.74 0.014  Opposite 0.10  Opposite 0.68 

rs11144688 G 0.055 1.5E-09  Same 0.63 0.022  Same 0.34  Same 0.40 
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SNP 

GIANT meta-analysis  FHS (family-based test)  ERF (family-based test)  
Meta-analysis FHS+ERF 

(family-based test) 

Height 
Increasing 

allele 
BETA P-value   

Direction of 
effect relative 

to GIANT 
P-value 

BETA 
relative to 

GIANT 
  

Direction of 
effect relative 

to GIANT 
P-value   

Direction of 
effect relative 

to GIANT 
P-value 

rs526896 T 0.032 1.9E-09  Same 0.97 0.001  Opposite 0.37  Opposite 0.72 

rs1809889 T 0.032 1.9E-09  Opposite 0.48 -0.023  Same 0.10  Same 0.92 

rs11118346 C 0.026 2.2E-09  Same 0.04 0.057  Same 0.68  Same 0.04 

rs17318596 A 0.029 3.0E-09  Same 0.72 0.010  Opposite 0.62  Same 0.92 

rs10037512 T 0.027 3.8E-09  Same 0.06 0.051  Same 0.73  Same 0.07 

rs3782089 C 0.058 5.9E-09  Same 0.99 0.001  Same 0.57  Same 0.80 

rs11684404 C 0.027 6.4E-09  Same 0.20 0.038  Same 0.36  Same 0.12 

rs4986172 C 0.028 7.1E-09  Same 0.35 0.026  Opposite 0.12  Same 0.88 

rs2834442 A 0.027 7.3E-09  Same 0.08 0.049  Opposite 0.82  Same 0.13 

rs11958779 G 0.028 8.0E-09  Opposite 0.80 -0.008  Opposite 0.80  Opposite 0.73 

rs2066807 G 0.052 9.6E-09  Same 0.03 0.129  Opposite 0.44  Same 0.10 

rs10799445 A 0.031 1.2E-08  Same 0.51 0.021  Opposite 0.50  Same 0.77 

rs227724 T 0.027 1.2E-08  Same 0.15 0.043  Opposite 0.87  Same 0.23 

rs8052560 A 0.039 1.4E-08  Same 0.01 0.031  Opposite 0.34  Same 0.06 

rs9863706 C 0.030 1.5E-08  Same 0.01 0.086  Opposite 0.57  Same 0.03 

rs1325598 G 0.026 1.6E-08  Same 0.03 0.058  Same 0.62  Same 0.03 

rs1582931 G 0.025 2.1E-08  Same 0.01 0.074  Same 0.38  Same 0.01 

rs2629046 T 0.025 2.2E-08  Same 0.64 0.013  Same 0.62  Same 0.52 

rs9472414 T 0.031 2.4E-08  Same 0.33 0.094  Same 0.48  Same 0.24 

rs2145998 T 0.025 2.7E-08  Same 0.35 0.027  Opposite 0.80  Same 0.46 

rs2237886 T 0.043 3.1E-08  Same 0.02 0.117  Same 0.52  Same 0.02 

rs9844666 G 0.028 3.1E-08  Same 0.25 0.037  Opposite 0.25  Same 0.60 

rs3129109 C 0.026 3.3E-08  Opposite 0.43 -0.022  Opposite 0.72  Opposite 0.38 

rs10152591 A 0.045 3.5E-08  Same 0.20 0.063  Same 0.10  Same 0.06 

rs1741344 C 0.026 3.5E-08  Same 0.05 0.057  Same 0.26  Same 0.02 

rs2336725 C 0.026 3.5E-08  Same 0.05 0.051  Same 0.63  Same 0.05 

rs26868 A 0.030 3.5E-08  Same 0.79 0.008  Same 0.58  Same 0.63 

rs2341459 T 0.028 3.6E-08  Same 0.12 0.050  Opposite 0.82  Same 0.19 
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SNP 

GIANT meta-analysis  FHS (family-based test)  ERF (family-based test)  
Meta-analysis FHS+ERF 

(family-based test) 

Height 
Increasing 

allele 
BETA P-value   

Direction of 
effect relative 

to GIANT 
P-value 

BETA 
relative to 

GIANT 
  

Direction of 
effect relative 

to GIANT 
P-value   

Direction of 
effect relative 

to GIANT 
P-value 

rs6457620 G 0.024 3.6E-08  Same 0.93 0.003  Opposite 0.69  Opposite 0.93 

rs4470914 T 0.033 3.8E-08  Same 1.00 0.000  Same 1.00  Same 1.00 

rs17780086 A 0.035 4.4E-08  Same 0.31 0.041  Opposite 0.97  Same 0.36 

rs1013209 C 0.029 4.5E-08  Opposite 0.74 -0.011  Opposite 0.94  Opposite 0.74 

rs751543 T 0.029 4.5E-08  Same 0.95 0.002  Opposite 0.02  Opposite 0.32 

rs17081935 T 0.031 4.8E-08  Opposite 0.75 -0.011  Same 0.27  Same 0.85 

rs4821083 T 0.033 4.8E-08  Same 0.07 0.063  Same 0.54  Same 0.06 

rs12534093 T 0.030 5.6E-08  Same 0.59 0.018  Opposite 0.97  Same 0.64 

rs2072153 C 0.026 6.7E-08  Same 0.41 0.026  Same 0.42  Same 0.27 

rs7567288 C 0.031 6.7E-08  Opposite 0.93 -0.003  Same 0.90  Opposite 0.98 

rs2247341 A 0.025 6.8E-08  Same 0.42 0.022  Same 0.12  Same 0.16 

rs7926971 G 0.024 7.3E-08  Same 1.6E-03 0.082  Opposite 0.04  Same 0.05 

rs7332115 G 0.025 7.6E-08  Same 0.24 0.033  Same 0.15  Same 0.09 

rs1047014 C 0.029 1.1E-07  Same 0.41 0.028  Opposite 0.49  Same 0.66 

rs17806888 T 0.040 1.1E-07  Opposite 0.04 0.077  Same 0.42  Same 0.03 

rs2597513 C 0.039 1.1E-07  Same 0.08 0.078  Same 0.45  Same 0.06 

rs7971536 T 0.025 1.1E-07  Same 0.17 0.036  Same 0.72  Same 0.17 

rs8181166 C 0.025 1.1E-07  Opposite 0.35 -0.025  Opposite 0.82  Opposite 0.35 

rs822552 G 0.030 1.3E-07  Opposite 0.44 -0.025  Opposite 0.95  Opposite 0.47 

rs12694997 G 0.027 1.8E-07  Same 0.05 0.063  Opposite 0.20  Same 0.22 

rs4640244 A 0.028 2.0E-07  Opposite 0.67 0.013  Same 0.05  Same 0.21 

rs7178424 C 0.024 2.2E-07  Same 0.02 0.067  Opposite 0.29  Same 0.10 

rs7507204 C 0.028 2.3E-07  Same 0.05 0.071  Same 0.51  Same 0.04 

rs11648796 G 0.031 2.4E-07  NA 1.00 NA  Same 0.65  Same 0.65 

rs2279008 T 0.031 2.4E-07  Same 0.44 0.027  Same 0.15  Same 0.18 

rs961764 G 0.023 2.4E-07  Same 0.16 0.038  Same 0.48  Same 0.11 

rs4072910 G 0.029 2.5E-07  NA 1.00 NA  Same 0.49  Same 0.49 

rs13088462 C 0.054 3.1E-07  Same 0.96 0.003  Opposite 0.66  Opposite 0.88 
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SNP 

GIANT meta-analysis  FHS (family-based test)  ERF (family-based test)  
Meta-analysis FHS+ERF 

(family-based test) 

Height 
Increasing 

allele 
BETA P-value   

Direction of 
effect relative 

to GIANT 
P-value 

BETA 
relative to 

GIANT 
  

Direction of 
effect relative 

to GIANT 
P-value   

Direction of 
effect relative 

to GIANT 
P-value 

rs2778031 T 0.027 3.6E-07  Same 0.04 0.066  Same 0.59  Same 0.04 

rs1351164 T 0.028 3.7E-07  Same 0.78 0.010  Same 0.96  Same 0.78 

rs1330 T 0.024 4.4E-07  Opposite 0.49 -0.018  Same 0.58  Opposite 0.70 

rs9456307 T 0.050 4.6E-07  Opposite 0.56 -0.032  Same 0.94  Opposite 0.62 

rs11867479 T 0.024 4.9E-07  Same 0.07 0.051  Same 0.95  Same 0.10 

rs7864648 T 0.025 4.9E-07  Opposite 0.67 -0.013  Same 0.44  Opposite 0.97 

rs17391694 T 0.040 5.9E-07  Opposite 0.43 -0.042  Same 0.51  Opposite 0.67 

rs10863936 G 0.022 6.2E-07  Same 0.02 0.060  Opposite 0.90  Same 0.05 

rs654723 A 0.024 6.7E-07  Same 0.38 0.024  Opposite 0.86  Same 0.48 

rs7567851 C 0.041 7.5E-07  Same 0.32 0.046  Opposite 0.93  Same 0.40 

rs11599750 C 0.023 7.6E-07  Same 0.38 0.025  Same 0.18  Same 0.17 

rs7112925 C 0.023 8.5E-07  Same 0.23 0.034  Same 0.08  Same 0.06 

rs1046943 A 0.022 8.6E-07  Same 0.42 0.023  Same 0.28  Same 0.23 

rs9835332 G 0.022 8.7E-07  Same 0.13 0.038  Same 0.29  Same 0.07 

rs4605213 C 0.023 9.3E-07  Opposite 0.73 -0.011  Same 0.49  Opposite 0.99 

rs12474201 A 0.023 1.0E-06  Same 0.38 0.025  Opposite 0.37  Same 0.69 

rs862034 G 0.023 1.1E-06  Same 0.05 0.059  Same 0.43  Same 0.03 

rs1043515 G 0.022 1.3E-06  Same 0.15 0.039  Same 0.05  Same 0.03 

rs7697556 T 0.022 1.3E-06  Same 0.02 0.063  Opposite 0.62  Same 0.07 

rs7909670 C 0.022 1.3E-06  Opposite 0.77 -0.008  Same 0.71  Opposite 0.92 

rs1468758 C 0.026 1.5E-06  Same 0.76 0.009  Opposite 0.88  Same 0.84 

rs3110496 G 0.023 1.6E-06  Same 0.01 0.078  Same 0.12  Same 0.00 

rs10874746 C 0.022 1.7E-06  Opposite 0.29 -0.030  Same 0.03  Opposite 0.98 

rs12902421 C 0.069 1.7E-06  Same 0.11 0.145  Opposite 0.45  Same 0.27 

rs425277 T 0.024 1.7E-06  Same 0.09 0.052  Same 0.99  Same 0.13 

rs6699417 T 0.022 1.7E-06  Same 0.85 0.006  Opposite 0.51  Opposite 0.91 

rs891088 G 0.025 1.7E-06  Opposite 0.70 -0.012  Same 0.48  Opposite 0.96 

rs1738475 C 0.022 1.9E-06  Same 0.24 0.030  Opposite 0.90  Same 0.32 
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SNP 

GIANT meta-analysis  FHS (family-based test)  ERF (family-based test)  
Meta-analysis FHS+ERF 

(family-based test) 

Height 
Increasing 

allele 
BETA P-value   

Direction of 
effect relative 

to GIANT 
P-value 

BETA 
relative to 

GIANT 
  

Direction of 
effect relative 

to GIANT 
P-value   

Direction of 
effect relative 

to GIANT 
P-value 

rs4601530 C 0.024 2.0E-06  Opposite 0.79 -0.008  Same 0.69  Opposite 0.95 

rs6714546 G 0.025 2.2E-06  Same 0.16 0.045  Opposite 0.78  Same 0.25 

rs955748 G 0.024 2.2E-06  Same 0.57 0.018  Opposite 0.59  Same 0.78 

rs10010325 A 0.021 2.3E-06  Same 0.45 0.019  Same 0.33  Same 0.27 

rs1257763 A 0.069 2.5E-06  Same 0.02 0.150  Opposite 0.71  Same 0.05 

rs16964211 G 0.051 2.5E-06  Same 0.94 0.005  Opposite 0.14  Opposite 0.57 

rs1814175 T 0.023 2.6E-06  Same 0.43 0.023  Same 0.01  Same 0.07 

rs6959212 C 0.023 2.8E-06  Same 0.60 0.014  Same 0.19  Same 0.30 

rs1659127 A 0.024 2.9E-06  Opposite 0.41 -0.023  Opposite 0.16  Opposite 0.17 

rs7853377 G 0.026 3.1E-06  Same 0.90 0.004  Opposite 0.92  Same 0.94 

rs7532866 A 0.022 3.3E-06  Same 0.24 0.033  Opposite 0.78  Same 0.35 

rs17782313 C 0.025 3.5E-06  Opposite 0.60 -0.017  Same 0.28  Same 1.00 

rs13177718 C 0.041 4.1E-06  Opposite 0.51 -0.033  Opposite 0.70  Opposite 0.45 

rs5017948 A 0.027 4.7E-06  Same 8.9E-04 0.126  Same 0.07  Same 1.6E-04 

rs1570106 C 0.026 4.9E-06  Same 0.59 0.019  Opposite 0.14  Opposite 0.87 

rs494459 T 0.021 4.9E-06  Opposite 0.14 -0.040  Same 0.10  Opposite 0.56 
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Supplementary Table 4. Estimated number of height loci for each of the effect 
sizes observed in Stage 2 given the power to detect the association in Stage 1. 
 

 SNP MAF 
Mean 

Difference 
Standardized 

Effect size 
Power 

Estimated 
number of loci

†
 

1 rs1325598 0.435 -0.016 1.18E-04 0.0151 74.5 

2 rs9472414 0.217 -0.019 1.21E-04 0.0169 63.4 

3 rs7155279 0.356 -0.016 1.22E-04 0.0171 62.3 

4 rs1741344 0.375 0.016 1.23E-04 0.0178 59.3 

5 rs1013209 0.252 -0.019 1.30E-04 0.0226 47.6 

6 rs12470505 0.095 -0.028 1.35E-04 0.0263 41.5 

7 rs6684205 0.294 0.019 1.45E-04 0.0350 30.9 

8 rs2341459 0.279 0.020 1.53E-04 0.0434 24.6 

9 rs4470914 0.178 0.023 1.53E-04 0.0436 24.5 

10 rs6457821 0.018 -0.068 1.65E-04 0.0587 17.7 

11 rs751543 0.275 -0.021 1.68E-04 0.0619 16.9 

12 rs10838801 0.307 0.020 1.70E-04 0.0655 15.9 

13 rs7319045 0.403 0.019 1.72E-04 0.0681 15.2 

14 rs1582931 0.480 -0.019 1.82E-04 0.0848 12.2 

15 rs4821083 0.151 -0.027 1.91E-04 0.1018 10.1 

16 rs10152591 0.091 -0.034 1.93E-04 0.1044 9.8 

17 rs310405 0.478 -0.020 2.00E-04 0.1185 8.7 

18 rs6473015 0.274 0.023 2.10E-04 0.1426 7.3 

19 rs9360921 0.113 0.033 2.15E-04 0.1529 6.7 

20 rs12153391 0.250 -0.024 2.18E-04 0.1611 6.3 

21 rs4665736 0.455 -0.021 2.21E-04 0.1681 6.0 

22 rs7027110 0.230 0.025 2.21E-04 0.1692 6.0 

23 rs2154319 0.244 0.025 2.27E-04 0.1839 5.5 

24 rs17081935 0.203 0.028 2.48E-04 0.2444 4.2 

25 rs11118346 0.477 -0.023 2.57E-04 0.2721 3.7 

26 rs7849585 0.333 0.024 2.58E-04 0.2750 3.7 

27 rs2629046 0.440 -0.023 2.63E-04 0.2906 3.5 

28 rs422421 0.216 -0.028 2.64E-04 0.2927 3.5 

29 rs2834442 0.343 -0.024 2.68E-04 0.3079 3.3 

30 rs12680655 0.413 -0.024 2.75E-04 0.3286 3.1 

31 rs7466269 0.370 -0.024 2.78E-04 0.3381 3.0 

32 rs2638953 0.318 -0.026 2.82E-04 0.3529 2.9 

33 rs11958779 0.306 0.026 2.90E-04 0.3783 2.7 

34 rs634552 0.146 0.035 2.99E-04 0.4087 2.5 

35 rs11144688 0.106 -0.040 3.03E-04 0.4230 2.4 

36 rs720390 0.387 0.026 3.28E-04 0.5092 2.0 

37 rs526896 0.279 -0.029 3.29E-04 0.5119 2.0 

38 rs2110001 0.319 0.028 3.31E-04 0.5180 2.0 

39 rs12982744 0.389 0.027 3.41E-04 0.5519 1.8 

40 rs473902 0.079 -0.050 3.62E-04 0.6161 1.6 

41 rs3782089 0.060 -0.057 3.67E-04 0.6317 1.6 

42 rs9863706 0.216 -0.033 3.69E-04 0.6374 1.6 

43 rs572169 0.311 0.030 3.73E-04 0.6494 1.5 

44 rs2145998 0.499 0.027 3.75E-04 0.6564 1.5 
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 SNP MAF 
Mean 

Difference 
Standardized 

Effect size 
Power 

Estimated 
number of loci

†
 

45 rs2856321 0.358 0.029 3.76E-04 0.6587 1.5 

46 rs2336725 0.450 0.028 3.85E-04 0.6842 1.5 

47 rs10799445 0.235 -0.033 3.91E-04 0.6998 1.4 

48 rs11684404 0.349 0.029 3.93E-04 0.7038 1.4 

49 rs6439167 0.204 -0.035 3.97E-04 0.7163 1.4 

50 rs1490384 0.499 0.028 3.98E-04 0.7169 1.4 

51 rs11830103 0.213 0.035 4.01E-04 0.7253 1.4 

52 rs2093210 0.405 0.029 4.08E-04 0.7431 1.3 

53 rs2066807 0.070 0.058 4.43E-04 0.8183 1.2 

54 rs2237886 0.099 0.050 4.53E-04 0.8359 1.2 

55 rs4282339 0.203 -0.038 4.57E-04 0.8426 1.2 

56 rs889014 0.360 -0.032 4.72E-04 0.8669 1.2 

57 rs5742915 0.451 0.031 4.73E-04 0.8682 1.2 

58 rs274546 0.406 -0.032 4.88E-04 0.8890 1.1 

59 rs3764419 0.388 -0.032 4.89E-04 0.8910 1.1 

60 rs1173727 0.407 0.032 4.94E-04 0.8974 1.1 

61 rs227724 0.355 0.034 5.29E-04 0.9332 1.1 

62 rs9969804 0.447 0.033 5.52E-04 0.9500 1.1 

63 rs17511102 0.084 0.061 5.64E-04 0.9576 1.1 

64 rs10770705 0.326 0.036 5.66E-04 0.9589 1.0 

65 rs1950500 0.287 0.038 5.79E-04 0.9655 1.0 

66 rs1708299 0.300 0.038 5.91E-04 0.9709 1.0 

67 rs3812163 0.448 0.035 6.13E-04 0.9788 1.0 

68 rs17318596 0.347 0.037 6.27E-04 0.9828 1.0 

69 rs4986172 0.349 -0.037 6.35E-04 0.9848 1.0 

70 rs7274811 0.240 -0.042 6.50E-04 0.9878 1.0 

71 rs543650 0.415 -0.037 6.76E-04 0.9919 1.0 

72 rs2079795 0.322 0.040 6.88E-04 0.9933 1.0 

73 rs6457620 0.482 0.037 6.98E-04 0.9944 1.0 

74 rs2145272 0.346 0.040 7.06E-04 0.9950 1.0 

75 rs9967417 0.409 0.039 7.16E-04 0.9958 1.0 

76 rs798489 0.301 -0.042 7.43E-04 0.9973 1.0 

77 rs2780226 0.081 0.072 7.62E-04 0.9981 1.0 

78 rs26868 0.455 0.040 7.74E-04 0.9984 1.0 

79 rs2871865 0.115 -0.062 7.81E-04 0.9986 1.0 

80 rs17346452 0.269 0.045 7.83E-04 0.9987 1.0 

81 rs2580816 0.183 -0.051 7.91E-04 0.9988 1.0 

82 rs10037512 0.449 -0.040 7.96E-04 0.9989 1.0 

83 rs1046934 0.363 0.042 7.96E-04 0.9989 1.0 

84 rs6569648 0.231 0.047 7.99E-04 0.9990 1.0 

85 rs3129109 0.379 -0.041 8.06E-04 0.9991 1.0 

86 rs10748128 0.351 0.042 8.07E-04 0.9991 1.0 

87 rs9428104 0.241 -0.048 8.39E-04 0.9995 1.0 

88 rs16942341 0.029 -0.124 8.52E-04 0.9996 1.0 

89 rs11107116 0.228 0.050 8.68E-04 0.9997 1.0 

90 rs7460090 0.127 -0.064 9.18E-04 0.9999 1.0 

91 rs237743 0.214 0.053 9.26E-04 0.9999 1.0 
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 SNP MAF 
Mean 

Difference 
Standardized 

Effect size 
Power 

Estimated 
number of loci

†
 

92 rs6470764 0.189 -0.056 9.72E-04 1.0000 1.0 

93 rs4800452 0.214 -0.056 1.05E-03 1.0000 1.0 

94 rs788867 0.320 0.050 1.07E-03 1.0000 1.0 

95 rs2665838 0.268 0.052 1.07E-03 1.0000 1.0 

96 rs7759938 0.309 0.051 1.10E-03 1.0000 1.0 

97 rs806794 0.315 -0.051 1.10E-03 1.0000 1.0 

98 rs11259936 0.481 -0.047 1.12E-03 1.0000 1.0 

99 rs11205277 0.416 0.048 1.13E-03 1.0000 1.0 

100 rs2284746 0.482 -0.049 1.20E-03 1.0000 1.0 

101 rs7763064 0.291 -0.055 1.23E-03 1.0000 1.0 

102 rs3791675 0.236 -0.059 1.25E-03 1.0000 1.0 

103 rs2256183 0.450 0.051 1.29E-03 1.0000 1.0 

104 rs42235 0.308 0.062 1.62E-03 1.0000 1.0 

105 rs6449353 0.149 -0.081 1.65E-03 1.0000 1.0 

106 rs3118905 0.289 -0.063 1.65E-03 1.0000 1.0 

107 rs7689420 0.165 -0.080 1.76E-03 1.0000 1.0 

108 rs143384 0.435 0.061 1.83E-03 1.0000 1.0 

109 rs1351394 0.496 0.073 2.63E-03 1.0000 1.0 

110 rs724016 0.443 0.075 2.78E-03 1.0000 1.0 

Estimated # of total loci 697.3   

Total phenotypic variance explained (%)    15.7 

Total genotypic variance explained (%)    19.6 

 
† Projections are made only for effect sizes for SNPs that reached P<5x10-8 in Stage 1 
and had at least 1% power. 
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Supplementary Table 5. Dominant, recessive and dominance deviation results for nominally significant (dominance deviation 
P<0.05) lead SNPs at the 207 loci with P<5x10-6 in Stage 1. The effect allele is the height increasing allele from Stage 1. Only 
SNPs with a dominance deviation P<0.05 are presented. The analysis is based on a subset of 103,034 individuals from Stage 1. 
None of the results remain significant at P<0.05 after correcting for the number of tests performed. 
 

SNP 
Effect 
allele 

Other 
Allele 

Additive 
beta (SE) 

Additive 
P 

Dominant beta 
(SE) 

Dominant 
P 

Recessive 
beta (SE) 

Recessive 
P 

Dom Dev 
beta (SE) 

Dom Dev 
P 

rs1047014 C T 0.031 (0.006) 2.2x10
-08

 0.041 (0.006) 9.3x10
-11

 0.017 (0.013) 0.1991 0.026 (0.008) 0.002 

rs17122670 A G 0.032 (0.007) 8.8x10
-06

 0.038 (0.008) 3.6x10
-07

 -0.015 (0.027) 0.5645 0.044 (0.015) 0.003 

rs425277 T C 0.027 (0.005) 7.5x10
-08

 0.023 (0.006) 2.0x10
-04

 0.064 (0.012) 3.0x10
-08

 -0.021 (0.008) 0.005 

rs12982744 G C 0.033 (0.005) 2.0x10
-12

 0.049 (0.007) 9.1x10
-14

 0.029 (0.009) 6.8x10
-04

 0.018 (0.006) 0.006 

rs1257763 A G 0.077 (0.014) 4.0x10
-08

 0.054 (0.012) 1.3x10
-05

 0.358 (0.094) 1.3x10
-04

 -0.132 (0.049) 0.007 

rs2408058 G A 0.035 (0.006) 8.4x10
-09

 0.102 (0.02) 2.5x10
-07

 0.033 (0.007) 2.5x10
-06

 0.031 (0.012) 0.008 

rs1708299 A G 0.046 (0.005) 3.2x10
-22

 0.048 (0.006) 2.0x10
-14

 0.087 (0.01) 6.0x10
-17

 -0.019 (0.007) 0.009 

rs13177718 C T 0.046 (0.009) 1.8x10
-07

 0.164 (0.04) 4.3x10
-05

 0.038 (0.009) 1.6x10
-05

 0.055 (0.022) 0.012 

rs9456307 T A 0.056 (0.01) 1.7x10
-08

 0.221 (0.053) 3.3x10
-05

 0.05 (0.01) 8.5x10
-07

 0.071 (0.028) 0.013 

rs7601531 T C 0.022 (0.005) 2.8x10
-06

 0.041 (0.008) 6.5x10
-07

 0.018 (0.007) 7.0x10
-03

 0.015 (0.006) 0.019 

rs2341459 T C 0.031 (0.005) 7.1x10
-10

 0.041 (0.006) 5.3x10
-11

 0.028 (0.012) 1.9x10
-02

 0.017 (0.008) 0.028 

rs34651 C T 0.057 (0.009) 4.0x10
-11

 0.058 (0.009) 1.5x10
-11

 0.017 (0.038) 0.65 0.044 (0.021) 0.032 

rs1351394 T C 0.059 (0.004) 3.1x10
-40

 0.069 (0.007) 8.6x10
-22

 0.085 (0.007) 1.7x10
-32

 -0.013 (0.006) 0.032 

rs17318596 A G 0.032 (0.005) 3.5x10
-11

 0.043 (0.006) 1.7x10
-11

 0.029 (0.009) 8.4x10
-04

 0.014 (0.007) 0.036 

rs4072910 G C 0.033 (0.006) 6.0x10
-09

 0.051 (0.009) 1.2x10
-08

 0.028 (0.008) 5.1x10
-04

 0.015 (0.007) 0.036 

rs42235 T C 0.065 (0.005) 2.5x10
-38

 0.067 (0.006) 2.5x10
-26

 0.108 (0.011) 3.7x10
-24

 -0.015 (0.007) 0.037 

rs11648796 G A 0.028 (0.006) 2.3x10
-06

 0.034 (0.007) 3.6x10
-07

 0.019 (0.014) 0.1882 0.019 (0.009) 0.040 

rs10799445 A C 0.028 (0.005) 1.0x10
-07

 0.023 (0.014) 9.9x10
-02

 0.037 (0.006) 7.8x10
-09

 -0.018 (0.009) 0.043 

rs822552 G C 0.037 (0.006) 8.1x10
-11

 0.043 (0.006) 1.6x10
-11

 0.034 (0.013) 9.8x10
-03

 0.017 (0.008) 0.044 
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Supplementary Table 6. Nominally significant (P<0.001) results for all pairwise tests between the lead SNPs at 207 loci with 
P<5x10-6 in Stage 1. The betas refer to the height increasing alleles from Stage 1. The additive effect results for each individual 
SNP is based on the Stage 1 meta-analysis. The results for the pairwise interaction analysis are based on a subset of 103,034 
individuals from Stage 1.  
 

Markers 
(SNP1/SNP2) 

Additive effect 
SNP1  

Additive effect 
SNP1 P 

Additive effect 
SNP2 

Additive effect 
SNP2 P 

Pairwise interaction 
beta (SE) 

Interaction P 

rs2145998 rs6470764 0.025 2.7x10
-08

 0.047 5.9x10
-17

 0.036 (0.008) 7.7x10
-06

 

rs1741344 rs4800452 0.026 3.5x10
-08

 0.048 2.4x10
-17

 -0.035 (0.009) 3.8x10
-05

 

rs7853377 rs955748 0.026 3.1x10
-06

 0.024 2.2x10
-06

 0.035 (0.009) 6.1x10
-05

 

rs494459 rs6470764 0.021 4.9x10
-06

 0.047 5.9x10
-17

 -0.032 (0.008) 0.000104 

rs3110496 rs7759938 0.023 1.6x10
-06

 0.042 8.7x10
-18

 -0.028 (0.007) 0.000146 

rs1814175 rs9428104 0.023 2.6x10
-06

 0.038 8.9x10
-13

 -0.030 (0.008) 0.000163 

rs3110496 rs7697556 0.023 1.6x10
-06

 0.022 1.3x10
-06

 0.025 (0.007) 0.000218 

rs143384 rs17346452 0.064 4.9x10
-39

 0.038 3.3x10
-14

 -0.028 (0.008) 0.000231 

rs1351164 rs6684205 0.028 3.7x10
-07

 0.033 2.0x10
-11

 -0.031 (0.009) 0.000356 

rs1013209 rs16942341 0.029 4.5x10
-08

 0.134 1.3x10
-17

 0.095 (0.027) 0.000357 

rs16942341 rs5017948 0.134 1.3x10
-17

 0.027 4.7x10
-06

 0.107 (0.030) 0.00042 

rs2408058 rs6879260 0.035 2.2x10
-08

 0.028 5.6x10
-10

 -0.031 (0.009) 0.000507 

rs806794 rs9428104 0.053 5.5x10
-26

 0.038 8.9x10
-13

 -0.029 (0.008) 0.000535 

rs16892729 rs2154319 0.025 1.3x10
-06

 0.034 4.3x10
-10

 -0.031 (0.009) 0.000591 

rs17081935 rs2110001 0.031 4.8x10
-08

 0.033 9.8x10
-10

 0.032 (0.009) 0.00062 

rs4640244 rs9428104 0.028 2.0x10
-07

 0.038 8.9x10
-13

 -0.030 (0.009) 0.000658 

rs1173727 rs2580816 0.036 4.0x10
-15

 0.041 1.8x10
-12

 0.029 (0.009) 0.000713 

rs1046934 rs17017854 0.046 6.4x10
-22

 0.028 4.0x10
-06

 0.030 (0.009) 0.000817 

rs2154319 rs6772112 0.034 4.3x10
-10

 0.046 1.6x10
-06

 0.054 (0.016) 0.00088 

rs3791675 rs6684205 0.050 2.4x10
-20

 0.033 2.0x10
-11

 0.028 (0.008) 0.000935 

rs3791675 rs7759938 0.050 2.4x10
-20

 0.042 8.7x10
-18

 0.027 (0.008) 0.000972 
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Supplementary Table 7. Height SNPs in linkage disequilibrium (r2 0.8) with non-
synonymous SNPs, using the HapMap phase II CEU data. For each gene, we 
annotated all reported isoforms. 
 

