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Chapter 5

1. Summary

Drinking is a fundamental part of the osmoregulatory strategy for teleosts occupying a 

hyper-osmotic environment and the ability to effectively absorb fluid across the intestine is 

necessary to prevent dehydration and maintain hydromineral balance. Fluid absorption has 

previously been characterised as almost exclusively dependent on NaCl cotransport. 

However, not only can intestinal HCO3
- secretion drive fluid absorption directly (via Cl-/ 

HCO3
- exchange) but also indirectly by precipitating Ca2+, and to a lesser extent Mg2+, to 

their respective carbonates thereby removing the osmotic influence of these ions and 

enhancing the osmotic gradient for fluid absorption, thus representing a novel mechanism 

of water transport. The present study set out to further test this hypothesis and attempt to 

elucidate the role of carbonate precipitation in fluid absorption and Ca2+ homeostasis by 

perfusing the European flounder intestine in vivo with salines containing various 

concentrations of Ca2+, 10 mM (Control), 40 mM and 90 mM, to exaggerate HCO3
- 

secretion and precipitation. The rate of CaCO3 precipitation increased more than 4-fold 

with only a modest increase in fluid absorption at 40 mM compared with the control 

treatment. However, at 90 mM Ca2+, not only was the rate of precipitation even higher, but 

fluid absorption increased significantly (by more than 50 %), representing a dramatic 

increase in fluid transport. Despite the vastly higher rates of precipitation in the 40 mM and 

90 mM treatments this did not lead to concomitant reductions in rectal fluid osmolality 

which were expected in order to drive this increased water absorption. However, since only 

the bulk fluid osmolality was measured it was impossible to detect the localised osmotic 

gradients that would be created by CaCO3 precipitation within the mucus layer. In spite of 

this, the increase in fluid transport was independent of the net Na+ flux thus negating a role 

for NaCl cotransport, but was instead dependent on net Cl- absorption. Analysis of the ion 

flux data revealed a missing cation, identified as H+, based on strong correlations with the 

independent measurements of intestinal HCO3
- secretion and excretion of acidic 

equivalents to the external seawater. Not only did this analysis corroborate H+ as the 

missing cation, but suggested that HCO3
- secretion was produced from the endogenous 

hydration of CO2, even under hyper-stimulated conditions, and predicted that the fluid 

absorbed in association with HCO3
- secretion and precipitation would be hypo-osmotic to 

the perfusion saline thus accounting for the significant 18 mOsm kg-1 reduction in 
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osmolality of the blood plasma. Based on this analysis, a model has been proposed 

explaining how CO2 moves between various compartments of the intestine, linking HCO3
- 

production, secretion and CaCO3 formation with fluid absorption. The present work 

therefore provides additional and convincing evidence for the participation of HCO3
- 

production, secretion and CaCO3 precipitation in a novel mechanism of water transport by 

the marine teleost intestine, along with discussion of the role for carbonate precipitation in 

systemic Ca2+ homeostasis.

2. Introduction

The ability of the intestine to absorb fluid is essential for all vertebrates, vital to 

replenishing losses of water and electrolytes during routine physiological processes such as 

digestion and also coping with extreme, dehydrating environments such as seawater. For 

marine teleosts, drinking is a key part of their strategy for replacing lost water and the 

intestine must therefore be capable of effectively absorbing fluid from imbibed seawater. 

Since the influential work of Homer Smith (1930) fluid transport by the intestine of marine 

fish has been associated with Na+ and Cl-, and some of the earliest in vitro and in vivo 

experiments on this tissue have shown that fluid can move in the absence of, or even 

against an osmotic gradient, linked to the energy-dependent absorption of NaCl (House and 

Green, 1965; Skadhauge, 1969). 

2.1 A historical perspective on fluid transport

From previous studies of the isolated mammalian intestine, Curran and Solomon (1957) 

had first proposed that water absorption was passive, following the active transport of 

solutes (Na+ and Cl-) from the lumen. In addition, absorption was also found to take place 

against a transepithelial osmotic gradient (Parsons and Wingate, 1961a), and the absorbed 

fluid was characteristically iso-osmotic to the bathing medium (Curran, 1960). These 

observations all led up to the publication of a simple three compartment, double membrane 

model by Curran and MacIntosh (1962). This system proposed a hyper-osmotic, intra-

epithelial compartment arising from active solute transport across the outer membrane, 

which would passively draw water into this compartment, and following a consequent rise 
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in hydrostatic pressure, force the absorbed fluid out across a second inner membrane. The 

identity of this intra-epithelial compartment was suggested by Whitlock and Wheeler 

(1964) as being analogous to the lateral inter-cellular space (LIS). These ideas were 

subsequently expanded and refined by Diamond and Bossert (1967) to produce their 

“standing gradient hypothesis” of solute-linked water transport. This described active 

solute transport into the LIS which establishes a localised region of hyper-osmolarity next 

to the tight junction drawing in water from adjacent cells and creating a standing osmotic 

gradient along the LIS, with the increased hydrostatic pressure forcing the fluid out across 

the basement membrane. 

While many of the assumptions and predictions made by this model which include the 

clustering of solute pumps (Na+-K+-ATPase) at the tight junction end of the LIS, the 

relatively low hydraulic permeability of the lateral membranes and the possibility of ‘leaky’ 

tight junctions, are now considered unnecessary or incorrect (reviewed by Schultz, 1998; 

Spring 1998; 1999), the basic features of this model still form the dominant viewpoint of 

how water is absorbed across epithelia like the intestine. Even though developments in 

molecular and cell biology have significantly enhanced our understanding of water 

transport, the most prominent being the discovery of transmembrane water channels, 

known as aquaporins (Preston et al., 1992; Agre et al., 2002), there still remain questions 

and controversies underlying the specific mechanisms and pathways of water transport 

(Spring, 1999; Schultz, 2001; Reuss and Hirst, 2002; Spring, 2002; Chapter 1, Section 3.3). 

Despite this the vast majority of physiologists accept that the driving force for fluid 

transport are localised osmotic gradients across the cell membrane, where the movement of 

water is considered: a) passive, b) secondary to net solute transport in the same direction 

(Figure 5.1), and c) iso-osmotic to the bathing medium, all in agreement with the basic 

principles of the solute-coupled model developed more than 40 years ago (Spring 1999; 

Schultz, 2001).

Active solute transport

Passive water absorption

Tight junction Lateral inter-cellular space

Sub-epithelia

MUCOSAL SEROSAL

Active solute transport

Passive water absorption

Tight junction Lateral inter-cellular space

Sub-epithelia

MUCOSAL SEROSAL
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Figure 5.1: A simple illustration of solute-coupled fluid absorption across an epithelia, 

where solutes (red arrows) from the lumen will enter the cell across the apical membrane 

(e.g.   via   NaCl co-transport) and move across the basolateral membrane into the lateral   

inter-cellular space (LIS) creating a region of localised hyper-osmolarity. Water (blue 

arrows) follows passively along the osmotic gradient through either transmembrane 

pathways (or potentially across the tight junction) and iso-osmotic fluid exits at the base of 

the LIS (Modified from Randall   et al  ., 1997).  

2.2 The mechanism of intestinal fluid transport in teleosts

The ideas behind the solute-coupling model shown in Figure 5.1, and the involvement of 

Na+-coupled transport (i.e. apical NaCl cotransport), were largely the product of original 

experimental observations on mammalian epithelia such as the gall bladder (Diamond, 

1964; Whitlock and Wheeler, 1964), small intestine (Curran and Solomon, 1957; Curran, 

1960; Parsons and Wingate, 1961b) and renal proximal tubule (Green and Giebisch, 1984). 

By comparison, the mechanism of fluid transport is not considered to be exceptionally 

different in the marine teleost intestine that receives large amounts of Na+ and Cl- from 

imbibed seawater (House and Green, 1965; Skadhauge, 1969; 1974), and in terms of hypo-

osmoregulation has been characterised as almost exclusively absorbing NaCl (Loretz, 

1995; Karnaky, 1998), accommodating the characteristics of the solute-linked water 

transport model discussed above. 

172



Chapter 5

However, drinking seawater presents the gastrointestinal tract with the unique challenge of 

not only dealing with high concentrations of Na+ and Cl-, but also coping with large 

amounts of divalent ions (Ca2+, Mg2+ and SO4
2-) that are also present. The bicarbonate-rich, 

alkaline nature of the intestinal fluids (pH 8-9) created by HCO3
- secretion are quite 

different from mammals (~pH 7.4) and are a prominent feature of teleosts occupying a 

hyper-osmotic environment (Wilson, 1999; Grosell, 2006), and to some extent for all fish 

that drink seawater (Taylor and Grosell, 2006b). Despite observations of alkaline intestinal 

fluids and precipitated calcium carbonate (CaCO3) from as far back as the work of Smith 

(1930), who incidentally wrote that they were of “no significance”, it is only in the past 

two decades that there has been considerable insight made into the novel, functional 

aspects of HCO3
- secretion and CaCO3 precipitation.

2.3 The role of intestinal HCO3
- secretion and precipitation in fluid transport

For almost all species examined so far the secretion of HCO3
- is mediated by apical Cl-

/HCO3
- exchange (Ando and Subramanyam, 1990; Grosell and Jensen, 1999; Grosell et al., 

2001; Wilson et al., 2002; Grosell et al., 2005; Kurita et al., 2008), produced largely 

endogenously from the hydration of CO2 within the epithelia (Wilson et al., 1996; Wilson 

and Grosell, 2003; Grosell et al., 2005; Grosell and Genz, 2006; Present study). In addition 

to the protons (H+) yielded from the hydration of CO2, the exchange of HCO3
- for Cl- will 

result in a net gain of osmolytes by the cell (since the osmotic pressure exerted by CO2 is 

negligible), and therefore makes a direct contribution to solute-linked water absorption, 

supplementary to NaCl cotransport, as demonstrated for the European flounder (Grosell et 

al., 2005). 

Compared to Na+ and Cl-, the divalent ions (Ca2+, Mg2+ and SO4
2-) are poorly absorbed 

along the intestine, and as a consequence of solute-linked water transport they become 

increasingly concentrated. However, the alkaline nature of the intestinal fluids support the 

production of carbonate precipitates which were found to be rich in Ca2+ (and to a lesser 

extent Mg2+). Having eliminated specific roles in relation to feeding and acid-base 

regulation, it was suggested their formation was involved in the process of osmoregulation 

by preventing the build-up of these ions which would otherwise accumulate with adverse 

effects on the osmotic gradient for fluid absorption (Humbert et al., 1986; Walsh et al., 

1991; Wilson et al., 1996). 
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A simple theoretical treatment, based on the concentrations of ions entering and leaving the 

gut, showed that by secreting HCO3
- and removing Ca2+ as CaCO3, the ion content of the 

intestinal fluid could be reduced by approximately 70 mM, thus offering a considerable 

osmotic advantage in terms of promoting fluid absorption (Wilson et al., 2002). In addition 

to the direct role of Cl-/HCO3
- exchange in fluid absorption by the teleost intestine (Grosell 

et al., 2005), it was hypothesised that the production of carbonate precipitates would also 

have an indirect role in facilitating water absorption (Wilson et al., 2002). What makes this 

idea unique in terms of the accepted understanding of fluid transport is that it does not rely 

on net solute absorption, followed by osmotically obliged water in the same direction, but 

rather the precipitation of CaCO3 creates the osmotic gradient for water absorption by 

reducing the osmolality of the fluid within the intestine, therefore representing a novel 

mechanism of water transport in vertebrate epithelia (Wilson et al., 2002).

Wilson et al. (2002) proceeded to put these observations to the test, presenting the first 

evidence linking HCO3
- secretion, carbonate precipitation and osmoregulation after 

perfusing the intestine of the European flounder in vivo with saline containing 20 mM Ca2+, 

to deliberately stimulate HCO3
- secretion and precipitation, and collecting the expelled 

fluid and precipitates. Overall, HCO3
- production and secretion was increased by 57 % 

(compared to a control perfusion saline containing 5 mM Ca2+). Almost all the additional 

15 mM Ca2+ could be accounted for as CaCO3 and was associated with a significant 

reduction in the osmolality of the gut fluid as predicted, and interestingly, a reduction in 

blood plasma osmolality. However, after 72 hours of perfusion there was only a small 4 % 

increase in water absorption which was not significantly different from the control.

The proposal of a novel mechanism of water transport is an intriguing possibility but there 

still remains only indirect evidence in support of this hypothesis. Using the same perfusion 

technique as Wilson et al. (2002), the present study set out to exaggerate the process of 

precipitation even further by perfusing the intestine with higher concentrations of Ca2+, 40 

mM and 90 mM, along with 10 mM Ca2+ as a control, in an attempt to try and resolve the 

effects of CaCO3 production on fluid transport. These Ca2+ concentrations would be 

equivalent to the amount being received by the intestine if the fish were drinking normal 

(10 mM Ca2+), double (20 mM Ca2+) and triple (30 mM Ca2+) strength seawater and this 

was being matched by a proportional increase in drinking rate (i.e. 20 × 2 = 40 mM, and 30 

× 3 = 90 mM).
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2.4 The role of CaCO3 precipitation in Ca2+ homeostasis

The chemistry of Ca2+ is unique among the elements, possessing a set of chemical and 

physical properties which enable the ion to interact with a multitude of organic and 

inorganic molecules, thus conferring a diverse set of functions within the body (Williams, 

1970; Jaiswal, 2001). Like many vertebrates, the pool of Ca2+ within teleosts is dominated 

by the skeleton where it is a key structural component of bone, as well as otoliths and teeth, 

with substantial deposits also found in the skin and scales (Fleming, 1973; Simkiss, 1973). 

The smallest fraction (approximately 1-3 %) of total body Ca2+ is found as an exchangeable 

pool within the intra- and extracellular fluids, actively participating in a broad range of 

crucial functions including muscle contraction, neurotransmission, enzyme and hormone 

secretion as well as initiating and co-ordinating numerous cellular processes (Fleming et 

al., 1973; Rubin, 1982). The ubiquitous nature of this ion therefore requires an effective 

homeostatic system since any disturbances are liable to compromise key functions (Brown 

et al., 1995).

Seawater contains approximately 10 mM Ca2+ and with concentrations in the blood and 

extracellular fluids typically maintained at 2-3 mM, marine teleosts living in and drinking 

the surrounding water are constantly faced with an influx of Ca2+ into the body. The normal 

pathway for Ca2+ excretion in freshwater fish is via the kidneys (Karnaky, 1998; Marshall 

and Grosell, 2006), but marine teleosts, faced with the challenge of water conservation in 

dehydrating environment have a very low rate of urine production relative to drinking rates. 

The urinary bladder provides the opportunity to absorb additional fluid to reduce overall 

water losses the end result being an infrequent release of small volumes of concentrated 

urine (Chapter 1, Section 2.2.5). 

The demonstration by Nearing et al. (2002) that a calcium-sensing receptor (CaR) 

modulates fluid re-absorption by the bladder to avoid the potential precipitation of divalent 

ions further illustrates the limited capacity of the renal system to operate as a pathway for 

Ca2+ excretion. As the primary sites of contact with the surrounding seawater the gills and 

intestine must therefore be very effective at regulating the entry of Ca2+ into the body. In 

terms of this homeostasis the precipitation of CaCO3 helps to limit the availability of Ca2+ 

for absorption where it has been shown to remove between 40-60 % of imbibed Ca2+, 

which increases proportionally with up to 25 mM Ca2+ entering the intestine (Shehadeh and 
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Gordon, 1969; Wilson et al., 2002; Wilson and Grosell, 2003). Although flounder have 

been shown to tolerate up to an additional 70 mM Ca2+ in surrounding seawater (Wilson 

and Grosell, 2003), there was no accompanying description of the fate of intestinal Ca2+ in 

these particular animals. With plans to perfuse the intestine with up to 90 mM Ca2+ in an 

attempt to determine the role of CaCO3 precipitation in water transport, it would also be 

interesting to further examine its additional role in systemic Ca2+ homeostasis, and how the 

intestine, and indeed the animal as a whole copes with sustained exposure to high 

concentrations of intestinal Ca2+.

3. Materials and Methods

3.1 Experimental animals

European flounder, Platichthys flesus (mean body mass 465 ±31 g, n = 23) were obtained 

from local fishermen in Flookburgh, Cumbria, U.K. and transported to the School of 

Biosciences, University of Exeter where they were held in marine aquarium facilities in 

150 litre tanks of flowing, aerated, artificial seawater made with commercial marine salts 

(Tropic Marin), as part of a recirculating seawater system maintained at 33.8 ±0.2 ppt and 

12.5 ±0.3 °C, under a 12 hour light: dark photoperiod. At least 7 days were allowed for the 

fish to acclimate after arriving in the aquarium. Food was typically withheld for at least 72 

hours prior to experimentation, otherwise the fish were maintained on a diet of fresh 

ragworm (Nereis virens) fed once per week.

3.2 In vivo surgical procedures

To prepare for surgery each fish was anaesthetised in seawater containing 150 mg l-1 of 

tricaine methansulfonate (MS-222, Pharmaq Ltd.), buffered with 300 mg l-1 NaHCO3, 

before being placed on a custom-made wet table. To maintain anaesthesia during surgery 

the gills were constantly irrigated with aerated seawater containing 95 mg l-1 buffered 

tricaine methansulfonate pumped into the mouth (Plate 5.1A). Three separate procedures 

were subsequently performed in the following order:

3.2.1 Cannulation of the caudal blood vessel
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Implanting a catheter into the caudal blood vessel enabled blood sampling at regular 

intervals during the course of a perfusion in order to assess ion and acid-base parameters. 

