

THE APPLICATION OF SEDIMENT SOURCE FINGERPRINTING TECHNIQUES TO RIVER FLOODPLAIN CORES, TO EXAMINE RECENT CHANGES IN SEDIMENT SOURCES IN SELECTED UK RIVER BASINS

Submitted by Stephen Haley To the University of Exeter as a thesis for the degree of Doctor of Philosophy in Geography

This thesis is available for Library use on the understanding that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Stephen M. Haley (November, 2010)

ABSTRACT

In recent years there has been an increasing awareness of the detrimental influence of diffuse sources of pollution on aquatic systems and of the integral role played by sediment in the mobilisation and transport of pollutants. The recognition of the environmental, societal and economic importance of the ecological health of aquatic environments has led to a change in emphasis regarding agricultural and environmental policy. To implement successful delivery of emerging policy requirements, there is a current need to have an enhanced understanding of the relationship between different forms of land use and sources of diffuse pollution, particularly sources of fine sediment. To understand the potential impacts of future land use changes, including environmental conservation measures on sources of sediment, it is useful to consider them within a longer-term context. This study has successfully applied the sediment source fingerprinting technique to floodplain overbank sediment cores in a retrospective study of six diverse UK river catchments with identified sediment problems. The varying estimates of relative sediment contributions from differing sources have been compared to known land use change in the study catchments over concurrent time periods, to explore any associations which might be apparent. Over the last 40 years, the increased cultivation of high erosion risk crops, such as those which are harvested late in the season (e.g. maize) and those which are sown in the autumn (e.g. winter wheat), has contributed disproportionately to the total sediment load relative to the area of land occupied by such cultivation. Increased stocking densities have resulted in increased relative sediment contributions from grassland sources, particularly intensively managed temporary grassland, but can have an even greater impact on sediment contributions derived from channel bank sources. The installation and maintenance of drainage for agriculture or for flood risk management has resulted in increased relative sediment loads from channel bank and associated sub-surface sources. Through the further development of such research, the efficacy of mitigation measures can be tested against evidence-based historic trends and those management approaches which provide identifiable improvements can be developed as best practice options for future land management targeted at reducing the negative impacts of excessive sediment ingress to river systems. The design of the source fingerprinting methodology used in this work was based on an established successful approach and this was developed further through the incorporation of a number of refinements designed to improve the robustness of the technique and expedite its implementation.

TABLE OF CONTENTS

ABSTRACT	1
CONTENTS	2
LIST OF FIGURES	9
LIST OF TABLES	19
ACKNOWLEDGEMENTS	25

CONTENTS

CHA	PTER 1 – INTRODUCTION	26
	1.1 Background: The sediment problem	26
	1.2 Policy: drivers, development and delivery	28
	1.3 Catchment sediment sources – identification,	35
	monitoring and quantifying	
	1.4 Sediment source fingerprinting	37
	<i>1.4.1 Development of the sediment source fingerprinting technique</i>	38
	1.4.2 Sediment source fingerprinting of historical sedimentation	40
	1.5 Land use change	41
	1.6 Emerging issues for future land use change	46
	1.6.1 Food security	46
	1.6.2 Bioenergy	47
	1.6.3 Carbon sequestration	47
	1.7 Summary	48
	1.8 Aims and objectives	49
	1.8.1 Aims	49
	1.8.2 Objectives	49
	1.9 Thesis structure	50

CHAPTER 2 - FIELD AND LABORATORY METHODS	52
2.1 Introduction	52
2.2 Study catchment selection	53
2.3 The field programme	55
2.3.1 The collection of representative catchment source material samples	55
2.3.2 The collection of representative floodplain sediment	56
2.4 Laboratory preparation procedures	63
2.5 Laboratory analytical procedures	65
2.5.1 Elemental property analysis by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)	65
2.5.2 Preparation of sediment samples for ICP-MS analysis	66
2.5.3 ICP-MS analysis	67
2.5.4 Particle size analysis by laser diffraction spectroscopy	67
2.4.5 Sample preparation for particle size analysis	68
2.5.6 Radionuclide assay	71
2.6 Summary	77
CHAPTER 3 - STATISTICAL METHODS AND REFINEMENT OF THE FINGERPRINTING TECHNIQUE	78
3.1 Introduction	78
3.2 Statistical methods: approach outline	78
3.3 The particle size effect correlation test	82
3.4 Particle-size effect correction	86
3.5 The property concentration range test	87
3.6 Source discrimination: the Kruskal-Wallis <i>H</i> -test	90
3.7 Source discrimination: Multivariate Discriminant Function Analysis	91
3.8 Application of the mixing model	93
3.9 Sediment source apportionment	98