Chr Position 
GIANT 

height SNP 

Non-
synonymous 

SNP 
r

2
 Amino acid change Gene name Gene isoform 

1 148173037 rs11205277 rs11205303 0.89 ATG (Met) => GTG (Val) [exon6] MTMR11 NM_001145862 

1 148173037 rs11205277 rs11205303 0.89 ATG (Met) => GTG (Val) [exon5] MTMR11 NM_181873 

1 182287568 rs1046934 rs2274432 1 GGC (Gly) => GAC (Asp) [exon1] TSEN15 NM_052965 

1 182287568 rs1046934 rs2274432 1 GGC (Gly) => GAC (Asp) [exon1] TSEN15 NM_001127394 

1 182290152 rs1046934 rs1046934 1 CAA (Gln) => CAC (His) [exon2] TSEN15 NM_052965 

1 182290152 rs1046934 rs1046934 1 CAA (Gln) => CAC (His) [exon2] TSEN15 NM_001127394 

2 88656006 rs11684404 rs1805165 0.87 GCT (Ala) => TCT (Ser) [exon13] EIF2AK3 NM_004836 

2 88676238 rs11684404 rs13045 1 CAA (Gln) => CGA (Arg) [exon3] EIF2AK3 NM_004836 

2 88694388 rs11684404 rs867529 0.87 TCC (Ser) => TGC (Cys) [exon2] EIF2AK3 NM_004836 

2 241841521 rs12694997 rs7578199 0.88 AAT (Asn) => AGT (Ser) [exon10] HDLBP NM_005336 

2 241841521 rs12694997 rs7578199 0.88 AAT (Asn) => AGT (Ser) [exon10] HDLBP NM_203346 

3 56603071 rs9835332 rs7637449 0.92 CGA (Arg) => CAA (Gln) [exon10] CCDC66 NM_001141947 

3 56603071 rs9835332 rs7637449 0.92 CGA (Arg) => CAA (Gln) [exon10] CCDC66 NM_001012506 

3 56642722 rs9835332 rs9835332 1 ACA (Thr) => AGA (Arg) [exon11] C3orf63 NM_015224 

3 56642722 rs9835332 rs9835332 1 ACA (Thr) => AGA (Arg) [exon18] C3orf63 NM_001112736 

3 56691962 rs9835332 rs958755 1 CAA (Gln) => CCA (Pro) [exon1] C3orf63 NM_001112736 

4 57492171 rs17081935 rs3796529 1 CCA (Pro) => CTA (Leu) [exon4] REST NM_005612 

5 131690961 rs274546 rs272893 1 ATA (Ile) => ACA (Thr) [exon5] SLC22A4 NM_003059 

5 176450403 rs422421 rs376618 0.87 CCC (Pro) => CTC (Leu) [exon3] FGFR4 NM_022963 

5 176450403 rs422421 rs376618 0.87 CCC (Pro) => CTC (Leu) [exon4] FGFR4 NM_002011 

5 176450403 rs422421 rs376618 0.87 CCC (Pro) => CTC (Leu) [exon4] FGFR4 NM_213647 

6 29071227 rs3129109 rs6456880 0.91 AAG (Lys) => CAG (Gln) [exon7] ZNF311 NM_001010877 

6 34322300 rs2780226 rs1150781 1 GGG (Gly) => GCG (Ala) [exon5] C6orf1 NM_178508 

6 34322300 rs2780226 rs1150781 1 GGG (Gly) => GCG (Ala) [exon5] C6orf1 NM_001008704 

6 34322300 rs2780226 rs1150781 1 GGG (Gly) => GCG (Ala) [exon5] C6orf1 NM_001008703 

6 35531864 rs6457821 rs7761870 1 TCA (Ser) => TTA (Leu) [exon2] FANCE NM_021922 

6 35873021 rs6457821 rs2766597 1 CTG (Leu) => CCG (Pro) [exon1] CLPS NM_001832 

6 109871228 rs1046943 rs1476387 0.96 AGG (Arg) => AGT (Ser) [exon9] SMPD2 NM_003080 

6 109934409 rs1046943 rs2277114 0.87 GTA (Val) => ATA (Ile) [exon35] AKD1 NM_001145128 

9 85807085 rs7853377 rs1982151 0.84 AAT (Asn) => AGT (Ser) [exon3] RMI1 NM_024945 

9 94324803 rs9969804 rs10120210 0.93 CAG (Gln) => CCG (Pro) [exon2] ECM2 NM_001393 

12 28303639 rs2638953 rs11049488 0.91 GCA (Ala) => ACA (Thr) [exon2] CCDC91 NM_018318 

12 55026949 rs2066807 rs2066807 1 ATG (Met) => ATC (Ile) [exon20] STAT2 NM_005419 

15 60046929 rs7178424 rs3784634 0.81 AGG (Arg) => AAG (Lys) [exon27] VPS13C NM_017684 

15 60046929 rs7178424 rs3784634 0.81 AGG (Arg) => AAG (Lys) [exon29] VPS13C NM_020821 

15 60046929 rs7178424 rs3784634 0.81 AGG (Arg) => AAG (Lys) [exon27] VPS13C NM_018080 

15 60046929 rs7178424 rs3784634 0.81 AGG (Arg) => AAG (Lys) [exon29] VPS13C NM_001018088 

15 72123686 rs5742915 rs5742915 1 TTC (Phe) => CTC (Leu) [exon9] PML NM_033238 

15 82373128 rs11259936 rs4842838 1 GTG (Val) => TTG (Leu) [exon16] ADAMTSL3 NM_207517 

19 46595060 rs17318596 rs10853751 0.80 ACG (Thr) => ATG (Met) [exon1] EXOSC5 NM_020158 

19 46624115 rs17318596 rs284662 0.80 AGC (Ser) => GGC (Gly) [exon3] B3GNT8 NM_198540 

20 47275067 rs237743 rs11908296 0.97 GGA (Gly) => GTA (Val) [exon6] DDX27 NM_017895 

20 47299191 rs237743 rs6512577 1 ATG (Met) => ATA (Ile) [exon14] ZNFX1 NM_021035 
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Supplementary Table 8. GIANT height variants associated with other traits and diseases reported in the NHGRI catalog of 
published GWAS at genome-wide level of significance (P<5x10-8), based on a 1 megabase maximum distance and linkage 
disequilibrium (r2>0.1) between the SNPs. Highlighted rows are those for which the GIANT height SNP and the NHGRI SNP 
showed a strong correlation (r2>0.8).  
 

GIANT 
height SNP 

Chr Position 
Nearest or 
OMIM gene 

GWAS SNP 
from 

NHGRI 
catalogue 

GIANT height 
P-value for 
NHGRI SNP 

Disease/Trait 

r
2 

D' 
Distance 

(kb) Height-
increasing 

allele 

Effect relative to 
height-increasing 

allele 
Reference 

between GIANT height 
and NHGRI SNP 

rs11118346 1 217810342 LYPLAL1 rs2605100 1.42E-03 WHR (women) 0.17 0.69 99.495 A lower WHR Lindgren et al., PLoS Genet 2009 

rs720390 3 187031377 IGF2BP2 rs4402960 6.30E-01 Type 2 diabetes 0.48 0.86 36.996 T higher T2D risk Saxena et al., Science 2007 

    rs4402960 6.30E-01 Type 2 diabetes 0.48 0.86 36.996 T higher T2D risk Scott et al., Science 2007 

    rs6769511 6.45E-01 Type 2 diabetes 0.48 0.86 18.393 C higher T2D risk Unoki et al., Nat Genet 2008 

    rs4402960 6.30E-01 Type 2 diabetes 0.48 0.86 36.996 T higher T2D risk Zeggini et al., Science 2007 

rs10010325 4 106325802 TET2 rs7679673 2.12E-01 Prostate cancer 0.12 0.37 44.819 A higher cancer risk Eeles et al., Nat Genet 2009 

rs10037512 5 88390431 MEF2C rs1366594 4.98E-09 BMD (hip) 0.97 1 21.386 A lower BMD Rivadeneira et al., Nat Genet 2009 

rs274546 5 131727766 SLC22A5 rs2188962 5.46E-07 Crohn's disease 0.42 1 70.938 T higher Crohn's risk Barrett et al., Nat Genet 2008 

    rs2522056 6.55E-04 Fibrinogen 0.21 0.81 101.859 G lower fibrinogen 
Dehghan et al., Circ Cardiovasc 

Genet 2009 

    rs1016988 1.34E-03 Fibrinogen 0.17 0.87 44.707 T lower fibrinogen 
Danik et al., Circ Cardiovasc Genet 

2009 

    rs4143832 1.40E-01 
Plasma eosinophil 

count 
0.12 0.61 163.11 G 

higher eosinophil 
count 

Gudbjartsson et al., Nat Genet 2009 

rs2256183 6 31488508 MICA rs2844479 9.64E-10 Weight 0.12 0.46 192.427 A increased weight Thorleifsson et al., Nat Genet 2008 

rs6457620 6 32771977 HLA locus rs2187668 8.87E-03 Celiac disease 0.10 1 58.115 T higher Celiac risk van Heel et al., Nat Genet 2007 

    rs9271366 7.17E-06 Multiple sclerosis 0.35 1 77.145 G higher MS risk Bahlo et al., Nat Genet 2009 

    rs6457617 6.89E-08 Rheumatoid arthritis 1 1 0.148 C lower RA risk Julia et al., Arthritis Rheum 2008 

    rs6457617 6.89E-08 Rheumatoid arthritis 1 1 0.148 C lower RA risk WTCCC, Nature 2007 

    same SNP 3.65E-08 Rheumatoid arthritis - - - G n/a 
Raychaudhuri et al., Nat Genet 

2008 

    rs660895 4.65E-01 Rheumatoid arthritis 0.40 1 86.619 A lower RA risk Plenge et al., N Engl J Med 2007 

    rs2187668 8.87E-03 SLE 0.10 1 58.115 T higher SLE risk Hom et al., N Engl J Med 2008 

    rs9272346 6.12E-01 Type 1 diabetes 0.18 0.47 59.627 G higher T1D risk WTCCC, Nature 2007 

    rs9272346 6.12E-01 Type 1 diabetes 0.18 0.47 59.627 G higher T1D risk Cooper et al., Nat Genet 2008 
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GIANT 
height SNP 

Chr Position 
Nearest or 
OMIM gene 

GWAS SNP 
from 

NHGRI 
catalogue 

GIANT height 
P-value for 
NHGRI SNP 

Disease/Trait 

r
2 

D' 
Distance 

(kb) Height-
increasing 

allele 

Effect relative to 
height-increasing 

allele 
Reference 

between GIANT height 
and NHGRI SNP 

    rs2395185 6.38E-01 Ulcerative colitis 0.22 0.59 230.832 T lower UC risk Silverberg et al., Nat Genet 2009 

    rs9268877 2.80E-01 Ulcerative colitis 0.12 0.39 232.852 G lower UC risk Franke et al., Nat Genet 2008 

    rs2395185 6.38E-01 Ulcerative colitis 0.22 0.59 230.832 T lower UC risk Asano et al., Nat Genet 2009 

    rs9268877 2.80E-01 Ulcerative colitis 0.12 0.39 232.852 G n/a Barrett et al., Nat Genet 2009 

rs7759938 6 105485647 LIN28B rs314276 1.03E-16 
Menarche (age at 

onset) 
0.96 1 29.045 A later menarche Ong et al., Nat Genet 2009 

    rs314280 1.35E-10 
Menarche (age at 

onset) 
0.52 1 21.883 A later menarche Sulem et al., Nat Genet 2009 

    same SNP 8.69E-18 
Menarche (age at 

onset) 
- - - C later menarche Perry et al., Nat Genet 2009 

    rs314277 3.65E-12 
Menarche (age at 

onset) 
0.25 1 28.708 A later menarche He et al., Nat Genet 2009 

rs1490384 6 126892853 C6orf173 rs9388489 1.03E-13 Type 1 diabetes 0.84 1 152.441 G higher T1D risk Barrett et al., Nat Genet 2009 

rs7763064 6 142838982 GPR126 rs3817928 1.97E-11 Pulmonary function 0.59 0.89 46.773 A 
reduced pulmonary 

function 
Hancock et al., Nat Genet 2009 

rs1708299 7 28156471 JAZF1 rs864745 1.31E-12 Type 2 diabetes 0.40 0.94 9.39 T higher T2D risk Zeggini et al., Nat Genet 2008 

rs6959212 7 38094851 STARD3NL rs1524058 9.39E-05 BMD (spine) 0.73 1 7.951 C lower BMD Rivadeneira et al., Nat Genet 2009 

rs2110001 7 150147955 KCNH2 rs2968863 1.33E-04 QT interval 0.10 0.85 106.115 C longer QT interval Pfeufer et al., Nat Genet 2009 

    rs3807375 4.30E-05 QT interval 0.14 1.00 40.278 T longer QT interval Holm et al., Nat Genet 2010 

rs11599750 10 101795432 CPN1 rs11597390 1.54E-04 Liver enzymes levels 0.51 0.82 55.993 G lower enzyme levels Yuan et al., Am J Hum Genet 2008 

rs1330 11 17272605 KCNJ11 rs5215 6.70E-02 Type 2 diabetes 0.26 0.53 92.601 C higher T2D risk Zeggini et al., Science 2007 

rs494459 11 118079885 DDX6 rs4639966 2.77E-01 SLE 0.22 1 1.156 T lower SLE risk Han et al., Nat Genet 2009 

rs2066807 12 55026949 STAT2 rs2066808 2.75E-08 Psoriasis 1 1 2.709 G lower psoriasis risk Nair et al., Nat Genet 2009 

rs3110496 17 24941897 ANKRD13B rs2138852 5.11E-01 
Mean platelet 

volume 
0.10 0.45 214.422 T 

higher platelet 
volume 

Soranzo et al., Nat Genet 2009 

    rs2138852 5.11E-01 
Mean platelet 

volume 
0.10 0.45 214.422 T 

lower platelet 
volume 

Meisinger et al., Am J Hum Genet 
2008 

rs4986172 17 40571807 ACBD4 rs12946454 3.23E-07 
Systolic blood 

pressure 
0.76 0.94 8.16 A lower systolic b.p. Newton-Cheh et al., Nat Genet 2009 

rs2072153 17 44745013 ZNF652 rs16948048 4.22E-04 
Diastolic blood 

pressure 
0.32 1.00 50.452 A lower diastolic b.p. Newton-Cheh et al., Nat Genet 2009 

rs17782313 18 56002077 MC4R rs12970134 5.52E-04 Body mass index 0.81 0.96 33.653 A higher BMI Thorleifsson et al., Nat Genet 2008 
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GIANT 
height SNP 

Chr Position 
Nearest or 
OMIM gene 

GWAS SNP 
from 

NHGRI 
catalogue 

GIANT height 
P-value for 
NHGRI SNP 

Disease/Trait 

r
2 

D' 
Distance 

(kb) Height-
increasing 

allele 

Effect relative to 
height-increasing 

allele 
Reference 

between GIANT height 
and NHGRI SNP 

    same SNP 3.48E-06 Body mass index - - - C higher BMI Willer et al., Nat Genet 2008 

    same SNP 3.48E-06 Body mass index - - - C higher BMI Loos et al., Nat Genet 2008 

    same SNP 3.48E-06 Obesity - - - C higher obesity risk Meyre et al., Nat Genet 2009 

    rs12970134 5.52E-04 Waist circumference 0.81 0.96 33.653 A lower WC Chambers et al., Nat Genet 2008 

    rs12970134 5.52E-04 Weight 0.81 0.96 33.653 A increased weight Thorleifsson et al., Nat Genet 2008 

rs2834442 21 34612656 KCNE2 rs9982601 4.66E-01 MI (early onset) 0.17 0.66 91.658 C lower MI risk Kathiresan et al., Nat Genet 2009 
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Supplementary Table 9. List of 241 abnormal skeletal/growth genes identified in 
the OMIM database using the following keywords: short stature, overgrowth, 
skeletal dysplasia, brachydactyly, and manually curating the list blind to GIANT 
height results.  
ACAN COL9A3 GJA1 NEU1 SIL1 

ADAMTS10 COMP GLB1 NF1 SLC26A2 

ADAMTS2 CRTAP GLI3 NIPBL SLC29A3 

ADAMTSL2 CTDP1 GNAS NOG SLC2A2 

AGPS CTSK GNPAT NPR2 SLC34A3 

ALG12 CUL4B GNPTAB NSD1 SLC35C1 

ALMS1 CUL7 GPC3 OCRL SLC35D1 

ALPL CYP11B1 GUSB OFD1 SLC37A4 

ANKH CYP19A1 HCCS PAPSS2 SLC39A13 

ARL6 CYP21A2 HESX1 PAX3 SLC4A4 

ARSB CYP27B1 HMGA2 PAX8 SLC6A8 

ARSE DHCR7 HOXD13 PCNT SMARCAL1 

ATP6V0A2 DYM HPRT1 PEX7 SMC1A 

ATP7A EBP HRAS PHEX SMC3 

ATP8B1 EFNB1 HSPG2 PHF6 SMPD1 

ATR EIF2AK3 HYAL1 PITX2 SMS 

ATRX ERCC2 ICK POU1F1 SOS1 

B3GALTL ERCC3 IDUA PQBP1 SOST 

B4GALT7 ESCO2 IFT80 PROP1 SOX3 

BBS1 EVC IGBP1 PTCH1 SPG20 

BBS10 EVC2 IGF1 PTCH2 SRY 

BBS12 EXT1 IGF1R PTEN STAT5B 

BBS2 EXT2 IGF2 PTH1R TAZ 

BBS4 FANCA IHH PTPN11 TBCE 

BBS5 FANCB IKBKG RAB23 TBX1 

BBS7 FANCC JAG1 RAB3GAP1 TBX15 

BBS9 FANCD2 KCNJ2 RAB3GAP2 TCF4 

BMPR1B FANCE KDM5C RAF1 TGFBR1 

BRAF FANCF KIAA1279 RAI1 TGFBR2 

BRCA2 FANCG KRAS RBM28 THRB 

BTK FANCI LBR RECQL4 TNFRSF11B 

BUB1B FANCL LEMD3 RMRP TP63 

C7orf11 FANCM LEPRE1 RNF135 TRAPPC2 

CA2 FBN1 LHX4 ROR2 TRIM32 

CCDC28B FBN2 LIFR RPL11 TRIM37 

CEP290 FGD1 LIG4 RPL35A TRPS1 

CHD7 FGF23 LMNA RPL5 TRPV4 

CHRNG FGFR2 LRP5 RPS17 UBR1 

CHST3 FGFR3 MAP2K1 RPS19 WNT7A 

CLCN5 FLNA MAP2K2 RPS24 WRN 

COL10A1 FLNB MATN3 RPS6KA3 ZBTB16 

COL11A1 FOXC1 MC4R RPS7  

COL11A2 FUCA1 MECP2 RUNX2  

COL1A1 G6PC MGP SBDS  

COL1A2 GALNS MKKS SDHA  

COL2A1 GDF5 MKS1 SECISBP2  

COL5A1 GH1 MMP13 SEMA3E  

COL5A2 GHR MRPS16 SHH  

COL9A1 GHRHR MYCN SHOX  

COL9A2 GHSR NBN SHROOM4  
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Supplementary Table 10. Height SNPs found to be located near or in the 
abnormal skeletal/growth genes identified in the OMIM database.  
 

SNP 
Abnormal 

skeletal/growth 
gene (OMIM) 

The closest gene to 
the height SNP is the 

abnormal 
skeletal/growth gene 

The height SNP is in 
the abnormal 

skeletal/growth gene 

rs16942341 ACAN yes yes 

rs4072910 ADAMTS10 yes no 

rs16964211 CYP19A1 yes yes 

rs9967417 DYM yes yes 

rs11684404 EIF2AK3 yes yes 

rs6457821 FANCE no no 

rs143384 GDF5 yes yes 

rs2665838 GH1 no no 

rs572169 GHSR yes yes 

rs7971536 GNPTAB no no 

rs1351394 HMGA2 yes yes 

rs2871865 IGF1R yes yes 

rs12470505 IHH yes no 

rs17782313 MC4R yes no 

rs227724 NOG yes no 

rs422421 NSD1 no no 

rs473902 PTCH1 yes yes 

rs3764419 RNF135 no no 

rs10874746 RPL5 no no 

rs9472414 RUNX2 no no 

rs10838801 SLC39A13 no no 
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Supplementary Table 11. Nominally significant biological pathways following gene set enrichment analysis of height meta-
analysis. 
 

Database Biological pathway or gene-set 
Original # 
genes in 
gene-set 

# genes in 
gene-set 
analyzed 
by GSEA

§
 

# genes in 
gene set 

<300kb from 
validated 

height SNPs 

Nominal 
GSEA 

P-value 

False 
discovery 
rate (FDR) 

Genes 300 kb or less from validated height SNPs 

KEGG Hedgehog signaling pathway 54 50 9 0.0009 0.0777* 
BMP6, IHH, PTCH1, WNT6, WNT9A, FBXW11, HHIP, 

WNT10A, WNT3A 

KEGG 
Gamma-hexachlorocyclohexane 

degradation 
26 21 2 0.0028 0.0568* DHRS1, LOC283871 

KEGG MAPK signaling pathway 269 243 23 0.0040 0.2796 

ARRB1, CACNB1, CHUK, FGFR3, FGFR4, GNA12, 
MKNK2, MEF2C, MAP3K3, MOS, GADD45B, NF1, 

NFATC4, PPM1A, MAPK9, MAP2K3, RASA2, 
RPS6KA1, TGFB1, TGFB2, TNF, MAP3K14, 

RASGRP3 

KEGG 
Antigen processing and 

presentation 
77 52 16 0.0132 0.3014 

HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-DOB, HLA-
DQA1, HLA-DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, 

HLA-DRB5, LTA, PSME1, PSME2, TAP1, TAP2 

KEGG TGF-beta signaling pathway 83 80 10 0.0167 0.3131 
AMH, BMP6, ID4, LTBP1, TGFB1, TGFB2, TNF, GDF5, 

CUL1, NOG 

KEGG Type II diabetes mellitus 45 43 9 0.0172 0.2934 
INSR, KCNJ11, PKM2, PRKCD, PRKCZ, MAPK9, 

ABCC8, TNF, SOCS2 

KEGG FC epsilon RI signaling pathway 79 73 8 0.0282 0.3237 CSF2, IL5, IL13, LYN, PRKCD, MAPK9, MAP2K3, TNF 

KEGG Folate biosynthesis 37 36 1 0.0305 0.3549 ATP13A2 

KEGG Citrate cycle TCA cycle 27 26 5 0.0417 0.3464 CS, PC, PCK2, SDHB, SUCLG2 

        

Ingenuity Hepatic Cholestasis 61 57 12 0.0237 1.5076 
ABCC2, CYP27A1, ESR1, FGFR4, INSR, SLC4A2, 
TAP1, TAP2, TNF, MAP3K14, SLCO1B3, SLCO1C1 

Ingenuity VDR/RXR Activation 63 62 6 0.0341 0.6864 CSF2, GTF2B, PPARD, PSMC5, TGFB2, NCOA1 

Ingenuity 
Role of BRCA1 in DNA Damage 

Response 
29 29 4 0.0507 0.4980 BRCA2, FANCC, FANCE, RAD50 

Ingenuity Fc Epsilon RI Signaling 20 17 5 0.0531 0.8701 CSF2, IL5, IL13, LYN, TNF 
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Database Biological pathway or gene-set 
Original # 
genes in 
gene-set 

# genes in 
gene-set 
analyzed 
by GSEA

§
 

# genes in 
gene set 

<300kb from 
validated 

height SNPs 

Nominal 
GSEA 

P-value 

False 
discovery 
rate (FDR) 

Genes 300 kb or less from validated height SNPs 

PANTHER TGF-beta signaling pathway 64 59 8 0.0025 0.1844* 
AMH, BMP3, BMP6, SKI, TGFB1, TGFB2, GDF5, 

DCP1A 

PANTHER Hedgehog signaling pathway 14 14 3 0.0042 0.2033* IHH, PTCH1, FBXW11 

PANTHER Apoptosis signaling pathway 53 49 10 0.0109 0.2250* 
BOK, CMA1, CTSG, GZMH, GZMB, LTA, LTB, 

TNFSF10, MAP3K14, RIPK3 

PANTHER Endothelin signaling pathway 19 19 4 0.0144 0.2319* ADCY3, EDN2, PRKG2, ADCY4 

PANTHER Parkinson disease 43 41 5 0.0171 0.2348* LYN, SEPT2, PSMB3, CUL1, STUB1 

PANTHER B cell activation 24 22 4 0.0223 0.2368* CD79B, NFKBIL1, PRKCD, PRKCZ 

PANTHER 
Nicotinic acetylcholine receptor 

signaling pathway 
42 39 3 0.0453 0.3888 MYO1F, MYO6, MYO9B 

        

PANTHER, 
MF 

Histone 86 31 29 0.0001† 0.0028* 

HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T, 
HIST1H2AE, HIST1H2AD, HIST1H1A, HIST1H2AC, 
HIST1H2AB, HIST2H2AC, HIST1H3A, HIST1H3D, 

HIST1H3C, HIST1H3E, HIST1H3G, HIST1H3B, 
HIST1H4A, HIST1H4D, HIST1H4F, HIST1H4C, 
HIST1H4H, HIST1H4B, HIST1H4E, HIST1H4G, 

HIST1H3F, H1FX, H1FOO, HIST2H2AB, HIST2H3D 

PANTHER, 
MF 

Extracellular matrix glycoprotein 111 85 16 0.0015 0.1157* 
ACAN, FBLN2, EFEMP1, GPC5, GP9, LTBP1, LTBP2, 
LTBP3, MFAP2, MSLN, FBLN5, EFEMP2, ADAMTSL3, 

HAPLN3, SCUBE3, MPFL 

PANTHER, 
MF 

Annexin 71 64 13 0.0038 0.1821* 
AIF1, FBLN2, EFEMP1, LETM1, LTBP1, LTBP2, 
LTBP3, NUCB2, PRKCD, PKN2, PRKCZ, FBLN5, 

EFEMP2 

PANTHER, 
MF 

Transcription factor 198 127 13 0.0041 0.2089* 
NR2F6, ESR1, NFIC, PPARD, BAT2, YEATS4, 

NCOA1, SCMH1, SFMBT1, MBTD1, GATAD1, 
L3MBTL3, VGLL2 

PANTHER, 
MF 

Exoribonuclease 35 25 7 0.0069 0.2009* 
ISG20, PAN2, EXOSC2, EXOSC5, CNOT6, ISG20L1, 

PNPT1, 
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Database Biological pathway or gene-set 
Original # 
genes in 
gene-set 

# genes in 
gene-set 
analyzed 
by GSEA

§
 

# genes in 
gene set 

<300kb from 
validated 

height SNPs 

Nominal 
GSEA 

P-value 

False 
discovery 
rate (FDR) 

Genes 300 kb or less from validated height SNPs 

PANTHER, 
MF 

Other transcription factor 349 298 30 0.0117 0.3260 

RUNX3, E2F1, E2F2, ETS1, ETV5, ETV6, FLI1, ID4, 
IRF1, MEF2C, ATXN3, NFATC4, NRL, PA2G4, RELA, 
SKI, SNAPC4, STAT2, TEAD1, TEAD3, TBX4, CREB5, 
IRF9, FEV, UTP6, GNPTAB, LIN28, RFXDC1, FOXR1, 

LIN28B 

PANTHER, 
MF 

Metalloprotease 158 133 10 0.0158 0.4290 
CPN1, PAPPA, ADAM7, ADAMTS3, ADAM28, MMP24, 

PMPCA, ADAMDEC1, PAPPA2, ADAMTS10 

PANTHER, 
MF 

Ligase 69 57 5 0.0206 0.3908 CTPS, DCI, SUCLG2, ZMIZ1, GDPD5 

PANTHER, 
MF 

ATP-binding cassette (ABC) 
transporter 

46 34 7 0.0240 0.4536 ABCA3, ABCC2, TAP1, TAP2, ABCB6, RAD50, ABCB8 

PANTHER, 
MF 

Other phosphatase 82 71 8 0.0260 0.3693 
PPAP2A, FIG4, MTMR11, NUDT4, NUDT3, INPP5E, 

ACPL2, LOC283871 

PANTHER, 
MF 

Damaged DNA-binding protein 27 25 3 0.0327 0.3545 BRCA2, RAD50, UTP6 

PANTHER, 
MF 

Other RNA-binding protein 192 151 14 0.0382 0.4413 
CARS, STAU1, SLBP, FUBP1,  FUBP3, IGF2BP3, 

IGF2BP2, CPSF6, HNRPUL1, ANKZF1, BRUNOL5, 
RBM45, ZFAND2B, C14orf21 

PANTHER, 
MF 

Major histocompatibility complex 
antigen 

46 26 14 0.0386 0.3567 
HFE, HLA-B, HLA-C, HLA-DMA, HLA-DMB, HLA-

DOB,HLA-DQA1, HLA-DQA2,HLA-DQB1, HLA-DRA, 
HLA-DRB1, HLA-DRB5, MICA, MICB 

PANTHER, 
MF 

Kinase 30 29 2 0.0518 0.4439 DGKE, DCAKD 

        

GO:0005694 Chromosome 147 111 29 5e-5† 0.0905* 

HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T, 
HIST1H2AD, HIST1H2BD, HIST1H2BB, HIST1H1A, 

HMGA1, HMGA2, HIST1H2AC, HIST1H2AB, 
HIST2H2AC, HIST1H2BH, HIST1H2BC, HIST2H2BE, 

HIST1H4G, HIST1H3F, H1FX, RAD50, TINF2, CENPO, 
H1FOO, HIST2H2AB, C6orf173, SETD8, CENPP, 

HIST2H2BF, HIST2H3D 

GO:0060389 
Pathway-restricted SMAD protein 

phosphorylation 
14 14 3 0.0001 0.0984* BMP6, TGFB1, TGFB2 
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Database Biological pathway or gene-set 
Original # 
genes in 
gene-set 

# genes in 
gene-set 
analyzed 
by GSEA

§
 

# genes in 
gene set 

<300kb from 
validated 

height SNPs 

Nominal 
GSEA 

P-value 

False 
discovery 
rate (FDR) 

Genes 300 kb or less from validated height SNPs 

GO:0000786 Nucleosome 64 34 21 0.0002 0.0650* 

HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T, 
HIST1H2AD, HIST1H2BD, HIST1H2BB, HIST1H1A, 

HIST1H2AC, HIST1H2AB, HIST2H2AC, HIST1H2BH, 
HIST1H2BC, HIST2H2BE, HIST1H4G, HIST1H3F, 

H1FX, H1FOO, HIST2H2AB, HIST2H2BF, HIST2H3D 

GO:0006334 Nucleosome assembly 80 47 22 0.0003 0.0966* 

HIST1H1C, HIST1H1D, HIST1H1E, HIST1H1T, 
HIST1H2AD, HIST1H2BD, HIST1H2BB, HIST1H1A, 
NAP1L4, HIST1H2AC, HIST1H2AB, HIST2H2AC, 

HIST1H2BH, HIST1H2BC, HIST2H2BE, HIST1H4G, 
HIST1H3F, H1FX, H1FOO, HIST2H2AB, HIST2H2BF, 

HIST2H3D 

GO:0050680 
Negative regulation of epithelial cell 

proliferation 
22 21 9 0.0006 0.0705* 

RUNX3, CDK6, CDKN1C, PPARD, PTCH1, TGFB1, 
TGFB2, TSC2, TINF2 

GO:0009653 
Anatomical structure 

morphogenesis 
103 94 15 0.0007 0.1567* 

CHUK, RPL10A, NEDD8, PITX1, PKD1, POU5F1, 
PTCH1, WHSC1, LST1, IGF2BP3, IGF2BP2, RCAN3, 

SCMH1, SIX4, WNT3A 

GO:0032147 Activation of protein kinase activity 10 10 3 0.0008 0.0994* INSR, TGFB2, LYK5 

GO:0002474 
Antigen processing and 

presentation of peptide antigen via 
MHC class I 

11 10 3 0.0010 0.0764* HFE, HLA-B, HLA-C 

GO:0000175 3'-5'-exoribonuclease activity 10 10 4 0.0013 0.0679* ISG20, EXOSC2, EXOSC5, PNPT1 

GO:0007259 JAK-STAT cascade 27 26 7 0.0016 0.1300* FGFR3, GH1, IL6ST, PKD1, STAT2, SOCS2, IL31RA 

GO:0003007 Heart morphogenesis 29 28 4 0.0021 0.1520* INSR, PTCH1, TGFB2, ZMIZ 

GO:0030879 Mammary gland development 29 29 5 0.0023 0.1692* BRCA2, IGF1R, PTCH1, TGFB1, WNT3A 