The catheter was made from a 25 cm length of polyethylene (PE) tubing (ID = 0.58 mm, 

OD = 0.96 mm) filled with Cortland saline (Wolf, 1963), adjusted to pH 7.8 with NaOH 

and containing 50 i.u. ml-1 sodium heparin (Monoparin, Wockhardt UK Ltd.). After gently 

scraping the scales from a small area close to the tail, a 2 cm incision was made through the 

skin and muscle parallel to the lateral line to reveal the caudal vessels running side by side 

beneath the vertebral spines (Plate 5.1B). The catheter was then inserted randomly into 

either the artery or vein. To help secure the catheter, a grommet was made from a short, 2 

cm length of PE tubing (ID = 1.19 mm, OD = 1.70 mm) which was slid down the outside 

of the catheter and fixed in place with a drop of cyanoacrylate adhesive. After treating the 

area with a prophylactic antibiotic the incision was then closed around the grommet using a 

basic running stitch (Plate 5.1C). Following successful cannulation of the caudal blood 

vessel, a small blood sample was taken from each fish and centrifuged (MSE 

Microcentaur) at 11,600 × g for 3 min, and plasma osmolality measured by vapour pressure 

osmometer (Wescor Vapro 5520). The osmotic pressure of the perfusion saline was then 

adjusted (if necessary) with deionised water to match that of the blood plasma.
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Plate 5.1: A) A flounder under anaesthesia on the wet table the gills being irrigated   via   the   

mouth. The black square indicates the location of the blood catheter, and the dashed line 

A

B

C

Caudal
vessel

Grommet

Catheter
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the approximate site of the incision. B) After making the incision next to the lateral line the 

wound is held open to reveal the blood vessels (arrow) running alongside the vertebrae. C) 

A close-up of the implanted blood catheter being held securely in position by the grommet 

after the wound had been closed.

3.2.2 Fitting the intestinal perfusion and stomach drain catheters

In addition to the intestinal catheter, a stomach drain catheter was also fitted since the fish 

was going to continue drinking during these experiments and it was important that this 

imbibed fluid was able to drain away. Both the stomach and intestinal catheters were cut 

from PE tubing (ID = 1.19, OD = 1.70) to lengths of 8-10 cm and heat-flared at one end. A 

small 2 cm long incision was made in the upper area of the abdominal cavity, perpendicular 

to the lateral line and just behind the pectoral fin. The junction between the stomach and 

intestine was located and exposed through the incision (Plate 5.2A). A second, smaller 

incision was made in the stomach wall behind the pyloric sphincter, through which the 

flared end of the stomach drain catheter was gently pushed into the stomach and directed 

towards the oesophagus. The intestinal catheter was inserted via the same incision, but in 

the opposite direction, through the pyloric sphincter and into the anterior intestine. Taking 

care to avoid damaging or occluding any blood vessels, both catheters were held firmly in 

place by double silk ligatures tied around the stomach wall and the pyloric sphincter for the 

stomach drain and intestinal perfusion catheter, respectively (Plate 5.2B). The stomach and 

intestine were carefully pushed back into the abdominal cavity and the incision closed 

around the catheters with a basic running stitch after treating the area with prophylactic 

antibiotic (Plate 5.2C). The intestine was then flushed with 50 ml of relevant perfusion 

saline through the intestinal catheter, while gently massaging the abdomen, to thoroughly 

rinse out the existing gut fluid and any precipitates before attaching the rectal catheter. 

3.2.3 Fitting the rectal catheter

The final procedure was to fit a catheter bag to collect all the fluid and precipitates expelled 

from the rectum. This was made using a condom, where the open end was tied tightly 

around a 1 cm length of ridged, cone-shaped plastic tubing (ranging from ID = 4
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Plate 5.2: A) The stomach (S) and anterior intestine (AI), separated by the pyloric sphincter 

(PS), exposed through an incision made in the abdominal cavity as observed looking 

toward the head end of the fish. The site of the second, smaller incision into the stomach 

wall is marked by an arrow. A white medical tissue acts as a barrier protecting the wound 

from coming into contact with seawater exiting the operculum. Note the vestigial pyloric 

caecae (PC) of the anterior intestine. B) The stomach drain (SDC) and intestinal perfusion 

catheters (IPC) inserted into the stomach and intestine, respectively,   via   an incision in the   

stomach wall. C) After carefully replacing the catheterised portions of the gastrointestinal 

tract back into the abdominal cavity the incision was closed.

mm, OD = 7 mm; ID = 6 mm, OD = 8 mm or ID = 7 mm, OD = 10 mm, depending on the 

size of the fish). A small nick was made in the closed end of the condom and a 3-way 

stopcock (Vygon) tied into place allowing excess rectal fluid to be drained should the 

catheter become over-full during the course of a perfusion (Plate 5.3A). The catheter was 

fitted by inserting the ridged plastic tubing into the anus which was held in place by a purse 

string ligature sewn into the skin around the anal opening (Plate 5.3B). To help keep the 

catheter in place and prevent it from working loose it was attached to the anal fin by a 

ligature around one arm of the 3-way stopcock (Plate 5.3C). To minimise the risk of 

infection the incisions made for implanting the blood and intestinal catheters were treated 

with a topical prophylactic antibiotic solution, containing oxytetracycline (Sigma) 

dissolved in Cortland saline, before closure of the wound. All sutures and ligatures used 

wax-coated, braided silk suture thread (Pearsalls, US 2/0).

3.3 Saline composition and experimental design

The perfusion salines used in the present study were modified from Wilson et al. (2002) 

and designed to test the influence of Ca2+ on HCO3
- secretion and precipitation rates in vivo, 

as well as the simultaneous effects of these processes on intestinal fluid absorption and 

osmoregulation. Fish were allocated to one of three treatment groups (shown in Table 5.1), 

which consisted of a control saline containing 10 mM Ca2+, similar to the concentration 

entering the anterior intestine while drinking normal seawater. To enhance CaCO3 

precipitation, the second group were perfused with 40 mM Ca2+ and the third with
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Plate 5.3: A) The rectal catheter bag showing the ridged section of plastic tubing that forms 

the opening which is inserted into the anus and, at the opposing end a 3-way stopcock 

allowing the catheter to be drained, if necessary. B) The purse string ligature sewn around 

the anal opening ready to secure the catheter in place. C) The fitted rectal catheter.

90 mM Ca2+, thus approximating the amount of Ca2+ received by the intestine if the fish 

were occupying double and triple strength seawater, respectively, where drinking rates 

would have also increased in direct proportion. In order to preserve the Cl- concentration 

between these salines when manipulating Ca2+, MgCl2 was exchanged for CaCl2. To 

prevent the spontaneous precipitation of CaSO4 in the presence of such high Ca2+ 

concentrations, SO4
2- was reduced to 10 mM. Also, each saline was deliberately HCO3

- free 

A

B

C
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and unbuffered, therefore the appearance of any HCO3
- and precipitates could have only 

originated from the activity of the perfused intestine. 

Table 5.1: The inorganic salts used in the composition of the   in vivo   perfusion salines   

employed by the present study. The concentration of each component salt is given in mmol 

l  -1  . Theoretical osmolarity (mOsm l  -1  ) was calculated based on the osmotic coefficient of   

each salt (Robinson and Stokes, 1965).

Salt Perfusion treatment
Control 40 mM Ca2+ 90 mM Ca2+

NaCl 50.0 50.0 50.0
KCl 5.0 5.0 5.0
MgCl2.6H2O 80.0 50.0 -
CaCl2.6H2O 10.0 40.0 90.0
MgSO4.7H2O 10.0 10.0 10.0

Osmolarity 353 350 346

3.4 Intestinal perfusion

Once surgery was complete the fish was placed in an individual flux chamber (7 litre 

capacity) with a continuous supply of aerated seawater in order to recover from the 

anaesthesia. During this recovery period the intestinal catheter was connected to a 

peristaltic pump (Minipuls 3, Gilson) and perfusion commenced with one of the three 

salines listed in Table 5.1 containing different concentrations of Ca2+. The intestine of each 

fish was continuously perfused for 72 hours at a mean perfusion rate of 5.04 ±0.24 ml kg-1 

h-1 (n = 23), approximately two and a half times the normal drinking rate of flounder, cited 

as 2.02 ±0.36 ml kg-1 h-1 (Wilson et al., 2002), thus ensuring an adequate supply of fluid to 

the intestine. The duration of each perfusion was 72 hours, this permitted sufficient time for 

precipitates to accumulate since this process was likely to be relatively slow at the 

temperatures employed here (11-12 °C). The volumes perfused were determined by the 

difference in weight to the nearest 0.1 mg (Mettler AE163).

3.5 Sampling and analytical techniques

Blood samples (~800 µl) were taken at 24, 48 and 72 hours using a gas-tight 1 ml Hamilton 

syringe and processed immediately. Plasma was isolated from approximately 500 µl of 
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blood by centrifuging (11,600 × g for 3 min) and was subsequently stored on ice. The 

remaining 300 µl was used to measure whole blood pH with Cameron E301 glass electrode 

with an E351 reference electrode connected to an Alpha 600 ion meter. This system was 

enclosed in a water jacket and maintained at the experimental water temperature (12.5 ±0.3 

°C). Once pH had been measured this blood was returned to the animal along with 500 µl 

of Cortland saline (adjusted to pH 7.8 with NaOH), to replace the volume taken and filling 

the blood catheter with heparinised Cortland saline to reduce the risk of clot formation.

After 72 hours the experiment was terminated by stopping the intestinal perfusion pump 

and administering an overdose of anaesthetic (250 mg l-1 buffered MS-222) into the flux 

chamber. The perfusion catheter was then detached from the peristaltic pump and a ligature 

tied around the top of the rectal catheter before removing the fish from the chamber. The 

abdominal cavity was opened and another ligature tied around the base of the rectum to 

prevent the accidental loss of any contents. The intestine was carefully dissected out and 

the contents decanted into 50 ml centrifuge tubes. Similarly, the rectal catheter was 

removed and its contents collected. Any residual precipitates were obtained by rinsing the 

intestine.

The contents of the intestine and rectal catheter were centrifuged at 5,000 × g for 4 min at 4 

°C (Mistral 3000, MSE Scientific Instruments) separating the precipitates from the fluid, 

the latter being decanted into pre-weighed tubes and subsequently weighed to determine 

the volume of fluid retrieved. Measurements of osmolality (Wescor Vapro 5520), Cl- 

(Corning chloride analyser 925) and total CO2 (Mettler Toledo 965D carbon dioxide 

analyser) were made on all samples. The cations Na+, K+, Ca2+ and Mg2+ were also 

measured following appropriate dilution and addition of 1 % LaCl3 (as 10 % w/v solution) 

for the divalent ions using a PYE Unicam SP9 Atomic absorption spectrophotometer. The 

pH of the intestinal and rectal fluids were measured using an Accumet combined 

microelectrode connected to a Hanna HI8314 membrane pH meter.

The precipitates from the intestine and rectal catheter of each fish were pooled together, 

and rinsed three times in deionised water, re-centrifuging each time, before they were 

finally sonicated (Vibra-Cell, Sonics and Materials Inc.) in 20 ml of ultrapure water 

(Maxima Ultrapure Water, ELGA), measured by glass pipette. The content of bicarbonate 

equivalents (HCO3
- + 2CO3

2-) in the precipitates was determined by the double titration 

method (described previously by Wilson et al. (2002) and Wilson and Grosell (2003)). 
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Briefly, each sample was gassed with 100 % N2 and the initial pH recorded before the 

addition of 1 N HCl. Continuous gassing ensured that all the HCO3
- and CO3

2- were 

liberated from the sample as CO2 as it was acidified to pH 3.89. Once the pH had stabilised 

at 3.89 the volume of HCl added was recorded before the addition of 0.02 N NaOH 

returning the sample to its original starting pH. The difference in the number of moles of 

HCl and NaOH used to acidify and then return to the initial pH was considered equivalent 

to the number of moles of HCO3
- equivalents (HCO3

- + 2CO3
2-) present in the sample. An 

auto-titrator (TIM 845 titration manager with an SAC80 automated sample changer, 

Radiometer) was used for all double titrations, employing the same combination pH 

electrode (Red Rod Combined pH electrode, pHC2401-8, Radiometer), in conjunction with 

the same burettes (ABU52, Radiometer) delivering controlled amounts of acid and base. 

All pH readings (to within ±0.002 pH units) and volumes of acid and base added (to the 

nearest µl) were logged on a personal computer using Titramaster 85 software (version 

3.1). To determine the amounts of Ca2+ and Mg2+ contained within the precipitates, the 

titrated sample was re-acidified to below pH 4 by adding a known volume of 0.02 N HCl 

(approximately equivalent to the volume of 0.02 N NaOH added during the double 

titration) and a 1 ml aliquot taken for subsequent dilution and cation analysis using AAS.

3.6 Calculations

For the determination of bicarbonate equivalents (HCO3
- and 2CO3

2-) in the intestinal and 

rectal fluids, the HCO3
- concentration was initially calculated from a similar re-

arrangement of the Henderson-Hasselbach equation presented in Chapter 4 (Section 3.4) 

but substituting pKapp for a second dissociation constant, pKII (9.46) which describes the 

HCO3
-/CO3

2- reaction (1). This value is similar to the published pKII value of 9.52 for ⅓ 

seawater at the same temperature (Walton Smith, 1974), but was obtained empirically by 

Wilson et al. (2002) using the rectal fluids of the flounder and directly comparing the 

results of the double titration method with calculations based on measurements of TCO2 

and pH using the rectal fluids of the flounder. 

[HCO3
-] = [TCO2] / (1 + 10(pH – 9.46)) (1)

As mentioned previously, the total CO2 content (mM) of a sample typically comprises:
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[TCO2] = [molecular CO2] + [HCO3
-] + [CO3

2-] (2)

The soluble and gaseous CO2 fractions in the sample are represented by [molecular CO2]. 

At the pH of the intestinal and rectal fluids the contribution of molecular CO2 to the 

measurement of TCO2 in these samples is very small and typically less than 10-9 M (Grosell 

et al., 2005), therefore in the present study the carbonate (CO3
2-) fraction was subsequently 

calculated following rearrangement of equation 2 (3a), along with total bicarbonate 

equivalents (3b):

[CO3
2-] = [TCO2] – [HCO3

-] (3a)

Total HCO3
- equivalents = [HCO3

-] + 2[CO3
2-] (3b)

The overall net secretion rate of total bicarbonate equivalents (HCO3
- + 2CO3

2-) by the 

intestine was calculated as:

JHCO3- = [HCO3
- Eq.]IF + [HCO3

- Eq.]RF + [HCO3
- Eq.]PPT / (M × t) (4)

Where, [HCO3
- Eq.]IF, [HCO3

- Eq.]RF and [HCO3
- Eq]PPT represent the total concentration of 

bicarbonate equivalents measured in the intestinal fluid, rectal fluid and precipitates, 

respectively (mEq), M is the mass of the fish (kg), t is the perfusion time period (h) and 

JHCO3- the net secretion rate of bicarbonate equivalents (µEq kg-1 h-1).

3.7 Data presentation and statistical analysis

The data are presented as mean ±SE. All data expressed as a proportion were arcsine 

transformed prior to analysis and significant differences between treatments tested for by 

one-way ANOVA using a General Linear Modelling (GLM) procedure. Post-hoc, pair-wise 

comparisons were made using Bonferroni simultaneous tests. For data failing to meet the 

assumptions of approximate normality and equality of variance, the non-parametric 

Kruskal-Wallis test was performed with post-hoc comparisons made using Dunns 
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procedure. The results of all tests were accepted as significant at P <0.05. Statistical 

analysis was carried out using Minitab v13.1 and graphs drawn using SigmaPlot v9.0.

4. Results

4.1 Bicarbonate production and excretion

Increasing the concentration of Ca2+ perfusing the intestine produced a sustained elevation 

in the total amount of HCO3
- equivalents excreted and dramatically altered the rate of 

precipitate formation. At 40 mM there was a significant 31 % increase in total HCO3
- 

secretion accompanied by a more than 4-fold rise in the amount excreted as precipitates. 

When Ca2+ was increased to 90 mM almost all (98 %) of the HCO3
- produced was 

incorporated into precipitates, at approximately twice the rate of the previous 40 mM Ca2+ 

treatment and almost 8 times higher than the control (Figure 5.2). 

The acid-base characteristics of the voided rectal fluid from flounder that underwent 

perfusion with high Ca2+ were quite different compared with the control treatment. Rectal 

fluid pH under control conditions was alkaline and rich in HCO3
- equivalents. Increasing 

the concentration of Ca2+ in the perfusion saline up to 40 mM reduced pH by 0.35 units and 

measured TCO2 by almost 50 %. At 90 mM there was little alkalinisation of the rectal fluid 

with a pH of 7.41 and only small amounts of dissolved HCO3
- equivalents present (Table 

5.2).
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Concentration of Ca2+ in perfusion saline
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Figure 5.2: The mean (±SE) net production and excretion of bicarbonate (HCO3
-   + CO  3

2-  )   

equivalents (µEq kg  -1   h  -1  ) by the intestine of the flounder perfused with salines containing   

varying concentrations of calcium, 10 mM (Control), 40 mM and 90 mM over a total of 3 

days. The open bars represent the total amount of bicarbonate equivalents (intestinal fluid + 

rectal fluid + precipitates) produced and shaded bars show the amount incorporated into 

precipitates only. Means labelled with different letters indicates a significant difference (P 

<0.05), n = 8, 7 and 8 for the control, 40 mM and 90 mM treatments, respectively.