3.10 Historical catchment land use and agricultural management changes	99
3.11 Summary	101
CHAPTER 4 - THE RIVER TORRIDGE CATCHMENT:	102
RESULTS AND INTERPRETATION	
4.1 Introduction	102
4.2 The River Torridge catchment description	102
4.3 Floodplain site selection	105
4.4 ¹³⁷ Cs radioisotope geochronology	107
4.5 The sediment source fingerprinting technique	109
4.5.1 Source samples	109
4.5.2 Particle size effects	109
4.5.3 Particle-size composition	111
4.5.4 The property concentration range test	113
4.5.5 Source discrimination: the Kruskal-Wallis H-test	114
4. 5.6 Source discrimination: Multivariate Discriminant Function Analysis	115
4.6 Application of the mixing model	119
4.7 Sediment source ascription and historical catchment land use changes	119
4.8 Conclusion	127
CHAPTER 5 - THE RIVER AXE CATCHMENT:	130
RESULTS AND INTERPRETATION	
5.1 Introduction	130
5.2 Study catchment description	130
5.3 Floodplain site selection	133
5.4 ¹³⁷ Cs radioisotope geochronology	134
5.5 The fingerprinting technique	135

	5.5.1 Source samples	135
	5.5.2 Particle size effects	136
	5.5.3 Particle size distribution	138
	5.5.4 The fingerprint property concentration range test	140
	5.5.5 Source discrimination: the Kruskal-Wallis H-test	141
	5.5.6 Source discrimination: Multivariate Discriminant Function Analysis	142
	5.6 Application of the mixing model	147
	5.7 Sediment source apportionment and historical catchment land use changes	147
	5.8 Conclusion	155
CHAP	FER 6 - THE RIVER ARROW CATCHMENT:	158
RESUI	LTS AND INTERPRETATION	
	6.1 Introduction	158
	6.2 River Arrow catchment description	158
	6.3 Floodplain site selection	161
	6.4 ¹³⁷ Cs radioisotope geochronology	163
	6.4 The fingerprinting technique	165
	6.4.1 Source samples	165
	6.4.2 Particle size effects	165
	6.4.3 Particle-size distribution	167
	6.4.4 The fingerprint property concentration range test	169
	6.4.5 Source discrimination: the Kruskal-Wallis H-test	171
	6.4.6 Source discrimination: Multivariate Discriminant Function Analysis	172
	6.8 Application of the mixing model	176
	6.9 Sediment source ascription and historical catchment land use changes	177
	6.10 Conclusion	187

CHAPTER 7 - THE RIVER WAVER CATCHMENT: 18	39
---	----

RESULTS AND INTERPRETATION

7.1 Introduction	189
7.2 The River Waver catchment description	189
7.3 Floodplain sampling site selection	192
7.4 ¹³⁷ Cs Radioisotope geochronology	194
7.5 The sediment source fingerprinting technique	197
7.5.1 Source samples	197
7.5.2 Particle size effects	197
7.5.3 Particle-size distributions	198
7.5.4 The fingerprint property concentration range test	201
7.5.5 Source discrimination: the Kruskal-Wallis H-test	202
7.5.6 Source discrimination: Multivariate Discriminant Function Analysis	204
7.6 Application of the mixing model	207
7.7 Sediment source apportionment and historical catchment land use changes	208
7.8 Conclusion	216
CHAPTER 8 - THE RIVER RYE CATCHMENT:	218
RESULTS AND INTERPRETATION	
8.1 Introduction	218
8.2 The study area: the River Rye catchment	218
8.3 Floodplain site selection	221
8.4 ¹³⁷ Cs radioisotope geochronology	223
8.5 The sediment source fingerprinting technique	224
8.5.1 Source samples	224
8.5.2 Particle size effects	225
8.5.3 Particle-size distribution	225

	8.5.4 The fingerprint property concentration range test	229
	8.5.5 Source discrimination: the Kruskal-Wallis H-test	231
	8.5.6 Source discrimination: Multivariate Discriminant Function Analysis	232
	8.6 Application of the mixing model	235
	8.7 Sediment source apportionment and historical catchment land use changes	236
	8.8 Conclusion	242
CE	IAPTER 9 - THE RIVER WENSUM CATCHMENT:	243
RE	SULTS AND INTERPRETATION	
	9.1 Introduction	243
	9.2 The River Wensum catchment description	243
	9.3 Floodplain Site Selection	246
	9.4 ¹³⁷ Cs radioisotope geochronology	249
	9.5 The sediment source fingerprinting technique	252
	9.5.1 Source samples	252
	9.5.2 Particle size effects	252
	9.5.3 Particle-size composition	254
	9.5.4 The fingerprint property concentration range test	255
	9.5.5 Source discrimination: the Kruskal-Wallis H-test	258
	9.5.6 Source discrimination: Multivariate Discriminant Function Analysis	259
	9.6 Application of the mixing model	263
	9.7 Sediment source apportionment and historical catchment land use changes	264
	9.8 Conclusion	272
CE	IAPTER 10 - CONCLUSIONS	274
	10.1 Introduction	274
	10.2 Summary of results obtained from the individual case studies	275

77 78 79 80 81 82 82
79 80 81 82
80 81 82
81 82
82
-
-
83
84
86
87
87
89
89
290
90
91
292
93
93 93
93
93 94