GO:0043560 Insulin receptor substrate binding 12 12 4 0.0024 0.0888* IGF1R, INSR, PRKCD, PRKCZ 

GO:0000421 Autophagic vacuole membrane 13 12 3 0.0026 0.0907* TM9SF1, ATG9A, ATG9B 

GO:0005578 Proteinaceous extracellular matrix 225 198 25 0.0026 0.2502* 

ACAN, ECM2, FBLN2, EFEMP1, GPC5, LOXL1, 
LTBP1, LTBP2, MFAP2, NTN2L, OMD, OGN, TGFB1, 

WNT6, WNT9A, ADAMTS3, FBLN5, MMP24, 
ANGPTL4, ASPN, ADAMTSL3, WNT10A, ADAMTS10, 

WNT3A, HAPLN3 

GO:0007405 Neuroblast proliferation 14 14 3 0.0035 0.1436* ID4, FRS2, HHIP 
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Database Biological pathway or gene-set 
Original # 
genes in 
gene-set 

# genes in 
gene-set 
analyzed 
by GSEA

§
 

# genes in 
gene set 

<300kb from 
validated 

height SNPs 

Nominal 
GSEA 

P-value 

False 
discovery 
rate (FDR) 

Genes 300 kb or less from validated height SNPs 

GO:0000080 G1 phase of mitotic cell cycle 10 7 4 0.0041 0.0909* CDK6, CDKN1C, E2F1, MAP3K11 

GO:0032355 Response to estradiol stimulus 53 53 7 0.0041 0.2674 GH1, IHH, INSR, NOS3, PTCH1, TGFB1, SOCS2 

GO:0031965 Nuclear membrane 86 81 12 0.0058 0.3132 
ABL1, MYO6, PML, TRIM27, NUPL2, NUP210, 

TMEM176B, DTL, INTS2, SENP2, QSOX2, LASS3 

GO:0005743 Mitochondrial inner membrane 254 222 19 0.0059 0.3414 

CYP27A1, DCI, LETM1, NDUFA7, NDUFB1, 
NDUFB10, PC, PHB, SDHB, SLC3A1, PPIF, ACAA2, 
ATP5L, ABCB8, PMPCA, C4orf14, COQ10A, DHRS1, 

SLC25A45 

GO:0010628 
Positive regulation of gene 

expression 
27 25 3 0.0059 0.2293* CSF2, MAPK9, TGFB1 

GO:0000398 
Nuclear mRNA splicing, via 

spliceosome 
45 45 7 0.0061 0.2757 

HNRPM, SFRS10, BAT1, SF3A2, SF3B4, TRA2A, 
LSM7 

GO:0005242 
Inward rectifier potassium channel 

activity 
18 16 5 0.0061 0.1952* KCNH2, KCNJ1, KCNJ2, KCNJ5, KCNJ12 

GO:0017148 Negative regulation of translation 16 16 3 0.0063 0.1969* EIF2AK3, IGF2BP3, IGF2BP2 

GO:0016604 Nuclear body 16 16 3 0.0067 0.1936* SKI, PCGF2, BTBD14A 

GO:0042612 MHC class I protein complex 22 16 6 0.0076 0.2048* HFE, HLA-B, HLA-C, MICA, MICB, PROCR 

GO:0007067 Mitosis 192 180 16 0.0081 0.3591 
CCNF, E4F1, SEPT2, YEATS4, HMGA2, TIMELESS, 
STAG1, SSSCA1, RGS14, PDS5B, FZR1, NCAPG, 

NUP37, FAM44B, NY-SAR-48, SETD8 

GO:0007569 Cell aging 27 26 3 0.0083 0.2728 BRCA2, PML, ZMIZ1 

GO:0060395 SMAD protein signal transduction 10 9 2 0.0085 0.1814* BMP6, SKI 

GO:0001763 
Morphogenesis of a branching 

structure 
10 9 2 0.0087 0.1781* IHH, TGFB1 

GO:0001501 Skeletal system development 126 113 11 0.0088 0.3536 PCSK5, NOG 

 
Nominal gene set enrichment analysis (GSEA) p-values and false discovery rates are presented for the nominally significant pathways (p<0.01 for Gene 
Ontology (GO) and p<0.05 for the other databases), using MAGENTA (Segrè et al., in revision) applied to the height meta-analysis. The Bonferroni 
corrected cutoffs for the different databases are: KEGG (135 pathways): p<0.0004, Ingenuity (81 pathways): p<0.0006, PANTHER (94 pathways): 
p<0.0005, PANTHER, MF (Molecular Function classification; 217 gene sets): p<0.0002, and Gene Ontology (GO) biological process and molecular 
function terms (1,785 gene sets): p<0.00003.  
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† specifies a gene set that passes or is close to the Bonferroni cutoff. Since Bonferroni correction is stringent due to considerable gene overlap between 
pathways within each database, we further evaluated the statistical significance of each gene-set using a false discovery rate (FDR). FDR is defined for 
gene set g as the fraction of all randomized gene sets generated for all GSEA tests (10,000 permutations times the total number of gene sets tested) 
whose score is more significant than that of gene-set g divided by the fraction of tested gene-sets whose score is more significant than that of gene set g. 
A gene-set score refers here to the fraction of genes in a gene set whose gene p-value exceeds the 95

th
 percentile of all gene p-values. For FDR 

calculation purposes, the differences in gene set size across the observed and randomized gene sets were accounted for by subtracting from each gene-
set score the mean score of all randomized genes-sets of identical size, and dividing by the standard deviation of scores of all randomized genes-sets of 
identical size.  

An asterisk (*) refers to pathways with an FDR<0.25 (i.e. one in four pathways more significant than the given gene-set is likely to be false). 
 

§ 
The number of genes per gene-set analyzed by MAGENTA refers to the gene-set size after removal of genes with no SNPs in their gene region, and 

removal of all but one gene in each subset of genes in a given pathway that were assigned the same best local SNP due to physically proximity in the 
genome. Gene set size was restricted to between 10 and 1,000 genes. All genes within 300 kb of the validated height SNPs are listed, including those 
removed due to physical clustering adjustment. 
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Supplementary Methods Table 1. Study design, number of individuals and sample quality control for genome-wide 
association study cohorts 
 

Study 
Study 
design 

Total 
sample 
size (N) 

Sample QC Samples 
in 

analyses 
(N) 

Anthropo-
metric 

assessment 
method 

References 
Short name Full name 

Call 
rate* 

other exclusions 

Stage 1 (GWA studies) 

ADVANCE Atherosclerotic 
Disease, VAscular 
FunctioN, and 
GenetiC 
Epidemiology 

Population-
based case-
control (multi 

ethnic) 

599 
(Europeans) 

>98.5% 1) duplicates 
2) missing weight or height  

584: 
275 cases 
309 ctrls 

measured Assimes T.L. et al.  Susceptibility locus for clinical and 
subclinical coronary artery disease at chromosome 9p21 
in the multi-ethnic ADVANCE study. Hum Mol Genet. 
(2008) 17(15):2320-8. 

AGES Age, 
Gene/Environment 
Susceptibility-
Reykjavik Study 

Population-
based 

3219 ≥ 97% 1) mismatch with previous 
genotypes;  
2) remove A/T & G/C SNPs;  
3) remove SNPs not in HapMap 

3219 measured Harris T.B. et al. Age, Gene/Environment Susceptibility-
Reykjavik Study: multidisciplinary applied phenomics. 
American Journal of Epidemiology (2007) 165 (9): 1076-
87 

Amish HAPI 
Heart Study 

Amish Heredity and 
Phenotype 
Intervention Heart 
Study 

Founder 
population 

918 ≥ 93% 1) Misidentified pedigree 
relationships 
2) Misidentified sex 

907 measured Mitchell B.D. et al.  The genetic response to short-term 
interventions affecting cardiovascular function:  Rationale 
and design of the Heredity and Phenotype Intervention 
(HAPI) Heart Study.  Am Heart J  (2008) 823:828, 

ARIC Atherosclerosis Risk 
in Communities 
Study 

Population-
based 

8861 
(whites) 

≥ 90% 1) True sex mismatch  
2) Discordant genotype with earlier 
TaqMan genotyping.  If >10/47 
genotypes discordant -> exclude  
3) First-degree relative  
4) PC>8SD in Eigenstrat run (10 
iterations with 10 PCs)  
5) Outlier based on average IBS  
6) missing height or other covariate 

8110 measured (1) The ARIC Investigators. Atherosclerosis Risk in 
Communities (ARIC) Study: design and objectives. Am. J. 
Epidemiol. (1989) 129: 687-702. 
(2) Heard-Costa N.L. et al. NRXN3 is a novel locus for 
waist circumference: a genome-wide association study 
from the CHARGE Consortium. Plos Genet. (2009) 5(6): 
e1000539. 

B58C-T1DGC British 1958 birth 
cohort (Type 1 
Diabetes Genetic 
Consortium controls) 

Population-
based 

2592 ≥ 98% 1) contamination;  
2) non-European identity; 
3) Missing body height. 

2591 measured  (1) Strachan D.P. et al. Lifecourse influences on health 
among British adults: effects of region of residence in 
childhood and adulthood. Int J Epidemiol (2007) 36:522-
531  
(2) Barrett J.C. et al.  The Type 1 Diabetes Genetics 
Consortium. Genome-wide association study and meta-
analysis find that over 40 loci affect risk of type 1 
diabetes. Nat Genet (2009) 41:703-707 
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B58C-WTCCC British 1958 birth 
cohort (Wellcome 
Trust Case Control 
Consortium controls) 

Population-
based birth 

cohort 

1502 ≥97% 1) contamination;  
2) non-European identity and 
relatedness; 
3) Missing body height. 

1479 measured The Wellcome Trust Case Control Consortium 
Genome‐wide association study of 14,000 cases of seven 

common diseases and 3,000 shared controls. Nature 
(2007) 447: 661-678  

BRIGHT British Genetic of 
Hypertension 
(BRIGHT) study 

Hypertension 
cases 

2000 ≥ 97% 1) heterozygosity <23% or >30%; 
2) external discordance; 
3) non-European ancestry;  
4) duplicate/first/second degree 
relatives. 

1806 measured  Caulfield M. et al. Genome-wide mapping of human loci 
for essential hypertension. Lancet.(2003) 361:2118-23. 

CAPS1 cases Cancer Prostate in 
Sweden 1 

Case-control 505 > 95% 1) related individuals and 
duplicates; 
2) ethnic outliers;  
3) missing body weight and height. 

489 self-reported Duggan D. et al. Two genome-wide association studies of 
aggressive prostate cancer implicate putative prostate 
tumor suppressor gene DAB2IP. J Natl Cancer Inst 
(2007) 99:1836-44 

CAPS1 controls Cancer Prostate in 
Sweden 1 

Case-control 506 > 95% 1) related individuals and 
duplicates; 
2) ethnic outliers;  
3) missing body weight and height. 

491 self-reported Duggan D. et al. Two genome-wide association studies of 
aggressive prostate cancer implicate putative prostate 
tumor suppressor gene DAB2IP. J Natl Cancer Inst 
(2007) 99:1836-44  

CAPS2 cases Cancer Prostate in 
Sweden 2 

Case-control 1483 > 95% 1) related individuals and 
duplicates; 
2) ethnic outliers;  
3) missing body weight and height. 

1483 self-reported Duggan D. et al. Two genome-wide association studies of 
aggressive prostate cancer implicate putative prostate 
tumor suppressor gene DAB2IP. J Natl Cancer Inst 
(2007) 99:1836-44. 

CAPS2 controls Cancer Prostate in 
Sweden 2 

Case-control 519 > 95% 1) related individuals and 
duplicates; 
2) ethnic outliers;  
3) missing body weight and height. 

519 self-reported Duggan D. et al. Two genome-wide association studies of 
aggressive prostate cancer implicate putative prostate 
tumor suppressor gene DAB2IP. J Natl Cancer Inst 
(2007) 99:1836-44 

CAD-WTCCC WTCCC Coronary 
Arteryt Disease 
cases 

Case series 2000 ≥ 97% 1) heterozygosity <23% or >30%; 
2) discrepancy with external 
identifying information;  
3) ethnic outliers;  
4) related individuals and 
duplicates; 

1879 self reported The Wellcome Trust Case Control Consortium 
Genome‐wide association study of 14,000 cases of seven 

common diseases and 3,000 shared controls. Nature 
(2007) 447: 661-678 

CHS Cardiovascular 
Health Study 

Population-
based 

3232 >95% 1) Prevalent clinical CVD 
2) African-americans 
3) Sex discordant 
4) Missing body weight and height 

3228 measured Fried L.P. et al. The Cardiovascular Health Study: design 
and rationale. Ann Epidemiol. (1991) 1: 263-276. 

CoLaus Cohorte 
Lausannoise 

Population-
based 

6188 >90% 1) ethnic outliers;  
2) related individuals and 
duplicates; 
3) Missing height 

5409 measured  Firmann M. et al. The CoLaus study: a population-based 
study to investigate the epidemiology and genetic 
determinants of cardiovascular risk factors and metabolic 
syndrome BMC Cardiovascular Disorders (2008)  8:6  
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deCODE deCODE genetics 
sample set 

Population-
based 

38446 ≥ 96% Missing body weight and height. 26799 measured  Thorleifsson G. et al. Genome-wide association yields 
new sequence variants at seven loci that associate with 
measures of obesity. Nat Genet. (2009) 41, 18-24. 

DGI cases Diabetes Genetics 
Initiative 

Case-control 1464 ≥ 95% 1) Related individuals and 
duplicates 
2) Sex mismatch 
3) Phenotype missing 

1317 measured  Saxena R. et al. Genome-wide association analysis 
identifies loci for type 2 diabetes and triglyceride levels. 
Science (2007) 316:1331-6. 

DGI controls Diabetes Genetics 
Initiative 

Case-control 1467 ≥ 95% 1) Related individuals and 
duplicates 
2) Sex mismatch 
3) Phenotype missing 

1090 measured Saxena R. et al. Genome-wide association analysis 
identifies loci for type 2 diabetes and triglyceride levels. 
Science (2007) 316:1331-6.. 

EGCUT Estonian Genome 
Center, University of 
Tartu 

Population-
based 

1428 ≥ 95% 1) Related individuals and 
duplicates 
2) Sex mismatch 
3) Phenotype missing 

1417 measured  (1) Nelis M. et al. Genetic Structure of Europeans: A View 
from the North–East. PLoS ONE (2009) 4(5): e5472. 
(2) Metspalu A. et al. The Estonian Genome Project. 
Drug Development Research  (2004) 62, 97-101. 

EPIC-Obesity 
Study 

European 
Prospective 
Investigation into 
Cancer and Nutrition 
- Obesity Study 

Population-
based 

3821 ≥ 94% 1) heterozygosity <23% or >30%; 
2) >5.0% discordance in SNP pairs 
with r2= 1 in HapMap;  
3) ethnic outliers;  
4) related individuals and 
duplicates; 
5) Missing body weight and height. 

3552 measured  (1) Day N.E. et al. EPIC-Norfolk: study design and 
characteristics of the cohort. European Prospective 
Investigation of Cancer. British Journal of Cancer (1999) 
80: 95-103. 
(2) Loos R.J. et al. Common variants near MC4R are 
associated with fat mass, weight and risk of obesity. Nat 
Genet (2008) 40: 768-775. 

ERF 
(EUROSPAN) 

Erasmus Rucphen 
Family  

Family based 2300 > 95% 1)excess heterozygosity based on 
FDR 
2)ehtnic outliers 
3)sex mismatch 
4)missing phenotype 

2060 measured  (1) Aulchenko Y.S. et al. Linkage disequilibrium in young 
genetically isolated Dutch population. Eur J Hum Genet  
(2004) 12: 527-534 
(2) Axenovich T.I. et al. Linkage analysis of adult height in 
a large pedigree from a Dutch genetically isolated 
population. Hum Genet. (2010) 126: 457-71. 

Fenland Fenland Study Population-
based 

1500 ≥ 95% 1) heterozygosity <27.3% or 
>28.8%; 
2) duplicate check;  
3) relatedness check 

1402 measured  Willer C.J. et al. Six new loci associated with body mass 
index highlight a neuronal influence on body weight 
regulation. Nat Genet. (2009) 41:25-34  

FHS controls Family Heart Study Case-control 434 ≥ 98% 1) technical errors 
2) discrepancies between reported 
sex and sex-diagnostic markers 

415 measured  Higgins M. et al. NHLBI Family Heart Study: objectives 
and design, Am J Epidemiol (1996) 143, 1219–1228. 

FHS cases Family Heart Study Case-control 463 ≥ 98% 1) technical errors 
2) discrepancies between reported 
sex and sex-diagnostic markers 

441 measured  Higgins M. et al. NHLBI Family Heart Study: objectives 
and design, Am J Epidemiol (1996) 143, 1219–1228. 



 

Chapter 3 176 

FRAM Framingham Heart 
Study 

Population-
based, multi-
generational 

9274 ≥ 97% 1) pHWE<1e-6call rate<97%  
2) mishap p<1e-9  
3) MAF<0.01  
4) Mendelian errors>100  
5) SNPs not in Hapmap or 
strandedness issues merging with 
Hapmap 

8089 measured  (1) Dawber T.R. et al. An approach to longitudinal studies 
in a community: the Framingham Study. Ann N Y Acad 
Sci. (1963)107:539-556.  
(2) Feinleib M. et al. The Framingham Offspring Study. 
Design and preliminary data. Prev Med. (1975) 4:518-
525.  
(3) Splansky G.L. et al. The Third Generation Cohort of 
the National Heart, Lung, and Blood Institute's 
Framingham Heart Study: design, recruitment, and initial 
examination. Am J Epidemiol. (2007) 165:1328-1335. 

FTC Finnish Twin Cohort Monozygotic 
twins 

152 pairs ≥ 95% 1) ethnic outliers;  
2) related individuals and 
duplicates; 
3) Missing body weight and body 
mass index. 

125 measured  (1) Aulchenko Y.S. et al. Loci influencing lipid levels and 
coronary heart disease risk in 16 European population 
cohorts. Nat Genet. (2009) 41:47-55. 

FUSION controls Finland-United 
States Investigation 
of NIDDM Genetics 

Case-control 1174 > 97.5% related individuals; missing BMI or 
height 

1167 measured  Scott L.J. et al. A genome-wide association study of type 
2 diabetes in Finns detects multiple susceptibility 
variants. Science (2007) 316:1341-1345. 

FUSION cases Finland-United 
States Investigation 
of NIDDM Genetics 

Case-control 1161 > 97.5% related individuals; missing BMI or  
height 

1082 measured  Scott L.J. et al. A genome-wide association study of type 
2 diabetes in Finns detects multiple susceptibility 
variants. Science (2007) 316:1341-1345. 

GENMETS 
controls 

Health 2000 / 
GENMETS substudy 
of Metabolic 
syndrome 

Case-control 948 ≥ 95% 1) ethnic outliers;  
2) related individuals and 
duplicates; 
3) Missing body weight and body 
mass index. 

823 height 
calculated 

using BMI and 
weight 

http://www.terveys2000.fi/indexe.html 

GENMETS 
cases 

Health 2000 / 
GENMETS substudy 
of Metabolic 
syndrome 

Case-control 932 ≥ 95% 1) ethnic outliers;  
2) related individuals and 
duplicates; 
3) Missing body weight and body 
mass index. 

824 height 
calculated 

using BMI and 
weight 

http://www.terveys2000.fi/indexe.html 

GerMiFSI (cases 
only) 

German Myocard 
Infarct Family Study 
I 

Case-control 875 > 97% 1) related individuals and 
duplicates; 
2)missin phenotypes 
3) heterozygosity  mean +- 3*sd 
outlier 

600 measured  Samani N.J. et al. Genomewide association analysis of 
coronary artery disease. N Engl J Med.( 2007) 357:443-
453. 

GerMiFSII 
(cases only) 

German Myocard 
Infarct Family Study 
II 

Case-control 1222 > 97% 1) related individuals and 
duplicates; 
2)missin phenotypes 
3) heterozygosity mean +- 3*sd 
outlier  

1124 measured  Erdmann J. et al. New susceptibility locus for coronary 
artery disease on chromosome 3q22.3. Nat Genet. 
(2009) 41:280-282. 
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KORA S3 Cooperative Health 
Research in the 
Region of Augsburg, 
KOoperative 
Gesundheitsforschu
ng in der Region 
Augsburg 

Population-
based 

1644 ≥ 93% 1) german passport; 
2) missing height. 

1643 measured Wichmann H.E. et al. KORA-gen--resource for population 
genetics, controls and a broad spectrum of disease 
phenotypes. Gesundheitswesen (2005) 67 Suppl 1, S26-
30. 

KORA S4 Cooperative Health 
Research in the 
Region of Augsburg, 
KOoperative 
Gesundheitsforschu
ng in der Region 
Augsburg 

Population-
based 

1814 ≥ 93% 1) german passport; 
2) missing height. 

1811 measured Wichmann H.E. et al. KORA-gen--resource for population 
genetics, controls and a broad spectrum of disease 
phenotypes. Gesundheitswesen (2005) 67 Suppl 1, S26-
30. 

MICROS MICROS 
(EUROSPAN) 

Population-
based 

1098 ≥ 97% 1) ethnic outliers;  
2) duplicates; 
3) Missing  height. 

1079 measured  Pattaro C. et al. The genetic study of three population 
microisolates in South Tyrol (MICROS): study design and 
epidemiological perspectives. BMC Med Genet (2007) 
8:29 

MIGEN Myocardial Infarction 
Genetics 
Consortium 

Case-control 6042 ≥ 95% 1) Related individuals and 
duplicates 
2) Sex mismatch 
3) Phenotype missing 

2652 measured Kathiresan S. et al. Genome-wide association of early-
onset myocardial infarction with single nucleotide 
polymorphisms and copy number variants. Nat Genet. 
(2009) 41:334-41. 

NBS-WTCCC WTCCC National 
Blood Service 
donors 

Population-
based 

1500 ≥ 97% 1) heterozygosity <23% or >30%; 
2) discrepancy with external 
identifying information;  
3) ethnic outliers;  
4) related individuals and 
duplicates; 

1441 self reported The Wellcome Trust Case Control Consortium. 
Genome‐wide association study of 14,000 cases of seven 

common diseases and 3,000 shared controls. Nature 
(2007) 447, 661-678 

NFBC1966 Northern Finland 
Birth Cohort 1966 

Population-
based 

5654 ≥ 95% 1) sex discrepancy with genetic 
data from X-linked markers;  
2) withdrawn consent; 
3) duplicates and first and second 
degree relatives; 
4) contaminated samples 

4499 measured (1) Sabatti C. et al. Genome-wide association analysis of 
metabolic traits in a birth cohort from a founder 
population. Nat Genet (2008) 41: 35-46.  
(2) Sovio U. et al. Genetic determinants of height growth 
assessed longitudinally from infancy to adulthood in the 
northern Finland birth cohort 1966. PLoS Genet (2009) 
5(3): e1000409  

NHS The Nurses' Health 
Study 

Nested case-
control 

2368 >90% 1) Low genotying completion 
(<90%); 
2) Unclear identity and admixed 
origin; 
3) Missing  height. 

2265 self-reported Hunter D. et al. A genome-wide association study 
identifies alleles in FGFR2 associated with risk of 
sporadic postmenopausal breast cancer. Nat Genet. 
(2007) 39: 870-874. 
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NSPHS Northern Sweden 
Population Health 
Study (EUROSPAN) 

Population-
based 

720 ≥ 97% 1) ethnic outliers;  
2) duplicates; 
3) Missing  height. 

652 measured  (1) Johansson A. et al. Common variants in the JAZF1 
gene associated with height identified by linkage and 
genome-wide association analysis. Hum Mol Genet 
(2009) 18: 373-80. 
(2) Hicks A.A. et al. Genetic determinants of circulating 
sphingolipid concentrations in European populations. 
PLoS Genet. (2009) 5(10):e1000672 

NTRNESDA Netherlands Twin 
Register & the 
Netherlands Study 
of Depression and 
Anxiety 

Case-control 3720 ≥ 95% 1) evidence of sample 
contamination (heterozygosity); 
2) ethnic outliers;  
3) related individuals and 
duplicates; 
5) missing body height. 

3522 questionnaire 
and measured 

(1) Boomsma D.I. et al. Netherlands Twin Register: from 
twins to twin families. Twin Res Hum Genet (2006) 9: 
849–857.  
(2) Penninx B. et al. The Netherlands Study of 
Depression and Anxiety (NESDA): rationales, objectives 
and methods. Int J Methods Psychiatr Res (2008) 17: 
121-140.  
(3) Boomsma D.I. et al. Genome-wide association of 
major depression: Description of samples for the GAIN 
major depressive disorder study: NTR and NESDA 
Biobank Projects. Eur J Hum Genet (2008) 16: 335–342. 

ORCADES Orkney Complex 
Disease Study (part 
of EUROSPAN) 

Population-
based 

719 ≥ 97% 1) ethnic outliers;  
2) duplicates; 
3) missing height. 

695 measured  (1) Johansson A. et al. Common variants in the JAZF1 
gene associated with height identified by linkage and 
genome-wide association analysis. Hum Mol Genet. 
(2009) 18: 373-380. 
(2) Hicks A.A. et al. Genetic determinants of circulating 
sphingolipid concentrations in European populations. 
PLoS Genet. (2009) 5(10):e1000672 

PLCO The Prostate, Lung 
Colorectal and 
Ovarian Cancer 
Screening Trial 

Case-control 2298 ≥ 94% 1) Sex discordance  
2) Non-European ancestry 
3) Related individuals and 
duplicates; 
4) Missing height. 

2244 self-reported Yeager M. et al. Genome-wide association study of 
prostate cancer identifies a second risk locus at 8q24. 
Nat Genet (2007) 39: 645-649. 

PROCARDIS Precocious 
Coronary Artery 
Disease 

Case-control 2573 > 95% none 2312 measured Broadbent H.M. et al. Susceptibility to coronary artery 
disease and diabetes is encoded by distinct, tightly linked 
SNPs in the ANRIL locus on chromosome 9p. Hum Mol 
Genet (2008) 17: 806-814. 
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RS-I Rotterdam Study I Population-
based 

7983 ≥ 97.5% 1) sex mismatch with typed X-
linked markers; 
2) excess autosomal 
heterozygosity > 
0.336~FDR>0.1%;  
3) duplicates and/or 1st or 2nd 
degree relatives using IBS 
probabilities >97% from PLINK;  
4) ethnic outliers using IBS 
distances > 3SD from PLINK; 
5) Missing body weight and height. 

5744 measured  (1) Estrada K. et al. A genome-wide association study of 
northwestern Europeans involves the C-type natriuretic 
peptide signaling pathway in the etiology of human height 
variation. Hum Mol Genet (2009) 18:3516-3524 
(2) Estrada K. et al. GRIMP: a web- and grid-based tool 
for high-speed analysis of large-scale genome-wide 
association using imputed data. Bioinformatics (2009) 
25:2750-2752 
(3) Hofman A. et al. The Rotterdam Study: 2010 
objectives and design update. Eur J Epidemiol (2009) 24: 
553-572 
(4) Hofman A. et al. Determinants of disease and 
disability in the elderly: the Rotterdam Elderly Study. Eur 
J Epidemiol (1991) 7: 403-422 

RUNMC Nijmegen Bladder 
Cancer Study 
(NBCS) & Nijmegen 
Biomedical Study 
(NBS), Radboud 
University Nijmegen 
Medical Centre 

Population-
based 

3081 ≥ 96% Missing body weight and height. 2873 self-assessed 
and reported 

by 
questionnaire 

(1) Wetzels J.F. et al. Age- and sex-specific reference 
values of estimated GFR in Caucasians: the Nijmegen 
Biomedical Study. Kidney Int (2007) 72, 632-637.  
(2) Kiemeney L.A. et al. Sequence variant on 8q24 
confers susceptibility to urinary bladder cancer. Nat 
Genet (2008) 40: 1307-1312. 

SardiNIA SARDINIA Population-
based 

6148 ≥ 90% 1) Morquio syndrome 
2) Missing height 

4298 measured Pilia G. et al. Heritability of cardiovascular and personality 
traits in 6,148 Sardinians. PLoS Genet (2006) 2: e132  

SASBAC cases Swedish And 
Singapore Breast 
Association 
Consortium 

Case-control 803 ≥ 96% 1) related individuals and 
duplicates; 
2) ethnic outliers;  
3) missing body weight and height. 

794 self-reported (1) Magnusson C. et al. Breast-cancer risk following long-
term oestrogen- and oestrogen-progestin-replacement 
therapy. Int J Cancer (1999) 81: 339-344. 
(2) Einarsdóttir K. et al. Comprehensive analysis of the 
ATM, CHEK2 and ERBB2 genes in relation to breast 
tumour characteristics and survival: a population-based 
case-control and follow-up study. Breast Cancer Res 
(2006) 8: R67. 

SASBAC 
controls 

Swedish And 
Singapore Breast 
Association 
Consortium 

Case-control 764 ≥ 96% 1) related individuals and 
duplicates; 
2) ethnic outliers;  
3) missing body weight and height. 

758 self-reported (1) Magnusson C. et al. Breast-cancer risk following long-
term oestrogen- and oestrogen-progestin-replacement 
therapy. Int J Cancer (1999) 81: 339-344. 
(2) Einarsdóttir K. et al. Comprehensive analysis of the 
ATM, CHEK2 and ERBB2 genes in relation to breast 
tumour characteristics and survival: a population-based 
case-control and follow-up study. Breast Cancer Res 
(2006) 8: R67. 



 

Chapter 3 180 

SEARCH / 
UKOPS 

Studies of 
Epidemiology and 
Risk factors in 
Cancer Heredity / 
UK Ovarian Cancer 
Population Study 

Population-
based 

1710 ≥ 80% 1) ethnic outliers 
2) duplicates 
3) Missing height 

1592 self-assessed Song H. et al. A genome-wide association study identifies 
a new ovarian cancer susceptibility locus on 9p22.2. Nat 
Genet (2009) 41: 996-1000. 

SHIP Study of Health in 
Pomerania 

Population-
based 

4310 ≥ 92% 1) missing genotype or phenotype 
data 

4092 measured  John U. et al. Study of health in Pomerania (SHIP): a 
health examination survey in an east German region: 
objectives and design. Soz-Präventivmed (2001) 46: 186-
194. 

T2D-WTCCC WTCCC Type 2 
Diabetes cases 

case series 1999 ≥ 97% 1) heterozygosity <23% or >30%; 
2) discrepancy with external 
identifying information;  
3) ethnic outliers;  
4) related individuals and 
duplicates; 

1903 measured The Wellcome Trust Case Control Consortium 
Genome‐wide association study of 14,000 cases of seven 

common diseases and 3,000 shared controls. Nature 
(2007) 447: 661-678 

TwinsUK TwinsUK Twins pairs 2226 ≥ 95% 1) heterozygosity <33% or >37%; 
2) ethnic outliers;  
3) related individuals and 
duplicates; 
4) Missing body weight and height. 

1479 measured  (1) Spector T.D., Williams F.M. The UK Adult Twin 
Registry (TwinsUK). Twin Res Hum Genet (2006) 9: 899-
906. 
(2) Spector T.D., MacGregor A.J. The St. Thomas' UK 
Adult Twin Registry. Twin Res (2002) 5: 440-443. 

VIS VIS (EUROSPAN) 
and KORCULA 

Population-
based 

795 ≥ 97% 1) ethnic outliers;  
2) duplicates; 
3) Missing  height. 