Table 5.2: The mean (±SE) values for measurements of pH, TCO2 (mM) and calculated 

HCO3
-   equivalents (mEq) measured in rectal fluid samples from the flounder following   

perfusion of the intestine with salines containing varying concentrations of calcium, 10 

mM (Control), 40 mM and 90 mM for 3 days. Means labelled with different letters indicate 
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a significant difference (P <0.05), n = 8, 7 and 8 for the control, 40 mM and 90 mM 

treatments, respectively.

Perfusion treatment
10 mM Ca2+

(Control)

40 mM Ca2+ 90 mM Ca2+

pH 8.57 (±0.03)a 8.22 (±0.11)b 7.41 (±0.11)c

TCO2 (mM) 61.2 (±4.7)a 34.5 (±6.2)b 6.6 (±1.3)c

[HCO3
- + 2CO3

2-] (mEq l-1) 68.4 (±5.6)a 37.3 (±7.3)b 6.6 (±1.3)c

4.2 Rectal fluid osmolality

Despite the vast differences in HCO3
- secretion and precipitation rates between all three 

treatments the resultant osmotic pressure of rectal fluids collected from fish undergoing the 

90 mM treatment was rather variable and fell by an average of only 4 mOsm kg-1. The 

reduction in osmolality of the rectal fluid (relative to perfusate) was more than twice as 

much (8-10 mOsm kg-1) in the control and 40 mM treatments. Despite this there were no 

significant differences between rectal fluid and perfusate osmolality within each treatment 

(assessed by paired t-tests), or rectal fluid osmolality between treatments (Figure 5.3).

4.3 Fluid transport

Over 3 days the proportion of fluid absorbed by the intestine had increased by 11 % 

between the control and 40 mM treatments (from 47.2 ±3.5 % to 58.5 ±2.1 %) but was not 

found to be significantly different. When the intestine was perfused with 90 mM Ca2+ fluid 

absorption increased even further reaching an average of 73 %, and although this was not 

significantly different from the 40 mM treatment it represented a very significant (P 

<0.001) increase in relation to the control treatment (Figure 5.4). The values for fluid
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Concentration of Ca2+ in perfusion saline

10 mM 40 mM 90 mM

O
sm

ol
al

ity
 (

m
O

sm
 k

g-1

)

300

310

320

330

340

Perfusate
Rectal fluid

(Control)

Figure 5.3: The mean (±SE) osmolality (mOsm kg  -1  ) of the perfusate entering the intestine   

and the voided rectal fluid of the flounder following perfusion with varying concentrations 

of calcium, 10 mM (control), 40 mM and 90 mM for 3 days. The open and shaded bars 

represent the osmotic pressure of the perfusate (prior to entering the intestine) and rectal 

fluid, respectively (n = 8, 7 and 8 for the control, 40 mM and 90 mM treatments, 

respectively).

absorption were considered reliable as the mean rate of intestinal perfusion was consistent 

across treatments (4.91 ±0.36, 4.67 ±0.21 and 5.50 ±0.57 ml kg-1 h-1 for control, 40 mM 

and 90 mM perfusion salines, respectively). This was further indicated after finding that 

fluid absorption by the intestine was independent of perfusion rate for each treatment 

(Control, R = 0.143, P = 0.735; 40 mM Ca2+, R = -0.041, P = 0.931 and 90 mM Ca2+, R = 

0.011, P = 0.980).
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Concentration of Ca2+ in perfusion saline
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Figure 5.4: The mean (±SE) proportion of fluid absorbed by the flounder intestine 

following perfusion with varying concentrations of calcium, 10 mM (Control), 40 mM, 90 

mM for 3 days (n = 8, 7 and 8 for the control, 40 mM and 90 mM treatments, respectively.

4.4 Fate of the divalent cations (Ca2+ and Mg2+)

The rate at which Ca2+ was incorporated into carbonate precipitates correlated well with the 

amount perfused into the intestine. While the amount recovered in the rectal and intestinal 

fluid was low for both the control and 40 mM treatment, it was much higher at 90 mM 

Ca2+. When the recoveries from these respective compartments (fluid + precipitates) are 

stacked together as in Figure 5.5A, they show that across treatments there was also an 

increasing amount of Ca2+ unaccounted for (i.e. not showing up in either the fluid or 

precipitates).
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Concentration of Ca2+ in perfusion saline
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Figure 5.5: The mean (±SE) amounts of calcium (panel A) and magnesium (panel B) (  µ  mol   

kg  -1   h  -1  ) presented to, and recovered from the intestine and rectal catheters of the flounder   

following perfusion of the intestine with varying concentrations of calcium, 10 mM 

(Control), 40 mM and 90 mM for 3 days. The asterisks (**) represent a significant 

difference from the two corresponding treatments (P <0.001) and means labelled with 

different letters indicate a significant difference (P <0.05), n = 8, 7 and 8 for the control, 40 

mM and 90 mM treatments, respectively. 

The rate of Mg2+ being perfused into the intestine varied inversely with Ca2+, since in the 

design of the perfusion saline Mg2+ was substituted to permit increases in Ca2+ 

concentration (in the form of their respective chloride salts) while maintaining Cl- and 

osmolality (Figure 5.5B). In relation to Ca2+ the majority of Mg2+ remained within the 

intestinal fluid, and very little was incorporated into the precipitates although this did vary 

significantly between treatments and precipitates recovered from fish undergoing the 40 

mM treatment contained 45 and 79 % more Mg2+ than the control or 90 mM treatments, 

respectively.

4.5 Blood chemistry

Compared with corresponding samples taken on Day 1, by the final day of perfusion (Day 

3) the osmotic pressure of the plasma for fish receiving the 40 mM and 90 mM treatments 

was almost identical, although it had fallen by an average of 12 mOsm kg-1 in the former 

treatment and only 6 mOsm kg-1 in the latter. In contrast, for fish undergoing the control 

treatment plasma osmolality steadily rose over the 3 day perfusion period by an average of 

9 mOsm kg-1. Surprisingly, the measured pH and TCO2 of plasma during perfusion with 90 

mM Ca2+ remained extremely stable, in comparison with individuals from other treatments 

where there appeared a tendency for pH to rise. In terms, of ion balance there was no 

evidence of disruption, particularly Ca2+ which was tightly regulated by fish from all 

treatments (Table 5.3). 
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Table 5.3: A summary of the various acid-base and osmoregulatory parameters measured on whole blood (pH) and plasma (Osmolality, 

TCO2, Na  +  , Cl  -  , K  +  , Ca  2+   and Mg  2+  ) as part of the daily blood sampling routine during perfusion of the flounder intestine with salines   

containing varying concentrations of calcium, 10 mM (Control), 40 mM and 90 mM over a 3 day period. Values represent mean (±SE). 

For each day means labelled with different letters are significantly different (P <0.05), n = 8, 7 and 8 for the Control, 40 mM and 90 mM 

treatments, respectively.

Osmolality

(mOsm kg-1)

pH TCO2

(mM)

Na+

(mM)

Cl-

(mM)

K+

(mM)

Ca2+

(mM)

Mg2+

(mM)
Day 1
Control 326 (5.6) 7.88 (0.03) 7.1 (0.3)a 161.7 (3.6) 147.1 (1.3) 3.0 (0.1)a,b 2.2 (0.2)a 0.6 (0.1)
40 mM 330 (2.9) 7.81 (0.03) 5.7 (0.4)b 163.8 (1.1) 145.9 (1.1) 2.7 (0.1)b 2.8 (0.1)b 0.4 (0.1)
90 mM 323 (2.9) 7.78 (0.04) 6.7 (0.3)a,b 161.7 (2.6) 148.0 (1.7) 3.4 (0.2)a 2.0 (0.2)a 0.6 (0.2)
Day 2
Control 329 (5.9) 7.92 (0.02)a 7.0 (0.4) 159.2 (3.8) 146.1 (1.6) 3.0 (0.1)a 2.0 (0.2) 0.7 (0.1)
40 mM 323 (2.8) 7.81 (0.03)b 5.6 (0.4) 156.7 (2.9) 145.0 (1.3) 2.6 (0.1)b 2.4 (0.1) 0.4 (0.1)
90 mM 324 (6.8) 7.80 (0.05)b 6.9 (0.4) 158.6 (3.0) 145.5 (1.6) 3.1 (0.1)a 1.9 (0.1) 0.6 (0.3)
Day 3
Control 335 (5.0)a 7.94 (0.02)a 5.8 (0.6) 159.6 (4.2) 148.4 (3.3) 3.0 (0.1)a,b 2.0 (0.1) 0.9 (0.2)
40 mM 318 (2.6)b 7.89 (0.02)a,b 6.3 (0.5) 160.7 (2.4) 144.3 (1.1) 2.6 (0.1)b 2.4 (0.1) 0.4 (0.1)
90 mM 317 (5.0)b 7.81 (0.03)b 6.9 (0.7) 157.0 (3.4) 146.8 (2.2) 3.2 (0.1)a 1.9 (0.1) 1.6 (0.9)
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5. Discussion

The act of drinking by teleosts occupying a hyper-osmotic media such as seawater presents 

the gastrointestinal tract with a unique challenge. Of particular interest for this study was 

the role of HCO3
- secretion and precipitation by the intestine and consequences for fluid 

absorption and divalent ion homeostasis. Over the past two decades, various investigations 

into the phenomena of intestinal HCO3
- secretion have led to the suggestion that the 

precipitation of CaCO3 will reduce luminal osmotic pressure and create a favourable 

osmotic gradient for additional fluid absorption (Humbert et al., 1986; Walsh et al., 1991; 

Wilson et al., 1996). From a series of elegant in vivo perfusion experiments Wilson et al. 

(2002) presented the first evidence for this novel mechanism of fluid transport. However, 

they were unable to demonstrate a significant increase in fluid absorption following 

perfusion of the intestine with saline containing 20 mM Ca2+ used to stimulate HCO3
- 

secretion and precipitation. The present study employed the same in vivo techniques but 

applied even higher concentrations of Ca2+ (40 mM and 90 mM). In terms of stimulating 

HCO3
- production and precipitation the results fit in well with, and corroborate, the prior 

observations made by Wilson et al. (2002). At 40 mM Ca2+ the amount of carbonate 

precipitates increased more than 4-fold (Figure 5.2), but fluid absorption was only 

increased by a modest 11 % (Figure 5.4) compared with the control treatment. However, at 

90 mM Ca2+, not only was the rate of precipitation even higher, but fluid absorption had 

increased significantly also, by ~50 % over the controls.

5.1 The influence of luminal osmotic pressure

The hypothesis behind the role of precipitation in fluid transport is that the alkaline 

conditions created by HCO3
- secretion will promote the precipitation of Ca2+, and to a lesser 

extent Mg2+, to their respective carbonates. By removing the osmotic influence of these 

ions this will effectively reduce the osmolality within the gut lumen consequently providing 

an additional, osmotic driving force for fluid absorption (Wilson et al., 2002). It would 

therefore be logical to assume that at higher rates of precipitation the osmotic pressure of 

the rectal fluid would be lower. However, despite the vastly higher rates of precipitation in 

the 40 mM and 90 mM treatments this did not lead to concomitant reductions in rectal fluid 

osmolality (Figure 5.2). The reason for this is not clear but may be due to the ion species 
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left behind in the rectal fluid. In an attempt to avoid problems of spontaneous precipitation 

of CaSO4, levels of SO4
2- in the perfusion salines were reduced to 10 mM (Table 5.1), 

effectively being replaced by Cl-, in the form of CaCl2 and MgCl2. As a consequence, the 

excreted rectal fluid was high in MgCl2 for the control and 40 mM treatments, and a 

combination of CaCl2 and NaCl at 90 mM (Table 5.4). All of these chloride salts possess 

relatively high osmotic coefficients (0.86, 0.89 and 0.93, respectively, Robinson and 

Stokes, 1965), whereas the coefficient for MgSO4, which typically dominates in the 

excreted rectal fluid, is much lower (0.58) and would therefore 

Table 5.4: The ionic composition of the rectal fluid following intestinal perfusion with 

varying concentrations of calcium, 10 mM (Control), 40 mM, 90 mM for 3 days (n = 8, 7 

and 8 for the control, 40 mM and 90 mM treatments, respectively). Values are given as 

mean ±SE and presented as mM or mEq where appropriate and osmolality measured as 

mOsm kg  -1  . Means labelled with different letters indicate a significant difference (P <0.05),   

n = 8, 7 and 8 for the control, 40 mM and 90 mM treatments, respectively.

Ion Perfusion treatment
Control 40 mM Ca2+ 90 mM Ca2+

Na+ 16.9 ±1.8a 19.0 ±3.2a 62.8 ±18.4b

Cl- 162.4 ±7.7 163.4 ±6.2 178.1 ±8.8
K+ 0.6 ±0.2a 0.5 ±0.1a 2.2 ±0.4b

Ca2+ 3.7 ±1.0a 4.3 ±1.1a 67.1 ±6.5b

Mg2+ 131.4 ±3.9a 115.9 ±5.0a 41.1 ±7.8b

SO4
2-* 19.1 ±1.9 - 42.3 ±10.0

HCO3
- + CO3

2- 68.4 ±5.6a 37.3 ±7.3b 6.6 ±1.3c

Osmolality 320 ±5 308 ±4 327 ±9

*n = 5 (Control) and n = 7 (90 mM). Samples from the 40 mM treatment are still to be analysed.

translate to a much lower osmotic pressure. Alternatively, this analysis does not take into 

account localised osmotic gradients created by CaCO3 precipitation which are likely to be 

driving this additional absorption of fluid and therefore differences in rectal fluid 

osmolality would not have been detected here as measurements were made on bulk fluid 

samples only.

5.2 Solute-linked water transport
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In order to produce the higher rates of fluid absorption shown in Figure 5.4, the importance 

of carbonate precipitation cannot be under-stated, but the advantage to osmotically driven 

fluid transport does not appear obvious in relation to the osmotic pressure of the rectal fluid 

as predicted. Current understanding of the mechanism of fluid uptake by the teleost 

intestine (in terms of osmoregulation) involves the process of “solute-linked water 

transport”, which is principally associated with the active transport of Na+ and Cl- across 

the apical membrane thus establishing the osmotic gradient along 
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Figure 5.6: The relationship between the net fluxes of sodium and chloride (µmol kg  -1   h  -1  )   

and the corresponding rate of fluid absorption (ml kg  -1   h  -1  ) by the intestine of the flounder   

perfused with salines containing varying concentrations of calcium, 10 mM (Control), 40 

mM and 90 mM over a total of 3 days (n = 8, 7 and 8 for the control, 40 mM and 90 mM 

treatments, respectively).

which water passively follows into the body. Examining the rate of fluid absorption in 

relation to the net fluxes of Na+ and Cl- across treatments revealed an interesting trend, 
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Figure 5.6 clearly shows that increases in fluid transport were completely independent of 

changes in Na+ absorption (F1, 21 = 0.14, P = 0.771) but displayed a close, positive 

relationship with Cl- absorption (F1, 21 = 17.07, P = <0.001). It was therefore possible to 

confidently rule out any changes to NaCl cotransport being involved in this additional fluid 

absorption, along with any potential influence of perfusion rate (Section 4.3).

5.3 A role for apical Cl-/HCO3
- exchange

A prominent role for Cl- was not surprising given the significant increases in total HCO3
- 

equivalent secretion between treatments (Figure 5.2) and the proposed involvement of an 

apical Cl-/HCO3
- exchanger (Grosell and Jensen, 1999; Grosell et al., 2005; Grosell, 2006), 

which in itself is capable of driving Cl- and fluid absorption, as demonstrated in vitro 

(Grosell et al., 2005). Even though average net Cl- absorption did not significantly increase 

following perfusion with 90 mM Ca2+ (Figure 5.7), making it difficult to directly relate to 

Cl-/HCO3
- exchange, a significant positive relationship was present between Cl- absorption 

and HCO3
- secretion (Pearson correlation, R = 0.466, P = 0.025, n = 23). In spite of this, Cl- 

absorption greatly exceeded the sum of all the other corresponding cation fluxes (Na+, K+, 

Ca2+ and Mg2+) by an average of 50 % (Figure 5.7). Since charge balance must be observed 

in the absorbed fluid, this indicates a substantial shortfall in absorbed cations (or secreted 

anions). It should be noted that SO4
2-, which was the only other anion present in the 

perfusion saline, has not been included since only a limited number of samples have been 

analysed so far. Although as expected, the net SO4
2- flux is currently not significantly 

different from zero (control: 2.8 ±4.4 µmol kg-1 h-1, n = 5 and 90 mM Ca2+: 5.5 ±6.1 µmol 

kg-1 h-1, n = 7), hence the shortfall is likely to be uptake of a 'missing' cation.
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Figure 5.7: A comparison of the mean (±SE) net fluxes of cations and anions (µmol kg  -1   h  -1  )   

by the intestine of the flounder following perfusion with salines containing varying 

concentrations of calcium, control (10 mM), 40 mM and 90 mM (n = 8, 7 and 8 for the 

control, 40 mM and 90 mM treatments, respectively).

5.4 Endogenous CO2 hydration

A likely candidate for this cation imbalance is H+, being derived from intracellular CO2 

hydration which is fuelling HCO3
- secretion. For the flounder, which relies largely on this 

form of endogenous HCO3
- production (Wilson and Grosell, 2003), it is important that there 

is effective removal of H+, preferably across the basolateral membrane, allowing 

accumulation of HCO3
- for apical anion exchange while preventing cellular acidification 

and reversal of the hydration reaction (Grosell et al., 2001; Grosell et al., 2005; Grosell, 

2006). The polarity of these acid-base transfers by the intestine have subsequently been 

demonstrated on isolated preparations from the flounder (Chapter 3, Section 4.3), as well as 
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the toadfish (Grosell and Genz, 2006; Grosell and Taylor, 2007) and killifish (Chapter 6, 

Section 4.2.3). Since CO2 exerts a negligible osmotic pressure, the generation of HCO3
- and 

H+ and subsequent apical secretion of HCO3
- in exchange for Cl- will lead to a net gain of 

osmolytes by the cell (Wilson et al., 2002), hence H+ is likely to form part of the net solute 

flux, contributing to water transport (Grosell, 2006) and osmolarity of the absorbed fluid 

(Grosell and Taylor, 2007). Thus, assuming the missing cation was indeed H+, then it comes 

as no surprise that the rate of ‘H+ absorption’ was almost directly proportional to the 

corresponding rate of total (Fluid + Precipitates) HCO3
- secretion by the intestine for each 

individual across all treatments (Figure 5.8).
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Figure 5.8: The relationship between the total rate of HCO3
-   secretion (µEq kg  -1   h  -1  ) and   

‘missing cation’, presumed to be H  +   (µmol kg  -1   h  -1  ) absorbed by the intestine of the   

flounder perfused with salines containing varying concentrations of calcium, 10 mM 

(Control), 40 mM and 90 mM over a total of 3 days (n = 8, 7 and 8 for the control, 40 mM 

and 90 mM treatments, respectively).
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Interestingly, this relationship persists across all treatments even at 90 mM Ca2+ which 

would appear contrary to the prediction that up-regulation of HCO3
- secretion will draw 

upon exogenous CO2 stores. After increasing the ambient Ca2+ concentration of the 

surrounding seawater to 40 and 70 mM, Wilson and Grosell (2003) found a significant 

reduction in plasma total CO2 after 72 hours. In the present study, although plasma TCO2 

was significantly reduced by 20 % after 24 hours at 40 mM Ca2+ compared with the 

controls, overall there was no marked difference between the control and 90 mM 

treatments, and indeed across all treatments by day 3 of perfusion (Table 5.3) which would 

support the relationship displayed in Figure 5.8, that endogenous CO2 is sufficient to fuel 

the increase in HCO3
- secretion observed over these three experimental conditions.

  

5.4.1 Intestinal H+ production and systemic acid-base balance

From a whole animal perspective, while intestinal HCO3
- secretion does not have a role in 

systemic acid-base regulation per se, it does represent a significant base efflux that is 

balanced by an equivalent net acid efflux (or base uptake) across the gills (Wilson et al., 

1996; Wilson and Grosell, 2003). The identity of this missing cation as H+ can be further 

argued for when the net flux of the ‘missing cation’ is compared with the net (extra-

intestinal) flux of titratable acid (the reverse of measured titratable alkalinity) into the 

surrounding seawater (from Cooper, C. A., Whittamore, J. M. and Wilson, R. W., in 

preparation), again displaying a strong, significant correlation (Figure 5.9). Furthermore, 

the blood pH of fish where the intestine was being perfused with higher concentrations of 

Ca2+, and consequently producing more HCO3
-, was 0.07 to 0.10 pH units lower than 

controls on day one, and for the 90 mM treatment remained significantly lower over 

subsequent days (Table 5.3). These observations would also appear consistent with the 

circulation bearing an increased burden of acid at higher rates of HCO3
- secretion. Most 

striking is that the relationships with total HCO3
- secretion shown in Figures 5.8 and 5.9 are 

between data that were collected independently from each fish (i.e. intestinal ion fluxes and 

gill fluxes, respectively).
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Net titratable acid flux, JTA (eq kg-1 h-1)
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Figure 5.9: The relationship between the net titratable acid flux (µEq kg  -1   h  -1  )   via   non-  

intestinal routes (i.e. gills or kidney) into the surrounding seawater and the ‘missing 

cation’, presumed to be H  +   (µmol kg  -1   h  -1  ) absorbed by the intestine of the flounder   

perfused with salines containing varying concentrations of calcium, 10 mM (Control), 40 

mM and 90 mM over a total of 3 days (n = 8, 7 and 8 for the control, 40 mM and 90 mM 

treatments, respectively).

5.5 The contribution of HCO3
- production, secretion and precipitation to intestinal 

fluid absorption 

Along with carbonate precipitation there is also the net gain of osmolytes (H+ and Cl-) from 

HCO3
- production and secretion that can potentially drive fluid absorption in the absence of 

a net increase in NaCl. The transport of NaCl involves NaCl cotransport in parallel with 

Na+-K+-2Cl- cotransport, thus with calculations of the net solute fluxes at hand an attempt 

was made to define the relative contributions of NaCl-driven, solute-linked water transport 

from the process of HCO3
- secretion and precipitation for these calculations. The sum of the 
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net fluxes of Na+ and K+ were therefore considered to be associated with an equal net flux 

of Cl-. By taking the molarity of water as 55.56 M and assuming that the associated fluid 

being absorbed under these conditions was iso-osmotic to the perfusion saline the 

stoichiometric relationship between water and solutes in the absorbed fluid was calculated 

as 170 moles water: 1 mole solute (at an osmolality of 326 mOsm kg-1). Using this 

information it was possible to calculate the theoretical rate of 
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Figure 5.10: The relationship between the rate of fluid transport (ml kg  -1   h  -1  ) predicted to be   

associated with HCO3
-   production, secretion and precipitation, and the total rate of HCO  3

- 

secretion (  µ  Eq kg  -1   h  -1  ) by the intestine of the flounder following perfusion with varying   

concentrations of calcium, control (10 mM), 40 mM and 90 mM over a total of 3 days (n = 

8, 7 and 8 for the control, 40 mM and 90 mM treatments, respectively).

fluid absorbed per kg body weight (ml kg-1 h-1) associated with Na+, K+ and Cl- (i.e. solute-

linked water transport). By subtracting this value from the actual measured rate of fluid 

absorption it was possible to derive the theoretical contribution made by HCO3
- production, 
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secretion and precipitation to fluid transport. Interestingly, there proved to be a significant 

relationship between this rate of fluid absorption and total HCO3
- secretion (Figure 5.10).

5.5.1 A hypo- or hyperosmotic absorbate?

Curiously, the slope of the regression shown in Figure 5.10 equates to 254 moles water 

absorbed per mole HCO3
- secreted, and compared to the iso-osmotic relationship quoted 

above (170 moles water: 1 mole solute) suggests that the fluid absorbed in association with 

HCO3
- would be distinctly hypo-osmotic (~219 mOsm kg-1) compared with the perfusion 

saline (~326 mOsm kg-1). However, based on the net fluxes of all measured ions (Na+, K+, 

Cl-, Ca2+, Mg2+ and H+) from the perfusion saline, and assuming an overall osmotic 

coefficient of 0.9, the osmolarity of the fluid absorbed from the intestine was in fact the 

opposite and distinctly hyper-osmotic with calculated osmolarities of 448 ±25, 406 ±9 and 

388 ±13 mOsm l-1 for the control, 40 mM and 90 mM treatments, respectively. 

There are a number of possibilities that can account for the progressive reduction in 

osmotic pressure of fluids along the intestine and general hypo-osmolarity of the rectal 

fluid in relation to blood plasma. Firstly, this is the result of CaCO3 precipitation, reducing 

the osmotic influence of Ca2+ in the lumen (Wilson et al., 2002). Secondly, following 

absorption of the majority of NaCl this leaves behind a fluid rich in MgSO4 which has a 

lower osmotic coefficient and therefore exerts a reduced osmotic pressure (Taylor and 

Grosell, 2006b). One further (and somewhat controversial) suggestion is the absorption of a 

hyper-osmotic fluid from the intestine which will also assist this reduction in osmotic 

pressure (Shehadeh and Gordon, 1969; Skadhauge, 1974; Grosell, 2006; Grosell and 

Taylor, 2007). This would be in marked contrast to the iso-osmotic, or near iso-osmotic, 

fluid absorbed by other vertebrate epithelia (Curran, 1960; Diamond, 1964; Spring, 1999; 

Larsen et al., 2002). A number of in vivo and in vitro studies have apparently demonstrated 

this latter phenomenon of a hyper-osmotic absorbate. For example, the fluid absorbed 

following perfusion of the European eel (Anguilla anguilla) intestine with diluted seawater 

was hyper-osmotic to the blood plasma (Skadhauge 1969; 1974). Similarly, early in vitro 

experiments by House and Green (1965) using short-horned sculpin (Cottus scorpius) and a 

more recent review spanning a range of species, including the flounder (Grosell, 2006), 

have all indicated a hyperosmotic absorbate. 
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Using gut sac preparations from the toadfish (Opsanus beta), Grosell and Taylor (2007) 

have shown that in the absence of an osmotic gradient and under near symmetrical 

conditions (i.e. high NaCl, low MgSO4), the absorbed fluid was iso-osmotic (299 mOsm l-1) 

similar to other fluid transporting epithelia. Yet, when presented with in vivo-like 

conditions (low NaCl, high MgSO4) the absorbate was hyper-osmotic (380 mOsm l-1). It 

was predicted that luminal osmotic pressure was higher due to the elevated HCO3
- secretion 

under the latter conditions which incurred higher rates of Cl- and H+ absorption (arising 

from anion exchange and CO2 hydration, respectively). However, these observations and 

those mentioned previously are all based on ion fluxes in relation to the mucosal saline, and 

as pointed out by Grosell and Taylor (2007) do not represent actual conditions across the 

epithelia. It is particularly important to bear this point in mind because if the intestine were 

actually absorbing an increasingly hyper-osmotic fluid in relation to elevated HCO3
- 

secretion this would directly contradict earlier work by Wilson et al. (2002) who found a 

significant reduction in osmotic pressure of the blood plasma by 7 mOsm kg-1 associated 

with elevated intestinal HCO3
- secretion rates. Indeed, for the present study, blood plasma 

had been reduced 18 mOsm kg-1 by day 3 of perfusion with 40 and 90 mM Ca2+, compared 

with the control (Table 5.3) which is consistent with the prediction of a hypoosmotic 

absorbate (Figure 5.10). The question therefore becomes how is it possible to absorb a 

hyperosmotic fluid from the intestine but actually reduce the osmotic pressure of the 

surrounding body fluids?

5.5.2 A role for CO2 in intestinal fluid absorption

Given the increasing proportion of H+ in the absorbed fluid, from 24 % in controls up to 40 

% at 90 mM Ca2+, inferred from Figure 5.8, such an acidic fluid (pH <1) would need to be 

buffered. Therefore, one way to achieve a hypoosmotic absorbate would be the conversion 

of H+ into CO2 in the interstitial fluid before entering the portal vein where it would be 

transported in the blood and removed at the gills (Figure 5.11). This is similar, in principal, 

to how the mammalian duodenum neutralises large amounts of gastric acid, by secreting 

HCO3
- into the lumen and absorbing the resulting CO2 into the body (Mizumori et al., 

2006). In addition to the presence of increasing rates of H+ (produced endogenously during 

the formation of HCO3
-) which were subsequently excreted into the surrounding seawater 

in association with elevated luminal Ca2+ (indicated by Figures 5.7-5.9), observations of 
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blood acid-base parameters also lend some support to this hypothesis. Blood pH was 

typically reduced by more than 0.1 pH units in the high Ca2+ treatments (Table 5.3), 

indicating an increased burden of acid, and along with a significant elevation of plasma 

PCO2 in fish perfused with 90 mM Ca2+ (Cooper, C. A., Whittamore, J. M. and Wilson, R. 

W., in preparation), would be consistent with increased amounts of CO2 entering the 

bloodstream. 

Figure 5.11: A proposed model illustrating the potential pathway for the removal of excess 

H  +   arising from intracellular CO  2 hydration (1). The resulting H  +   will be preferentially   

extruded across the basolateral membrane (2) as part of the hyper-osmotic absorbate. In the 

sub-epithelial compartment H  +   will be buffered by HCO  3
-   producing CO  2 which may well 

involve an extracellular carbonic anhydrase, CA? (3). This reaction will effectively remove 

the osmotic influence of these ions in the sub-epithelia and contribute to a substantial 

reduction in osmotic pressure within this compartment. The resulting CO2 can then enter 

the venous blood (4) where it will have the effect of reducing pH and increasing   P  CO  2 

before being removed at the gills. This CO2 could also potentially recycle back across the 

basolateral membrane into the cell (5) to support further HCO3
-   production. In addition,   

HCO3
-   consumed in the production of CaCO  3 will also yield CO2 which could similarly 

recycle back into the cell (6). 
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The conversion of H+ into CO2 would not only consume H+ in the absorbed fluid but also 

HCO3
- in the sub-epithelial interstitium, and since CO2 will exert a negligible osmotic effect 

will offer a considerable osmotic gain in terms of fluid absorption. With greater proportions 

of H+ expected in the absorbed fluid at higher rates of HCO3
- secretion (Figures 5.7-5.9), 

this could conceivably produce the increasingly hypoosmotic absorbate predicted from 

Figure 5.10 and lead to the observed reduction in osmolality of the blood  plasma (Table 

5.3). Interestingly, if all of the H+ in the absorbed fluid were removed as CO2 into the 

bloodstream (or recycled back into the cell), then as predicted by Figure 5.11, this does 

indeed produce a hypoosmotic absorbate, becoming increasingly so at higher rates of 

intestinal HCO3
- secretion and precipitation as shown in Figure 5.12 (F1, 20 = 23.68, P = 

<0.001).

As shown by the model in Figure 5.11 there is also a link with CaCO3 precipitation and the 

fate of its by-products, namely H+ (in the form of CO2) which can recycle back into the cell. 

This supposition is corroborated by observations that the process of CaCO3 crystal 

formation takes place very close to the apical membrane, from surveys by electron 

microscopy (Humbert et al., 1986; 1989), and could therefore involve an external, 

membrane bound carbonic anhydrase based on evidence gathered from the eel (Maffia et 

al., 1996) and rainbow trout (Grosell et al., 2007). In fact, as there are up to 3 potential 

sources of CO2 fuelling HCO3
- secretion: (1) cellular metabolism, (2) dehydration of HCO3

- 

in the sub-epithelia and (3) CaCO3 precipitation in the gut lumen, this model may also 

explain why HCO3
- production appeared to be almost exclusively derived from intracellular 

CO2 hydration, even at the highest rates of secretion (Table 5.3; Figures 5.8 
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Figure 5.12: The relationship between calculated osmolarity of the absorbed fluid (mOsm l  -  
1  ), minus the contribution of H  +  , and the measured total rate of HCO  3

-   secretion (µmol kg  -1   

h  -1  ) by the intestine of the flounder following perfusion with varying concentrations of   

calcium, control (10 mM), 40 mM and 90 mM over a total of 3 days (n = 8, 7 and 7 for the 

control, 40 mM and 90 mM treatments, respectively).

and 5.9), even though it has been predicted that a high demand for intestinal HCO3
- 

secretion would be likely to draw upon exogenous sources of CO2 in the plasma (Wilson 

and Grosell, 2003). In summary, analysis of the data from the present study has provided 

further evidence for the participation of HCO3
- production, secretion and CaCO3 

precipitation in fluid absorption by the marine teleost intestine, and highlighted some of the 

underlying intricacies behind this novel mechanism of water transport. The potential 

involvement of CO2 moving between the lumen, epithelia and blood, supporting intestinal 

HCO3
- secretion, CaCO3 precipitation and fluid transport, offers an attractive explanation 
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for the above experimental and theoretical observations, and a fascinating area for further 

investigation.

5.6 The role of intestinal CaCO3 precipitation in Ca2+ homeostasis

By drinking the surrounding seawater the rate of Ca2+ entering the gastrointestinal tract of 

marine fish is essentially a continuous process and considering how tightly regulated Ca2+ 

is in both the cytosol and extracellular fluids the intestine will have an important role in 

modulating the entry of this ion into the body. With increasing amounts of Ca2+ entering the 

intestine across treatments, Figure 5.5A shows that there were increasing amounts of Ca2+ 

unaccounted for in the precipitates or fluid which could amount to absorption. These 

potential absorption rates were 15.2 ±1.8, 37.1 ±4.1 and 80.9 ±20.4 µmol kg-1 h-1 from the 

control, 40 mM and 90 mM treatments, respectively (Figure 5.5A) and compare well with 

previous estimates of intestinal Ca2+ uptake by the rainbow trout at 17.9 µmol kg-1 h-1 

(Shehadeh and Gordon, 1969), 29.2 µmol kg-1 h-1 by the southern flounder, Paralichthys 

lethostigma (Hickman, 1968c) and 20.0 µmol kg-1 h-1 for Atlantic cod, Gadus morhua 

(Bjornsson and Nilsson, 1985). 