784 measured  (1) Johansson A. et al. Common variants in the JAZF1 
gene associated with height identified by linkage and 
genome-wide association analysis. Hum Mol Genet. 
(2009) 18: 373-380. 
(2) Hicks A.A. et al. Genetic determinants of circulating 
sphingolipid concentrations in European populations. 
PLoS Genet. (2009) 5(10):e1000672 

Stage 2 (in-silico replication studies) 

BHS Busselton Health 
Study 

Population-
based 

1366 ≥ 75% 1) ethnic outliers;  
2) related individuals and 
duplicates; 
3) Missing body waist and hip. 

1328 measured  (1) James A.L. et al. Decline in lung function in the 
Busselton Health Study: the effects of asthma and 
cigarette smoking. Am J Respir Crit Care Med (2005) 
171:109-114. 
(2) Hui J. et al. A genome-wide association scan for 
asthma in a general Australian population. Hum Genet 
(2008) 123:297-306 
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Corogene Genetic 
Predisposition of 
Coronary Heart 
Disease in Patients 
Verified with 
Coronary 
Angiogram  

Population-
based 

4130 ≥ 95% 1) missing sex 
2) related individuals and 
duplicates 
3) (For this specific analysis) 
Missing body height 

3758 measured  Soranzo, N. et al. A genome-wide meta-analysis 
identifies 22 loci associated with eight hematological 
parameters in the HaemGen consortium. Nat. Genet 
(2009). 41: 1182-1190. 

EGCUT Estonian Genome 
Center, University of 
Tartu 

Population-
based 

345 ≥ 95% 1) Related individuals and 
duplicates 
2) Sex mismatch 
3) Phenotype missing 

345 measured  (1) Nelis M. et al. Genetic Structure of Europeans: A View 
from the North–East. PLoS ONE (2009) 4(5): e5472. 
(2) Metspalu A. The Estonian Genome Project. Drug 
Development Research (2004) 62: 97-101. 

FHS Family Heart Study Case-control 1808 ≥ 98% 1) technical errors                                                                                                              
2) discrepancies between reported 
sex and sex-diagnostic markers 

1463 measured  Higgins M. et al. NHLBI Family Heart Study: objectives 
and design, Am J Epidemiol (1996) 143: 1219-1228. 

FINGESTURE 
cases 

Finnish Genetic  
Study of Arrhythmic 
Events  

Disease 
cohort 

(MI cases 
only) 

1103 ≥ 97% 1) PLINK heterozygosity F-value <-
0.05 or >0.05; 
2) ethnic outliers;  
3) related individuals and 
duplicates; 
4) Missing body weight and height. 

943 measured  Kaikkonen K.S. et al. Family history and the risk of 
sudden cardiac death as a manifestation of an acute 
coronary event. Circulation (2006) 114, 1462-7 

GOOD Gothenburg 
Osteoporosis and 
Obesity 
Determinants Study 

Population-
based 

1056 ≥ 97.5% 1) heterozygosity > 33%; 
2) ethnic outliers; 
3) related individuals and 
duplicates. 

938 measured  Lorentzon M. et al. Free testosterone is a positive 
whereas free estradiol is a negative predictor of cortical 
bone size in young Swedish men-The GOOD Study. J 
Bone Miner Res (2005) 20: 1334-1341. 

HBCS Helsinki Birth Cohort 
Study 

Birth cohort 
study 

1872 ≥ 95% 1) related individuals and 
duplicates 
2) (From this specific analysis) 
Missing body height 

1726 measured  Ylihärsilä H. et al. Body mass index during childhood and 
adult body composition in men and women aged 56-70 y. 
Am J Clin Nutr. (2008) 87:1769-1775. 
Kajantie E. et al. Size at birth as a predictor of mortality in 
adulthood: a follow-up of 350 000 person-years. Int J 
Epidemiol (2005) 34:655-663. 

HYPERGENES 
controls 

HYPERGENES Case-control 1934 >90% 1) ethnic outliers 
2) Missing body weight and height. 

1838 measured  http://www.hypergenes.eu/ 

HYPERGENES 
cases 

HYPERGENES Case-control 2124 >90% 1) ethnic outliers 
2) Missing body weight and height. 

1787 measured  http://www.hypergenes.eu/ 
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MGS Molecular Genetics 
of 
Schizophrenia/NIMH 
Repository Control 
Sample 

Population-
based 
(survey 

research 
method) 

2681 99.7% 1) call rate < 97% for samples,95% 
for SNPs 
2) heterozygosity <26% or >28.5%; 
3) excess duplicate discordancies 
or mendelian errors (SNPs);  
4) ethnic outliers (principal 
component scores);  
5) related individuals and 
duplicates; 
6) Missing body weight or height. 

2597 self-reported (1) Shi J. et al. Common variants on chromosome 6p22.1 
are associated with schizophrenia. Nature. (2009) 460: 
753-757.  
(2) Sanders A.R. et al. No significant association of 14 
candidate genes with schizophrenia in a large European 
ancestry sample: implications for psychiatric genetics. Am 
J Psychiatry. (2008) 165: 497-506. 

NHS The Nurses' Health 
Study 

Nested case-
control 

3221 >98% 1) Low genotying completion 
(<98%);  2) Unclear identity and 
admixed origin; 3) related 
individuals and duplicates;  4) DNA 
contamination; 5) Missing height; 

3217 self-reported Qi L. et al. Genetic variants in ABO blood group region, 
plasma soluble E-selectin levels, and risk of type 2 
diabetes. Hum Mol Genet. (2010) Feb 10, 
doi:10.1093/hmg/ddq057 

RS-II Rotterdam Study II Population-
based 

3011 ≥ 97.5% 1) sex mismatch with typed X-
linked markers; 
2) excess autosomal 
heterozygosity (F<-0.055);  
3) duplicates and/or 1st degree 
relatives using IBD PiHAT >40% 
from PLINK;  
4) ethnic outliers IBS distances > 
4SD mean HaMAP CEU cluster 
from PLINK; 
5) Missing body weight and height. 

2124 measured  (1) Estrada K. et al. A genome-wide association study of 
northwestern Europeans involves the C-type natriuretic 
peptide signaling pathway in the etiology of human height 
variation. Hum Mol Genet (2009) 18:3516-3524 
(2) Estrada K. et al. GRIMP: a web- and grid-based tool 
for high-speed analysis of large-scale genome-wide 
association using imputed data. Bioinformatics (2009) 
25:2750-2752 
(3) Hofman A. et al. The Rotterdam Study: 2010 
objectives and design update. Eur J Epidemiol (2009) 24: 
553-572 
(4) Hofman A. et al. Determinants of disease and 
disability in the elderly: the Rotterdam Elderly Study. Eur 
J Epidemiol (1991) 7: 403-422 

RS-III Rotterdam Study III Population-
based 

3932 ≥ 97.5% 1) sex mismatch with typed X-
linked markers; 
2) excess autosomal 
heterozygosity (F<-0.055);  
3) duplicates and/or 1st degree 
relatives using IBD PiHAT >40% 
from PLINK;  
4) ethnic outliers IBS distances > 
4SD mean HaMAP CEU cluster 
from PLINK; 
5) Missing body weight and height. 

2009 measured  (1) Estrada K. et al. A genome-wide association study of 
northwestern Europeans involves the C-type natriuretic 
peptide signaling pathway in the etiology of human height 
variation. Hum Mol Genet (2009) 18:3516-3524 
(2) Estrada K. et al. GRIMP: a web- and grid-based tool 
for high-speed analysis of large-scale genome-wide 
association using imputed data. Bioinformatics (2009) 
25:2750-2752 
(3) Hofman A. et al. The Rotterdam Study: 2010 
objectives and design update. Eur J Epidemiol (2009) 24: 
553-572 
(4) Hofman A. et al. Determinants of disease and 
disability in the elderly: the Rotterdam Elderly Study. Eur 
J Epidemiol (1991) 7: 403-422 
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Sorbs Sorbs are self-
contained population 
from Eastern 
Germany, European 
Descent 

Population-
based 

1097 ≥ 94% 1) sex mismatch;  
2) ethnic outliers;  
3) duplicates; 
4) Missing body weight and height. 

907 measured  Tönjes A. et al. Association of FTO variants with BMI and 
fat mass in the self-contained population of Sorbs in 
Germany. Eur J Hum Genet. (2010) 18:104-10. 

WGHS Women's Genome 
Health Study 

Population-
based 

23,294 >98% 1)  includes only WGHS 
participants with confirmed, self-
reported European ancestry; 
2) all SNPs have HWE p>10E-6;  
3) all SNPs have genotype for 
>90% samples  
4) only samples with biometric 
measures included in analysis 

23099 self-report Ridker P.M. et al. Rationale, design, and methodology of 
the Women's Genome Health Study: a genome-wide 
association study of more than 25,000 initially healthy 
American women. Clin Chem. (2008) 54:249-55. . 

YFS The Cardiovascular 
Risk in Young Finns 
Study 

Population-
based cohort 

2,443 ≥ 95% 1) missing sex 
2) related individuals and 
duplicates 
3) (From this specific analysis) 
Missing body height 

1995 measured  Raitakari O.T. et al. Cohort profile: The cardiovascular 
risk in Young Finns Study. Int J Epidemiol. (2008) 
37:1220-6 

Polygene analysis study 

QIMR Twin studies at the 
Queensland Instutite 
of Medical Research  

Population-
based 

2,654 ≥ 95% 1) close relatives based on 
pedigree information; 
2) ethnic outliers;  
3) Missing height. 

1475 measured or 
self-report 

Medland et al. Common Variants in the Trichohyalin 
Gene Are Associated with Straight Hair in Europeans. 
Amer J Hum Genet (2009) 85:750-5. 

* Sample genotyping success rate; i.e. minimum percentage of successfully genotyped SNPs of GWAs per sample 
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Supplementary Methods Table 2. Information on genotyping methods, quality control of SNPs, imputation, and statistical 
analysis. 
 

 
Genotyping Imputation Association analyses 

Platform 
Genotype 

calling 
algorithm 

Inclusion criteria 
SNPs that 

met QC 
criteria 

Imputation 
software 

Inclusion criteria SNPs in meta-
analysis (after 

MAFxN>3 
filter) 

lGC 
Analyses 
software 

Cohort 
MAF Call rate* p for HWE MAF Imputation quality all men women 

Stage 1 (GWA studies) 

ADVANCE 
cases 

Illumina 550k BeadStudio none ≥98.5% >10
-3 

543,985 BIMBAM >0% none 2,193,902 NA 1.047 1.022 SNPTEST 

ADVANCE 
controls 

Illumina 550k BeadStudio none ≥98.5% >10
-3 

543,985 BIMBAM >0% none 2,206,332 NA 1.046 0.996 SNPTEST 

AGES Illumina 
Human370CNV 

BeadStudio ≥1% ≥95% >10
-6 

308,340 MACH >0% r2-hat≥0.30 2,458,927 NA 1.075 1.082 ProbABEL 

Amish HAPI 
Heart Study 

Affymetrix GeneChip 
Human Mapping 500K 

BRLMM ≥1% ≥95% >10
-6 

338,598 MACH >0% r2-hat≥0.30 2,291,092 1.057 0.938 1.045 MMAP 

ARIC Affymetrix Genome-
Wide Human SNP 

Array 6.0 

Birdseed >1% ≥95% >10
-5 

685,812 MACH >0% r2-hat≥0.30 2,511,301 NA 1.021 1.039 ProbABEL 

B58C-T1DGC Illumina HumanHap 
550 V.1 

ILLUMINUS >0% none none 539,458 MACH >0% r2-hat≥0.30 2,507,988 NA 1.024 1.014 ProbABEL 

B58C-WTCCC Affymetrix GeneChip 
Human Mapping 500K 

CHIAMO >5% none none 392,575 IMPUTE >0% proper-info≥0.40 2,448,428 NA 0.999 1.003 SNPTEST 

BRIGHT Affymetrix GeneChip 
Human Mapping 500K 

CHIAMO ≥5% ≥95% >10
-6 

387,666 IMPUTE >0% proper-info≥0.40 2,429,136 NA 1.015 0.995 SNPTEST 

CAPS1 cases Affymetrix GeneChip 
Human Mapping 500K 

BRLMM ≥1% ≥95% >10
-7 

330,124 IMPUTE >0% proper-info≥0.40 2,387,578 NA 0.993 NA SNPTEST 

CAPS1 
controls 

Affymetrix GeneChip 
Human Mapping 500K 

BRLMM ≥1% ≥95% >10
-7 

330,124 IMPUTE >0% proper-info≥0.40 2,390,475 NA 0.995 NA SNPTEST 

CAPS2 cases Affymetrix GeneChip 
Human Mapping 5.0K 

BLRMM-P ≥1% ≥95% >10
-7 

348,163 IMPUTE >0% proper-info≥0.40 2,416,296 NA 1.044 NA SNPTEST 

CAPS2 
controls 

Affymetrix GeneChip 
Human Mapping 5.0K 

BLRMM-P ≥1% ≥95% >10
-7 

348,163 IMPUTE >0% proper-info≥0.40 2,391,556 NA 1.041 NA SNPTEST 

CAD-WTCCC Affymetrix GeneChip 
Human Mapping 500K 

CHIAMO >5% ≥95% >10
-6 

387,667 IMPUTE >0% proper-info≥0.40 2,430,482 NA 1.025 1.009 SNPTEST 
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CHS Illumina 370-CNV BeadStudio  >97% >10
-5 

306,655 BimBam >0% r2-hat ≥0.30 2,191,645 NA 1.11 1.15 R 

CoLaus Affymetrix GeneChip 
Human Mapping 500K 

BRLMM ≥1% ≥70% >10
-7 

390,631 IMPUTE >0%  proper-info ≥0.40 2,479,491 NA 1.013 1.034 QUICKTEST 

deCODE Illumina HumanHap300 
or HumanHapCNV370 

BeadStudio ≥1% ≥96% >10
-6 

290,447 IMPUTE >0% proper-info≥0.40 2,456,118 0.948 0.977 0.986 SNPTEST 

DGI cases Affymetrix 500K BRLMM ≥1% ≥95% >10
-6 

386,731 MACH >0% r2-hat≥0.30 2,410,247 1.029 0.977 1.049 MACH2QTL 

DGI controls Affymetrix 500K BRLMM ≥1% ≥95% >10
-6 

386,731 MACH >0% r2-hat≥0.30 2,408,993 1.029 1.045 0.995 MACH2QTL 

EGCUT Illumina Beadarray 
Human370CNV 

BeadStudio ≥1% ≥98% >10
-6 

299,484 IMPUTE >0% proper-info≥0.40 2,429,620 NA 1.032 1.013 SNPTEST 

EPIC-Obesity 
Study 

Affymetrix GeneChip 
Human Mapping 500K 

BRLMM ≥1% ≥90% >10
-6 

397,438 IMPUTE >0% proper-info≥0.40 2,420,624 NA 1.018 1.027 SNPTEST 

ERF 
(EUROSPAN) 

Illumina 318K, 370K, 
Affymetrix 250K 

BRLMM, 
BeadStudio 

>0.5% >95% >10
-6
 NA MACH >0% r2-hat≥0.30 2,463,846 1.031 1.012 1.019 ProbABEL 

Fenland Affymetrix SNP5.0 BRLMM ≥1% ≥90% >10
-6 

362,055 IMPUTE >0% proper-info≥0.40 2,406,753 NA 1.039 1.04 SNPTEST 

FHS (cases + 
controls) 

Illumina 1Million 
GeneChip 

BeadStudio ≥1% ≥98% >10
-6 

874,830 MACH >0% r2-hat≥0.30 2,375,010 1.066 1.06 1.064 SAS 

FRAM Affymetrix 500K  
Affymetrix 50K 
supplemental 

BRLMM ≥1% ≥97% >10
-6 

378,163 MACH >0% r2-hat≥0.30 2,455,455 1.071 1.027 1.062 R 

FTC Illumina HumanHap 
318K 

BeadStudio ≥1% ≥90% >10
-6 

304,582 MACH >0% r2-hat≥0.30 2,268,674 NA NA 1.005 ProbABEL 

FUSION 
controls 

Illumina Infinium™ II 
HumanHap300 

BeadChip 

BeadStudio >1% ≥90% ≥10
-6
 315,635 MACH >0% r2-hat≥0.30 2,466,546 1.112 1.056 1.074 MACH2QTL 

FUSION cases Illumina Infinium™ II 
HumanHap300 

BeadChip 

BeadStudio >1% ≥90% ≥10
-6
 315,635 MACH >0% r2-hat≥0.30 2,466,546 1.08 1.077 1.027 MACH2QTL 

GENMETS 
controls 

Illumina HumanHap 
610K 

Illuminus ≥1% ≥95% >10
-6 

555,388 MACH >0% r2-hat≥0.30 2,345,066 NA 1.043 1.006 ProbABEL 

GENMETS 
cases 

Illumina HumanHap 
610K 

Illuminus ≥1% ≥95% >10
-6 

555,388 MACH >0% r2-hat≥0.30 2,343,751 NA 1.016 1.007 ProbABEL 

GerMiFSI Affymetrix NSP/STY  BRLMM >1% >97% >10
-5
 282,215 MACH >0% r2-hat≥0.30 2,333,219 NA 1.014 1.026 GenABEL 

GerMiFSII Affymetrix 6.0 Birdseed >1% >97% >10
-5
 653,149 MACH >0% r2-hat≥0.30 2,492,325 NA 1.07 1.015 GenABEL 

KORA S3 Affymetrix 500K BRLMM none none none 490,032 MACH >0% r2-hat≥0.30 2,415,072 NA 1.018 1.016 MACH2QTL 

KORA S4 Affymetrix 6.0 Birdseed none none none 909,622 IMPUTE >0% proper-info≥0.40 2,109,266 NA 1.009 1.036 SNPTEST 

MICROS  ILLUMINA318K BeadStudio ≥1% ≥98% >10
-6 

318,237 MACH >0% r2-hat ≥0.30 2,435,539 1.004 1 0.994 ProbABEL 
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MIGEN Affymetrix 6.0 Birdseed ≥1% ≥95% >10
-6 

727,496 MACH >0% r2-hat ≥0.30 2,288,269.4 
(average) 

NA 1.002 
(average) 

1.0015 
(average) 

MACH2QTL 

NBS-WTCCC Affymetrix GeneChip 
Human Mapping 500K 

CHIAMO >5% ≥95% >10
-6 

387,667 IMPUTE >0% proper-info ≥0.40 2,415,926 NA 1.002 1.008 SNPTEST 

NFBC1966 Illumina HumanCNV-
370DUO Analysis 

BeadChip 

Standard 
Illumina 

BeadStudio 

≥5% ≥95% >10
-4
 328,007 IMPUTE >0% proper-info ≥0.40 2,460,379 NA 1.037 1.053 SNPTEST 

NHS Illumina HumanHap550 Standard 
Illumina 

BeadStudio 

≥1% ≥90% none 510,073 MACH >0% r2-hat ≥0.30 2,520,546 NA NA 1.005 MACH2QTL 

NSPHS  ILLUMINA318K BeadStudio ≥1% ≥98% >10
-6 

318,236 MACH >0% r2-hat≥0.30 2,382,373 1.023 1.03 1.015 ProbABEL 

NTRNESDA  Perlegen - Affymetrix 
gene chip 600K 

Proprietary 
Perlegen 

>1% ≥95% none 435,291 IMPUTE >0% proper-info≥0.40 2,493,317 NA 1.028 1.062 SNPTEST 

ORCADES  ILLUMINA318K BeadStudio ≥ 1% ≥98% >10
-6 

318,235 MACH >0% r2-hat≥0.30 2,433,999 1.004 0.966 1.042 ProbABEL 

PLCO Illumina HumanHap300 
and Illumina 

HumanHap240 

Illumina Bead 
Studio 

none ≥90% none 523,231 MACH >0% r2-hat≥0.30 2,527,780 NA 1.006 NA MACH2QTL 

PROCARDIS HumanHap300 
BeadChips  

Illumina 
Beadstudio 
2.0 software 

>5% ≥95% >5x10
-7 

~820k IMPUTE >0% proper-info≥0.40 2,580,770 NA 1.084 1.014 SNPTEST 

RS-I Illumina /HumanHap 
550K V.3 

ADHumanHap 550 V.3 
DUO; 

BeadStudio 
Genecall 

≥1% ≥97.5% >10
-6 

512,349 MACH >0% (O/E)σ2 ratio≥0.1 
r2-hat≥0.30 

2,488,215 NA 1.045 1.064 MACH2QTL 

RUNMC Illumina 
HumanHapCNV370  

BeadStudio ≥1% ≥96% >10
-6 

312,199 IMPUTE >0% proper-info≥0.40 2,465,662 0.996 0.996 0.996 SNPTEST 

SardiNIA Affymetrix 500K and 
Affymetrix 10K 

BRLMM ≥5% ≥90% >10
-6 

356,359 MACH >0% r2-hat≥0.30 2,251,689 1.313 1.171 1.213 Merlin 

SASBAC 
cases 

Illumina 
HumanHap300+240S 

Standard 
Illumina 

BeadStudio 
(GenCall) 

≥3% ≥90% >10
-7
 510,578 IMPUTE >0% proper-info≥0.40 2,491,965 NA NA 1.009 SNPTEST 

SASBAC 
controls 

Illumina HumanHap550 Standard 
Illumina 

BeadStudio 
(GenCall) 

≥3% ≥90% >10
-7
 512,223 IMPUTE >0% proper-info≥0.40 2,474,508 NA NA 1.012 SNPTEST 
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SEARCH / 
UKOPS 

Illumina HumanHap 
610 Quad 

Illuminus ≥1% ≥95% >10
-4 

495,229 In-house 
method 

similar to 
IMPUTE 

>0% r2-hat≥0.30 2,486,650 NA NA 1.02 Regression 
analysis on 

dosages 

SHIP Affymetrix Human SNP 
Array 6.0 

Birdseed V2 ≥0% ≥0% ≥0 869,224 IMPUTE >0% proper-info≥0.40 2,609,015 NA 1.034 1.046 SNPTEST 
v1.1.5 

InforSense 

T2D-WTCCC Affymetrix GeneChip 
Human Mapping 500K 

CHIAMO >5% ≥95% >10
-6 

387,667 IMPUTE >0% proper-info≥0.40 2,425,374 NA 1.008 1.011 SNPTEST 

TWINSUK Illumina / HumanHap 
300 & 550 

Illuminus ≥1% ≥95% >10
-6 

295,702 IMPUTE >0% proper-info≥0.40 2,460,943 NA NA 1.022 SNPTEST 

VIS Illumina 
HumanHap300v1 

BeadStudio ≥1% ≥98% >10
-6 

317,465 MACH >0% r2-hat≥0.30 2,423,083 0.989 1.002 0.991 ProbABEL 

Stage 2 (in-silico replication studies) 

BHS Illumina Human 610-
Quad 

Illuminus ≥1% ≥95% >5.7x10
-7 

549,294 MACH ≥1% r2-hat≥0.30 664 - - - R 

Corogene Illumina BeadChip 
Human 610-Quad 

Illuminus ≥1% ≥95% >10
-6 

554,988 MACH ≥1% r2-hat≥0.30 663 - 1.079 1.084 PLINK 

EGCUT Illumina Beadarray 
Human370CNV 

BeadStudio ≥1% ≥98% >10
-6 

316,924 IMPUTE ≥1% proper-info≥0.30 662 - 1.034 1.025 SNPtest 

FHS Illumina 1Million 
GeneChip 

BeadStudio ≥1% ≥98% >10
-6 

874,830 MACH  ≥1% r2-hat≥0.30 665 - - - SAS 

FINGESTURE 
cases 

Affymetrix Genome-
Wide Human SNP 

Array 6.0 

Birdseed ≥5% ≥95% >10
-6
 606,717 MACH >0% r2-hat≥0.30 663 - - - MACH2QTL 

GOOD Illumina Infinium 
HumanHap 610K 

BeadStudio ≥1% ≥98% >10
-6 

521,160 MACH >0% r2-hat≥0.30 664 - - - MACH2QTL 

HBCS Illumina custom made 
BeadChip Human 670-

Quad 

Illuminus ≥1% ≥95% >10
-6 

533491 MACH ≥1% r2-hat≥0.30 663 - 1.000 1.002 PLINK 

HYPERGENE
S controls 

Illumina Human1M-
Duov3_B 

GenCall, 
BeadStudio 

≥1% ≥90% >10
-7 

Center I: 
861759, 
Center II: 
872576 

MACH >0% r2-hat≥0.30 642 - - - Matlab 

HYPERGENE
S cases 

Illumina Human1M-
Duov3_B 

GenCall, 
BeadStudio 

≥1% ≥90% >10
-7 

Center I: 
861759, 
Center II: 
872576 

MACH >0% r2-hat≥0.30 642 - - - Matlab 
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MGS Affymetrix Genome-
Wide Human SNP 

Array 6.0 

Birdsuite 2.0 ≥1% ≥95% >10
-6 

696,492 MACH ≥1% r2-hat≥0.30 662 -  -   -  PLINK and 
local 

software 

NHS Affymetrix Genome-
Wide Human 6.0 array 

Birdseed 
algorithm v2 

≥2% ≥98% >10
-4
 704,409 MACH ≥2% r2-hat≥0.30 392 - - - ProbABEL 

RS-II Illumina / HumanHap 
550 V.3 DUO; Illumina / 
HumanHap 610 QUAD 

Genomestudi
o Genecall 

≥1% ≥97.5% >10
-6 

466,389 MACH ≥1% (O/E)σ2 ratio≥0.1 
r2-hat ≥0.30 

664 - 1.004 1.012 MACH2QTL 

RS-III Illumina / HumanHap 
610 QUAD 

Genomestudi
o Genecall 

≥1% ≥97.5% >10
-6 

514,073 MACH ≥1% (O/E)σ2 ratio≥0.1 
r2-hat ≥0.30 

664 - 1.004 1.018 MACH2QTL 

Sorbs 500K Affymetrix 
GeneChip (250K Sty 
and 250K Nsp arrays) 

and Affymetrix 
Genome-Wide Human 

SNP Array 6.0 

BRLMM 
algorithm for 

500K and 
Birdseed 

Algorithm for 
SNP Array 6.0 

≥1% ≥95% >10
-4 

378,513 IMPUTE >1% proper-info>0.40 650 - - - SNPTEST 

WGHS Illumina HumanHap300 
Duo "+" 

Beadstudio v 
3.3 

NA ≥90% >10
-6 

339,596 MACH >0% r2-hat≥0.30 663 - - - R 

YFS Illumina custom made 
BeadChip Human 670-

Quad 

Illuminus ≥1% ≥95% >10
-6 

546,674 MACH ≥1% r2-hat≥0.30 663 - 1.017 1.043 PLINK 

Polygene analysis study 

QIMR Illumina HumanHap 
610 Quad 

BeadStudio ≥1% ≥95% >10
-6 

493,578         

* SNP genotyping success rate; i.e. minimum percentage of successfully genotyped samples per SNP     
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Supplementary Methods Table 3: Study-specific descriptive statistics 
 

Study Trait 

Men Women 

n mean SD median min max 
correlation 
with BMI 

correlation 
with height n mean SD median min max 

correlatio
n with BMI 

correlation 
with height 

Stage 1 (GWA studies) 

ADVANCE 
cases 

Age (yrs) 114 40.42 3.98 41.20 20.40 45.10 -0.10 -0.12 161 49.46 4.68 50.50 34.00 55.00 0.01 -0.15 

Height (m) 114 1.77 0.07 1.77 1.61 1.95 0.15 1.00 161 1.64 0.07 1.64 1.48 1.84 -0.14 1.00 

BMI (kg/m²) 114 31.39 5.77 30.89 19.48 54.32 1.00 0.15 161 31.40 8.17 30.65 17.30 61.08 1.00 -0.14 

Weight (kg) 114 99.03 21.16 97.59 64.05 181.44 0.92 0.49 161 83.98 21.78 81.74 48.58 153.00 0.95 0.16 

ADVANCE 
controls 

Age (yrs) 128 40.46 3.23 41.20 33.40 46.80 -0.03 0.15 183 48.69 4.45 49.80 34.80 55.40 0.09 -0.03 

Height (m) 128 1.79 0.07 1.78 1.58 1.96 0.02 1.00 181 1.66 0.06 1.66 1.45 1.80 -0.14 1.00 

BMI (kg/m²) 128 27.00 4.48 26.21 17.86 49.38 1.00 0.02 181 26.08 6.36 24.65 15.76 54.12 1.00 -0.14 

Weight (kg) 128 86.45 16.38 84.37 51.48 158.76 0.88 0.43 182 71.35 17.13 68.27 40.23 140.71 0.92 0.21 

AGES Midlife Age (yrs) 1352 49.69 5.87 50.00 34.00 75.00 0.05 -0.21 1867 52.00 6.54 52.00 34.00 77.00 0.15 -0.23 

Height (m) 1352 1.78 0.06 1.78 1.56 1.98 0.01 1.00 1867 1.64 0.05 1.64 1.45 1.83 -0.15 1.00 

BMI (kg/m²) 1351 25.62 3.09 25.48 16.94 38.61 1.00 0.01 1856 24.89 3.81 24.31 13.65 50.41 1.00 -0.15 

Weight (kg) 1351 81.32 11.41 80.40 51.00 139.00 0.87 0.51 1856 67.13 10.51 66.00 32.80 140.60 0.91 0.27 

Amish HAPI 
Heart Study 

Age (yrs) 471 46.2 16.9 43.0 20.0 99.0 0.25 -0.41 437 47.5 15.1 48.0 20.0 95.0 0.25 -0.40 

Height (m) 470 1.73 0.07 1.73 1.48 1.94 -0.05 1.00 437 1.61 0.06 1.61 1.39 1.75 -0.22 1.00 

BMI (kg/m²) 468 26.3 3.5 26.0 18.6 39.0 1.00 -0.05 437 28.5 5.7 28.3 16.9 47.1 1.00 -0.22 

Weight (kg) 468 78.6 11.7 77.0 49.4 112.8 0.86 0.45 437 73.5 14.4 71.9 37.8 114.3 0.93 0.16 

ARIC Age (yrs) 3823 54.69 5.70 55.00 44.00 66.00 -0.04 -0.16 4287 53.97 5.67 54.00 44.00 66.00 0.04 -0.15 

Height (m) 3823 1.76 0.06 1.76 1.49 1.99 -0.03 1.00 4287 1.62 0.06 1.62 1.37 1.87 -0.08 1.00 

BMI (kg/m²) 3822 27.48 4.01 26.97 17.21 56.26 1.00 -0.03 4286 26.63 5.52 25.45 14.38 55.20 1.00 -0.08 

Weight (kg) 3822 85.54 13.76 84.09 44.55 182.27 0.89 0.43 4286 70.00 14.99 66.82 36.36 141.82 0.94 0.26 

B58C-T1DGC Age (yrs) 1259 45.31 0.34 45.33 44.50 46.00 -0.02 -0.05 1328 45.27 0.34 45.25 44.50 46.00 0.00 -0.04 

Height (m) 1261 1.76 0.07 1.76 1.55 1.99 -0.03 1.00 1330 1.63 0.06 1.63 1.40 1.85 -0.07 1.00 

BMI (kg/m²) 1259 28.02 4.19 27.56 16.84 51.63 1.00 -0.03 1328 26.97 5.58 25.73 17.18 52.20 1.00 -0.07 

Weight (kg) 1259 87.05 14.41 86.00 50.80 177.10 0.89 0.43 1328 71.63 15.45 68.40 43.00 155.30 0.93 0.29 

B58C-WTCCC Age (yrs) 741 44.89 0.34 44.75 44.50 45.60 -0.01 -0.04 738 44.89 0.35 44.75 44.50 45.60 0.02 0.02 

Height (m) 741 1.76 0.07 1.76 1.52 2.02 -0.05 1.00 738 1.62 0.06 1.63 1.42 1.80 -0.10 1.00 

BMI (kg/m²) 741 27.84 4.29 27.23 15.93 48.41 1.00 -0.05 738 26.92 5.44 25.56 17.34 56.55 1.00 -0.10 