However, additional work on Ca2+ fluxes by the intestine of the Atlantic cod revealed that 

the actual rate of Ca2+ absorption was approximately 10 times lower than these estimates (at 

2.6 µmol kg-1 h-1), and the vast majority of this apparent absorption was in fact Ca2+ 

‘trapped’ within the mucus layer (Sundell and Bjornsson, 1988). A similar suggestion was 

made by Wilson and Grosell (2003) after finding that only 0.5-1.5 % of perfused 45Ca could 

be detected in the extracellular fluid, urine and external seawater despite up to 20 % 

perfused Ca2+ being unaccounted for. They considered the possibility that they had only 

measured Ca2+ in precipitates that had aggregated together and separated from the mucosal 

surface, thus there may be a substantial portion of Ca2+ within the mucus layer as 

crystalline precipitates. This is supported by the work of Humbert et al. (1986; 1989) 

finding that intestinal mucus created dense, localised concentrations of Ca2+ from which 

CaCO3 crystals developed in the seawater-adapted eel intestine. Since the gills do not 

participate in the excretion of divalent ions (Flik and Verbost, 1993) any Ca2+ absorbed by 

the intestine, and not sequestered by any of the internal pools (such as bones, otoliths, 

scales, gonads etc.), will be removed by the kidneys which are very limited in their ability 

to excrete Ca2+. Given the infrequent and small amounts of urine produced by marine 
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teleosts (Marshall and Grosell, 2006) it is not surprising that the renal excretion rates of 

Ca2+ are low, estimated at 4.2 µmol kg-1 h-1 for the Atlantic cod (Bjornsson and Nilsson, 

1985) and 3.3 µmol kg-1 h-1 for the southern flounder (Hickman, 1968c).

5.6.1 Calculating the rate of intestinal Ca2+ absorption

Further evidence that this unaccounted fraction of Ca2+ shown in Figure 5.5A was not being 

absorbed and sequestered by the body is illustrated by calculation of the potential Ca2+ 

requirements of these fish. From the life history parameters for the European flounder 

presented by Saeger (1974) the average growth rate, in terms of mass, for the size of 

flounder used in this study was calculated to be 46.5 g per year. Unable to find any 

published values of whole body Ca2+ content for the flounder, prior estimates (given per kg 

wet weight) for other species include 5.16 g Ca kg-1 for rainbow trout (Shearer, 1984) and 

3.35 g Ca kg-1 for adult Atlantic salmon, Salmo salar (Talbot et al., 1986). Based on this 

information the Ca2+ requirement for a year of growth was calculated as being equivalent to 

an intestinal absorption rate of 1.5 ±0.1 µmol kg-1 h-1, very similar to the prior estimate of 

2.6 µmol kg-1 h-1 for cod using 45Ca (Sundell and Bjornsson, 1988). Taken together, an 

estimate of absorption based on potential body Ca2+ requirements along with low renal 

excretion rates are able to explain little more than a third of the 33 % of perfused Ca2+ 

which was left unaccounted for in the control treatment. 

5.6.2 Regulating intestinal Ca2+ transport

Irrespective of the fate of Ca2+ in these experiments, measurements of plasma over the 

course of each perfusion, revealed stable Ca2+ concentrations across all treatments (Table 

5.3) indicating no significant perturbation of whole body Ca2+ balance which was very 

impressive after sustained perfusion with 90 mM Ca2+. Similarly, Wilson and Grosell 

(2003) found Ca2+ homeostasis unaffected following increases in the concentration of Ca2+ 

in the surrounding seawater up to 70 mM. Even though 46 to 73 % of perfused Ca2+ was 

being removed as CaCO3 in the present study (Figure 5.5A) there were also substantial 

portions dissolved in the rectal fluid (particularly at 90 mM) suggesting the epithelium 

itself must also be effective at restricting excessive Ca2+ entry into the body (Table 5.4). 

Therefore, discussion of the regulation of intestinal Ca2+ absorption would not be complete 
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without recognising some of the endocrine factors involved in controlling and coordinating 

the mechanisms behind this intricate homeostasis.

Stanniocalcin (STC) and a number of vitamin D metabolites have been identified as the 

principal anti-hypercalcaemic factors in marine teleosts having direct effects on intestinal 

Ca2+ transport. STC is produced by the corpuscles of Stannius, which are small glands 

located on the surface of the kidneys, and exerts its effect by decreasing the active uptake 

of Ca2+ by the gills and intestine as well as the renal handling of Ca2+ (Sundell et al., 1992; 

Flik and Verbost, 1993; Flik et al., 1995; Larsson, 1999). Interestingly, the secretion of STC 

is considered to be under the control of a CaR, where it can operate by detecting changes in 

circulating Ca2+ (Radman et al., 2002) or via the caudal neurosecretory system (Ingleton et 

al., 2002). Vitamin D metabolites are lipid soluble steroid hormones, and unlike the peptide 

hormone STC, can cross the cell membrane thus their mechanisms of control can differ, 

ranging from slow genome-mediated responses such as transcriptional events of Ca2+ 

binding proteins and transporters within the cell (Sundell et al., 1993; 1996) to rapid 

(within minutes) non-genome mediated effects that modulate the Ca2+ transporting capacity 

of the intestine (Larsson, 1999). Interestingly, the vitamin D metabolite, 24,25-

dihydroxyvitamin D3 has been shown to inhibit intestinal Ca2+ uptake in Atlantic cod 

(Larsson et al., 2002) and rainbow trout (Larsson et al., 2003), and the regulation of 

receptor expression for this and other vitamin D metabolites with similar effects on Ca2+ 

transport are considered to be under the control of a calcium-sensing receptor (Larsson et 

al., 2003). 

5.6.3 Summary

Following extended perfusion with up to 90 mM Ca2+ there were no obvious disturbances 

in whole animal Ca2+ balance. The absorption rate of Ca2+ from the intestine is likely to be 

much smaller than indicated by the amounts left unaccounted for, since the portion of Ca2+ 

recovered as precipitates will be greater than measured due to the time taken for 

aggregation of CaCO3 crystals from the mucus layer. After considering the limited capacity 

for excretion via the kidneys and taking into account potential Ca2+ requirements of these 

fish it can be concluded that precipitation does indeed play a key role in systemic Ca2+ 

homeostasis and combined with modulation of the various Ca2+ transport processes this 

presumably makes the intestine very effective at regulating Ca2+ uptake.
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Chapter Six

The regulation of intestinal HCO3
- secretion by the seawater-

adapted killifish (Fundulus heteroclitus L.)
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1. Summary

The present study set out to investigate the regulation of HCO3
- secretion by Ca2+ using the 

killifish intestine, with a view to establishing a role for the calcium-sensing receptor (CaR), 

as well as some of the characteristics of HCO3
- secretion by this species. Experiments 

employed the Ussing chamber, with pH stat titration as an in vitro alternative to the gut sac. 

The baseline rates of HCO3
- secretion by the killifish intestine at 25 °C were between 0.6 

and 0.8 µEq cm-2 h-1. Approximately 75 % of secreted HCO3
- was deemed to have 

originated from endogenous CO2 hydration, following omission of serosal HCO3
-/CO2, and 

this conclusion was further supported by the insensitivity of HCO3
- secretion to serosal 

DIDS. Application of mucosal DIDS however, reduced HCO3
- secretion by around 37 %, 

offering evidence toward the presence of apical Cl-/HCO3
- exchange, although the majority 

of HCO3
- secretion was likely to exit via an alternative conductive pathway. Despite 

bearing such similar characteristics to the European flounder, HCO3
- secretion by the 

killifish intestine did not share a similar response to mucosal Ca2+. Increasing luminal Ca2+ 

concentration from 5 to 20 mM (using CaCl2) was without effect. By way of control, the 

addition of 15 mM Mg2+ (as MgCl2) in a separate set of experiments also left HCO3
- 

secretion unaffected. Similar experiments further examined the potential influence of ionic 

strength and/or osmolality of the mucosal saline on the response of the putative CaR to 

Ca2+, but to no avail, suggesting that the stimulation of HCO3
- secretion by Ca2+ (via a CaR) 

is not necessarily a ubiquitous trait amongst marine teleosts. The addition of both CaCl2 

and MgCl2 also increased the concentration of mucosal Cl- by 30 mM and osmotic pressure 

by ~40 mOsm l-1, resulting in a significant hyperpolarisation of the epithelia, along with an 

increase in ionic permeability. This was considered the result of elevated Cl- absorption 

from mucosa to serosa via a conductive pathway, such as the cystic fibrosis transmembrane 

regulator (CFTR). Further trials revealed a quite different osmotic stress response after 

increasing the osmotic pressure of the mucosal saline with the non-ionic osmolytes 

mannitol and sucrose, resulting in an immediate reduction in HCO3
- secretion. In some 

cases there was a complete abolition of luminal alkalinisation followed by gradual 

acidification of the mucosal saline. It was hypothesised that this response to elevated 

mucosal osmotic pressure was the result of a shift in the direction of H+ secretion (from 

basolateral to apical), which would have the effect of titrating mucosal HCO3
- thus helping 

214



Chapter 6

reduce luminal osmotic pressure. However, subsequent experiments measuring basolateral 

H+ secretion were unable to detect this anticipated shift in H+ secretion and after ruling out 

a role for apical Na+/H+ exchange, further work is necessary to help understand this 

response. 

2. Introduction

The failure to demonstrate a role for Ca2+ in the stimulation of intestinal HCO3
- secretion 

using an in vitro gut sac preparation from the European flounder (Chapter 4), was very 

perplexing given the convincing evidence for Ca2+-mediated HCO3
- secretion from previous 

in vitro experiments, which had employed the Ussing chamber technique with pH stat 

titration (Wilson et al., 2002). The lack of progress using the paired gut sac methodology 

was becoming increasingly frustrating, and continued to fuel curiosity about whether the 

reason for this discrepancy lay with these two in vitro techniques. The present chapter 

describes experiments conducted during a visit to the laboratory of Dr. Martin Grosell at 

the University of Miami (Florida, USA), which was an exciting opportunity to gain some 

experience of the Ussing chamber technique (with pH stat) and apply it as part of 

investigations into the regulation of intestinal HCO3
- secretion by Ca2+. It was hoped that 

this would result in progress toward demonstrating a potential, functional role for a 

calcium-sensing receptor (CaR) in the marine teleost intestine.

2.1 The Ussing chamber

Named after its inventor, the late Danish physiologist Hans Ussing, the Ussing chamber 

was introduced in the mid-twentieth century as a means of studying ion transport and 

equivalent electric currents across isolated frog skin (Ussing and Zerahn, 1951). 

Interestingly, this work is credited, amongst others, with helping set the stage for the 

modern era of epithelial transport physiology (Schultz, 1998). Furthermore, from what was 

a relatively simple design concept this technique has become a very powerful tool for 

studying the properties of transporting epithelia in vitro, finding a broad range of 

applications in cell and tissue research. 
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Compared with the gut sac preparation described in previous chapters, the Ussing chamber 

set up consists of the isolated, excised epithelium mounted as a flat sheet, typically in a 

vertical orientation, secured between two half-chambers which connect together to form a 

single unit (chamber) with the mucosal and serosal sides separated by a small, exposed area 

of tissue (Figure 6.1). Unlike the mucosal saline which is sealed within the gut sac and not 

gassed or stirred, leading to potentially limiting effects on transport processes (discussed in 

Chapter 4, Section 5.1), these artifacts are minimised in the Ussing chamber as both sides 

of the tissue are simultaneously gassed and stirred thus providing the assurance of adequate 

oxygenation as well as reducing unstirred layer effects. 

With such a small area of epithelia exposed to a considerably larger volume of saline the 

ratio of chamber volume to surface area makes it extremely difficult to monitor fluid 

movements by the tissue (likely to be in the nano-litre range). However, with gut sacs this 

ratio is reversed permitting the recording of measurable volume flows across the epithelia 

along with simultaneous measurements of net solute transport. In contrast, the transport of 

ions by epithelia in the Ussing chamber is typically represented as equivalent electrical 

currents and/or fluxes of specific radioactive tracers.

2.2 Measuring HCO3
- secretion in the Ussing chamber 

By incorporating a pH stat titration system it is also possible to record the rate of mucosal 

alkalinisation. A pH electrode submerged in the mucosal half-chamber is used to monitor 

pH which is automatically maintained at a predetermined value (i.e. pH 7.8) by small 

additions of hydrochloric acid automatically delivered to the mucosal saline by micro-

burette. As HCO3
- is secreted into the mucosal saline it will be titrated with the resulting 

CO2 removed by the continuous gassing of the saline. The rate of acid addition is therefore 

considered representative of the rate of HCO3
- secretion. As for the gut sac preparation, 

HCO3
- secretion into the mucosal saline leads to the formation of a potential pH gradient 

across the epithelia, which is avoided when using the pH stat titration as both mucosal and 

serosal pH are maintained at 7.8 (equivalent to the blood of marine teleosts). 
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Figure 6.1: A) A schematic drawing of a circulating Ussing chamber based on the design 

used in the present study. B) A plan view of the two halves of the tissue mount inserted 

between the two half chambers. A small flat section of intestine with the mucosal surface 

uppermost was placed across the aperture of the serosal mount, held in place by pins on 

either side. The mucosal half of the mount was then placed on top, leaving the mucosal and 

serosal surfaces of the tissue exposed, ready to be secured between the two halves of the 

Ussing chamber as shown in part A.
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In previous studies, the Ussing chamber technique, with pH stat titration, has been 

successfully applied to investigations of intestinal HCO3
- secretion by a number of marine 

species including the Japanese eel, Anguilla japonica (Ando and Subramanyam,

1980), goby, Gillichthys mirabilis (Dixon and Loretz, 1986), European flounder (Wilson et 

al., 2002; Wilson and Grosell, 2003) and toadfish, Opsanus beta (Grosell and Genz, 2006). 

2.3 The euryhaline killifish

The species chosen for this work was the common killifish or mummichog (Fundulus 

heteroclitus) which is found along the eastern coast of North America from Texas on the 

Gulf of Mexico to the Gulf of St. Lawrence, Canada (Scott and Scott, 1988). The killifish is 

a small, inter-tidal species occupying salt marshes and estuaries in coastal regions where it 

is likely to encounter regular fluctuations in salinity, as well as other potential 

environmental variables such as dissolved oxygen, pH and temperature (Burnett et al., 

2007). The physiological adaptations and tolerances of this species together with its 

abundance, ease of collection and amenity to aquarium conditions, have made the killifish a 

popular experimental model (Atz, 1986; Burnett et al., 2007).

The killifish is perhaps most renowned for its broad tolerance of salinity, ranging from 

freshwater through to hyper-salinities of up to 120 ppt, 4 times stronger than regular 

seawater (Griffith, 1974). In common with other teleosts, the killifish drinks at comparable 

rates when in hyper-osmotic media (Potts and Evans, 1967; Malvin et al., 1980; Scott et 

al., 2006). The gastrointestinal tract is extremely simple and does not possess a stomach 

instead the oesophagus joins directly to the anterior intestine, the latter acting as a 

receptacle for food (Babkin and Bowie, 1928). To date, the majority of investigations into 

the euryhalinity of this species have largely focussed on the function of the gills, in 

particular the chloride cells of the opercular epithelium, (reviewed by Karnaky, 1986; 

Wood and Marshall, 1994; Hoffman et al., 2007). The ion transporting characteristics of the 

intestine appear to have received considerably less attention, being represented by only a 

handful of studies, including Marshall et al. (2002) and Scott et al. (2006). In spite of this, 

the intestine of the killifish does display substantial rates of intestinal HCO3
- secretion (M. 

Grosell, personal communication), and with intestinal Cl- fluxes in excess of Na+ (Scott et 

al., 2006), suggests a role for Cl-/HCO3
- exchange (Grosell, 2006). 
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The killifish was therefore considered a suitable model to continue exploring the 

mechanisms behind HCO3
- secretion in seawater-adapted teleosts. It would be very 

interesting to discover whether the stimulation of intestinal HCO3
- secretion by Ca2+ is a 

ubiquitous trait amongst teleost species. For example, olfactory sensitivity to changes in 

environmental Ca2+ concentrations is considered a widespread phenomenon in teleosts 

having been demonstrated for euryhaline (Bodznick, 1978; Hubbard et al., 2000) and 

freshwater species (Hubbard et al., 2002), along with compelling evidence that these 

responses are conferred by a calcium-sensing receptor, CaR (Hubbard et al., 2002). As yet 

the CaR from the killifish has not been fully described, and appears limited to a brief report 

which found significantly increased mRNA expression for a CaR in the gills and kidney 

following transfer from freshwater to seawater (Baum et al., 1996).  

2.4 Does ionic strength influence intestinal HCO3
- secretion?

The (human parathyroid) CaR is known to be modulated by the ionic strength (but not 

osmolality) of the surrounding medium, whereby sensitivity of the receptor to its agonists 

is enhanced following a reduction in ionic strength (Quinn et al., 1998). Based on these 

findings it was subsequently proposed that the prevalence of monovalent ions, such as Na+, 

at higher ionic strengths will act to shield polycationic ligands (i.e. Ca2+ and spermine) 

from attaching to their binding sites on the extracellular domain of the CaR, hence reducing 

their affinity for the receptor (Quinn et al., 1998). These observations on the mechanism of 

receptor function are also shared by CaRs from fish, including the dogfish (Squalus 

acanthias), where activation of the CaR by either Ca2+ or Mg2+ is indirectly proportional to 

NaCl concentrations (Nearing et al., 2002; Fellner and Parker, 2004). Similar Ca2+-sensing 

dependence on ionic strength has also been confirmed for the tilapia, Oreochromis 

mossambicus (Loretz et al., 2004). Together these observations support the conclusion that 

the CaR in teleosts acts as a salinity sensor (Nearing et al., 2002), and the receptor is 

thought to have originally evolved as part of the osmoregulatory strategy in fish (Hebert, 

2004; Loretz, 2008). 

Assuming that a CaR is indeed involved in the regulation of intestinal HCO3
- secretion as 

suggested by Wilson et al. (2002), this raised the question of whether ionic strength may 

influence CaR function. For example, as seawater is processed along the intestine the 

concentration of Na+ is typically reduced from around 170 mM as it enters the anterior 
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intestine from the stomach, to 30 mM in the rectum (Personal observations from the 

European flounder). Based on the changes in EC50 for receptor activation versus 

extracellular Na+ concentration for the CaR isolated from the dogfish kidney (Nearing et 

al., 2002), and assuming a similar range of sensitivity for an intestinal CaR, this change in 

Na+ concentration along the gut would reduce the EC50 of the CaR for Ca2+ from around 9 

to 2 mM. Thus, as seawater is processed along the intestine the sensitivity of the CaR to 

Ca2+ could be enhanced more than 4-fold. If HCO3
- secretion by the killifish intestine were 

found to be stimulated by Ca2+ then manipulating the ionic strength of the mucosal saline 

may offer some valuable insight into the underlying mechanism and the regulation of 

intestinal HCO3
- secretion in vivo. Alternately, if Ca2+ failed to stimulate HCO3

- secretion 

then these experiments would be equally useful to rule out the composition of the mucosal 

saline as a factor.

2.5 Aims and objectives

Employing the Ussing chamber in conjunction with a pH stat system, the aim of this study 

was to determine whether elevated luminal Ca2+ concentration stimulated HCO3
- secretion 

by the intestine of the euryhaline killifish. Experiments also sought to address the role of 

ionic strength and osmotic pressure in further modulating intestinal HCO3
- secretion.

3. Materials and Methods

3.1 Experimental animals

Killifish, Fundulus heteroclitus (n = 63, body mass 3.90 ±0.12 g and 6.7 ±0.1 cm total 

length) from St. Augustine (FL, USA) and Woods Hole (MA, USA) were shipped to the 

aquarium facilities at the University of Miami, Rosenstiel School of Marine and 

Atmospheric Sciences. On arrival the fish were quarantined and subject to a prophylactic 

treatment for ectoparasites consisting of malachite green (final concentration 0.05 mg l-1) in 

formalin (15 mg l-1) (Aquavet, CA, USA), and afterwards held in 80 litre glass tanks 

receiving a continuous flow of filtered, aerated seawater (salinity 33-35 ppt, 22-26 °C from 

Bear Cut, FL). Food was typically withheld for 24-48 hours prior to experimentation 
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otherwise fish were fed a commercial pellet feed (Aquatic Eco-Systems, FL, USA) to 

satiation every other day.

3.2 General experimental protocol

Fish were terminated by a sharp blow to the head, destroying the brain. An incision was 

made just behind the pelvic girdle and the abdominal cavity opened by carefully cutting 

along the ventral axis of the body towards the head until level with the pectoral fins. The 

intestine was gently exposed and a section (approximately 1 cm in length) was cut from the 

anterior region and opened up to a flat sheet with a single longitudinal cut and carefully 

mounted in the tissue mount exposing a gross surface area of 0.3 cm2. The tissue was 

subsequently secured between two half chambers (P2400, Physiologic Instruments, CA, 

USA) and bathed with 1.6 ml of the appropriate, pre-gassed saline in each half-chamber. 

Each saline was simultaneously mixed and gassed through airlifts with an appropriate 

humidified gas mixture, typically 100 % O2 in the mucosal saline and 0.3 % CO2 (O2 

balance) in the serosal saline (Table 6.1), to mimic in vivo serosal conditions. The Ussing 

chamber was mounted in a thermostatically controlled chamber holder and the preparation 

maintained at 25 °C.

Current and voltage electrodes were connected to an amplifier (VCC600, Physiologic 

Instruments) recording the transepithelial potential (TEP), with the current clamped at 0 

µA. TEP was measured in mV in relation to the serosal saline, and was always negative 

indicating an overall, net active transport of negative charge from mucosa to serosa. To 

measure transepithelial conductance (Gt), the amplifier was set up to deliver a current pulse 

of 30 µA (of 3 second duration) every 60 seconds across the tissue, from mucosa to serosa, 

and based on the resulting change in TEP allowed for calculation of Gt using Ohms Law 

(equation 1). 

To permit current pulsing during pH stat titration the auto-titrator was grounded to the 

amplifier. Each chamber was supplied with 4 electrodes (2 × Ag/AgCl pellet electrodes for 

voltage and 2 × Ag wire electrodes for current) which were connected to the mucosal and 

serosal salines by agar-salt bridges. To create the agar bridge tapered polyethylene 

electrode tips (Physiologic Instruments) were part-filled with a heated solution of 2 % agar 

(w/v) dissolved in 3 M KCl and allowed to set. The electrodes were then screwed into these 

polyethylene tips which had been filled with 3 M KCl, on top of the set agar (while 
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avoiding any air bubbles), and the agar bridges fitted into the front of chamber (Plate 1). 

Both current and voltage measurements could then be logged onto a personal computer 

using BIOPAC Systems (CA, USA) interface hardware and AcqKnowledge software 

(version 3.8.1). 

The pH-stat titrations were performed on the mucosal saline (except during measurement 

of basolateral proton secretion, see further on), by placing a combination pH electrode 

(PHC4000.8, Radiometer, Denmark), and tip of a micro-burette (ABU901, Radiometer) 

into the mucosal half of the chamber, which were connected to an auto-titration system 

(TIM 854 or 856, Radiometer). The completed experimental set up, with all aspects of the 

Ussing chamber plus pH stat titration in place, is shown in Plate 6.1.

Once the tissue had stabilised and secreted sufficient HCO3
- equivalents (HCO3

- + 2CO3
2-) 

for the mucosal saline pH to reach 7.8 (typically, 30 to 90 minutes), the pH stat titration 

automatically commenced. Mucosal pH was maintained at 7.800 (±0.003 pH units) by the 

addition of acid (0.005 N HCl) delivered via micro-burette which titrated the HCO3
- 

equivalents to volatile CO2, which was removed by gassing with 100 % O2. The rate of acid 

addition and mucosal saline pH were logged onto a personal computer using Titramaster 

software (versions 1.3 and 2.1) every 10 seconds. The secretion rates of HCO3
- equivalents 

were calculated from linear regression analysis of the amount of acid required to maintain 

pH at 7.8 over each 10 minute time period and were reported as a function of surface area 

(cm2) and time (h). Once the secretion of HCO3
- was considered to have reached a steady 

rate a control period of approximately 60 minutes commenced before conducting the 

various experimental treatments outlined below.

Serosal gas supply

pH electrode

Microburette

Mucosal gas supply

Mounted tissue

Serosal half-chamber

Mucosal half-chamber

Current and voltage electrodes

Serosal gas supply

pH electrode

Microburette

Mucosal gas supply

Mounted tissue

Serosal half-chamber

Mucosal half-chamber

Current and voltage electrodes
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Plate 6.1: The Ussing chamber set up with pH stat (micro-burette and pH electrode) 

showing the tissue mounted between the two half chambers. Separate gas supply lines 

provided simultaneous gassing and mixing of the mucosal and serosal salines bathing the 

tissue in each half chamber. A set of current-passing electrodes (white) and voltage-sensing 

electrodes (black) are fitted into each half chamber   via   an agar-salt bridge to monitor the   

electrophysiological parameters of the tissue. The wires leading from the electrodes on the 

serosal side are grounded to the auto-titrator to enable current pulsing during the recording 

of pH stat titrations.

3.3 Stimulation of HCO3
- secretion by Ca2+

Using the regular mucosal and serosal salines listed in Table 6.1 the first set of experiments 

set out to investigate whether HCO3
- secretion by the killifish intestine is stimulated by 

Ca2+, as observed for the European flounder using the same in vitro experimental approach 

described by Wilson et al. (2002). Once the control period was established, the mucosal 

saline was spiked with 15 mM Ca2+ (added as 1 M CaCl2), thus raising the Ca2+ 

concentration from 5 mM to 20 mM, and the effects on HCO3
- secretion and 

electrophysiological parameters were followed for a further 60 minutes. To confirm that 

any response was specific to Ca2+ and not a result of the increase in osmotic pressure or Cl- 

concentration, a separate set of experiments were carried out but spiking the mucosal saline 

with 15 mM Mg2+ (added as 1 M MgCl2) instead.

3.4 Is HCO3
- secretion modulated by ionic strength and/or osmolality?

The calcium-sensing receptor (CaR) is considered to act as a salinity sensor in marine 

teleosts (Nearing et al., 2002) and the sensitivity of the receptor to its primary ligand (i.e. 

Ca2+) is modulated by the ionic strength (but not osmolality) of the surrounding medium 
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(Quinn et al., 1998; Nearing et al., 2002; Fellner and Parker, 2004; Loretz et al., 2004). 

Assuming the involvement of a CaR in the stimulation of HCO3
- secretion by the killifish 

intestine the next set of experiments set out to test whether the response of HCO3
- secretion 

to Ca2+ is similarly attenuated by altering the osmotic pressure or ionic strength of the 

bathing salines. The first of these trials employed a mucosal saline of reduced ionic 

strength (but with the osmotic pressure compensated by mannitol, see Table 6.1) and the 

mucosal half-chamber spiked with 15 mM Ca2+, following a control period and monitoring 

the effects on the tissue. As before, these same experiments were repeated but with the 

addition of 15 mM Mg2+ in place of Ca2+. The next set of trials employed the same 

approach (spiking the mucosal half-chamber with Ca2+ and Mg2+), but used a reduced 

osmolality mucosal saline (i.e. without mannitol). These experiments also required the 

design of a serosal saline with reduced osmolality to ensure the absence of any 

transepithelial osmotic gradient, while maintaining an ionic composition similar to what 

would be experienced by the tissue in vivo (Table 6.1). 

3.4.1 Effects of mucosal hyperosmolarity

The additions of CaCl2 and MgCl2 will not only increase ionic strength (by 45 mM) but 

also the osmotic pressure of the mucosal saline by around 40 mOsm kg-1. In addition to the 

possibility of Ca2+-mediated regulation of HCO3
- secretion, Grosell et al. (2007) have 

predicted that luminal osmotic pressure may trigger a shift in the direction of H+ secretion 

from basolateral to apical. As discussed in the previous chapter (Chapter 4, Section 5.2.2), 

this would effectively titrate secreted HCO3
- (to CO2 and H2O) and consequently benefit 

fluid absorption by reducing the osmotic pressure within the lumen. The following 

experiments therefore assessed the influence of raising osmotic pressure only, by initially 

spiking the mucosal saline with an impermeable solute, either mannitol or sucrose (added 

from a concentrated 1 M stock solution), to increase osmolality by approximately 40 

mOsm kg-1. After an hour the osmotic pressure of the serosal saline was subsequently 

increased, restoring the transepithelial osmotic gradient and measurements recorded for a 

further 60 minutes. For these, and the remainder of experiments detailed below, the reduced 

osmolality mucosal and serosal salines were employed (Table 6.1).

3.4.2 Source of HCO3
- secretion
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Considering the predicted effects of mucosal hyperosmolarity leading to a change in the 

polarity of H+ secretion, it was necessary to assume that a large portion of secreted HCO3
- 

must arise from intracellular CO2 hydration, similar to other species such as the flounder 

(Wilson and Grosell, 2003) and toadfish (Grosell and Genz, 2006). However, preliminary 

experiments have suggested that the killifish intestine is in fact largely reliant on serosal 

HCO3
-/CO2 (Janet Genz, personal communication). To investigate this further the serosal 

saline was substituted for a HCO3
--free, buffered saline (Table 6.1). Once the control period 

had passed the regular serosal saline was removed, the half-chamber rinsed twice, before 

refilling with 1.6 ml of HCO3
--free, serosal saline which was then gassed with 100 % O2.

3.4.3 Basolateral H+ secretion in relation to mucosal osmotic pressure

If intracellular CO2 hydration was shown to be a significant source for the supply of HCO3
- 

for apical secretion then substantial basolateral H+ secretion would be necessary to sustain 

these processes (Grosell et al., 2005; Grosell, 2006; Grosell and Genz, 2006). This would 

also offer the opportunity to detect any change in the direction of H+ secretion (from 

basolateral to apical) following an increase in mucosal osmolarity. The pH stat system was 

subsequently modified to measure the rate of serosal acidification. The titrant was changed 

to 0.005 N NaOH, rather than HCl, with the pH set point remaining at 7.800, typical of 

teleost blood pH. The pH electrode and micro-burette were then set up in the serosal half-

chamber where the serosal saline was completely unbuffered, containing neither HEPES, 

HCO3
- nor PO4

2- and gassed with 100 % O2 (Table 6.1). Experiments were conducted in the 

same manner as described for the measurement of mucosal HCO3
- secretion (Section 3.2).

3.4.4 Mediation of apical HCO3
- and H+ secretion

With the time constraints of this particular study, the final series of experiments attempted 

to identify the transporters behind HCO3
- secretion and putative apical H+ secretion. While 

substantial physiological data has accumulated in support of the involvement of Cl-/HCO3
- 

exchange on the apical, and in some cases the basolateral membrane for the majority of 

species examined (reviewed by Grosell, 2006), this has still to be fully characterised for the 

killifish. Subsequently, experiments were carried out applying the well known anion 

transport inhibitor DIDS (4,4'-di-isothiocyanatostilbene-2,2'-disulfonic acid disodium salt). 

DIDS was dissolved in DMSO and after the 60 minute control period was applied to the 
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mucosal half-chamber giving a final concentration of 10-4 M DIDS in 0.1 % DMSO, and 

measurements followed for a further 60 minutes before application to the serosal saline. 

The Na+ channel blocker amiloride was also used in a separate set of experiments to assess 

the presence of an apical Na+/H+ antiporter. These were performed by a mucosal application 

of amiloride, again dissolved in DMSO, and presented at a final concentration of 10-4 M in 

0.1 % DMSO.

3.5 Buffer capacity of mannitol and sucrose

To rule out the possibility that the addition of osmolytes, mannitol and sucrose offered any 

significant buffering capacity to the mucosal saline and could therefore influence the 

alkalinisation rate of the mucosal saline a separate set of titrations were carried out on 

arriving back at the University of Exeter. The auto-titrator employed was the same model 

used for the previous pH-stat experiments (TIM 845 titration manager, Radiometer) but 

with a different combination pH electrode (pHC2401-8, Radiometer) and burette (ABU52, 

Radiometer). Before commencing titration, a 20 ml aliquot of saline was pre-gassed for 1 

hour with 100 % N2 to remove CO2 (similar to the pre-gassing routine during actual pH-stat 

experiments which used 100 % O2). After this initial equilibration the pH of the saline was 

recorded and 0.0005 N NaOH added steadily at a rate of 0.30 ml min-1 while the sample 

was continuously gassed and stirred, and the rise in pH monitored. All pH readings (to 

within ±0.003 pH units) and volume of base added (to the nearest µl) were logged onto a 

personal computer using Titramaster 85 software (version 3.1). The starting pH of all the 

salines was ~6.5, thus the buffer capacity of each saline was subsequently calculated as the 

amount of base required to raise the saline pH from 7.000 to 7.800 remaining relevant to 

the pH stat experiments. Buffer capacity was measured for the reduced osmolality saline 

(Table 6.1), and subsequently with salines containing either 40 mM mannitol or sucrose. 

3.6 Saline design and composition

The salines used in these experiments are presented in Table 6.1 and based on the ionic 

composition of the intestinal fluid and blood plasma from the killifish. On the morning of 

each experiment, glucose was added to the serosal saline (and mannitol to the mucosal 

saline as necessary) before measuring osmolality (Wescor Vapro 5520) and adjusting as 

required with deionised water so that both salines yielded an identical osmotic pressure. 
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Each saline was then gassed continuously for at least 60 minutes with the appropriate gas 

mixture prior to being aliquoted into the Ussing chamber.

3.7 Calculations

The resultant changes to TEP (ΔPD) and current (ΔI) from baseline values during pulsing 

were calculated for every 5 minute time period over the course of each experiment and 

used to derive the transepithelial conductance (Gt, presented as mS cm-2) at each time point 

according to Ohms Law and calculated as:

Gt = ΔI / (ΔPD × 0.3) (1)

where, 0.3 is the gross surface area (cm2) of the exposed epithelium.

Table 6.1: The composition of the mucosal and serosal salines employed in the following 

experiments displaying the concentration of each component (given in mmol l  -1  ), along   

with the measured pH of the serosal saline (following equilibration with respective gas 

mixture). Osmolarity was calculated from the given osmotic coefficient (Robinson and 

Stokes, 1965) of each component and presented as mOsm l  -1  .  