Weight (kg) 741 86.56 14.63 85.20 51.00 137.50 0.87 0.39 738 70.96 14.68 68.20 41.80 139.40 0.91 0.29 
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BRIGHT Age (yrs) 719 56.29 11.15 57.00 21.00 84.00 -0.12 -0.24 1087 57.43 11.23 58.00 21.00 85.00 0.07 -0.24 

Height (m) 719 1.74 0.07 1.74 1.51 1.95 -0.06 1.00 1087 1.61 0.06 1.61 1.39 1.81 -0.08 1.00 

BMI (kg/m²) 719 27.74 3.28 27.68 17.20 38.26 1.00 -0.06 1087 27.36 4.04 27.03 16.85 41.66 1.00 -0.08 

Weight (kg) 719 84.22 11.90 83.45 51.00 121.00 0.80 0.54 1087 71.19 11.55 69.90 41.70 122.80 0.87 0.41 

CAPS1 cases Age (yrs) 505 68.15 7.38 67.90 49.50 81.10 -0.16 -0.19 NA NA NA NA NA NA NA NA 

Height (m) 489 1.77 0.07 1.77 1.58 1.97 -0.04 1.00 NA NA NA NA NA NA NA NA 

BMI (kg/m²) 484 26.42 3.48 26.01 18.36 41.77 1.00 -0.04 NA NA NA NA NA NA NA NA 

Weight (kg) 485 82.50 12.26 82.00 47.00 135.00 0.86 0.47 NA NA NA NA NA NA NA NA 

CAPS1 controls Age (yrs) 506 66.36 7.50 65.90 44.90 79.80 -0.17 -0.25 NA NA NA NA NA NA NA NA 

Height (m) 491 1.77 0.07 1.76 1.58 2.01 0.04 1.00 NA NA NA NA NA NA NA NA 

BMI (kg/m²) 483 26.49 3.58 26.25 16.60 58.36 1.00 0.04 NA NA NA NA NA NA NA NA 

Weight (kg) 485 82.75 13.10 82.00 53.00 187.00 0.88 0.51 NA NA NA NA NA NA NA NA 

CAPS2 cases Age (yrs) 1483 66.13 7.07 65.40 44.90 82.20 -0.09 -0.24 NA NA NA NA NA NA NA NA 

Height (m) 1483 1.77 0.06 1.77 1.54 2.00 0.02 1.00 NA NA NA NA NA NA NA NA 

BMI (kg/m²) 1423 26.34 3.37 25.95 15.74 55.24 1.00 0.02 NA NA NA NA NA NA NA NA 

Weight (kg) 1424 82.53 12.24 82.00 47.00 185.00 0.88 0.49 NA NA NA NA NA NA NA NA 

CAPS2 controls Age (yrs) 519 67.24 7.35 66.90 49.10 80.10 -0.05 -0.09 NA NA NA NA NA NA NA NA 

Height (m) 519 1.76 0.06 1.76 1.59 1.98 -0.07 1.00 NA NA NA NA NA NA NA NA 

BMI (kg/m²) 500 26.03 3.32 25.75 17.56 45.20 1.00 -0.07 NA NA NA NA NA NA NA NA 

Weight (kg) 504 80.80 11.38 80.00 55.00 140.00 0.88 0.42 NA NA NA NA NA NA NA NA 

CAD-WTCCC Age (yrs) 1491 59.96 7.98 61.00 35.00 82.00 -0.16 -0.10 388 60.28 8.47 61.00 36.00 81.00 -0.09 -0.12 

Height (m) 1491 1.74 0.07 1.74 1.40 1.98 -0.08 1.00 388 1.60 0.07 1.59 1.42 1.78 -0.09 1.00 

BMI (kg/m²) 1489 27.55 3.91 27.13 16.53 53.40 1.00 -0.08 387 27.84 5.23 27.18 12.81 51.73 1.00 -0.09 

Weight (kg) 1489 83.25 13.07 82.50 37.70 173.00 0.86 0.44 387 71.04 14.13 69.20 29.20 149.50 0.91 0.33 

CHS Age (yrs) 1281 73.00 5.66 72.00 65.00 95.00 -0.15 -0.22 1957 71.90 5.15 71.00 65.00 98.00 -0.14 -0.23 

Height (m) 1277 1.73 0.07 1.73 1.51 1.93 -0.04 1.00 1955 1.59 0.06 1.59 1.24 1.78 -0.04 1.00 

BMI (kg/m²) 1276 26.40 3.50 26.10 18.60 44.20 1.00 -0.04 1952 26.40 4.78 25.80 18.50 48.30 1.00 -0.05 

Weight (kg) 1276 79.70 11.90 79.00 50.00 145.00 0.86 0.46 1952 67.10 12.90 65.50 37.30 133.20 0.91 0.04 

CoLaus Age (yrs) 2547 52.92 10.77 52.20 34.90 75.10 0.18 -0.19 2862 53.88 10.72 53.70 35.00 75.40 0.16 -0.20 

Height (m) 2547 1.75 0.07 1.75 1.33 1.98 -0.15 1.00 2862 1.63 0.07 1.63 1.31 1.85 -0.21 1.00 

BMI (kg/m²) 2547 26.64 4.19 26.20 11.70 81.10 1.00 -0.15 2861 25.15 4.91 24.20 8.10 59.20 1.00 -0.21 

Weight (kg) 2547 81.54 13.41 79.90 36.50 175.40 0.85 0.38 2861 66.43 12.98 64.00 21.40 171.00 0.91 0.22 

deCODE Age (yrs) 9213 64.74 15.93 78.00 18.00 103.00 -0.15 -0.31 17586 57.94 18.46 43.00 11.50 108.00 0.08 -0.34 

Height (m) 9213 1.78 0.07 1.80 1.30 2.07 0.02 1.00 17586 1.65 0.06 1.69 1.34 1.99 -0.07 1.00 

BMI (kg/m²) 9213 27.71 4.70 45.99 14.52 72.14 1.00 0.02 17586 26.83 5.49 18.56 13.67 73.51 1.00 -0.07 
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Weight (kg) 9213 87.89 16.57 149.00 40.00 216.00 0.88 0.44 17586 73.49 15.77 53.00 33.00 220.00 0.92 0.30 

DGI cases Age (yrs) 687 63.22 10.32 64.28 31.36 91.04 -0.19 -0.24 630 65.43 10.45 66.46 31.12 93.09 -0.26 -0.21 

Height (m) 687 1.74 0.06 1.74 1.43 2.00 -0.02 1.00 630 1.61 0.06 1.61 1.41 1.85 -0.08 1.00 

BMI (kg/m²) 687 28.15 3.87 27.97 18.05 46.71 1.00 -0.02 630 28.78 4.86 28.20 18.51 53.73 1.00 -0.08 

Weight (kg) 687 85.58 13.34 84.80 53.40 148.00 0.87 0.47 630 74.60 13.38 73.50 43.80 141.00 0.90 0.35 

DGI controls Age (yrs) 553 58.11 10.34 58.28 31.71 84.78 -0.01 -0.03 537 59.11 10.27 59.60 33.74 89.94 -0.02 -0.27 

Height (m) 553 1.76 0.06 1.76 1.57 2.00 -0.03 1.00 537 1.63 0.06 1.63 1.42 1.87 -0.10 1.00 

BMI (kg/m²) 553 26.62 3.20 26.37 16.95 43.89 1.00 -0.03 537 26.72 4.16 26.20 17.67 45.37 1.00 -0.10 

Weight (kg) 553 82.21 11.39 80.30 50.80 143.00 0.86 0.49 537 70.52 11.69 69.50 43.00 124.00 0.89 0.35 

EGCUT Age (yrs) 697 40.62 16.78 38.00 18.00 90.00 0.41 -0.39 720 42.88 15.93 42.00 18.00 92.00 0.35 -0.26 

Height (m) 697 1.79 0.07 1.79 1.58 2.03 -0.15 1.00 720 1.65 0.06 1.65 1.45 1.84 -0.14 1.00 

BMI (kg/m²) 697 26.05 4.61 25.39 15.82 54.00 1.00 -0.15 720 26.25 6.02 25.08 15.90 58.40 1.00 -0.14 

Weight (kg) 697 83.32 15.27 82.00 49.00 191.00 0.90 0.30 720 71.41 16.36 68.00 39.00 160.00 0.94 0.20 

EPIC-Obesity 
Study 

Age (yrs) 1621 59.8 9.0 60.0 39.0 77.0 0.03 -0.25 1931 58.8 8.9 59.0 39.0 77.0 0.08 -0.26 

Height (m) 1621 1.74 0.07 1.74 1.49 1.97 -0.05 1.00 1931 1.61 0.06 1.61 1.25 1.83 -0.13 1.00 

BMI (kg/m²) 1621 28.3 3.9 28.2 16.9 43.6 1.00 -0.05 1931 28.6 5.2 28.4 16.1 47.6 1.00 -0.13 

Weight (kg) 1621 85.5 13.3 85.0 42.8 137.6 0.87 0.45 1931 74.0 14.1 72.8 44.6 126.6 0.92 0.27 

ERF 
(EUROSPAN) 

Age (yrs) 890 50.14 14.98 50.67 18.00 88.60 0.14 -0.49 1170 49.30 15.34 49.52 18.03 92.10 0.27 -0.42 

Height (m) 890 1.75 0.07 1.75 1.52 1.96 -0.08 1.00 1170 1.61 0.07 1.62 1.41 1.83 -0.11 1.00 

BMI (kg/m²) 890 27.14 3.98 26.78 15.85 42.44 1.00 -0.08 1170 26.36 4.77 25.64 15.54 45.37 1.00 -0.11 

Weight (kg) 890 82.70 13.52 81.40 48.00 133.30 0.86 0.43 1170 68.96 13.14 67.00 42.10 133.90 0.90 0.32 

Fenland Age (yrs) 615 44.48 7.32 45.00 30.00 57.00 0.08 -0.09 787 45.34 7.18 46.00 30.00 57.00 0.09 -0.11 

Height (m) 615 1.77 0.07 1.77 1.59 2.01 -0.01 1.00 787 1.64 0.06 1.64 1.43 1.90 -0.07 1.00 

BMI (kg/m²) 615 27.62 4.07 27.27 18.62 56.66 1.00 -0.01 787 26.68 5.46 25.44 17.27 55.39 1.00 -0.07 

Weight (kg) 615 86.76 13.87 85.50 49.40 155.70 0.83 0.46 787 71.48 15.25 68.30 42.40 142.50 0.93 0.28 

FHS controls Age (yrs) 218 52.09 12.20 54.19 26.99 76.86 0.10 -0.18 216 58.25 8.57 59.10 27.33 81.09 -0.06 -0.11 

Height (m) 208 1.77 0.07 1.78 1.55 1.98 -0.07 1.00 207 1.62 0.06 1.63 1.46 1.81 0.04 1.00 

BMI (kg/m²) 208 27.74 3.59 27.10 19.56 42.51 1.00 -0.07 207 26.64 4.66 25.61 17.48 43.39 1.00 0.04 

Weight (kg) 208 87.22 13.09 84.80 57.61 131.09 0.83 0.50 207 70.34 13.59 67.59 43.09 122.05 0.93 0.41 

FHS cases Age (yrs) 220 54.20 11.87 55.75 26.38 74.14 0.02 -0.27 243 57.43 10.08 58.42 26.48 84.00 -0.04 -0.32 

Height (m) 208 1.77 0.07 1.77 1.58 1.96 -0.18 1.00 233 1.62 0.06 1.62 1.42 1.79 -0.02 1.00 

BMI (kg/m²) 208 28.51 4.68 28.15 15.96 45.72 1.00 -0.18 233 28.27 6.51 26.75 18.43 50.18 1.00 -0.02 

Weight (kg) 208 89.04 15.03 87.77 51.71 146.51 0.89 0.27 233 73.87 17.94 69.40 45.36 1.00 0.95 0.29 

FRAM Age (yrs) 3700 38.72 8.73 38.00 21.00 72.00 0.16 -0.05 4389 38.23 8.63 38.00 21.00 70.00 0.27 -0.08 

Height (m) 3700 1.77 0.07 1.77 1.52 2.00 -0.04 1.00 4389 1.63 0.06 1.63 1.40 1.85 -0.07 1.00 
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BMI (kg/m²) 3700 27.07 4.18 26.61 16.91 56.54 1.00 -0.04 4384 24.88 5.25 23.57 14.96 60.58 1.00 -0.07 

Weight (kg) 3700 84.43 14.43 82.56 44.00 177.36 0.86 0.44 4384 65.84 14.64 62.60 38.10 170.10 0.89 0.35 

FTC Age (yrs) NA NA NA NA NA NA NA NA 126 63.49 12.08 66.28 26.52 75.94 0.27 -0.22 

Height (m) NA NA NA NA NA NA NA NA 125 1.61 0.06 1.61 1.47 1.78 -0.18 1.00 

BMI (kg/m²) NA NA NA NA NA NA NA NA 125 25.07 3.41 24.65 18.69 35.04 1.00 -0.18 

Weight (kg) NA NA NA NA NA NA NA NA 126 65.53 9.68 64.25 46.50 100.50 0.86 0.30 

FUSION controls Age (yrs) 572 63.41 7.62 64.00 46.00 90.91 -0.05 -0.24 599 63.71 7.27 64.75 42.60 89.15 0.05 -0.29 

Height (m) 569 1.74 0.06 1.74 1.56 1.91 -0.05 1.00 598 1.60 0.06 1.60 1.44 1.79 -0.12 1.00 

BMI (kg/m²) 572 27.02 3.53 26.78 19.22 51.07 1.00 -0.05 599 27.24 4.15 26.80 17.50 45.90 1.00 -0.12 

Weight (kg) 572 81.40 11.98 80.65 52.10 151.10 0.84 0.46 599 69.99 11.44 68.80 45.70 127.10 0.88 0.33 

FUSION cases Age (yrs) 623 62.06 7.33 62.41 40.77 77.81 -0.21 -0.18 469 63.66 7.75 64.01 45.00 83.19 -0.21 -0.22 

Height (m) 617 1.73 0.06 1.73 1.52 1.97 0.00 1.00 465 1.60 0.06 1.59 1.40 1.76 0.02 1.00 

BMI (kg/m²) 623 29.44 4.02 29.14 18.19 43.14 1.00 0.00 469 31.20 5.25 30.71 16.00 47.59 1.00 0.02 

Weight (kg) 623 88.43 13.58 88.00 50.90 144.00 0.89 0.42 469 79.51 14.70 76.90 35.00 125.50 0.91 0.39 

GENMETS 
controls 

Age (yrs) 401 48.91 10.15 49.00 30.00 74.00 0.03 -0.27 422 48.60 10.18 49.00 30.00 74.00 0.04 -0.26 

Height (m) 401 1.75 0.07 1.75 1.55 1.80 -0.16 1.00 422 1.75 0.07 1.75 1.55 1.96 -0.16 1.00 

BMI (kg/m²) 401 25.41 3.08 24.94 17.09 39.04 1.00 -0.16 422 25.34 3.15 24.92 17.09 39.04 1.00 -0.16 

Weight (kg) 401 78.03 10.33 77.00 54.00 116.00 0.82 0.43 422 77.62 10.60 77.00 51.00 113.00 0.81 0.45 

GENMETS 
cases 

Age (yrs) 410 49.11 10.55 49.00 30.00 75.00 -0.07 -0.24 414 52.25 11.62 51.00 30.00 75.00 -0.07 -0.27 

Height (m) 410 1.76 0.07 1.76 1.58 1.97 -0.13 1.00 414 1.61 0.07 1.61 1.35 1.82 -0.13 1.00 

BMI (kg/m²) 410 29.45 3.62 28.84 23.19 47.07 1.00 -0.13 414 29.62 4.88 28.68 20.58 45.78 1.00 -0.13 

Weight (kg) 410 91.16 12.56 89.00 65.00 151.00 0.81 0.47 414 76.60 13.40 75.00 49.00 123.00 0.87 0.36 

GerMiFSI Age (yrs) 394 57.27 8.57 59.00 32.00 82.00 -0.08 -0.17 206 60.39 8.67 61.00 36.00 82.00 0.04 -0.02 

Height (m) 394 1.75 0.06 1.75 1.59 1.97 -0.05 1.00 206 1.63 0.06 1.63 1.44 1.79 0.00 1.00 

BMI (kg/m²) 394 27.36 3.30 26.83 18.42 46.24 1.00 -0.05 206 27.17 4.17 26.91 19.05 40.75 1.00 0.00 

Weight (kg) 394 83.92 11.67 83.00 60.00 140.00 0.86 0.46 206 72.29 12.24 71.00 48.00 115.00 0.90 0.42 

GerMiFSII Age (yrs) 901 60.14 12.17 59.00 29.00 88.00 -0.01 -0.01 223 62.80 12.76 61.00 34.00 90.00 -0.17 0.17 

Height (m) 901 1.74 0.07 1.74 1.52 2.00 0.02 1.00 223 1.62 0.06 1.61 1.50 1.79 -0.20 1.00 

BMI (kg/m²) 901 27.82 3.54 27.41 18.44 54.08 1.00 -0.02 223 28.06 4.76 27.69 16.90 46.30 1.00 -0.20 

Weight (kg) 901 83.00 12.49 83.00 50.20 160.00 0.85 0.50 223 73.55 12.62 72.10 47.00 130.00 0.90 0.23 

KORA S3 Age (yrs) 813 52.96 10.09 54.00 25.00 69.00 0.22 -0.33 831 52.09 10.08 53.00 25.00 69.00 0.33 -0.32 

Height (m) 813 1.74 0.07 1.74 1.51 1.96 -0.14 1.00 830 1.61 0.06 1.61 1.44 1.80 -0.25 1.00 

BMI (kg/m²) 813 27.69 3.45 27.29 18.73 40.67 1.00 -0.14 829 26.98 4.64 26.40 16.71 45.43 1.00 -0.25 

Weight (kg) 813 83.58 11.46 83.30 59.00 132.50 0.79 0.44 829 69.87 11.88 68.30 42.50 121.80 0.88 0.19 

KORA S4 Age (yrs) 884 54.22 8.92 54.00 28.00 72.00 0.13 -0.31 930 53.62 8.80 53.00 25.00 74.00 0.32 -0.27 
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Height (m) 883 1.74 0.07 1.74 1.56 1.95 -0.13 1.00 928 1.61 0.06 1.61 1.44 1.83 -0.18 1.00 

BMI (kg/m²) 883 27.99 3.91 27.59 18.31 55.11 1.00 -0.13 928 27.49 5.07 26.78 18.21 51.22 1.00 -0.18 

Weight (kg) 883 85.13 12.93 84.00 54.20 192.70 0.83 0.40 929 71.46 13.30 69.60 43.90 142.00 0.90 0.23 

MICROS Age (yrs) 475 45.09 15.67 41.97 18.19 87.85 0.28 -0.45 622 45.38 16.41 42.55 18.00 83.88 0.40 -0.52 

Height (m) 467 1.73 0.07 1.73 1.53 1.95 -0.07 1.00 612 1.61 0.07 1.61 1.40 1.79 -0.28 1.00 

BMI (kg/m²) 475 26.07 3.96 25.62 18.13 42.75 1.00 -0.07 622 25.28 5.32 24.27 14.03 71.26 1.00 -0.28 

Weight (kg) 468 78.38 13.32 76.90 47.00 127.50 0.86 0.43 612 65.16 13.19 63.00 36.60 169.00 0.91 0.13 

MIGEN Age (yrs) 1622 45.40 6.97 45.70 19.40 92.00 0.03 -0.08 1030 49.39 7.40 51.00 18.71 61.00 0.09 -0.14 

Height (m) 1622 1.76 0.08 1.75 1.53 2.08 0.02 1.00 1030 163.10 0.08 1.63 1.10 1.96 -0.06 1.00 

BMI (kg/m²) 1622 27.93 4.57 27.40 17.49 54.30 1.00 0.02 1030 27.96 7.03 26.35 14.78 78.41 1.00 -0.06 

Weight (kg) 1622 86.57 16.30 84.00 52.00 181.60 0.88 0.47 1030 74.42 19.71 70.00 43.09 205.02 0.94 0.27 

NBS-WTCCC Age (yrs) 696 45.41 11.77 47.00 17.00 69.00 0.06 -0.15 745 41.44 12.58 42.00 17.00 69.00 0.15 -0.19 

Height (m) 696 1.78 0.07 1.78 1.50 2.00 -0.07 1.00 745 1.65 0.07 1.65 1.48 1.83 -0.20 1.00 

BMI (kg/m²) 694 26.76 4.12 26.30 18.13 53.19 1.00 -0.07 743 25.75 4.46 24.86 18.08 47.22 1.00 -0.20 

Weight (kg) 694 85.03 14.35 82.73 54.09 173.00 0.88 0.41 743 69.74 12.21 66.82 50.00 127.27 0.89 0.25 

NFBC1966 Age (yrs) 2250 31.00 0.00 31.00 31.00 31.00 NA NA 2249 31.00 0.00 31.00 31.00 31.00 NA NA 

Height (m) 2250 1.78 0.06 1.78 1.52 2.03 -0.04 1.00 2249 1.65 0.06 1.65 1.05 1.87 -0.10 1.00 

BMI (kg/m²) 2250 25.18 3.62 24.86 15.32 47.58 1.00 -0.04 2247 24.16 4.68 23.13 15.43 54.35 1.00 -0.10 

Weight (kg) 2250 80.15 12.72 78.70 49.40 150.40 0.89 0.42 2247 65.52 13.24 63.00 29.20 165.40 0.92 0.28 

NHS Age (yrs) NA NA NA NA NA NA NA NA 2265 54.32 6.67 55.00 21.00 66.00 0.05 -0.02 

Height (m) NA NA NA NA NA NA NA NA 2265 1.64 0.06 1.63 1.45 1.98 -0.10 1.00 

BMI (kg/m²) NA NA NA NA NA NA NA NA 2265 25.13 4.53 24.13 16.40 53.14 1.00 -0.10 

Weight (kg) NA NA NA NA NA NA NA NA 2265 149.16 27.78 144.00 84.00 310.00 0.92 0.29 

NSPHS Age (yrs) 309 47.56 20.83 48.00 15.00 87.00 0.31 -0.32 347 46.47 20.60 45.00 14.00 91.00 0.49 -0.40 

Height (m) 308 1.71 0.07 1.72 1.48 1.89 -0.04 1.00 344 1.58 0.07 1.59 1.40 1.75 -0.16 1.00 

BMI (kg/m²) 307 26.75 4.54 26.23 17.78 46.49 1.00 -0.04 340 25.97 5.07 24.98 16.44 46.68 1.00 -0.16 

Weight (kg) 307 78.42 14.66 77.00 51.00 138.00 0.88 0.42 342 64.99 13.11 63.00 38.00 121.00 0.89 0.29 

NTRNESDA Age (yrs) 1211 46.08 13.43 48.00 18.00 81.00 0.26 -0.29 2311 42.64 13.23 42.00 18.00 78.00 0.23 -0.23 

Height (m) 1211 1.82 0.07 1.82 1.59 2.07 -0.14 1.00 2311 1.69 0.06 1.69 1.50 1.96 -0.15 1.00 

BMI (kg/m²) 1210 26.05 3.92 25.62 15.95 50.21 1.00 -0.14 2306 25.15 4.82 24.19 14.61 53.27 1.00 -0.15 

Weight (kg) 1210 85.89 13.80 84.15 50.10 170.00 0.87 0.36 2306 71.83 14.06 69.20 44.00 167.00 0.92 0.24 

ORCADES Age (yrs) 332 54.27 15.73 54.66 17.29 93.75 0.29 -0.38 384 53.01 15.68 54.27 17.71 97.62 0.25 -0.38 

Height (m) 324 1.75 0.07 1.75 1.59 1.99 -0.22 1.00 371 1.61 0.06 1.61 1.38 1.78 -0.17 1.00 

BMI (kg/m²) 332 28.08 4.27 27.67 16.97 47.10 1.00 -0.22 384 27.48 5.18 26.60 18.47 47.63 1.00 -0.17 

Weight (kg) 324 85.76 13.21 84.25 44.40 148.40 0.87 0.28 371 71.06 13.69 69.10 45.60 123.10 0.92 0.22 
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PLCO Age (yrs) 2244 64.2 5.1 64.0 55.0 74.0 -0.11 -0.11 NA NA NA NA NA NA NA NA 

Height (m) 2244 1.78 0.07 1.78 1.55 2.03 -0.04 1.00 NA NA NA NA NA NA NA NA 

BMI (kg/m²) 2236 27.5 3.8 27.1 13.3 48.2 1.00 -0.04 NA NA NA NA NA NA NA NA 

Weight (kg) 2236 87.4 13.6 86.2 38.6 176.9 0.88 0.44 NA NA NA NA NA NA NA NA 

PROCARDIS Age (yrs) 1700 59.29 7.08 60.00 34.00 82.00 -0.07 -0.14 612 61.21 6.72 62.00 33.00 81.00 0.03 -0.21 

Height (m) 1700 1.75 0.07 1.75 1.51 2.06 -0.10 1.00 612 1.63 0.07 1.64 1.44 1.85 -0.22 1.00 

BMI (kg/m²) 1700 27.60 3.80 27.14 18.34 48.23 1.00 -0.10 612 26.71 5.00 25.94 15.43 51.37 1.00 -0.22 

Weight (kg) 1700 84.51 12.91 83.50 51.00 159.00 0.84 0.44 612 71.21 13.30 69.00 42.00 145.00 0.89 0.23 

RS-I Age (yrs) 2427 68.13 8.16 67.05 55.01 97.81 -0.08 -0.31 3547 70.32 9.60 69.40 55.00 99.22 0.05 -0.38 

Height (m) 2372 1.75 0.07 1.75 1.51 1.98 -0.05 1.00 3375 1.61 0.07 1.62 1.01 1.92 -0.15 1.00 

BMI (kg/m²) 2372 25.68 2.99 25.61 14.19 38.19 1.00 -0.05 3372 26.74 4.10 26.31 15.43 59.50 1.00 -0.15 

Weight (kg) 2375 78.58 10.74 77.80 41.00 122.30 0.82 0.53 3383 69.59 11.29 68.70 40.10 146.50 0.85 0.37 

RUNMC Age (yrs) 1839 63.47 8.34 64.00 24.00 91.00 -0.02 -0.12 1132 55.41 11.14 64.00 25.00 91.00 0.17 -0.23 

Height (m) 1777 1.77 0.07 1.85 1.55 2.00 -0.10 1.00 1096 1.66 0.06 1.75 1.38 1.85 -0.15 1.00 

BMI (kg/m²) 1777 25.98 3.66 21.90 16.10 61.30 1.00 -0.10 1096 25.44 4.26 24.50 17.30 52.70 1.00 -0.15 

Weight (kg) 1777 81.49 12.33 75.00 46.00 185.00 0.87 0.40 1096 70.30 12.16 75.00 46.00 150.00 0.90 0.29 

SardiNIA Age (yrs) 1886 44.08 18.10 42.90 14.00 93.90 0.51 -0.46 2419 43.19 17.30 42.10 14.00 101.30 0.55 -0.50 

Height (m) 1883 1.66 0.07 1.66 1.44 1.96 -0.22 1.00 2415 1.55 0.06 1.55 1.31 1.78 -0.31 1.00 

BMI (kg/m²) 1885 26.15 4.11 25.90 14.90 42.90 1.00 -0.22 2416 24.75 5.03 23.80 13.90 53.30 1.00 -0.31 

Weight (kg) 1883 72.27 11.71 72.00 34.00 135.00 0.84 0.33 2415 59.17 11.40 57.00 32.00 145.00 0.90 0.11 

SASBAC cases Age (yrs) NA NA NA NA NA NA NA NA 795 62.64 6.26 63.00 50.00 75.00 0.11 -0.08 

Height (m) NA NA NA NA NA NA NA NA 794 1.64 0.06 1.65 1.47 1.82 -0.16 1.00 

BMI (kg/m²) NA NA NA NA NA NA NA NA 793 25.79 4.00 25.21 16.22 46.67 1.00 -0.16 

Weight (kg) NA NA NA NA NA NA NA NA 794 69.68 11.18 68.00 40.00 117.00 0.86 0.30 

SASBAC 
controls 

Age (yrs) NA NA NA NA NA NA NA NA 764 62.77 6.34 63.00 49.00 75.00 0.02 -0.05 

Height (m) NA NA NA NA NA NA NA NA 758 1.64 0.05 1.64 1.28 1.81 -0.06 1.00 

BMI (kg/m²) NA NA NA NA NA NA NA NA 755 25.52 4.10 25.22 16.94 59.52 1.00 -0.06 

Weight (kg) NA NA NA NA NA NA NA NA 760 68.67 11.69 67.00 42.00 168.00 0.89 0.33 

SEARCH 
/UKOPS 

Age (yrs) NA NA NA NA NA NA NA NA 1710 57.15 10.20 58.00 20.00 91.00 -0.09 -0.13 

Height (m) NA NA NA NA NA NA NA NA 1592 1.63 0.07 1.63 1.35 1.83 -0.14 1.00 

BMI (kg/m²) NA NA NA NA NA NA NA NA 1556 26.99 5.20 25.99 17.47 53.67 1.00 -0.14 

Weight (kg) NA NA NA NA NA NA NA NA 1581 71.32 13.99 69.00 44.00 135.17 0.91 0.27 

SHIP Age (yrs) 2019 50.88 16.43 52.00 20.00 80.00 0.25 -0.48 2073 48.58 16.02 48.00 20.00 81.00 0.41 -0.48 

Height (m) 2019 1.75 0.07 1.75 1.48 1.98 -0.12 1.00 2073 1.63 0.07 1.63 1.42 1.94 -0.26 1.00 

BMI (kg/m²) 2019 27.68 4.04 27.41 18.06 48.07 1.00 -0.12 2073 26.92 5.31 26.16 16.10 52.40 1.00 -0.26 
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Weight (kg) 2019 85.06 13.56 83.80 49.90 156.40 0.83 0.40 2073 71.20 13.74 69.20 41.30 133.30 0.89 0.16 

T2D-WTCCC Age (yrs) 1105 58.95 9.91 59.00 29.00 96.00 -0.31 -0.17 798 57.94 10.45 59.00 27.00 85.00 -0.30 -0.16 

Height (m) 1105 1.75 0.07 1.75 1.50 1.98 -0.02 1.00 798 1.61 0.07 1.61 1.37 1.83 0.01 1.00 

BMI (kg/m²) 1105 30.29 5.36 29.71 18.02 55.91 1.00 -0.02 798 32.56 6.87 31.52 17.91 62.37 1.00 0.01 

Weight (kg) 1105 93.37 17.86 91.17 47.63 161.94 0.91 0.40 798 85.04 19.29 82.56 43.00 155.70 0.93 0.37 

TwinsUK Age (yrs) NA NA NA NA NA NA NA NA 1479 46.19 12.31 47.55 16.62 76.54 0.15 -0.20 

Height (m) NA NA NA NA NA NA NA NA 1479 1.62 0.06 1.63 1.42 1.80 -0.12 1.00 

BMI (kg/m²) NA NA NA NA NA NA NA NA 1477 25.02 4.80 24.06 13.22 52.71 1.00 -0.12 

Weight (kg) NA NA NA NA NA NA NA NA 1477 66.03 12.97 64.00 35.10 140.90 0.92 0.27 

VIS Age (yrs) 328 55.95 14.94 57.00 18.00 88.00 0.23 -0.40 467 56.97 15.64 57.00 18.00 93.00 0.30 -0.45 

Height (m) 325 1.76 0.07 1.76 1.58 2.04 -0.10 1.00 459 1.62 0.07 1.62 1.43 1.91 -0.20 1.00 

BMI (kg/m²) 328 27.55 3.69 27.49 18.36 40.69 1.00 -0.10 467 27.18 4.50 27.08 17.01 52.02 1.00 -0.20 