Mucosal salines Serosal salines
Regular Reduced 

ionic 

strength

Reduced 

osmolality

Regular Reduced 

osmolality

HCO3
-

free

Buffer 

free

NaCl 90.0 45.0 45.0 146.0 132.0 132.0 141.0
KCl 5.0 5.0 5.0 3.0 2.0 2.0 3.0
MgSO4.7H2O 80.0 80.0 80.0 0.9 0.9 0.9 0.9
MgCl2.6H2O 15.0 15.0 32.5 - - - -
CaCl2.6H2O 5.0 5.0 5.0 2.0 2.0 2.0 2.0
NaHCO3 - - - 8.0 8.0 - -
Na2HPO4 - - - 0.5 0.5 0.5 -
K2HPO4 - - - 0.5 0.5 0.5 -
HEPES

(Free acid)

- - - 4.0 4.0 4.0 -

HEPES

(Na+ salt)

- - - 4.0 4.0 4.0 -
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Glucose - - - 6.0 6.0 6.0 6.0
Mannitol - 80.0 - - - - -

Osmolarity 319 319 282 314 286 270 286
pH 7.80* 7.80* 7.80* 7.83 7.83 7.80 7.80*
Gas mixture 100 % O2 0.3 % CO2

(O2 balance)

100 % O2

*pH set point of the pH stat titration

3.8 Data presentation and statistics

The data are presented as means (±SE) and sequential paired t-tests used to evaluate 

differences between individual time points post-treatment with a control value. The control 

value was calculated from the average of the last 30 minutes of the control period prior to 

treatment. To reduce the type-1 error rate following multiple paired comparisons a 

modified Bonferroni correction of the probability values associated with each test was 

applied (Holm, 1979; Sokal and Rohlf, 1994). Significant differences in buffer capacity 

between mucosal salines were assessed by the non-parametric Kruskal-Wallis test, as the 

data failed to meet the assumptions of normality and equality of variance associated with a 

one-way ANOVA, and post-hoc, pair-wise comparisons were made using Dunns procedure. 

The results of all tests were accepted as significant at P <0.05. Statistical analyses were 

carried out using Minitab v13.1 and graphs drawn with SigmaPlot v9.0.

4. Results

4.1 Stimulation of HCO3
- secretion by Ca2+

There was no effect of increasing mucosal Ca2+ on HCO3
- secretion by the killifish intestine 

using the Ussing chamber and pH stat system (Figure 6.2C). Electrophysiological 

measurements showed that addition of either CaCl2 or MgCl2 led to a rapid and significant 

hyper-polarisation of the epithelia (Figures 6.2A and D), combined with a significant 

increase in conductance (Figure 6.2B and C), suggesting an increase in net, overall 

negative ionic flux and the permeability of the epithelia.
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Figure 6.2: Simultaneous measurements of transepithelial potential, TEP (mV), 

transepithelial conductance, G (mS cm  -2  ) and HCO  3
-   secretion (µEq cm  -2   h  -1  ) from the   

isolated anterior intestine of the killifish following the addition of 15 mM CaCl2 (Panels A 

to C), or 15 mM MgCl2 (Panels D to F) to the mucosal saline. Results are means ±SE based 
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on n = 8 and 6 for the CaCl2 and MgCl2 treatments, respectively. Means with asterisks are 

significantly different from the preceding 30 minute control period, indicated by filled 

circles or bars (P <0.05).

4.2 Is HCO3
- secretion modulated by ionic strength and osmolality?

Once again in the presence of 20 mM Ca2+ there was no stimulation of HCO3
- secretion, in 

fact there was an average 28 % decrease, although this was found to not be statistically 

significant (Figure 6.3C). The corresponding set of ‘control’ experiments with MgCl2 were 

overshadowed by problems and preparations would struggle to reach pH 7.8 and even 

begin the pH stat titration. For those tissue preparations that were successful, baseline rates 

of HCO3
- secretion were noticeably depressed, by approximately 50 % (Figure 6.3F), 

compared with previous experiments using CaCl2. However, in spite of the reduced rate of 

HCO3
- secretion TEP appeared unaffected (Figures 6.3A and D), as well as conductance 

(Figures 6.3B and E), and in general the baseline electrophysiological parameters were 

comparable between treatments and demonstrated the same response to both CaCl2 and 

MgCl2.
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Figure 6.3: Simultaneous measurements of transepithelial potential, TEP (mV), 

transepithelial conductance, G (mS cm  -2  ) and HCO  3
-   secretion (µEq cm  -2   h  -1  ) from the   

isolated anterior intestine of the killifish following the addition of 15 mM CaCl2 (Panels A 

to C), or 15 mM MgCl2 (Panels D to F) to the ‘reduced ionic strength’ mucosal saline. 
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Results are means ±SE based on n = 6 for both CaCl2 and MgCl2 treatments. Means with 

asterisks are significantly different from the preceding 30 minute control period, indicated 

by filled circles or bars (P <0.05).

The third manipulation of the mucosal saline composition in an attempt to resolve the 

potential for Ca2+ to stimulate HCO3
- secretion involved reducing the osmotic pressure. 

Interestingly, after switching from the previous ‘reduced ionic strength’ saline the problem 

described for the previous MgCl2 treatment (Figure 6.3F) had disappeared and Figures 6.4C 

and F show that control HCO3
- secretion was restored to baseline rates (between 0.6 and 0.8 

µEq cm-2 h-1). The addition of CaCl2 or MgCl2 did not influence secretion rates, and was 

accompanied by a significant increase in conductance (Figures 6.4B and E) but a smaller 

reduction in TEP than seen previously (Figures 6.4A and D). 
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Figure 6.4: Simultaneous measurements of transepithelial potential, TEP (mV), 

transepithelial conductance, G (mS cm  -2  ) and HCO  3
-   secretion (µEq cm  -2   h  -1  ) from the   

killifish intestine following the addition of 15 mM CaCl2 (Panels A to C), or 15 mM MgCl2 

(Panels D to F) to the ‘reduced osmolality’ mucosal saline. Results are means ±SE based on 
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n = 6 for both CaCl2 and MgCl2 treatments. Means with asterisks are significantly different 

from the preceding 30 minute control period, indicated by filled circles or bars (P <0.05).

4.2.1 Effects of mucosal hyperosmolarity

In response to an increase in osmotic pressure only (in the absence of any change in ionic 

strength) by the application of mannitol to the mucosal saline resulted in a rapid 40 % 

reduction in HCO3
- secretion, but was unfortunately not statistically significant (Figure 

6.5C). There were no significant effects on electrophysiological parameters, but in contrast 

to previous experiments there appeared to be a gradual reduction in TEP (ionic flux) and an 

increase in conductance (permeability) (Figures 6.5A and B). A corresponding application 

of mannitol to the serosal side, thus effectively removing the imposed transepithelial 

osmotic gradient, did not restore HCO3
- secretion (Figure 6.5C). To help confirm that this 

was a result of osmotic pressure and not a specific response to mannitol, these experiments 

were repeated using sucrose as a non-absorbable osmolyte. Reassuringly, the same effect 

was seen on HCO3
- secretion, but was not quite statistically significant, and 40 minutes 

after applying serosal sucrose HCO3
- secretion had been completely abolished (Figure 

6.5F). The effects on electrophysiological parameters (Figures 6.5D and E) followed a 

similar trend to those shown opposite in the presence of mannitol.
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Figure 6.5: Simultaneous measurements of transepithelial potential, TEP (mV), 

transepithelial conductance, G (mS cm  -2  ) and HCO  3
-   secretion (µEq cm  -2   h  -1  ) from the   

isolated anterior intestine of   F. heteroclitus   following the addition of 40 mOsm mannitol   

(Panels A to C), or 40 mOsm sucrose (Panels D to F) which were added first to the 
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mucosal, then to the serosal saline. Results are means ±SE based on n = 3 and 4 for 

treatments with mannitol and sucrose, respectively. Means with asterisks are significantly 

different from the preceding 30 minute control period, indicated by filled circles or bars (P 

<0.05).

For some individuals HCO3
- was not merely reduced following the increase in mucosal 

osmolality but completely abolished. For example, in one case (Fish 69) the mucosal saline 

began to rapidly acidify with pH falling from 7.80 to 7.65 in the 15 minutes immediately 

following the addition of mannitol to the mucosal saline (Figure 6.6A). In addition, for Fish 

72 and 74 the addition of sucrose had a similar effect (Figures 6.6B and C). 
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Figure 6.6: The pH of the mucosal saline logged over the course of an experiment which 

shows the increase in pH taking place at the beginning of an experiment as the tissue 

secretes HCO3
-   up to pH 7.8 at which point the pH stat titration commences. The arrows   
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indicate the addition of either mannitol (Panel A – Fish 69) or sucrose (Panels B and C – 

Fish 72 and 74, respectively) to the mucosal and serosal salines and the subsequent effect 

on mucosal pH.

4.2.2 Source of HCO3
- secretion

Following the removal of serosal HCO3
-/CO2 there was no dramatic fall in HCO3

- secretion 

rates, instead they remained stable before beginning to decline slowly. After an hour HCO3
- 

secretion had fallen by only 25 % and similar to the data shown in Figures 6.5 and 6.6 

subsequent addition of sucrose to the mucosal chamber all but abolished this secretion 

leading to acidification of the lumen (Figure 6.7).
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Figure 6.7: Simultaneous measurements of transepithelial potential, TEP (mV), 

transepithelial conductance, G (mS cm  -2  ) and HCO  3
-   secretion (µEq cm  -2   h  -1  ) from the   

killifish intestine after replacing the serosal saline, followed by the addition of 40 mOsm 

Sucrose to the mucosal saline. Results are means ±SE based on n = 4. Means with asterisks 

are significantly different from the preceding 30 minute control period, indicated by filled 

circles or bars (P <0.05).

4.2.3 Basolateral H+ secretion in relation to mucosal osmotic pressure

The rates of basolateral acid efflux were very high and in many cases more than double the 

rates of apical HCO3
- secretion seen previously. There appears to be little change in serosal 

proton secretion in response to increased mucosal osmolality by mannitol or sucrose 

(Figures 6.8C and F), nor were there any significant effects on TEP (Figures 8A and D) or 

conductance (Figures 6.8B and E). 
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Figure 6.8: Simultaneous measurements of transepithelial potential, TEP (mV), 

transepithelial conductance, G (mS cm  -2  ) and the serosal secretion of acidic equivalents   

(µEq cm  -2   h  -1  ) from the isolated anterior intestine of the killifish following the addition of   

40 mOsm mannitol (Panels A to C), or 40 mOsm sucrose (Panels D to F) which were added 
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first to the mucosal, then to the serosal saline. Results are means ±SE based on n = 4 for 

both treatments. Means with asterisks are significantly different from the preceding 30 

minute control period, indicated by filled circles or bars (P <0.05).

4.2.4 Mediation of apical HCO3
- and H+ secretion

DIDS was unexpectedly acidic and upon addition the mucosal saline dropped immediately 

taking anywhere from 40 to 90 minutes to recover to pH 7.8 and for titration to continue. 

Once the pH stat titration was resumed HCO3
- secretion took another 30 minutes to stabilise 

and was found to be significantly reduced by an average of 37 % (Figure 6.9C). This effect 

on HCO3
- was accompanied by a significant increase in conductance along with a reduction 

in TEP (Figures 6.9A and B). After 60 minutes, application of DIDS to the serosal saline 

had no further effect on secretion rates or electrophysiological parameters. 

In an additional set of experiments with amiloride there was also a slight fall in pH, 

although not as severe as seen with DIDS, and the pH stat titration resumed swiftly with no 

effect on HCO3
- secretion (Figure 6.9F), nor any deleterious effects on the 

electrophysiogical properties of the tissue in general (Figures 6.9D and E). The effects of 

mucosal sucrose on HCO3
- secretion were not influenced by blocking Na+/H+ exchange, 

and although only n = 2, HCO3
- secretion by both preparations was immediately abolished.
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Figure 6.9: Simultaneous measurements of transepithelial potential, TEP (mV), 

transepithelial conductance, G (mS cm  -2  ) and HCO  3
-   secretion (µEq cm  -2   h  -1  ) from the   

isolated anterior intestine of the killifish following the application of mucosal DIDS (10  -4   

M) and subsequent application of serosal DIDS (10  -4   M) (Panels A to C). Also, the   
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influence of mucosal amiloride (10  -4   M) followed by the addition of 40 mOsm sucrose to   

the mucosal saline (Panels D to F). Results are means ±SE based on n = 5 and 2 for the 

DIDS and amiloride treatments, respectively. Means with asterisks are significantly 

different from the preceding 30 minute control period, indicated by filled circles or bars (P 

<0.05).

4.3 Buffer capacity of mannitol and sucrose

A separate set of titrations on the mucosal salines used in this study showed that the 

addition of mannitol did not significantly alter the buffer capacity of the saline. However, 

the presence of 40 mM sucrose required 10 % more base to reach pH 7.8 compared with 

mannitol or saline only (Figure 6.10).

Reduced osmolality mucosal saline
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Figure 6.10: The mean (±SE) amount of base (mM) required to increase the pH of the 

reduced osmolality mucosal saline in order to determine any changes in buffer capacity 

following the addition of either 40 mM mannitol or sucrose. Means labelled with different 

letters indicate a significant difference (P <0.005), n = 8 for each saline.
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5. Discussion

5.1 Stimulation of HCO3
- secretion by Ca2+

The killifish intestine displayed high rates of HCO3
- secretion, and based on all the 

measured control values from the present study this averaged 0.70 ±0.02 µEq cm-2 h-1 (n = 

120) at 25 °C. This was approximately 3.5 times greater than the European flounder, at 12 

°C using the same in vitro technique (Wilson et al., 2002). Yet in spite of this impressive 

secretion rate the epithelia was insensitive to the effects of Ca2+ (and Mg2+) following a 15 

mM increase in the concentration of these divalent cations from 5 to 20 mM (Figure 6.2C). 

Before suggesting that this was a species-specific difference in the regulation of HCO3
- 

secretion it was first considered whether the ionic strength and osmotic pressure of the 

bathing media were able to influence the sensitivity of the putative calcium-sensing 

receptor (CaR).

5.2 Is HCO3
- secretion modulated by ionic strength and/or osmolality?

A comparison of the ‘regular’ mucosal saline with the mucosal saline used by Wilson et al. 

(2002), revealed a number of differences in their respective composition (Table 6.2). The 

Na+ content was greater by 40 mM in the former (due to a higher concentration of NaCl), 

which also resulted in more Cl- being present. Overall, the total ionic strength and osmotic 

pressure of the saline in the present study was much higher. This was considered significant 

in terms of the predicted role of a CaR in the regulation of intestinal HCO3
- secretion 

(Wilson et al., 2002), since the activity of the receptor is known to be modulated by ionic 

strength (Quinn et al., 1998; Nearing et al., 2002; Fellner and Parker, 2004; Loretz et al., 

2004).

Table 6.2: A comparison of the ionic composition of the ‘regular’ mucosal saline used in 

the present study with the mucosal saline used by Wilson   et al  . (2002). The concentration   

of each ion is given in mmol l  -1   and the units of osmolality mOsm kg  -1  .  

Ion Regular saline Wilson et al. (2002)
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(Present study)
Na+ 90.0 50.0
Cl- 135.0 110.0
K+ 5.0 5.0
Ca2+ 5.0 5.0
Mg2+ 95.0 100.0
SO4

2- 80.0 77.5

Total 410.0 347.5
Osmolarity 319 282

The next set of experiments employed a ‘reduced ionic strength’ mucosal saline, which had 

90 mM fewer ions, compared with the ‘regular’ saline used previously (Table 6.1), and 

almost 30 mM lower than the saline used by Wilson et al. (2002). Yet again this failed to 

stimulate HCO3
- secretion, in fact there was a clear (but not quite significant) drop in 

secretion by almost one third (Figure 6.3C). Furthermore, there remains no clear 

explanation for the problems which frustrated experiments when applying MgCl2 (Figure 

6.3F). After inspecting the equipment and exhausting any potential technical causes, 

consideration was given to the tissue itself. In terms of active ion transport, TEP can be an 

(indirect) indicator of metabolic rate as the ability to maintain a TEP is dependent on the 

activity of the electrogenic Na+/K+ pump (Armstrong, 1987). However, in spite of 

depressed HCO3
- secretion rates there appeared no adverse effects on TEP (Figure 6.3D) or 

conductance (Figure 6.3E), and these parameters were comparable with values obtained 

from previous experiments. Another potential problem could have been related to the use of 

mannitol, which was included at a concentration of 80 mM to maintain the osmotic 

pressure of the saline at ~319 mOsm l-1. While large concentrations of non-electrolytes, 

such as mannitol and sucrose, are known to interfere with electrode potentials, this is 

apparently only noticeable at molar concentrations, where TEP shifts in the positive 

direction by about 0.8 mV per 1 M mannitol (Barry and Diamond, 1970). With no obvious 

external or internal anomalies noted in the fish during dissection, these points suggested no 

inherent problems with the epithelium itself and the issue therefore seemed to solely 

concern the secretion of HCO3
-. Also, these problems did not manifest themselves in prior 

experiments using the same ‘reduced ionic strength’ mucosal saline (Figures 6.3A and B). 

Mannitol is also known to donate a proton in aqueous solution, and is therefore considered 

weakly acidic (Gaidamauskas et al., 2005), which may have buffered secreted HCO3
-. 