Weight (kg) 325 85.56 13.01 84.80 50.90 136.50 0.83 0.47 445 70.99 12.45 69.80 46.60 153.00 0.89 0.26 

Stage 2 (in-silico replication studies) 

BHS Age (yrs) 558 53.47 17.15 53.65 17.60 91.40 0.15 -0.38 770 53.71 17.07 53.05 17.30 90.50 0.11 -0.43 

Height (m) 558 1.75 0.07 1.75 1.53 1.99 -0.09 1.00 770 1.62 0.06 1.62 1.35 1.90 -0.15 1.00 

BMI (kg/m²) 558 26.62 3.57 26.25 15.77 40.12 1.00 -0.09 769 25.49 4.42 24.66 16.82 40.77 1.00 -0.15 

Weight (kg) 558 81.80 12.31 80.25 46.40 127.00 0.83 0.47 769 67.06 12.02 65.00 34.80 109.00 0.90 0.29 

Corogene Age (yrs) 2266 59.66 12.83 61.00 25.00 92.00 -0.03 -0.26 1490 62.61 13.47 65.00 25.00 94.00 0.09 -0.30 

Height (m) 2267 1.76 0.07 1.76 1.34 2.03 -0.04 1.00 1491 1.62 0.07 1.62 1.05 1.85 -0.14 1.00 

BMI (kg/m²) 2265 27.39 4.23 26.79 15.95 54.88 1.00 -0.04 1491 26.87 5.21 26.07 13.63 57.68 1.00 -0.14 

Weight (kg) 2265 85.00 14.42 83.50 44.00 170.00 0.89 0.41 1491 70.14 13.88 68.30 36.00 144.00 0.90 0.28 

EGCUT Age (yrs) 135 40.93 17.81 36.50 18.00 80.00 0.33 -0.55 210 41.03 16.46 39.00 18.00 87.00 0.41 -0.37 

Height (m) 135 1.79 0.07 1.80 1.58 2.04 -0.14 1.00 210 1.66 0.07 1.66 1.44 1.84 -0.25 1.00 

BMI (kg/m²) 135 26.03 4.95 25.11 17.30 43.65 1.00 -0.14 210 25.63 6.09 24.02 17.00 48.24 1.00 -0.25 

Weight (kg) 135 83.68 16.41 80.50 50.00 143.00 0.91 0.27 210 70.46 16.22 66.50 40.00 136.00 0.93 0.10 

FHS Age (yrs) 662 48.20 13.70 46.30 25.60 85.70 0.15 -0.24 880 47.50 13.00 45.00 25.70 85.80 0.19 -0.26 

Height (m) 632 1.77 0.07 1.77 1.57 2.03 -0.09 1.00 831 1.63 0.06 1.63 1.41 1.96 -0.12 1.00 

BMI (kg/m²) 632 27.80 4.30 27.20 18.40 46.20 1.00 -0.09 831 27.10 6.10 26.10 16.50 55.00 1.00 -0.12 

Weight (kg) 632 87.10 14.60 85.30 55.30 140.60 0.88 0.39 831 72.30 16.60 68.90 41.70 144.20 0.94 0.22 

FINGESTURE 
cases 

Age (yrs) 745 61.19 10.58 62.00 34.00 85.00 -0.13 -0.33 198 67.44 10.33 68.00 31.00 85.00 -0.05 -0.28 

Height (m) 745 1.74 0.07 1.74 1.55 1.97 0.10 1.00 198 1.60 0.06 1.60 1.46 1.76 -0.02 1.00 

BMI (kg/m²) 739 27.22 3.93 27.02 16.20 44.80 1.00 0.10 196 28.14 5.17 27.98 16.67 46.09 1.00 -0.02 

Weight (kg) 743 82.32 14.09 81.00 42.00 150.00 0.89 0.53 197 71.91 14.06 71.60 37.50 112.00 0.92 0.38 
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GOOD Age (yrs) 938 18.90 0.60 18.80 18.00 20.10 0.03 0.01 NA NA NA NA NA NA NA NA 

Height (m) 938 1.82 0.07 1.82 1.61 2.03 -0.05 1.00 NA NA NA NA NA NA NA NA 

BMI (kg/m²) 938 22.40 3.20 21.90 16.10 41.60 1.00 -0.05 NA NA NA NA NA NA NA NA 

Weight (kg) 938 73.90 11.60 72.00 51.30 127.00 0.88 0.42 NA NA NA NA NA NA NA NA 

HBCS Age (yrs) 737 61.41 2.75 60.80 57.00 69.30 -0.03 -0.15 991 61.55 3.05 60.90 56.70 69.80 -0.10 0.03 

Height (m) 736 1.77 0.06 1.77 1.59 1.97 -0.03 1.00 990 1.63 0.06 1.63 1.46 1.83 -0.09 1.00 

BMI (kg/m²) 736 27.56 4.30 27.01 18.75 68.39 1.00 -0.03 990 27.75 5.06 26.98 14.79 50.10 1.00 -0.09 

Weight (kg) 737 86.33 14.51 84.50 56.20 213.30 0.92 0.36 990 73.90 13.89 71.70 37.30 133.80 0.93 0.28 

HYPERGENES - 
controls 

Age (yrs) 1072 62.27 10.71 59.81 28.00 98.00 -0.09 -0.12 766 64.30 11.28 61.00 44.93 113.00 -0.15 -0.14 

Height (m) 1072 1.71 0.07 1.70 1.50 1.96 -0.14 1.00 766 1.60 0.06 1.60 1.40 1.81 -0.16 1.00 

BMI (kg/m²) 1072 25.95 3.27 25.59 10.15 40.77 1.00 -0.14 766 24.98 3.73 24.60 16.53 41.35 1.00 -0.16 

Weight (kg) 1072 76.10 10.59 75.00 29.00 118.00 0.81 0.46 766 64.25 10.13 63.00 41.00 110.00 0.87 0.34 

HYPERGENES - 
cases 

Age (yrs) 1189 49.41 10.42 50.00 17.63 84.00 0.04 -0.33 598 48.45 9.57 49.00 18.38 93.00 0.10 -0.19 

Height (m) 1189 1.72 0.07 1.72 1.48 1.96 -0.08 1.00 598 1.60 0.07 1.60 1.40 1.97 -0.10 1.00 

BMI (kg/m²) 1189 27.42 3.52 27.13 16.00 47.43 1.00 -0.08 598 26.88 4.96 26.21 17.45 52.35 1.00 -0.10 

Weight (kg) 1189 81.33 12.06 80.00 49.00 139.50 0.82 0.51 598 68.59 13.66 67.00 44.00 164.00 0.89 0.36 

MGS Age (yrs) 1247 52.67 16.01 52.00 18.00 90.00 0.02 -0.13 1350 48.48 16.29 48.00 18.00 90.00 0.03 -0.20 

Height (m) 1247 1.79 0.07 1.78 1.58 2.06 0.04 1.00 1350 1.64 0.07 1.65 1.35 2.01 -0.04 1.00 

BMI (kg/m²) 1247 30.85 6.45 29.84 15.83 72.56 1.00 0.04 1350 31.92 8.55 30.32 16.34 69.09 1.00 -0.04 

Weight (kg) 1247 98.77 22.67 95.25 53.98 249.48 0.93 0.38 1350 86.13 24.22 81.65 47.63 201.85 0.95 0.26 

NHS Age (yrs) NA NA NA NA NA NA NA NA 3217 53.22 6.96 54.00 22.00 65.00 -0.02 -0.07 

Height (m) NA NA NA NA NA NA NA NA 3217 1.64 0.08 1.63 1.35 1.83 -0.04 1.00 

BMI (kg/m²) NA NA NA NA NA NA NA NA 2988 27.13 5.63 26.00 17.01 54.87 1.00 -0.04 

Weight (kg) NA NA NA NA NA NA NA NA 2988 160.87 35.21 155.00 90.00 340.00 0.94 0.30 

RS-II Age (yrs) 973 64.48 7.59 61.89 55.14 93.95 -0.13 -0.22 1156 65.04 8.33 62.03 55.12 95.33 -0.03 -0.31 

Height (m) 971 1.76 0.06 1.76 1.57 2.03 -0.10 1.00 1153 1.63 0.06 1.63 1.42 1.90 -0.06 1.00 

BMI (kg/m²) 971 26.92 3.36 26.72 16.78 40.52 1.00 -0.10 1151 27.52 4.45 26.89 16.66 50.12 1.00 -0.06 

Weight (kg) 972 83.32 11.58 82.20 54.00 126.80 0.85 0.44 1151 72.77 12.74 71.10 36.20 150.00 0.90 0.38 

RS-III Age (yrs) 879 55.94 5.43 56.12 45.46 84.15 0.09 -0.24 1130 56.20 6.03 56.42 45.75 97.22 0.07 -0.23 

Height (m) 879 1.79 0.07 1.79 1.61 2.00 -0.07 1.00 1130 1.65 0.06 1.65 1.47 1.85 -0.10 1.00 

BMI (kg/m²) 879 28.03 4.07 27.31 18.42 46.68 1.00 -0.07 1130 27.48 5.06 26.55 14.02 56.87 1.00 -0.10 

Weight (kg) 879 89.75 14.32 87.70 58.30 153.50 0.88 0.41 1130 74.89 14.28 72.80 35.00 158.60 0.92 0.29 

Sorbs Age (yrs) 371 48.10 16.70 48.10 18.10 82.10 0.39 -0.43 536 48.00 15.90 48.60 18.00 88.40 0.49 -0.54 

Height (m) 371 1.77 0.07 1.77 1.58 1.95 -0.24 1.00 536 1.64 0.07 1.64 1.44 1.82 -0.32 1.00 

BMI (kg/m²) 371 27.20 4.00 26.80 19.00 43.90 1.00 -0.24 536 26.90 5.50 26.20 15.40 47.40 1.00 -0.32 
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Weight (kg) 371 85.40 12.70 84.00 58.00 139.00 0.85 0.30 536 72.10 14.00 70.00 43.00 126.00 0.92 0.07 

WGHS Age (yrs) NA NA NA NA NA NA NA NA 23294 54.70 7.12 52.90 38.71 89.89 -0.02 -0.07 

Height (m) NA NA NA NA NA NA NA NA 23099 1.64 0.06 1.65 1.30 2.01 -0.06 1.00 

BMI (kg/m²) NA NA NA NA NA NA NA NA 22888 25.91 4.96 24.89 14.23 59.58 1.00 -0.06 

Weight (kg) NA NA NA NA NA NA NA NA 23046 70.00 14.18 68.04 38.56 175.09 0.92 0.32 

YFS Age (yrs) 1123 37.55 5.06 39.00 30.00 45.00 0.13 -0.12 1320 37.57 5.01 39.00 30.00 45.00 0.11 -0.06 

Height (m) 911 1.80 0.07 1.80 1.57 2.03 0.04 1.00 1084 1.66 0.06 1.66 1.45 1.89 -0.06 1.00 

BMI (kg/m²) 908 26.76 4.29 26.11 17.54 49.35 1.00 0.04 1081 25.32 5.03 24.34 16.56 58.82 1.00 -0.06 

Weight (kg) 908 86.56 15.65 85.00 54.00 166.00 0.91 0.45 1083 69.82 14.55 67.00 42.00 166.00 0.94 0.29 

Polygene analysis study 

QIMR Age (yrs) 527 23.20 12.00 16.33 15.40 74.00 NA 0.15 948 29.86 14.95 26.00 15.70 84.00 NA -0.15 

Height (m) 527 1.77 0.07 1.77 1.58 1.99 NA 1.00 948 1.64 0.07 1.64 1.44 1.93 NA 1.00 
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typing 
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typing 
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Cohort Author 
Overseeing 

(PI) 
Geno-
typing 
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typing 
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Claes Ohlsson X X X X 
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Additional analyses cohorts 

Cohort Author 
Overseeing 

(PI) 
Geno-
typing 

Pheno-
typing 

Data 
analysis 

GCI height 
extremes 
(additional 
genotyping) 
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QIMR  
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Nick G Martin X X X   

Grant W Montgomery X X     

Dale R Nyholt X X   X 

Peter M Visscher   X   X 
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Abstract 

Objectives Genome-wide association studies have dramatically increased 

the number of common genetic variants that are robustly associated with type 2 

diabetes (T2D). A possible clinical use of this information is to identify individuals 

at high risk of developing the disease, so that preventative measures may be more 

effectively targeted. Here we assess the ability of 18 confirmed T2D variants to 

differentiate between T2D cases and controls. 

Research design and methods We assessed index SNPs for the 18 

independent loci in 2598 controls and 2309 cases from the GoDARTS study. The 

discriminatory ability of the combined SNP information was assessed by grouping 

individuals based on number of risk alleles carried and determining relative odds 

of T2D, and by calculating the area-under the receiver-operator characteristic 

curve (AUC). 

Results Individuals carrying more risk alleles had higher risk of T2D. For 

example, 1.2% of individuals with 25-28 risk alleles had an odds ratio of 4.2 (95% 

CI: 2.11, 8.56) against the 1.8% with 10-12 risk alleles. The AUC (a measure of 

discriminative accuracy) for these variants was 0.60. The AUC for age, BMI and 

sex was 0.78, and adding the genetic risk variants only marginally increased this 

to 0.80.  

Conclusions Currently, common risk variants for T2D do not provide strong 

predictive value at a population level. However, the joint effect of risk variants 

identified sub-groups of the population at substantially different risk of disease. 

Further studies are needed to assess whether individuals with extreme numbers of 

risk alleles may benefit from genetic testing.
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Introduction 

Recent genome-wide association (GWA) studies, which assay >300,000 

single nucleotide polymorphisms (SNPs) across many thousands of individuals, 

have led to the discoveries of variants predisposing to many common complex 

diseases, including: type 2 diabetes 1-6, coronary artery disease 7-9, prostate 

cancer 10, 11, Crohn‟s disease 12-14 and many others (see 

http://www.genome.gov/26525384 for an up to date list of all GWA studies). The 

variants identified by these GWA studies are common in the general population 

(minor allele frequency [MAF] > 1%), but most have, individually, only small effects 

on disease risk, with odds ratios (ORs) typically <1.3.  

Despite the relatively small predisposing effects conferred, these variants 

provide important, novel, insights into disease biology. For example, variants of a 

number of genes, such as HHEX, CDKN2A/B and CDKAL1 implicate defects in 

pancreatic beta-cell development and function as important in type 2 diabetes 

etiology 4, 15, 16, whereas the discovery that variants in FTO are associated with 

BMI, opened up novel areas of investigation for obesity biology 17-19. By gaining 

further knowledge of the underlying biology, and promoting potential therapeutic 

and preventative approaches, these insights are likely to be the most important 

outcome from these GWA studies.  

A more immediate clinical utility may be to use the identified risk variants to 

aid the determination of an individual‟s risk of developing a particular disease. 

Several companies such as deCODE genetics and 23andme have begun to use 

SNPs identified from these GWA studies, offering up to 1 million SNP GWA scans 

(http://www.decodeme.com, https://www.23andme.com) or individual disease-

associated SNP tests (http://www.decodediagnostics.com). It is, however, unclear 

how useful the currently identified variants will be in predicting disease. 

One of the disease traits for which the GWA approach has been most 

successful is type 2 diabetes. Together with candidate gene approaches, eighteen 

common variants, including FTO and two independent signals in the CDKN2A/B 
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region, have now been convincingly shown to associate with the disease 1-6, 20-26. 

In this study, we aimed to assess the combined discriminatory power of these 

common, modest effect variants, using over 4900 individuals from the GoDARTS 

(Genetics of Diabetes Audit and Research Tayside) study, which was also used as 

for replication of associated signals in the WTCCC-T2D GWA study5.
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Methods 

SNP selection and genotyping 

We only included variants that have been convincingly shown to associate 

with type 2 diabetes. We used variants reviewed in 27 and those described in 5 and 

6, except for: the E23K (rs5219; r2 with GWA-SNP rs5215 = 0.89) variant of 

KCNJ11 22 and rs7903146 (r2 with GWA-SNP rs7901695 = 0.80) of TCF7L2 23, 28 

where we genotyped a SNP shown to have stronger association with type 2 

diabetes, but which were not genotyped on the genome-wide association chips; 

the TCF2 locus where we used rs757210 26, instead of rs4430796 24 (r2 = 0.61); 

and the ADAM30/NOTCH2 locus where we used rs2641348 in ADAM30 as a 

proxy for rs2934381 (r2 = 0.92).  

Genotyping was performed by KBioscience (Herts., UK) who designed and 

used assays based on either their proprietary competitive allele-specific PCR 

(KASPar) method or a modified TaqMan-based assay, details of which are 

available on their website (www.kbioscience.co.uk/chemistry/index.htm). 

Genotyping quality control measures for the SNPs are described in 5, 6, 25.  

GoDARTS study and participants 

The GoDARTS study is a sub-study of the Diabetes Audit and Research 

Tayside (DARTS) study 29, which aims to identify all known diabetes patients in the 

Tayside region of Scotland using electronic database retrieval. The samples used 

in this study are a sub-sample of the type 2 diabetes patients identified and are 

described previously 6. Briefly, the GoDARTS study includes individuals of white 

European descent, living in the Tayside region when recruited. The diagnosis of 

diabetes in cases was based on either current treatment with diabetes-specific 

medication, or laboratory evidence of hyperglycaemia if treated with diet alone. 

Patients with confirmed diagnosis of monogenic diabetes and those treated with 

regular insulin therapy within 1 year of diagnosis were excluded. Cases in this 

study had an age at diagnosis between 35 and 70, inclusive. Controls had not 
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been diagnosed with diabetes at the time of recruitment or subsequently, and were 

excluded if there was evidence of hyperglycaemia during recruitment (fasting 

glucose >7.0 mmol/l, HbA1c >6.4%) or were > 80 years old. The study was 

approved by the Tayside Medical Ethics Committee. Informed consent was 

obtained from all study participants. Table 1 presents the clinical characteristics of 

subjects used in this study.  

Statistical analysis 

All statistical analyses were performed in StataSE v10.0 for Windows 

(StataCorp LP, Texas, USA). We used logistic regression for all individual SNP 

analyses. To test for deviation from a within-loci additive model, we performed 

likelihood ratio test of an additive model against a general 2df model. To test for 

gene-gene interaction across all pairs of loci, we used likelihood ratio tests to 

compare an additive model to a model with an interaction term. We combined 

information from multiple SNPs by using an allele count model, where we summed 

the number of risk alleles carried by each individual. This assumes that each of the 

alleles has an equal and additive effect on type 2 diabetes risk.  

We used logistic regression on the general model (i.e. individual SNP 

genotypes as indicator variables) to construct the ROC curves and calculate the 

AUCs. We also performed these ROC analyses on the allele count model for 

comparison to the general model.
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Results 

Genotyping data on all of the variants were available for 2309 type 2 

diabetes cases and 2598 controls. Characteristics of these participants are shown 

in Table 1. Supplementary Table 1 presents a comparison of clinical 

characteristics for these subjects against the 1739 who were not successfully 

genotyped across all SNPs. Individually, the variants have similar effect sizes in 

this study compared to those reported in other large studies (Table 2; 1-6, 20-26) and 

the range of odds ratios from 1.00 to 1.36 most likely reflects stochastic variation. 

Several variants are not associated at P<0.05 in the sample used here, but are still 

included in the analyses as they are confirmed type 2 diabetes risk variants, and 

the lack of significance is the result of relatively low power in this number of 

subjects.  

Based on these and larger datasets, all the variants appear to have an 

additive mode of inheritance 1-6, 20-26. The CDKAL1 locus was reported by 

Steinthorsdottir et al. to fit a recessive model 4, but other large studies do not 

support this. There is no evidence of interaction between any of the SNPs based 

on these data (Supplementary Table 2), or on the larger analyses previously 

published. Therefore, we assumed an additive genetic model. We found no 

evidence of any interaction between the individual variants and BMI or age (lowest 

interaction P values = 0.14 and 0.02, respectively). We performed the analysis 

with and without the FTO variant, the one variant shown to predispose to type 2 

diabetes through a primary effect on BMI 18. 

Comparing extremes 

The proportion of case subjects and control subjects grouped according to 

the number of risk alleles they carry is shown in Figure 1. The distribution of risk 

alleles follows a normal distribution in both cases and controls, with a shift towards 

a higher number of risk alleles in the case subjects. There is an increase in odds 

ratios for type 2 diabetes with the increasing number of risk alleles, against the 

baseline group of 1.8% of individuals carrying 10-12 risk alleles. 1.2% of 
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individuals with 25 or more risk alleles have an odds ratio of 4.2 (95% CI: 2.11, 

8.56) against the baseline reference group. Similarly, 11.5% of this study 

population carrying 22 or more risk alleles had an OR of 2.3 (95% CI: 1.73, 2.93) 

for type 2 diabetes compared to the 8.2% of individuals with <15 risk alleles.  

Figure 2 plots the odds ratios relative to the median number of 18 risk 

alleles. Those with 25 or more risk alleles were over twice as likely to have type 2 

diabetes (OR: 2.18, 95% CI: 1.24, 3.81) compared to those with the median 

number of risk alleles. The TCF7L2 variant had a stronger effect than the other 

variants (OR = 1.36, compared to 1.00-1.25 for the rest), so these results may be 

slight underestimates, since the additive model used for the allele counting 

assumes equal effects across all SNPs.  

We performed the same analyses for two sub-groups of the cohort, one 

including only obese individuals (with BMI of 30 kg/m2 or greater, n=1803), the 

other non-obese individuals (BMI less than 30 kg/m2, n=3083). The results were 

similar across these sub-groups. For example, the 1.4% of obese individuals with 

>24 risk alleles had an OR = 5.5 (95% CI: 2.11, 14.36) compared to the 1.9% of 

obese individuals with <13 risk alleles. The corresponding odds ratio for the non-

obese subjects was 3.31 (95% CI: 1.34, 8.16), for the 1.8% and 1.1% of 

individuals with <13 and >24 risk alleles, respectively. 

ROC curve 

We evaluated the discriminatory power of a genetic test based on the 18 

type 2 diabetes variants by calculating the area under the receiver-operating 

characteristic (ROC) curve. Using the general model (as opposed to the additive 

model which assumes equal and additive effects), the ROC curve for the 18 type 2 

diabetes variants studied here is 0.60 (Figure 3). We performed the same analysis 

for the obese and non-obese sub-groups of the cohort. The AUCs for the obese 

and non-obese groups were 0.58 and 0.60, respectively. Similar result was 

obtained when we removed the FTO variant (obese 0.58, non-obese 0.59). We 

also tested whether the risk variants would add to the discriminatory power of BMI, 
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age and sex alone (AUC = 0.78 in our study). A model that includes BMI, age, sex 

and the 18 variants has an AUC of 0.80 (Figure 3); although marginal, the 

increase in the AUC was statistically significant (P=2.88x10-12). The AUC remained 

virtually the same (AUC=0.80) when the FTO variant was removed from the 

model.  

The effect of BMI and age 

Supplementary Table 3 presents the individual SNP type 2 diabetes 

associations adjusted for BMI. As expected, the FTO association is weakened on 

adjusting for BMI (OR = 1.00 [0.92, 1.10]), and the TCF7L2 strengthened (OR = 

1.46 [1.32, 1.61]). Testing the combined effect of the risk variants on clinical 

features of the type 2 diabetes patients, we found that the number of risk alleles 

was associated with an earlier age at diagnosis of 0.15 years per risk allele (95% 

CI: -0.29, -0.01; P=0.038). We also observed an overall modifying effect on BMI (-

0.14 BMI units per risk allele, 95% CI: -0.23, -0.05, P=3.41x10-3), but this finding is 

mainly explained by the known association of the TCF7L2 variant alone with BMI, 

in type 2 diabetes cases 30, 31. Here, each TCF7L2 risk allele was associated with 

a difference in BMI of -0.69 kg/m2 (95% CI: -1.06, -0.31; P=3.18x10-4), while the 

combined effect of all other variants without TCF7L2 could just be detected (-0.10 

kg/m2 per risk allele; 95% CI: -0.20, 0.01; P=0.036). The difference in BMI and age 

at diagnosis was more noticeable when we compared individuals with low and 

high number of risk alleles. For example, carriers of 23 or more risk alleles (11.8%) 

were, on average, diagnosed 4.2 years earlier (95% CI: -6.45, -1.87; P=4.21x10-4) 

and had 1.60 kg/m2 lower BMI (95% CI: -3.35, 0.08; P=0.062) than those carrying 

fewer than 15 (8.6%) risk alleles. 
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Discussion 

Recent success in identifying common variants predisposing to type 2 

diabetes has led to suggestions that they may be useful in predicting an 

individual‟s risk of the disease. In this study we evaluated the ability of 18 

confirmed predisposing variants to discriminate between individuals with and 

without type 2 diabetes, using the GoDARTS study. The samples used in this 

study were not enriched for family history or low BMI, factors that may inflate effect 

sizes. Although the GoDARTS cohort was a part of the WTCCC-T2D GWA study 5, 

6, it was only used as a stage 2 replication set for the follow-up of the initial hits. 

This means that there should be a minimal effect of the “winner‟s curse” 32, the 

upward bias of the effect size in the discovery samples compared to subsequent 

replication studies. 

The combined information identifies individuals at different risks of disease  

By comparing individuals with fewest type 2 diabetes risk alleles with those 

carrying the most risk alleles, combining genetic information allowed us to identify 

subgroups of the population at a distinctly differing risk of disease. For example, 

we were able to distinguish about 1% of the population carrying more than 25 risk 

alleles that had over four times increased risk of diabetes compared to the 2% with 

10-12 risk alleles. The high-risk group also had over twice the odds for type 2 

diabetes, than those with the median number of risk alleles. These figures were 

similar in individuals who were obese and not obese, a major risk factor for type 2 

diabetes and easily measurable. Obese individuals carrying large numbers of type 

2 diabetes risk alleles may therefore be a particular group worth studying to test 

potential intervention strategies. This may be important given that the escalating 

rates of obesity and type 2 diabetes suggest that efforts aimed at the whole 

population are not effective, and that intensive, but expensive, lifestyle 

interventions aimed at increasing exercise and improving diet can result in weight 

loss and a reduced risk of type 2 diabetes 33-36.  
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The current variants are not particularly discriminative, but explain only a 

small amount of the heritability of type 2 diabetes  

Rather than focusing on individuals with “extreme” numbers of risk alleles, 

at a population level the utility of genetic tests may be better classified by receiver-

operating characteristic (ROC) curves. One of the most important factors in the 

validity of a genetic test in clinical practice is its ability to discriminate between 

individuals who will and will not develop the disease. A clinically relevant AUC 

threshold clearly depends on a whole range of factors (for example, the cost of the 

test, and the availability of preventative measures), but as an example from 

current clinical practice, oxidized-LDL cholesterol has an AUC of ~0.80 for 

coronary artery disease 37, making it a good discriminator between patients and 

healthy controls. The 18 type 2 diabetes variants had an inadequate discriminatory 

ability with an AUC of 0.60, a slight improvement on the AUC of 0.55 based on 

TCF7L2 alone. These data imply that genetic tests for type 2 diabetes (and many 

other complex diseases) that are offered by several commercial companies 

currently have limited predictive value. However, there are many more variants to 

be identified, since these 18 variants only explain a small amount of the heritability 

of type 2 diabetes: the sibling relative risk for type 2 diabetes is ~3 38, and the 

combination of these variants would only account for a sibling relative risk of 

~1.07. As more susceptibility variants are found for type 2 diabetes, genetic testing 

that utilizes the inexpensive and rapid genotyping technologies may eventually 

become more clinically useful. 

The use of genetic information in addition to age, sex and BMI 

For many complex diseases, there are already well-established risk factors 

that can be used to predict someone‟s chances of developing the disease. 

Incorporating genetic information may be justified on the basis that current 

preventative measures are expensive, and that prevention at a population level is 

not effective, so the more selective we can be the better. In type 2 diabetes, family 

history, age, BMI, ethnicity and lifestyle all contribute to an individual‟s risk of the 

disease. In our study the AUC for BMI, age and sex (we did not have family history 
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data) combined was 0.78, a moderate diagnostic value. The genetic risk variants 

had a poor discriminatory ability alone (AUC=0.60), and only marginally increased 

the discriminatory power of the test when combined with BMI, age and sex 

(AUC=0.80), suggesting that they add little to the already known predictive factors.  

Risk variants modify clinical characteristics of individuals with type 2 

diabetes 

Type 2 diabetes often occurs in individuals who are not overweight or 

obese, and can be diagnosed at a relatively young age. This may be because 

these individuals have a stronger genetic risk component than more “typical” type 

2 diabetes patients. Therefore, we tested the extent to which patients with the 

stronger genetic predisposition tended to be leaner, and how much younger they 

were at diagnosis. There were notable differences between the 11.8% and 8.6% of 

the population carrying either high or low number of disease predisposing alleles, 

respectively. Patients with high genetic risk had an average BMI of 30.3 kg/m2 

compared with 31.9 kg/m2 in those with low genetic risk, and were diagnosed at an 

average age of 55.2 years, compared to 59.3 years for patients with relatively low 

genetic risk. These results support an important role for genetic predisposition to 

type 2 diabetes in non-obese, young-onset cases. 

Weighting variants and the optimal ROC curve 

The simple allele count model we used for some of our analyses of 

“extremes” assumes that each risk allele has the same effect size, and the effects 

are additive both within and between loci. While we found no strong evidence for 

deviation from additivity, clearly some SNPs have stronger effects than others. 

This is most evident for TCF7L2, where the allelic odd ratio is 1.37, significantly 

larger than any of the other variants. One way to overcome this is to weigh SNPs 

differently; however, we decided not to do this in this study for a number of 

reasons. First, all our AUC analyses are based on a general model, where the 

assumption of equal effects is not made. Second, as Janssens et al. 39 previously 

showed, when the odds ratios of the individual variants are relatively low (as here) 
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there is little difference in the discriminative accuracy of the test based on the 

simple allele count model and a model which allows each variant to have a 

different effect size (the AUCs here are 0.583 and 0.603, respectively, although 

this was statistically significant (P=0.001)). Third, it is unclear what the most 

appropriate weights to use would be. Fourth, an allele count model provides 

important advantages for simplicity and visualization of the results. 

Recently, Lu and Elston 40 proposed using an optimal ROC analysis 

approach rather than the standard approach we have used. While the authors 

proved theoretically that their method is more powerful, the results presented by 

Lu and Elston 40 showed that the two methods produce the same results when 

there are few loci, and no interactive effects. As we still have only a relatively few 

loci, there is no evidence of any non-additive effects within or between loci, and 

the ROC curve is concave 40 the two methods should produce the same results. 

We tested this using the 10 SNPS that were significant (at P<0.05) in our study. 

Using these variants the results were the same for both methods (AUC for the Lu 

and Elston method = 0.596; AUC for the standard method = 0.596). 

Strengths and limitations of our study 

Our study was relatively large in terms of the number of samples, and 

number of common variants used. We had over 2000 cases and 2000 controls, 

after excluding individuals who were not successfully genotyped for all of the 

variants included in the study. The 18 variants we used had all been convincingly 

shown in previous studies to associate with type 2 diabetes. 

One of the main limitations of our study is that it was not prospective and, 

therefore, we are unable to truly determine the predictive power of these variants. 

Although the results of this study only apply to the Tayside population, it is likely, 

based on previous data 41-43, that our prediction estimates are reasonably 

accurate, and that the effect sizes observed are likely to be representative of those 

in similar populations. A second limitation is that, although the results are 

applicable to the Tayside and similar populations, they may not apply to 
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populations of substantially different ethnic origin or those exposed to different 

social and environmental circumstances. A third limitation concerns the caveat that 

the majority of the type 2 diabetes associated SNPs identified to date and used in 

this study are not the causal variants. This means that the predictive power of 

these susceptibility loci is likely to be an underestimate. Fine mapping and 

sequencing approaches are needed to identify the variants causal to these 

associations, which often have stronger effects than the currently identified 

variants. These follow-up studies may also reveal additional causal variants at 

these loci that cannot be detected by GWA methods because of, for example, low 

frequency, but that may have higher penetrance and, therefore, would be much 

more powerful predictors. 

In conclusion, the combined information from the currently known 

susceptibility variants allows us to identify subgroups of the population at 

substantially increased odds of getting type 2 diabetes. These individuals could be 

targeted with more effective preventative measures. On a population level, these 

variants appear to be of limited use in discriminating between individuals who will 

and will not develop type 2 diabetes. As more variants are identified, tests with 

better predictive performance should become available, and could eventually 

become a valuable addition to clinical practice.
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Table 1. Characteristics of study participants. 

Variable Cases Controls 

Number 2309 2598 

Males, % 56 51 

Age at diagnosis, years (SD) 55.7 (9.0) NA 

Body mass index, kg/m2 (SD) 31.5 (6.1) 26.9 (4.5) 

HbA1c, % (SD) 7.8 (1.5) 5.5 (0.3) 
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Table 2. Summary of type 2 diabetes variants in 2598 controls and 2309 cases from the Dundee cohort.  

SNP Gene / Region 
Risk allele 
frequency 

Additive model 
test P 

Odds ratio (95% 
CI) 

P value 

rs7903146 TCF7L2 0.30 0.70 1.36 (1.24, 1.48) 3.97 x 10-12 

rs5219 KCNJ11 0.36 0.058 1.25 (1.15, 1.36) 8.54 x 10-8 

rs10811661 CDKN2A/2B 0.85 0.24 1.21 (1.08, 1.35) 8.82 x 10-4 

rs1801282 PPARG 0.87 0.46 1.21 (1.07, 1.36) 2.18 x 10-3 

rs2641348* ADAM30 / NOTCH2 0.11 0.68 1.15 (1.01, 1.30) 3.20 x 10-2 

rs564398 CDKN2A/2B 0.59 0.95 1.13 (1.04, 1.22) 3.61 x 10-3 

rs4402960 IGF2BP2 0.33 0.76 1.12 (1.03, 1.22) 7.62 x 10-3 

rs8050136 FTO 0.41 0.32 1.11 (1.02, 1.20) 1.43 x 10-2 

rs10946398 CDKAL1 0.34 0.19 1.11 (1.02, 1.21) 1.47 x 10-2 

rs13266634 SLC30A8 0.70 0.60 1.10 (1.01, 1.20) 2.57 x 10-2 

rs7961581 TSPAN8 / LGR5 0.29 0.87 1.09 (1.00, 1.19) 5.56 x 10-2 

rs12779790 CDC123 0.20 0.15 1.10 (0.99, 1.21) 7.58 x 10-2 

rs10010131 WFS1 0.60 0.54 1.07 (0.99, 1.16) 9.19 x 10-2 

rs757210 TCF2 0.37 0.18 1.07 (0.99, 1.16) 1.09 x 10-1 

rs4607103 ADAMTS9 0.77 0.60 1.05 (0.96, 1.16) 2.89 x 10-1 

rs1111875 HHEX-IDE 0.62 0.19 1.02 (0.94, 1.11) 5.98 x 10-1 

rs7578597 THADA 0.91 0.33 1.04 (0.90, 1.19) 6.07 x 10-1 

rs864745 JAZF1 0.50 0.50 1.00 (0.93, 1.09) 9.70 x 10-1 

 
Only samples that were successfully genotyped for all 18 variants are included. Additive model test P refers to a test of deviation from additivity of 
alleles at each SNP. *This SNP falls within the ADAM30 gene and is a proxy (r2=0.92 in HapMap CEU) for rs2934381 in the NOTCH2 gene, which 
showed stronger association in 5. 
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Figure 1. Distribution of risk alleles in type 2 diabetes cases (black bars) and 
controls (grey bars). 
 

 

 



 

Chapter 4 234 

Figure 2. A plot showing odds ratios (OR) by number of type 2 diabetes risk 
alleles. The odds ratios are given relative to the median number of 18 risk alleles 
(black circle). The vertical bars represent 95% confidence intervals. 
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Figure 3. ROC plot for a model containing all type 2 diabetes variants, BMI, 
age and sex (gray line; AUC = 0.80), and the 18 variants alone (black line, 
AUC = 0.60). 
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Supplementary Table 1. Clinical characteristics of individuals from the 
original sample who were excluded from the analyses owing to incomplete 
genotype data, compared to the individuals successfully genotyped for all 18 
SNPs and included in the analyses. 

Variable 
Individuals 

excluded from the 
analyses 

Individuals 
used in the 
analyses 

P-value for 
difference 

Total number 1739 4907 NA 

Percentage of cases 45.0 47.1 0.14 

Percentage of males 55.7 53.5 0.12 

Age at diagnosis (cases), 
years (SD) 

55.2 (8.8) 55.7 (9.0) 0.20 

Body mass 
index, kg/m2 

(SD) 

cases 

controls 

31.9 (6.3) 

26.6 (4.6) 

31.5 (6.1) 

26.9 (4.5) 

0.07 

0.12 
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Supplementary Table 2. Interaction test P values for all combinations of 18 
type 2 diabetes SNPs. 
 

SNP1 SNP2 Interaction P 
rs7903146 rs12779790 0.0038 

rs4402960 rs13266634 0.012 

rs13266634 rs1801282 0.019 

rs7903146 rs7961581 0.043 

rs10010131 rs12779790 0.052 

rs5219 rs7578597 0.056 

rs564398 rs757210 0.056 

rs4402960 rs757210 0.057 

rs12779790 rs864745 0.085 

rs10811661 rs757210 0.090 

rs1111875 rs13266634 0.092 

rs12779790 rs7961581 0.093 

rs13266634 rs5219 0.11 

rs757210 rs12779790 0.15 

rs1111875 rs5219 0.15 

rs10946398 rs5219 0.16 

rs5219 rs2641348 0.16 

rs564398 rs12779790 0.17 

rs5219 rs1801282 0.17 

rs7903146 rs5219 0.19 

rs10811661 rs10946398 0.21 

rs10946398 rs864745 0.21 

rs5219 rs12779790 0.22 

rs10946398 rs12779790 0.22 

rs10811661 rs5219 0.22 

rs8050136 rs5219 0.23 

rs1111875 rs2641348 0.24 

rs8050136 rs1801282 0.24 

rs10946398 rs10010131 0.25 

rs564398 rs10010131 0.25 

rs10811661 rs7961581 0.25 

rs4402960 rs12779790 0.25 

rs8050136 rs4607103 0.26 

rs757210 rs2641348 0.27 

rs1111875 rs757210 0.28 

rs2641348 rs7578597 0.28 

rs10811661 rs4402960 0.29 

rs7903146 rs10010131 0.29 

rs8050136 rs10946398 0.30 

rs7903146 rs7578597 0.30 

rs4402960 rs4607103 0.31 

rs10946398 rs564398 0.31 

rs8050136 rs1111875 0.32 
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rs5219 rs10010131 0.32 

rs5219 rs4607103 0.32 

rs8050136 rs7903146 0.32 

rs2641348 rs864745 0.32 

rs10811661 rs7903146 0.34 

rs5219 rs757210 0.36 

rs1111875 rs12779790 0.37 

rs5219 rs7961581 0.37 

rs10946398 rs1801282 0.38 

rs1111875 rs10010131 0.38 

rs12779790 rs7578597 0.38 

rs10946398 rs1111875 0.38 

rs4402960 rs5219 0.39 

rs1111875 rs7578597 0.40 

rs564398 rs7961581 0.40 

rs10811661 rs7578597 0.41 

rs12779790 rs4607103 0.41 

rs8050136 rs564398 0.41 

rs5219 rs864745 0.41 

rs1111875 rs864745 0.42 

rs10010131 rs4607103 0.42 

rs10946398 rs4402960 0.43 

rs564398 rs4607103 0.44 

rs10811661 rs8050136 0.45 

rs10811661 rs864745 0.46 

rs13266634 rs2641348 0.46 

rs10811661 rs1111875 0.46 

rs10946398 rs13266634 0.46 

rs564398 rs5219 0.46 

rs7903146 rs4607103 0.47 

rs757210 rs4607103 0.47 

rs4607103 rs7961581 0.47 

rs8050136 rs7961581 0.48 

rs7903146 rs1801282 0.48 

rs10946398 rs7903146 0.49 

rs4607103 rs7578597 0.49 

rs10946398 rs7578597 0.50 

rs13266634 rs10010131 0.51 

rs8050136 rs7578597 0.51 

rs10811661 rs12779790 0.52 

rs2641348 rs7961581 0.52 

rs4402960 rs7961581 0.52 

rs564398 rs2641348 0.54 

rs10946398 rs757210 0.55 

rs4402960 rs7578597 0.57 

rs10811661 rs10010131 0.57 

rs564398 rs13266634 0.57 
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rs8050136 rs757210 0.58 

rs7903146 rs2641348 0.58 

rs1111875 rs7903146 0.58 

rs8050136 rs864745 0.59 

rs1801282 rs864745 0.61 

rs13266634 rs4607103 0.61 

rs1111875 rs1801282 0.61 

rs10811661 rs13266634 0.62 

rs10946398 rs7961581 0.62 

rs1111875 rs4402960 0.63 

rs10946398 rs2641348 0.63 

rs7578597 rs864745 0.64 

rs1801282 rs4607103 0.65 

rs757210 rs7578597 0.65 

rs10811661 rs2641348 0.65 

rs7903146 rs757210 0.65 

rs4402960 rs864745 0.67 

rs2641348 rs4607103 0.67 

rs1801282 rs7578597 0.67 

rs1801282 rs7961581 0.68 

rs1111875 rs7961581 0.69 

rs757210 rs7961581 0.70 

rs12779790 rs2641348 0.70 

rs10010131 rs757210 0.72 

rs8050136 rs12779790 0.72 

rs10811661 rs1801282 0.72 

rs8050136 rs4402960 0.73 

rs13266634 rs757210 0.73 

rs1801282 rs12779790 0.74 

rs7961581 rs864745 0.74 

rs10811661 rs564398 0.76 

rs10010131 rs7961581 0.76 

rs10811661 rs4607103 0.77 

rs13266634 rs864745 0.77 

rs13266634 rs7578597 0.78 

rs13266634 rs7961581 0.78 

rs564398 rs7578597 0.80 

rs8050136 rs2641348 0.80 

rs13266634 rs12779790 0.80 

rs1111875 rs4607103 0.81 

rs757210 rs864745 0.81 

rs1801282 rs2641348 0.81 

rs1801282 rs757210 0.83 

rs4402960 rs1801282 0.83 

rs4402960 rs7903146 0.84 

rs7578597 rs7961581 0.85 

rs13266634 rs7903146 0.88 
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rs1111875 rs564398 0.89 

rs10010131 rs864745 0.90 

rs4402960 rs10010131 0.90 

rs10946398 rs4607103 0.92 

rs8050136 rs13266634 0.92 

rs10010131 rs2641348 0.92 

rs8050136 rs10010131 0.93 

rs4607103 rs864745 0.93 

rs1801282 rs10010131 0.96 

rs10010131 rs7578597 0.97 

rs564398 rs7903146 0.97 

rs564398 rs864745 0.98 

rs7903146 rs864745 0.98 

rs564398 rs1801282 0.98 

rs564398 rs4402960 0.99 

rs4402960 rs2641348 1.00 
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Supplementary Table 3 BMI-adjusted odds ratios (OR) for 4886 individuals 
with non-missing values for both 18 SNPs and BMI. The SNPs are in the same 
order as in Table 2. 
 

SNP Gene / Region 
OR adjusted for 
BMI (95% CI) 

Adjusted 
OR P value 

rs7903146 TCF7L2 1.46 (1.32, 1.61) 5.33x10-15 

rs5219 KCNJ11 1.28 (1.17, 1.40) 1.10x10-7 

rs10811661 CDKN2A/2B 1.27 (1.13, 1.44) 1.09x10-4 

rs1801282 PPARG 1.24 (1.09, 1.41) 1.47x10-3 

rs2641348 ADAM30 / NOTCH2 1.20 (1.05, 1.38) 8.05x10-3 

rs564398 CDKN2A/2B 1.11 (1.02, 1.21) 2.20x10-2 

rs4402960 IGF2BP2 1.11 (1.01, 1.22) 2.44x10-2 

rs8050136 FTO 1.00 (0.92, 1.10) 9.14x10-1 

rs10946398 CDKAL1 1.10 (1.01, 1.21) 3.40x10-2 

rs13266634 SLC30A8 1.15 (1.05, 1.27) 3.85x10-3 

rs7961581 TSPAN8 / LGR5 1.09 (0.99, 1.20) 6.88x10-2 

rs12779790 CDC123 1.10 (0.98, 1.22) 1.01x10-1 

rs10010131 WFS1 1.09 (1.00, 1.18) 6.29x10-2 

rs757210 TCF2 1.13 (1.03, 1.23) 8.29x10-3 

rs4607103 ADAMTS9 1.07 (0.97, 1.19) 1.74x10-1 

rs1111875 HHEX-IDE 1.05 (0.96, 1.15) 2.85x10-1 

rs7578597 THADA 1.07 (0.92, 1.24) 3.86x10-1 

rs864745 JAZF1 1.01 (0.93, 1.11) 7.51x10-1 
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Abstract 

Objective: Mutations in the HNF1A gene are the most common cause of MODY. 

There is a substantial variation in the age at diabetes diagnosis, even within 

families where diabetes is caused by the same mutation. We investigated the 

hypothesis that common polygenic variants that predispose to type 2 diabetes 

might account for the difference in age at diagnosis. 

Research Design and Methods: Fifteen robustly associated T2D variants were 

successfully genotyped in 410 individuals from 203 HNF1A-MODY families, from 

two study centers in the UK and Norway. We assessed their effect on the age at 

diagnosis both individually and in a combined genetic score by summing the 

number of T2D risk alleles carried by each patient. 

Results: We confirmed the effects of environmental and genetic factors known to 

modify the age at HNF1A-MODY diagnosis, namely intrauterine hyperglycemia (-

5.1 years if present, P=1.6x10-10), and HNF1A mutation position (-5.2 years if at 

least two isoforms affected, P=1.8x10-2). Additionally, our data showed strong 

effects of sex (females diagnosed 3.0 years earlier, P=6.0x10-4), and age at study 

(0.3 years later diagnosis per year increase in age, P=4.7x10-38). There were no 

strong individual SNP effects; however, in the combined genetic score model, 

each additional risk allele was associated with 0.35 years earlier diabetes 

diagnosis (P=5.1x10-3). 

Conclusions: We show that T2D risk variants of modest effect sizes reduce the 

age at diagnosis in HNF1A-MODY. This is one of the first studies to demonstrate 

that clinical characteristics of a monogenic disease can be modified by common 

polygenic variants. 
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Introduction 

Maturity onset diabetes of the young (MODY) is a young-onset, dominantly 

inherited non-insulin dependent diabetes mellitus resulting from -cell 

dysfunction1. There are at least eight genetic subgroups of MODY 1, 2, with most 

patients having mutations in transcription factor genes. Hepatocyte nuclear factor 

1 alpha (HNF1A) mutations are the commonest cause of MODY in many series 3, 

4. HNF1A diabetes is characterized by progressive failure of -cell function, 

resulting in increasing hyperglycemia throughout life 1. Initially, basal insulin 

secretion is maintained but it cannot be increased in the presence of 

hyperglycaemia 5. 

The severity and clinical presentation of MODY varies according to MODY 

genetic subtype 6. In addition, there can be considerable variation both between 

and within families where diabetes is caused by mutations in the same gene. In 

HNF1A diabetes the age of diagnosis is widely variable (4 - 74 years 7), and, 

although the mutations are highly penetrant, only 63% of mutation carriers develop 

diabetes by the age of 25 8. The variation in diagnosis is influenced by social and 

environmental factors. Within families early age at diagnosis tends to fall in the 

younger generations, in part owing to increased awareness of the familial nature of 

the condition 9, 10. If the mother had diabetes during pregnancy, intrauterine 

exposure to hyperglycemia of maternal diabetes is associated with diabetes being 

diagnosed on average 12 years earlier compared to subjects not exposed to 

maternal hyperglycaemia 9, 10.  

It is likely that there are genetic modifiers of the age of onset of HNF1A 

diabetes, namely the position of the HNF1A mutation 11, 12. However, much of the 

variation in age at diagnosis within families, where diabetes is caused by the same 

mutation, cannot be explained by social or environmental factors and this supports 

the notion that there are likely to be genetic modifiers independent of the HNF1A 

mutation. A genome-wide search for genetic modifiers of diagnosis age found no 

single large linkage peak 13, suggesting that the age of onset is a complex genetic 
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trait. A previous study of one large pedigree has shown that severity of the HNF1A 

diabetes phenotype was increased (earlier age of diagnosis and more severe 

hyperglycaemia) when type 2 diabetes was present in the non-carrier parent 14. 

We, therefore, hypothesised that common genetic variants that predispose to type 

2 diabetes might modify the severity of the disease and explain some of the 

variation in the age at HNF1A diabetes diagnosis. 
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Methods 

HNF1A mutation patients 

The subjects were 410 HNF1A mutation carriers with diabetes from two 

sources: The Department of Molecular Genetics, Royal Devon and Exeter NHS 

Foundation Trust, Exeter, UK (N=298 from 140 families) and the Center for 

Diabetes Genetics, Department of Pediatrics, Haukeland University Hospital, 

Bergen, Norway (N=112 from 63 families). They were all established MODY 

patients previously recruited for HNF1A sequencing on the basis of clinical criteria, 

such as family history or first degree relative with diabetes, onset of diabetes 

typically before age 25, or low dose insulin requirement (full details are available at 

http://www.diabetesgenes.org and http://www.mody.no).  

All patients gave consent for genetic testing and had HNF1A mutations 

identified by direct sequencing. To avoid population heterogeneity, individuals who 

were not Caucasian Europeans were excluded. Clinical characteristics of the 

patients are shown in Table 1. Two thirds were females, and the majority of the 

probands had an HNF1A mutation in exons 1-6. Such mutations are regarded as 

clinically most severe as they affect all 3 isoforms of the gene product. The most 

common HNF1A mutation, P291fsinsC in exon 4, accounted for 32% of all cases 

in this study. 

Classification and assessment of non-polygenic modifiers 

We assessed the association between age at diagnosis and the following 

non-polygenic factors: sex, age at study, BMI, exposure to in-utero hyperglycemia, 

and the position of HNF1A mutation. Mother‟s diabetic status at pregnancy was 

calculated from the age of diagnosis and the date of birth of the mother and child. 

Where this information was incomplete (usually owing to mother‟s information not 

being available as deceased), we assumed that the patient was not exposed to in-

utero hyperglycaemia. Previous studies showed that mutation position impacts the 

severity of the disease by determining the number of the affected HNF1A 
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isoforms: patients with mutations in exons 1-7, affecting two or all three isoforms, 

were diagnosed earlier than patients with mutations in exons 8-10, affecting only 

one isoform 11, 12. To account for this effect, we classified mutations of patients in 

this study according to those two groups. Intronic mutations were assigned to a 

group according to the mutation position and hence HNF1A isoform impacted on.  

SNP Selection and Genotyping 

We decided to include in this study only those variants, or their proxies, 

robustly shown to predispose to type 2 diabetes in Caucasians. Seventeen 

common susceptibility variants had been identified and robustly replicated at the 

time of our study 15-20, recently reviewed in 21, 22. These include SNPs in or near 

PPARG, KCNJ11, TCF7L2, IGF2BP2, CDKN2A/2B, CDKAL1, SLC30A8, 

HHEX/IDE, FTO, WFS1, HNF1B (TCF2), MC4R, NOTCH2, ADAMTS9, THADA, 

TSPAN8/LGR5, CDC123/CAMK1D and JAZF1 genes. Table 3 lists all 17 SNPs 

assessed in our study, of which we were able to combine 15 for the joint analysis, 

because JAZF1 and NOTCH2 loci failed genotyping in the Norwegian samples. At 

four of the 15 loci different SNPs were genotyped by the two study centres: 

rs757210 (UK) and rs4430796 (Norway) at the HNF1B locus (HapMap CEU 

r2=0.61, D‟=0.96); rs10946398 and rs7754840 at CDKAL1 (r2 and D‟=1); 

rs8050136 and rs9939609 at FTO (r2 and D‟=1); and rs1111875 and rs5015480 at 

HHEX/IDE (r2 and D‟=1). We combined genotypes for each of the four proxy pairs, 

coded with respect to the type 2 diabetes risk allele. 

In the UK samples, genotyping of TCF7L2, KCNJ11 and PPARG SNPs was 

performed in-house, using a TaqMan-based assay. The probes were supplied by 

AppliedBiosystems (Foster City, CA). Genotyping of the remaining 14 variants was 

performed by KBiosciences (Herts, UK), who designed and used assays based on 

either their proprietary competitive allele-specific PCR (KASPar) method or a 

modified TaqMan assay, details of which are available on their website 

(www.kbioscience.co.uk/chemistry/index.htm). Genotyping success rate was 

>96% for each SNP, overall duplicate concordance rate was 99.9% (1 discrepancy 

from 1153 comparisons), and in the Hardy-Weinberg equilibrium test, used as an 
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additional genotyping quality check, all P-values were >0.01 for the full dataset 

and >0.05 for 140 unrelated probands.  

In the Norwegian samples, genotyping was carried out by the multiplex 

MassARRAY  iPLEX  System (SEQUENOM Inc., San Diego, CA, USA) at the 

Norwegian national technology platform CIGENE. NOTCH2 SNP (rs2934381) 

failed the assay design, while JAZF1 SNP (rs864745) had a poor genotype call 

rate. For the remaining 15 SNPs, which we were able to combine with the UK 

data, genotype concordance rate was 100% for internal controls (n=108 

genotypes). Final genotyping call-rate was 99.2% after exclusion of samples with 

bad quality or lacking DNA. All tests for Hardy-Weinberg equilibrium had P-values 

>0.05. 

Statistical methods 

We performed family-based association analyses using ASSOC program 

from S.A.G.E. (Statistical Analysis for Genetic Epidemiology) software package, 

version 5.4.2 for Linux 23. Assuming randomly sampled independent pedigrees, 

ASSOC simultaneously tests for associations between a quantitative trait and one 

or more covariates of interest, and estimates familial variance components from 

the given familial correlations. In our study, the trait of interest was age at diabetes 

diagnosis, while the main covariate of interest was the number of type 2 diabetes 

risk alleles. As one of the parameters for the ASSOC program we set the family 

effect option to “true”, thus including the random nuclear family effect as an 

additional term in the regression model. Relationships between family members 

were fully established for most pedigrees. In some of the large pedigrees we 

included parents and relatives that had no data for the analyses, but were used by 

the program to accurately connect all related individuals. Singletons, and 5 UK 

family members for whom we could not establish how they were related to other 

members of their pedigrees, were automatically treated as one-person pedigrees 

and required no special handling in the model.  
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We assessed the effect of each risk variant on the age at diagnosis 

individually, jointly and by using an allele counting method to assign a genetic risk 

score to each patient (the sum of the number of risk alleles a person carries). The 

allele counting method assumed equal and additive effects of the individual 

variants. We repeated this analysis using a weighted allele approach, where the 

genetic score was based on the previously reported odds ratios for type 2 diabetes 

(obtained from a recent review 22). For each patient we first calculated the sum 

across SNPs of the number of risk alleles at each SNP multiplied by the log of the 

odds ratio (OR) for that SNP (i.e. genotypes were coded as 0, log(OR), 2xlog(OR), 

rather than 0, 1, 2 in the allele count model). To obtain a rescaled “weighted allele 

count” score, we multiplied each log(OR) score by 30 (maximum number of risk 

alleles), and divided the product by 1.81, the sum of the 15 risk homozygote 

log(OR) weights .   

Although family relationships were fully accounted for in the analyses, it is 

possible that the results could have been affected by the skewed allele 

distributions. Therefore, we analysed the effects of both individual SNPs and the 

combined genetic score on age at diagnosis in 203 unrelated probands, using the 

youngest individual from each pedigree (Supplementary Table 1). 

We used StataSE v10.0 for Windows (StataCorp LP, Brownsville, TX, USA) 

to generate adjusted age at diagnosis, using the „predict‟ function after running 

linear regression that fitted family id, study, sex, age at study, presence of 

intrauterine hyperglycemia and mutation position in the same regression model. 

This enabled us to use the full dataset, with adjusted ages at diagnosis, for linear 

regression and cumulative diabetes incidence analyses (Figures 1 and 2), rather 

than a much smaller sample of unrelated singletons and phenotypically 

homogeneous individuals. All figures were generated using SigmaPlot (Systat 

Software Inc., CA, USA). Power calculations were performed using QUANTO 

power calculator, version 1.2.4 24. 
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Results 

The analyses included 410 diabetic HNF1A mutation carriers from 203 

families who were successfully genotyped for all 15 type 2 diabetes risk variants.  

We confirmed the strong effects of age at study, mutation position and 

intrauterine hyperglycemia on the severity of HNF1A diabetes clinical presentation 

(Table 2). These associations were independent of the polygenic risk factors 

(Table 2). On average, patients were diagnosed 5.1 years earlier if the mother 

was diabetic during pregnancy (P = 1.6x10-10), 5.2 years earlier if the mutation 

affected at least two HNF1A isoforms (P = 1.8x10-2), and 0.3 years later for every 

additional year of their age at study (P = 4.7x10-38). In addition we observed a 

strong effect of sex in our data, where females were diagnosed 3.0 years earlier 

than males (P = 6.0x10-4), but there was no association with BMI (available for 305 

subjects; P = 0.99).  

We included those variables that had individual effect on age at diagnosis 

(i.e. all of the above apart from BMI) as covariates in the individual and joint SNP 

models, to reduce the remaining variance in the age at diagnosis and, therefore, 

increase our power to detect the effect of polygenic modifiers. We repeated these 

analyses excluding age at study, to make sure that its strong association with age 

at diagnosis did not drive the SNP association (Supplementary table 2). As 

expected, the results were not statistically significantly different to the fully 

adjusted model (all t-test P > 0.32). Although for some of the SNPs the effects on 

age at diagnosis were slightly stronger when age at study was excluded, the 

standard errors were larger, resulting in similar overall P-values. 

Individual type 2 diabetes risk variants were not strongly associated with the 

age at diagnosis, as shown in Table 3. However, of the 15 variants, 11 risk alleles 

for type 2 diabetes in the unadjusted analyses, and 10 in the adjusted analyses, 

were associated with reduced age at diagnosis, in a direction consistent with 

polygenic studies. When we included all 15 variants in the regression model, there 

was borderline evidence of an overall joint effect on the age at diagnosis (P = 
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0.062). The 15 variants explain 6.4% of the total proportion of diagnosis age 

variance, whilst the non-polygenic factors (sex, age at study, mutation position, 

and presence of intrauterine hyperglycemia) explain 37.9%; combining these 

together, they explain 42.1% of the total variance in the HNF1A-MODY age at 

diagnosis in these families. 

We then generated a single genetic risk score representing the combined 

genetic susceptibility for type 2 diabetes (Table 3). In the allele count model, each 

additional risk allele was associated with 0.35 years reduction in age at diagnosis 

(P = 0.005). The association strength was weaker when we used unrelated 

probands (0.28 years earlier age at diagnosis per one additional risk allele; P = 

0.094; Supplementary Table 1), which most probably reflects reduced power. 

The correlation between the decreasing age at diagnosis and the increasing 

number of risk alleles appears to be linear for the full dataset of 410 patients 

(Figure 1A). Figure 1B presents the results for 203 unrelated probands only. 

Looking at the impact of risk alleles on the cumulative incidence of diabetes, the 

effect was most noticeable around age 30, where diabetes developed in 80% of 

HNF1A mutation carriers with 9-14 polygenic risk alleles, compared to 93% with 

17-22 risk alleles (Figure 2). 

The weighted allele score yielded similar results to the allele count model (P 

= 0.005). Stratified analysis showed that the impact of the allele count score was 

of similar magnitude in the two cohorts individually, with all t-test P-values > 0.1 

(Supplementary table 3).  
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Discussion 

We have shown that type 2 diabetes risk variants of modest effect sizes 

when combined are associated with a reduced age at diagnosis in monogenic 

HNF1A diabetes. This association is independent of other genetic and 

environmental modifiers, namely the HNF1A mutation position, age at study, sex, 

and mother‟s diabetes status during pregnancy. Thus, this is one of the first 

studies to demonstrate that clinical characteristics of a monogenic disease can be 

influenced by common variants that predispose to the polygenic form of that 

disease. To our knowledge, only two other studies, of breast cancer 25 and 

Alzheimer‟s disease 26, have identified polygenic variants that act as modifiers of 

disease onset age. 

In support of previous findings, an increase in the age of patients at the time 

of genetic testing is strongly associated with an older age at diabetes diagnosis. It 

is not known if this represents an earlier diagnosis as a result of the increasing 

awareness of diabetes in the family by their physicians, or a genuine decrease in 

age of onset in succeeding generations. The former is likely to be a large 

contributor. In addition, there is strong evidence that the age at diagnosis is 

affected by genetic factors. We confirm previous findings by Harries et al. 11 and 

Bellanné-Chantelot 12 that patients with mutations affecting at least two of the 

three known HNF1A isoforms were diagnosed earlier than patients with mutations 

affecting only one HNF1A isoform.  

In our study we provide evidence for additional genetic modifiers, the 

robustly replicated type 2 diabetes risk variants. Combining the effect of the 

variants by adding up the total number of risk alleles carried, each additional risk 

allele was associated with 0.49 and 0.35 year earlier age at diagnosis, in the 

unadjusted and adjusted models, respectively. Most of the genetic variants 

predisposing to type 2 diabetes act through reducing -cell function, rather than 

increasing insulin resistance. This is true of the three risk variants with strongest 

effects observed in this study, the SNPs in the HNF1B, SLC30A8 and CDKAL1 
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genes. It is possible that they interact with the -cell dysfunction resulting from the 

HNF1A mutation, leading to an increased rate of -cell destruction and, therefore, 

earlier onset of diabetes. Furthermore, mutations of HNF1B, also known as TCF2, 

are another known cause of MODY, accounting for about 2% of cases 27.  

This study does have limitations. Although we included 410 subjects, one of 

the largest cohorts of HNF1A patients ever reported, some simple power 

calculations suggest that we were still under-powered to detect the impact of 

individual loci. For example, we had only 29% power to detect an individual SNP 

explaining 1% of the variation in age at diagnosis (and this is assuming 

independence of the individuals in the study) at P<0.01; in singleton-only analysis 

the power was 13%. These patients were not studied prospectively and, therefore, 

the age at diagnosis does not accurately reflect the age at onset of diabetes. We 

would anticipate that if age of onset was studied using prospective data, the 

impact of these type 2 diabetes loci would be greater. 

In conclusion, we show that type 2 diabetes risk variants of modest effect 

sizes act as an additional modifier of age at diagnosis in HNF1A-MODY. This is 

one of the first studies to demonstrate that common variants associated with a 

polygenic disease can also influence clinical characteristics of a monogenic form 

of the disease. 
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Table 1. Characteristics of the 410 HNF1A-MODY patients included in the analyses.  

 UK Norway 

Families / singletons, N  140 / 87 63 / 41 

Examined individuals, N 298 112 

Males, N (%) 100 (33.6) 41 (36.6) 

Average number of individuals in 

non-singleton families (range) 
3.0 (2-9) 3.1 (2-8) 

Number of individuals with HNF1A 

mutations affecting  
  

Isoform A only (exons 8-10) 

Isoforms A and B only (exon 7)  

Isoforms A, B and C (exons 1-6) 

30 (10.1%) 

22 (7.4%) 

246 (82.5%) 

3 (2.7%) 

4 (3.6%) 

105 (93.7%) 

Age at study, years * 37.1 + 17.0 (8-87) 33.4 + 17.6 (6-73) 

Age at diabetes diagnosis, years * 21.9 + 11.2 (4-70) 20.3 + 10.0 (6-60) 

BMI, kg/m2 *† 24.1 + 4.1 (15.9-50.7) 23.9 + 3.7 (15.8-33.6) 

 
* Data are presented as means + SD (range).  

† BMI was only available for 224 and 81 individuals in UK and Norway studies, respectively. 
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Table 2. Results of regression analyses of non-polygenic factors on the age at diabetes diagnosis in 410 HNF1A-MODY 
patients, with and without the inclusion of the polygenic risk score in the regression model. All effect sizes are in years. 
Genetic score is the number of risk alleles, carried by each patient, from the 15 type 2 diabetes susceptibility variants. 
 

 Without genetic score With genetic score 

 Effect size Std Error P-value Effect size Std Error P-value 

Study (Norway=0, UK=1) 1.31 0.99 0.18 1.44 0.97 0.14 

Sex (effect w.r.t. females) -2.97 0.86 6.0 x 10-4 -2.93 0.85 5.7 x 10-4 

BMI, kg/m2 (per unit increase) * 0.0009 0.13 0.99 0.033 0.13 0.80 

Presence of intrauterine 

hyperglycaemia 
-5.06 0.79 1.6 x 10-10 -4.86 0.79 6.5 x 10-10 

Position of HNF1A mutation † -5.22 2.21 1.8 x 10-2 -5.67 2.18 9.4 x 10-3 

Age at study (per year increase) 0.29 0.02 4.7 x 10-38 0.29 0.02 1.5 x 10-37 

 
w.r.t. = with respect to. 

* BMI was only available for 305 individuals.  

†The position of the mutation has been dichotomised into those affecting exons 8-10 (isomer A only; N=33) versus those affecting exons 1-
7 (N=377). The age at diagnosis is lower for patients with mutations affecting exons 1-7. 
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Table 3. Effects of individual type 2 diabetes risk variants and the combined 
genetic scores on the age at diabetes diagnosis in 410 HNF1A-MODY 
patients. All effect sizes are in years change of age at diagnosis per risk allele. 
The 410 patients were successfully genotyped for all 15 SNPs that were included 
in the combined genetic scores. All analyses took into account family relationships 
and included a random family effect in the regression model. Individual SNP 
effects are based on risk allele count method. P values are unadjusted for multiple 
testing. Results are presented in order of the adjusted effect sizes. 
 

  Unadjusted results Adjusted results ‡ 

  
Effect 
Size 

Std 
Error 

P-
value 

Effect 
Size 

Std 
Error 

P-
value 

Individual SNP effects       

Gene region SNP       

HNF1B (TCF2) * rs757210 / rs4430796 -1.85 0.58 0.0014 -1.07 0.43 0.014 

SLC30A8 rs13266634 -1.07 0.64 0.095 -0.90 0.50 0.070 

CDKAL1 * rs10946398 / rs7754840 -1.22 0.59 0.038 -0.87 0.46 0.059 

TCF7L2 rs7903146 -0.55 0.63 0.39 -0.65 0.46 0.16 

ADAMTS9 rs4607103 0.27 0.69 0.70 -0.59 0.51 0.25 

TSPAN8 rs7961581 -0.97 0.63 0.13 -0.53 0.44 0.22 

JAZF1 † rs864745 -0.45 0.72 0.53 -0.46 0.53 0.38 

FTO * rs8050136 / rs9939609 -0.30 0.63 0.63 -0.42 0.47 0.37 

KCNJ11 rs5219 -0.15 0.63 0.82 -0.34 0.50 0.50 

CDKN2A/2B rs10811661 -0.89 0.87 0.31 -0.25 0.65 0.70 

WFS1 rs10010131 -0.08 0.61 0.89 -0.21 0.46 0.65 

CDC123 rs12779790 0.83 0.75 0.27 0.07 0.55 0.91 

HHEX/IDE * rs1111875 / rs5015480 -0.27 0.61 0.66 0.19 0.44 0.66 

PPARG rs1801282 -1.46 0.99 0.14 0.36 0.76 0.64 

IGF2BP2 rs4402960 0.45 0.64 0.48 0.43 0.47 0.36 

THADA rs7578597 0.50 1.00 0.62 0.55 0.78 0.48 

NOTCH2 † rs2934381 1.31 1.32 0.32 0.82 1.00 0.41 

Combined SNP effect       

Allele count score -0.49 0.17 0.0043 -0.35 0.13 0.0051 

Weighted score (log odds) -0.49 0.15 0.0013 -0.33 0.12 0.0046 

 

*At 4 loci different SNPs, representing the same signal, were genotyped by the two study 
centres, in which case they are shown as UK / Norway SNPs.  

† Results for JAZF1 and NOTCH2 SNPs were available only for UK samples (N=296 and 
297, respectively). 

‡ Adjusted results include study, sex, age at study, presence of intrauterine 
hyperglycaemia, and mutation position (2 groups, according to exon affected, 1-7 or 8-10) 
as covariates in the regression model. 
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Figure 1. Mean age at diabetes diagnosis (black triangles) and frequency 
(bars) of HNF1A-MODY patients at each number of the type 2 diabetes risk 
alleles carried. Only individuals genotyped for all 15 variants are included. A = full 
dataset of 410 patients; B = 203 unrelated probands (youngest family members). 
Ages at diagnosis were adjusted for family (A only), study, sex, age at study, 
exposure to mother‟s hyperglycemia in utero, and position of HNF1A mutation. 
Black lines are fitted age at diagnosis linear regression lines. Both y-axis are on 
the same scale in panels A and B.  
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Figure 2. Cumulative incidence of diabetes in 410 HNF1A-MODY patients, by 
type 2 diabetes risk allele count category. Black circles = 9-14 risk alleles, 
N=138; white triangles = 15-16 risk alleles, N=130; black squares = 17-22 risk 
alleles, N=142. Only individuals genotyped for all 15 variants are included. The 
ages at diabetes diagnosis ware adjusted for family, study, sex, age at study, 
exposure to mother‟s hyperglycemia in utero, and position of HNF1A mutation.  
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Supplementary table 1. Effects of individual type 2 diabetes risk variants and 
the combined genetic scores on the age at diabetes diagnosis in 203 HNF1A-
MODY unrelated probands (youngest family members). All effect sizes are in 
years change of age at diagnosis per risk allele. The 203 patients were 
successfully genotyped for all 15 SNPs that were included in the combined genetic 
score. Individual SNP effects are based on risk allele count method. P values are 
unadjusted for multiple testing. Results are presented in order of Table 3 adjusted 
results. 
 

  
Unadjusted 

analysis 
Adjusted analysis‡ 

  
Effect 
Size 

Std 
Error 

P-
value 

Effect 
Size 

Std 
Error 

P-
value 

Individual SNP effects       

Gene region SNP       

HNF1B (TCF2) * rs757210 / rs4430796 -0.64 0.74 0.39 -0.37 0.58 0.52 

SLC30A8 rs13266634 -2.09 0.82 0.011 -1.29 0.66 0.052 

CDKAL1 * rs10946398 / rs7754840 -0.93 0.79 0.24 -0.64 0.62 0.30 

TCF7L2 rs7903146 0.76 0.85 0.37 -0.46 0.69 0.51 

ADAMTS9 rs4607103 0.13 0.89 0.89 -0.89 0.70 0.20 

TSPAN8 rs7961581 -1.15 0.82 0.16 -0.79 0.64 0.22 

JAZF1 † rs864745 -1.23 0.93 0.19 -1.31 0.74 0.078 

FTO * rs8050136 / rs9939609 0.05 0.81 0.95 -0.38 0.64 0.55 

KCNJ11 rs5219 -0.33 0.87 0.71 0.17 0.68 0.81 

CDKN2A/2B rs10811661 -0.54 1.13 0.63 -0.42 0.88 0.64 

WFS1 rs10010131 0.35 0.79 0.66 0.05 0.62 0.94 

CDC123 rs12779790 0.73 0.96 0.45 0.42 0.76 0.58 

HHEX/IDE * rs1111875 / rs5015480 -0.04 0.78 0.96 -0.33 0.61 0.59 

PPARG rs1801282 -0.99 1.37 0.47 0.46 1.08 0.67 

IGF2BP2 rs4402960 0.17 0.83 0.84 0.28 0.66 0.67 

THADA rs7578597 0.65 1.44 0.65 0.67 1.13 0.55 

NOTCH2 † rs2934381 2.41 1.70 0.16 1.70 1.33 0.20 

Combined SNP effect       

Allele count score -0.26 0.21 0.23 -0.28 0.17 0.094 

*At 4 loci different SNPs, representing the same signal, were genotyped by the two study 
centres, in which case they are shown as UK / Norway SNPs.  

† Results for JAZF1 and NOTCH2 variants were available only for UK samples (N=140 
and 139, respectively). 

‡ Adjusted results include study, sex, age at study, presence of intrauterine 
hyperglycaemia, and mutation position (2 groups, according to exon affected, 1-7 or 8-10) 
as covariates in the regression model.
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Supplementary table 2. Effects of individual type 2 diabetes risk variants and 
the combined genetic scores on the age at diabetes diagnosis in 410 HNF1A-
MODY patients, in an adjusted analysis excluding age at study. All effect sizes 
are in years change of age at diagnosis per risk allele. The 410 patients were 
successfully genotyped for all 15 SNPs that were included in the combined genetic 
score. All analyses took into account full family relationships and included a 
random family effect in the regression model. Individual SNP effects are based on 
risk allele count method. P values are unadjusted for multiple testing. Results are 
presented in order of the Table 3 adjusted effect sizes. 

 
Adjusted results 

excluding age at study 
T-test P for 
difference 

between results 
with age at 

study 
  

Effect 
Size 

Std 
Error 

P-value 

Individual SNP effects     

Gene region SNP     

HNF1B (TCF2) * rs757210 / rs4430796 -1.19 0.52 0.023 0.86 

SLC30A8 rs13266634 -1.00 0.59 0.092 0.90 

CDKAL1 * rs10946398 / rs7754840 -1.36 0.52 0.0095 0.48 

TCF7L2 rs7903146 -0.34 0.57 0.54 0.67 

ADAMTS9 rs4607103 0.07 0.62 0.91 0.41 

TSPAN8 rs7961581 -0.79 0.56 0.16 0.72 

JAZF1 † rs864745 (n=296) -0.47 0.64 0.46 0.99 

FTO * rs8050136 / rs9939609 -0.60 0.57 0.29 0.81 

KCNJ11 rs5219 0.20 0.56 0.72 0.47 

CDKN2A/2B rs10811661 -0.79 0.78 0.31 0.59 

WFS1 rs10010131 -0.36 0.55 0.51 0.83 

CDC123 rs12779790 0.22 0.67 0.74 0.86 

HHEX/IDE * rs1111875 / rs5015480 -0.36 0.53 0.50 0.42 

PPARG rs1801282 -0.81 0.90 0.37 0.32 

IGF2BP2 rs4402960 0.72 0.58 0.22 0.70 

THADA rs7578597 0.70 0.93 0.45 0.90 

NOTCH2 † rs2934381 (n=297) 1.31 1.15 0.26 0.75 

Combined SNP effect     

Allele count score, adjusted -0.40 0.15 0.0072 0.80 

 *At 4 loci different SNPs, representing the same signal, were genotyped by the two study 
centres, in which case they are shown as UK / Norway SNPs.  

† Results for JAZF1 and NOTCH2 SNPs were available only for UK samples (N=296 and 
297, respectively). 
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Supplementary table 3. Stratified-by-study analysis of non-polygenic factors, 
individual type 2 diabetes risk variants, and the combined genetic scores on 
the age at diabetes diagnosis in 410 HNF1A-MODY patients. All analyses took 
into account full family relationships and, except for those marked ‡, included a 
random family effect in the regression model All effect sizes are in years change of 
age at diagnosis per risk allele. Individual SNP effects are based on risk allele 
count method adjusted for sex, age at study, presence of intrauterine 
hyperglycaemia, and mutation position. All P values are unadjusted for multiple 
testing. Individual SNP results are in the same order as in Table 3.  
 

  UK (N=298) Norway (N=112) T-test P 
for 

difference   
Effect 
size 

Std 
Error 

P-value 
Effect 
size 

Std 
Error 

P-value 

Non-polygenic factors (without 
genetic score) 

       

Sex (effect w.r.t. females) -3.63 1.06 6.3x10-4 -1.48 1.49 0.32 0.27 

Presence of intrauterine 
hyperglycaemia 

-5.27 0.96 4.1x10-8 -4.58 1.29 4.0x10-4 0.69 

Position of HNF1A mutation -5.27 2.34 0.024 -3.11 5.57 0.58 0.67 

Age at study (per year increase) 0.29 0.03 3.3x10-26 0.30 0.04 1.1x10-13 0.86 

Individual SNP effects        

Gene region SNP        

HNF1B * rs757210 / rs4430796 -0.76 0.57 0.18 -1.53 0.65 0.018 0.45 

SLC30A8 rs13266634 -0.74 0.60 0.22 -0.83 0.28 0.003 0.93 

CDKAL1 * rs10946398 / rs7754840 -1.18 0.53 0.026 -0.08 0.92 0.93 0.29 

TCF7L2 rs7903146 -0.39 0.54 0.48 -1.19 0.55 0.031 0.40 

ADAMTS9 ‡ rs4607103 -0.65 0.61 0.29 -0.70 0.86 0.42 0.96 

JAZF1 † rs864745 -0.46 0.53 0.38 NA NA NA NA 

FTO * rs8050136 / rs9939609 -0.47 0.57 0.41 -0.24 0.63 0.70 0.81 

TSPAN8 ‡ rs7961581 -0.47 0.52 0.37 -0.56 0.82 0.49 0.93 

CDKN2A/2B rs10811661 0.38 0.74 0.61 -1.16 0.40 0.004 0.21 

KCNJ11 rs5219 -0.43 0.59 0.46 0.22 0.94 0.82 0.56 

WFS1 rs10010131 -0.20 0.55 0.71 -0.56 0.80 0.48 0.72 

CDC123 ‡ rs12779790 -0.09 0.64 0.89 0.13 0.96 0.89 0.85 

HHEX-IDE * rs1111875 / rs5015480 -0.002 0.54 1.00 0.34 0.23 0.15 0.70 

THADA rs7578597 0.69 0.87 0.43 -0.45 1.97 0.82 0.54 

IGF2BP2 rs4402960 -0.09 0.55 0.88 1.46 0.90 0.10 0.14 

PPARG rs1801282 0.08 0.92 0.93 1.04 1.25 0.41 0.57 

NOTCH2 † rs2934381 0.82 1.00 0.41 NA NA NA NA 

Combined SNP effects        

Allele count score, unadjusted -0.43 0.20 0.036 -0.73 0.32 0.021 0.43 

Allele count score, adjusted -0.35 0.15 0.020 -0.43 0.24 0.069 0.78 
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*At 4 loci different SNPs, representing the same signal, were genotyped by the two study 
centres, in which case they are shown as UK / Norway SNPs.  

† Results for JAZF1 and NOTCH2 SNPs were available only for UK samples (N=296 and 
297, respectively). 

‡ Because of the small sample size relative to the number of covariates, the random 
family effect could not be fully fitted in the regression model for the Norwegian sample. 
Therefore, for these 3 variants, this term was excluded from the model in both studies (in 
the Exeter sample the results with and without the random family term were nearly 
identical). 
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The field of complex trait genetics has progressed substantially throughout 

the duration of research that is included in this thesis. Owing to the success of 

genome-wide association (GWA) studies, the number of common variants robustly 

associated with common human traits and diseases has substantially increased 

(listed in the NHGRI GWAS catalogue, http://www.genome.gov/26525384). 

Genome-wide association studies are based on two major advancements in the 

field of genetics: the dissection of human genome into distinct linkage 

disequilibrium (LD) blocks, catalogued by the HapMap project 1, 2, and the 

technological advances in high-throughput genotyping. Rather than testing one 

SNP at a time, it is possible to test 300,000 – 1 million SNPs simultaneously, and 

capture up to ~80% of the common (>5% MAF) genetic variation owing to the 

underlying LD structure. Following some essential GWAS procedures such as 

selection of subjects with well characterized phenotypes, as well as stringent 

quality checks of samples and genotypes for artifacts of DNA preparation and 

genotyping process, has become standard practice among many research groups. 

Importantly, though, as demonstrated in Chapter 2, there has been a realization 

that, rather than trying to replicate GWA findings in additional independent cohorts, 

a more powerful approach for discovering the contributing common variants is to 

combine efforts and, since it is often not possible to share raw genotype data, 

perform a meta-analysis of a much larger set of samples. The necessity for 

organized data sharing and agreements has led to the formation of many trait-

specific consortia, discussed below. In such meta-analyses there are usually no 

additional, independent, suitably sized cohorts left to confirm positive associations, 

so only those that reach a conservative statistical significance level, usually 

P<5x10-8, are reported.  

Because different genotyping platforms include different subsets of HapMap 

SNPs, initially it was difficult for many collaborating studies to exchange or 

combine their data, unless they used the same platform. However, it is now 

possible to use genotype imputation programs that combine the information from 

the known genotypes and LD structure around them to infer missing genotypes of 

nearly 2.5 million HapMap SNPs 3. Although sharing of individual level data is 
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often not possible because of ethical restrictions, Chapter 3 describes a combined 

analysis of association statistics (effect sizes and p-values) of these imputed 

SNPs, a meta-analysis approach that is now being adopted for many other traits 

and diseases.  

Common variants have small effects and have explained small 

proportion of the heritable component 

As Chapters 2 and 3 demonstrate, many of the associated variants have 

modest effect sizes and can only be identified once a GWA study has large 

enough sample size and is sufficiently powered to detect them. In many cases, 

including height, the model polygenic trait used here, only a small fraction of the 

heritable component is accounted for. This may be because GWA studies are not 

designed to detect rare and structural variants, gene-by-gene and gene-by-

environment interactions 4, or epigenetic effects 5, all of which have been 

suggested to contribute to the heritability of the trait (although epigenetic effects by 

definition do not, as explained below). Unsurprisingly, this perceived lack of 

success has caused some to start questioning the usefulness of performing ever-

larger GWA studies and investing resources into what appears to be diminishing 

genetic returns, since one will either find associations with random variants across 

the genome, or the effect sizes will be so small that they become irrelevant 6. 

This thesis tackles some of these questions by performing the largest GWA 

study to date, as part of the Genetic Investigation of Anthropometric Traits 

(GIANT) consortium. The Chapter 2 study 7 was published in parallel with another 

three large height GWA studies 8-10. It was apparent that each study was in fact 

underpowered to detect many of the associations it reported (at the genome-wide 

significance level), suggesting that more could be discovered if the sample sizes 

are increased. This led to the formation of the GIANT consortium and data sharing 

between many research groups. Crucial to this was the availability of imputation 

methods, which allowed for meta-analysis of summary statistics of 2.5 million 

HapMap SNPs polymorphic in populations of European origin, regardless of which 
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one of the many available genotyping platforms was used by each individual 

group.  

In addition to GIANT, several other international consortia have been 

established over the past couple of years to investigate common diseases and 

related intermediate traits. These include the Diabetes Genetics Replication and 

Meta-analysis (DIAGRAM) consortium, a collaboration between DGI, FUSION and 

WTCCC-T2D groups that were part of the initial wave of successful GWA studies 

11-15. The first meta-analysis by DIAGRAM provided evidence for 6 additional type 

2 diabetes loci 16, and since then the consortium has been expanded to include 

additional cohorts. Other consortia have been established to look at intermediate, 

often quantitative, disease traits. A good example is the Meta-Analyses of Glucose 

and Insulin Related Traits Consortium (MAGIC), which has investigated diabetes-

related traits in non-diabetic individuals. The initial analysis identified MTNR1B as 

a novel fasting glucose and type 2 diabetes locus 17, and was followed by an even 

larger, imputation facilitated meta-analysis that identified nine novel loci associated 

(P<5x10-8) with fasting glucose and one with fasting insulin, five of which were also 

associated, in the expected direction, with type 2 diabetes 18. Interestingly, one of 

the five signals, in ADCY5 gene, was also associated with birth weight in the Early 

Growth Genetics (EGG) Consortium meta-analysis of six GWA studies with 

imputed genotypes 19.  

Despite the increasing number of variants identified, the percentage of the 

explained genetic variance still remains relatively small for most common traits 

studied so far. The GIANT consortium height study, presented in Chapter 3, with a 

sample size of over 130,000 individuals showed that some of the genetic 

component of the „missing heritability‟ can indeed be found among additional 

common variants of small effect sizes identified by expanding the sample size and 

thus increasing power to detect them. However, the proportion of the genetic 

variance explained for height is still only ~20%, and up to 50% if all variants of 

similar effect sizes are identified. The study found no evidence that epistasis or 

non-additive effects are associated with height. Although it is often suggested that 
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these and epigenetic effects might explain additional heritable variance, these 

factors do not contribute to genetic variance because they are not part of the 

heritability calculations (ratio of additive genetic factors to total phenotypic 

variation) 20. The question then remains, where is the „missing‟ genotypic 

heritability, and what can our knowledge of the associated variants be used for?  

Insights into genetic architecture and biological mechanisms 

Although it is possible that the associated variants are tagging rare, as yet 

unidentified, causal variants of larger effects, the GIANT height study does not rule 

out the common variant / common disease hypothesis 21. A recent study 

suggested that most of the heritability is not missing, but has not yet been 

detected because most of it can be explained by large number of common variants 

with effect sizes too small to reach statistical significance in the GWA studies 22. It 

is likely that insertions/deletion or large structural variants contribute to common 

traits. Although these are not represented directly on the genotyping platforms, 

they can be assessed indirectly because many of the SNPs on the chips are tags 

for a large number of known copy-number variants (CNVs). However, the GIANT 

height study did not identify any strong associations, and this has mainly been the 

case for common complex diseases. Rare deletions and/or duplications have, so 

far, only been shown to associate with schizophrenia 23, 24 and autism 25, while 

some of the signals associated with autoimmune diseases and type 2 diabetes do 

tag common CNVs 26. 

Chapters 2 and 3 show that, even though many common variants for height 

have been identified, they are not randomly distributed across the genome. 

Rather, they implicate functionally relevant genes and pathways, and are 

themselves functional (amino acid changing) polymorphisms more often than 

expected by chance. Therefore, the identified common variants are likely to 

implicate genes relevant to trait or disease under study, thus providing a number 

of novel candidate regions for drug and therapeutic targeting, or for mutations in 

biologically related monogenic diseases with unknown causes. Even though the 

proportion of variance explained by the common variants is relatively small, the 
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increase in our understanding of the biological mechanisms disease aetiology may 

be substantial.  

Several interesting features of the common trait architecture have emerged 

through the height studies: there are multiple variants with independent effects at 

individual gene loci (allelic heterogeneity), and the same variants can affect 

multiple traits (pleiotropy). Thus, they may represent the genetic links between 

traits and diseases that are suspected to share some of their aetiology, and 

provide cause/effect distinctions between those that the epidemiological studies 

have shown to be correlated. For example, a variant in LIN28B gene that is 

associated with reduced adult height 10 is also associated with earlier onset of 

puberty 27, 28, which is consistent with epidemiological observations. 

The GIANT height study has provided several good candidate genes that 

might have mutations responsible for as-yet unexplained skeletal and 

developmental disorders. For example, the study identified associations in FGFR4 

and STAT2 genes, which have similar functions to already known human growth-

related genes, FGFR3 and STAT5B, respectively. In type 2 diabetes, common 

variants in the KCNJ11 gene region have only small effect on the disease, yet the 

membrane protein coded by this gene forms a potassium channel that is the target 

of sulphonylureas, major anti-diabetic drugs that act by increasing insulin from the 

pancreatic beta cells. It is worth noting that KCNJ11 was already known to the 

diabetes community before the GWA studies, because its association with 

diabetes was discovered through candidate gene studies 29, 30. Among the type 2 

diabetes genes identified through the GWA approach, a zinc transporter gene 

SLC30A8 seems particularly interesting for drug targeting, since it has been 

shown that down-regulation of the gene in beta cells leads to reduced insulin 

secretion in response to hyperglycemia 31.  

Disease prediction 

The immediate utility of disease associated variants discovered through 

GWA studies appears to be the identification of molecular pathways involved in 
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the disease and intermediate quantitative traits, which should eventually lead to 

new therapeutic targets. In the long-term, there is the prospect of disease 

susceptibility prediction, which would be useful for diseases where preventative 

measures are effective. Chapter 4 assesses how well the variants robustly 

associated with type 2 diabetes predict disease status. The study shows that they 

would not be useful for disease prediction, and add little to the discriminatory 

power of other well-established diabetes risk factors. However, a combined 

genetic score could be used to identify individuals with high genetic predisposition 

to disease.  

One of the limitations of this study was that it was not prospective 

population-based study, and consequently, the predictive power of the variants 

could not be accurately determined. Since then, several prospective studies have 

assessed the combined effect of the known type 2 diabetes variants 32-34. They 

have all reached similar conclusions – the combined genetic score had only 

modest ability to predict the future development of diabetes (all had AUC of 

around 0.6), and provided only slightly improved prediction when added to the 

other known risk factors. 

Combined with an individual‟s lifestyle and environmental exposures, the 

genetic information can be then used to guide decisions about disease prevention, 

monitoring and management. For example, those at higher genetic risk of breast 

and bowel cancer could be offered more regular screening. Similar discriminatory 

ability of the combined genetic score was observed for the 20 height associated 

variants described in Chapter 2. This information may be used in medicine, for 

example to determine if a child‟s growth is reaching its genetic potential, as well as 

in forensics 35. 

Another clinical application of common variants may be in better clinical 

characterisation of monogenic diseases, which are often heterogeneous in terms 

of disease onset, severity, progression and other clinical characteristics. A good 

starting point is to investigate variants that have been shown to associate with 

biologically related common diseases and traits. This is the case in Chapter 5, 
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which showed that HNF1A-MODY patients with higher load of common type 2 

diabetes predisposing variants had earlier age at diabetes diagnosis, and required 

smaller load of other risk factors, namely their BMI, to get the disease. Another 

disease where common variants have been shown to have a strong modifying 

effect includes sickle cell anaemia, where foetal haemoglobin (HbF) expression is 

an established and heritable disease modifier, such that high HbF levels lead to 

slower disease progression and fewer complications in patients with the sickle cell 

disease. Several common variants have now been shown to affect HbF 

persistence in adults 36, 37, so an immediate clinical application would be the ability 

to better predict disease severity and, therefore, improve disease management. In 

the long term, these variants are potential targets of new therapies based on 

increasing HbF expression. 

Future directions 

Most of the associated signals detected through GWA studies are not the 

causal variants themselves, but are detected because they are correlated with 

rarer, more penetrant variants. A recent study suggested that many of the current 

GWA signals could reflect effects of several rare, deleterious variants that have 

emerged more recently, on the same haplotypes as the common SNP for which 

the „synthetic‟ association is observed 38. However, rare variants cannot be directly 

detected through the current GWA approaches, and imputation of deeper sets of 

SNPs can only help to narrow down the region containing the causal variant(s).  

There are several emerging tools and technologies that can be used in 

future studies to get closer to the causal variants. These include deeper imputation 

with 1000 Genomes data, fine mapping of the associated loci with custom-

designed genotyping chips, and studying more non-European populations that 

have different LD structure (especially African populations, who have shorter LD 

blocks and thus narrower regions of associated loci). One fine-mapping project 

currently underway is the genotyping of samples with metabolic trait phenotypes 

on the metabochip, an Illumina custom-made chip based on GWA results and 

designed by several collaborating consortia including DIAGRAM, MAGIC and 
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GIANT. The most direct way of detecting rare functional variants, however, is 

sequencing of the associated regions, possibly in samples enriched for genetic 

predisposition, for example those with familial background, or at the extremes of 

the trait distribution or young-onset disease cases. 

This was the approach I took to search for rare variants in height genes 

selected from the 20 presented in Chapter 2: HMGA2 and ZBTB38 that contained 

the two most-associated signals, JAZF1 that is also a type 2 diabetes locus; and 

two hedgehog signaling genes IHH and HHIP. After designing primers to cover all 

exons and flanking regulatory and intronic regions, these genes were sequenced 

in a panel of 48 tall and 48 short individuals at the extremes of the height 

distribution in the Exeter Family Study (EFS) cohort. Several novel missense 

variants were identified, and so far those in JAZF1 have been genotyped in 1700 

unrelated individuals from the EFS cohort. These included 229Phe>Leu variant 

initially seen in two tall individuals, and an intron4 variant identified in four short 

individuals. Genotyping results, shown in the table below, show a directionally 

consistent trend for association, but are not statistically significant and the new 

variants probably do not confer a major effect on height. Sequencing of JAZF1 in 

300 type 2 diabetes young-onset cases and 300 controls is currently under way. 

Variant Genotype Genotype count Mean Z-height P-value 

F229L 

AA 

AG 

GG 

1681 

6 

0 

-0.007 

0.418 

NA 

0.296 

Intron4 
(ex3+68nt) 

GG 

GA 

AA 

1591 

92 

1 

0.006 

-0.125 

-0.931 

0.164 

 

Owing to the emergence to the next generation sequencing technologies 

and the substantial reduction in costs, many researchers are now embarking on 

whole-exome, whole-genome and sequence-capture sequencing projects. Whole 

genome sequencing will clearly be needed to identify rare variants where 
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associated loci lie outside the known gene and regulatory regions, although 

proving causality in such cases will be more difficult. Examples of common 

disease rare variant detection by whole genome/exome sequencing are still rare. 

The most exciting success story is perhaps in type 1 diabetes, where 

resequencing of exomes and splice sites identified four rare protective variants in 

IFIH1 gene 39, a locus already implicated through type 1 diabetes GWA studies.  

To follow up the height GWA study, a Nimblegen Capture Array has been 

designed to cover 3.7 megabases around the height associated loci, including 

entire smaller regions between recombination hotspots, and exons of all genes in 

larger regions. Four individuals have now been „captured‟ on this array and 

sequenced on one of the next-generation sequencers, the Illumina Genome 

Analyzer II. Furthermore, for quality control purposes the same individuals have 

been genotyped on the Affymetrix 6.0 platform, and the sequencing and 

genotyping data will be analysed shortly. In a separate multi-centre project, we are 

currently sequencing 1500 type 2 diabetes patients and 1500 controls.  

Undoubtedly, as the targeted sequencing within my own research group 

has hinted, a large number of novel non-synonymous variants will be identified, 

and deciding which are functionally relevant will be the next major challenge. 

Furthermore, as the preliminary metabochip analyses are already demonstrating, 

genotyping and correctly calling rare variants is tricky because the approach is 

based on genotype clustering. In my project I knew which samples had the rare 

variants and was, therefore, able to include positive controls that served as rare 

genotype reference during clustering process. However, many of the next-

generation sequencing projects use pooled samples to reduce costs, in which 

case sample tagging approaches can be used to identifying which rare variant 

comes from which sample. New developments in genotyping methodology and 

clustering algorithms are needed to facilitate the search for rare variants in 

common traits and diseases. 
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Conclusions 

Using human height, type 2 diabetes and HNF1A-MODY as examples of a 

quantitative trait, polygenic disease and monogenic disease, respectively, this 

thesis has explored the role of common genetic variation identified through 

genome-wide association approaches in these types of human traits. It has 

demonstrated that common variants are not only statistically associated with 

common traits and diseases, but can reveal novel biology, disease aetiology, and 

genetic architecture; explain epidemiological observations; help better characterise 

both complex and single-gene diseases; and have potential to be used in disease 

prediction, therapeutic targeting, and personalised disease management. It is clear 

that much of the near future work in complex traits genetics will focus on the 

search for rare variants of larger effects, which may underlie many of the current 

associations with the common variants of modest effects. The already established 

collaborations within the common disease genetics community, and the constantly 

reducing costs of whole genome sequencing, promise to yield many exciting 

findings in near future. 
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