However, this was also considered an unlikely scenario as prior experiments revealed that 
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the HCO3
- secretion rate was unaffected (Figure 6.3C), and this conclusion was further 

supported by confirmation that mannitol does not alter the buffer capacity of the mucosal 

saline (Figure 6.10).

A third and final manipulation of the mucosal saline was one of reduced ionic strength but 

with no osmotic compensation, and therefore virtually identical to the saline used by 

Wilson et al. (2002). Interestingly, as quickly as the above described problem had 

developed it disappeared after switching to this saline, and HCO3
- secretion rates were 

restored. However, there were yet again no effects of Ca2+ (or Mg2+) on the rate of HCO3
- 

secretion (Figure 6.4C and F).

5.2.1 Other effects on epithelial ion transport

Regardless of the bathing medium the addition of either CaCl2 or MgCl2 had similar effects 

on electrophysiological measurements displaying an immediate, significant decrease in 

TEP (i.e. becoming more negative). Even though it was not possible to determine the 

nature of this change it was considered likely to represent an increase in net Cl- absorption 

from mucosa to serosa, due to the increased availability of Cl- following the addition of 

either 15 mM CaCl2 or MgCl2. This raised the concentration of mucosal Cl- by 30 mM, and 

depending on the mucosal saline employed amounted to an 18-25 % increase in mucosal 

Cl-, fitting in well with the overall average increase in TEP of 20 ±2 % across treatments. 

Accompanying this change in TEP was a similar increase in transepithelial conductance 

(Gt), an indicator of the ionic permeability of the epithelia (Horowicz et al., 1978). 

Conductive pathways for ions through epithelia can be either transcellular or paracellular. 

In epithelia such as the intestine which are typically characterised as ‘leaky’ almost all of 

the measured Gt represents ionic permeation via the paracellular pathway, and can be as 

much as 80-96 % in the marine teleost intestine (Loretz, 1995), within the range reported 

for mammals and other vertebrates (Powell, 1981; Armstrong, 1987). It was not possible to 

determine the nature of this increase in Gt, but it may represent an increase in basolateral 

Cl- conductance (concomitant with the assumption of increased Cl- absorption, based on 

TEP). 

5.2.2 A role for the CFTR?
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In the seawater-adapted killifish the observed relationship between Cl- fluxes and Gt by the 

intestine suggests that a substantial portion of Cl- flux is indeed conductive (Marshall et al., 

2002), and is supported by the identification and functional localisation of a cystic fibrosis 

transmembrane conductance receptor (CFTR) to the apical and basolateral membranes of 

the posterior intestine in F. heteroclitus (Singer et al., 1998; Marshall et al., 2002). The 

CFTR is a channel forming protein that primarily transports Cl- and is expressed in a range 

of epithelia including the intestine, lungs, skin and pancreas (Fuller and Benos, 1992). 

Mutations of the CFTR gene are widely believed to result in abnormal ion and fluid 

transport giving rise to the disease cystic fibrosis (Fuller and Benos, 1992). Thus, the 

observed increase in Gt may therefore represent an upregulation of Cl- conductance via a 

chloride transporting channel such as the CFTR. In contrast to the killifish, no similar 

effects on TEP or Gt were detected in the flounder intestine (Wilson et al., 2002). However, 

Wilson and co-workers only added 5 mM CaCl2 as opposed to 15 mM in the present study. 

On reviewing the data shown in Figures 6.2 to 6.4, there was no evidence of a role for 

mucosal Ca2+ in the stimulation of HCO3
- secretion by the killifish intestine in vitro. Based 

on the predicted involvement of a CaR, manipulations of ionic strength and osmolality of 

the surrounding media did not influence the response of the tissue suggesting that, unlike 

the flounder, there may well be a different mechanism behind the stimulation of intestinal 

HCO3
- secretion in the killifish.

5.3 Effects of mucosal hyperosmolarity and the role of cell volume regulation

The addition of either 15 mM CaCl2 or MgCl2 not only increased the ionic strength of the 

mucosal saline relative to the serosal, but also imposed a relatively large osmotic gradient 

across the tissue, presenting a significant challenge to cell volume control drawing water 

out of the epithelia. Changes to cell volume induced by alterations to extracellular 

osmolality (causing either shrinking or swelling due to the associated movement of water) 

can jeopardise the structural and functional integrity of the cell. Exposure to anisoosmotic 

media therefore results in a rapid (within minutes) recruitment of additional ion transport 

mechanisms to help correct for these potentially damaging volume changes. These 

processes are termed the regulatory volume increase (RVI) and regulatory volume decrease 
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(RVD) in relation to the influence of hyper- and hypoosmotic media, respectively (Lang et 

al., 1998; O’Neill, 1999). 

Of particular relevance to the present study following the increase in mucosal osmolarity 

was the RVI, which is typically mediated by the activation of Na+-K+-2Cl- cotransport 

(NKCC) and also Na+/H+ exchange (NHE) coupled to parallel Cl-/HCO3
- exchange. Both 

mechanisms increase the net influx of NaCl which will be followed by osmotically obliged 

water, thus counteracting cell shrinkage (Lang et al., 1998; O’Neill, 1999). Recently, 

Grosell et al. (2007) predicted for the rainbow trout that increases in mucosal osmolarity 

may trigger a shift in H+ secretion by intestinal epithelial cells, from basolateral to apical, 

which would titrate luminal HCO3
- (to CO2) thus helping reduce luminal osmotic pressure 

(discussed previously in Chapter 4, Section 5.2.2). This is a particularly intriguing 

suggestion for the estuarine killifish also, as it is likely to experience varying fluid 

osmolalities within the intestine on a regular basis. However, following the addition of 

CaCl2 (in an attempt to stimulate HCO3
- secretion), which increased the osmolarity of the 

mucosal chamber by approximately 40 mOsm l-1, there was no significant reduction in 

HCO3
- secretion, which may well have been observed if mucosal HCO3

- were being titrated 

by H+ as part of the RVI.

When the osmolarity of both salines bathing the isolated freshwater eel (Anguilla anguilla) 

intestine were simultaneously increased from 290 to 315 mOsm l-1 (using mannitol) ion 

transport displayed a biphasic response (Lionetto et al., 2001). The first phase was a rapid, 

transient increase approximately 10 minutes in duration, correlating with histological 

observations of cellular shrinkage. This was followed by a sustained second phase, 

recognised as the RVI, and involved increased Cl- transport via the recruitment of apical 

NKCC and basolateral Cl- channels, which reached a steady state after 30-45 minutes. 

Notably, these observations appear similar to the rapid changes in TEP and Gt in the present 

study following the addition of either CaCl2 or MgCl2, and thus lend additional support to 

the earlier prediction that the changes to epithelial ion transport represent the movement of 

Cl- from mucosa to serosa (Section 5.2). 

However, increasing mucosal osmolarity (by 40 mOsm l-1), using either mannitol or 

sucrose, did not have the same effect as the Cl- salts but instead resulted in a rapid and 

dramatic reduction in HCO3
- secretion, with no significant changes to TEP or Gt (Figure 

6.5). Subsequently raising the osmolarity of the serosal saline, effectively removing the 
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transepithelial osmotic gradient, did not restore HCO3
- secretion rates. Even though sample 

sizes within each of these data sets were rather small (n = 3 and 4), and as such reduced the 

likelihood of detecting any statistically significant differences, the effect on HCO3
- 

secretion was convincing. In fact, for some individuals the pH stat titration was abolished 

after the saline pH fell below 7.8, and the mucosal saline began to slowly acidify (Figure 

6.6). These results were very intriguing and offered tentative support to the prediction that 

the coupling of apical HCO3
- with H+ secretion was indeed activated following mucosal 

hyperosmolality. Curiously, this response was only apparent when the change in osmolarity 

was induced by (largely) impermeant solutes (mannitol and sucrose) and not by ionic 

solutes (CaCl2 and MgCl2).

5.3.1 The source of HCO3
-

Experiments employing a HCO3
-/CO2-free serosal saline, demonstrated that approximately 

75 % of secreted HCO3
- by the killifish intestine was derived from the intracellular 

hydration of CO2 (Figure 6.7). This was contrary to the initial prediction that secretion was 

largely dependent on a serosal supply of HCO3
-/CO2 and also the conclusion by Lionetto et 

al. (2001) that serosal HCO3
- was crucial for the response to hyperosmolarity, since under 

HCO3
-/CO2-free serosal conditions the epithelial response to hyperosmolarity was lost by 

the freshwater eel. This was clearly not the case for the seawater-adapted killifish, in fact 

the absence of serosal HCO3
-/CO2 seemed to attenuate the response as apical HCO3

- 

secretion was all but abolished following the addition of mucosal sucrose (Figure 6.7C).

5.3.2 Basolateral H+ secretion

If a shift in the direction of H+ secretion from basolateral to apical were indeed responsible 

for this reduction in HCO3
- secretion then it was not evident from the measurements of 

basolateral H+ secretion (Figure 6.8). Although these latter experiments into serosal H+ 

secretion were potentially useful they were not without problems. There are two major 

points to be highlighted regarding these particular experiments. Firstly, more time should 

have been permitted for the preparation to settle before applying either mannitol or sucrose. 

In contrast to the pH stat titration of HCO3
- secretion into the mucosal saline, pH stat 

titration of the serosal saline would begin immediately and shortly thereafter the first 

applications of mucosal mannitol and sucrose were applied. As seen from the associated 
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electrophysiological measurements and acidification rates in Figure 8 these parameters had 

not completely stabilised. Secondly, there would also have been a substantial pH gradient 

across the tissue for at least the first hour of these experiments which may have influenced 

H+ secretion. While the serosal saline was fixed at pH 7.8, the initially unbuffered mucosal 

saline started at a pH between 6.4 and 7.1, and during a typical pH stat titration of the 

mucosal saline it would often take an hour, perhaps longer, for the epithelia to secrete 

sufficient HCO3
- equivalents to reach pH 7.8. 

In spite of these problems, the rate of H+ equivalents secreted into the serosal saline was 

more than double the recorded rate of mucosal HCO3
- secretion, with potential reasons for 

this having been discussed previously (Chapter 4, Section 5.3.2). Recording such high rates 

may have made it difficult to detect a shift in the direction of H+ secretion from basolateral 

to apical in response to mucosal hyperosmolarity. However, based on the reduction in pH 

following the addition of mannitol and sucrose shown in Figure 6.6, the rate of mucosal 

acidification would have been approximately 0.015 µEq cm-2 h-1, together with an 

anticipated 0.45 µEq cm-2 h-1 reduction in serosal H+ (based on the decrease in HCO3
- 

secretion rate shown in Figures 6.5C and F) it should have been possible to detect this 

predictable fall in serosal H+ secretion of approximately 25 %.

5.4 The response of the killifish intestine to mucosal hyperosmolarity

To help summarise the discussion so far, Figure 6.11 presents a direct comparison of the 

differing responses of the seawater-adapted killifish intestine following increases in 

mucosal osmolarity by permeable, ionic solutes (CaCl2 and MgCl2) and the non-ionic, 

impermeable osmolytes (mannitol and sucrose). The distinguishing features are the 

differing responses of TEP and HCO3
- secretion between treatments (Figures 6.11A and C). 

Following the addition of the Cl- salts there was a rapid change in TEP (Figure 6.11A), 

presumably a reflection of elevated apical NaCl cotransport and basolateral Cl- 

conductance (Lionetto et al., 2001; Marshall et al., 2002; Lionetto and Schettino, 2006; 

Hoffman et al., 2007). Whereas, mucosal hyperosmolarity induced by mannitol and 

sucrose, would have left the concentrations of extracellular ions unchanged. Thus, the 

driving force for activation of an ionic influx (followed by water) as part of the RVI will be 

greatly reduced compared with either CaCl2 or MgCl2. Instead, there was a dramatic 

reduction in HCO3
- secretion (Figure 6.11C), associated with a biphasic change in total 
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ionic flux. The latter was characterised by a small, rapid decrease in TEP immediately after 

inducing hyperosmolarity and lasted approximately 10 minutes. This was followed by a 

sustained and gradual increase over the proceeding 40 minutes (Figure 6.11A). In contrast, 

the second phase of the RVI by the freshwater eel intestine to a similar hyperosmotic 

challenge (by simultaneous addition of mannitol to both sides of the epithelium) revealed a 

sustained decrease in TEP (Lionetto et al., 2001). One possibility accounting for this 

discrepancy in response compared with the seawater-adapted killifish was the likelihood 

that apical HCO3
- secretion by the freshwater eel intestine would be inherently low 

(Wilson, 1999; Wilson et al., 2002; Grosell, 2006), and therefore unavailable to the RVI.
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Figure 6.11: A comparison of the simultaneous measurements of transepithelial potential, 

TEP (mV), transepithelial conductance, G (mS cm  -2  ) and HCO  3
-   secretion (µEq cm  -2   h  -1  )   

from the killifish intestine responding to a 40 mOsm l  -1   increase in mucosal osmolarity   

induced by ionic, permeable osmolytes (CaCl2 and MgCl2), denoted by the black circles (n 

= 12), or impermeant solutes (mannitol and sucrose), shown by the open circles (n = 10). 

Data are displayed as means values from all experiments employing the ‘reduced 

osmolality’ mucosal saline (~282 mOsm l  -1  ).  

5.4.1 Mediation of apical HCO3
- and H+ secretion

Blocking apical Na+/H+ with the non-specific inhibitor amiloride did not affect the abolition 

of HCO3
- secretion on application of sucrose (Figure 6.9F). Even though the sample size 

was only n = 2 the result was convincing and implies that the proposal of mucosal 

acidification following hyperosmotic challenge did not necessarily involve the recruitment 

of Na+/H+ exchange. One further option that could have been explored at this point in the 

study was to try blocking the H+-ATPase with bafilomycin. However, as time was running 

short for this visit it was decided to explore whether the reduction in HCO3
- secretion could 

due to an inhibition of anion exchange as opposed to titration of secreted HCO3
-, which 

would also afford the opportunity to simultaneously provide evidence for the involvement 

of Cl-/HCO3
- exchange by the killifish intestine.

The application of mucosal DIDS significantly reduced HCO3
- secretion, thus providing 

evidence for the contribution of apical Cl-/HCO3
- exchange. It was surprising to find that 

DIDS (and amiloride) dissolved in DMSO were so acidic, consequently holding up the pH 

stat titration. In spite of this HCO3
- secretion continues and within 30 minutes of reaching 

pH 7.8, and restart of the pH stat titration, secretion rates had stabilised to 63 % of control 

values (Figure 6.9C). Subsequent application of DIDS to the serosal saline did not 

influence apical HCO3
- secretion and to some extent supports the earlier conclusion that the 

source of HCO3
- is largely endogenous arising from CO2 hydration (Figure 6.7C). 

Interestingly, mucosal HCO3
- secretion was not abolished in response to DIDS which 

would suggest there may be additional mechanisms of HCO3
- transport. The fact that the 

mucosal saline was able to recover to pH 7.8 after falling to pH 6.15 ±0.15 (n = 5), and the 

secretion rate continued to increase for a further 30 minutes upon reaching 7.8 before 
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stabilising (Figure 6.9C) suggested that there was a potential compensatory mechanism of 

HCO3
- secretion. 

5.4.2 The mechanism of HCO3
- secretion in vitro

It has previously been recognised that DIDS does not produce a complete inhibition of 

HCO3
- secretion by intestinal epithelia from a number other marine teleosts in vitro (Dixon 

and Loretz, 1986; Ando and Subramanyam, 1990; Grosell and Jensen, 1999; Grosell et al., 

2001), which have been considered the result of the relatively low concentrations of DIDS 

used (Grosell, 2006), the topography of the intestine (Grosell and Jensen, 1999) and/or 

insensitivity of the particular Cl-/HCO3
- exchanger isoform to DIDS (Grosell et al., 2001; 

Romero et al., 2004). An additional consideration has been the potential for conductive 

HCO3
- exit (Dixon and Loretz, 1986). For example, in these pH stat experiments where the 

mucosal saline is initially unbuffered and the subsequent HCO3
-/CO3

2- content low, along 

with a net negative cytosol, there will be a large electrochemical gradient for conductive 

HCO3
- movement across the apical membrane. Blocking apical Cl-/HCO3

- exchange would 

lead to a build up of intracellular HCO3
- and further fuel this gradient for apical exit. This 

can be demonstrated by applying the Nernst equation which describes the equilibrium 

potential, E (mV) required to sustain a given ion gradient across an epithelium and is given 

as:

E = (RT) / (zF) × Log10 (Xo / Xi) (2)

Where, R is the universal gas constant (8.31441 J K-1 mol-1), T is the absolute temperature 

in Kelvin (25 °C = 298 K), z is the valence of the ion (for HCO3
- this is -1), F is Faradays 

constant (96484.6 coul mol-1), Xo is the concentration of the ion in the outer solution 

(mucosal saline) and Xi the concentration of the ion in the inner solution (serosal saline). 

Based on the mean secretion rate of 0.7 µEq cm-2 h-1 and the volume of the chamber (1.6 

ml), the concentration of HCO3
- in the mucosal saline was taken as 0.1 mM, with 8 mM in 

the serosal saline (Table 6.1), the equilibrium potential was calculated as 48.9 mV 

compared with an average measured TEP of -9.4 mV indicating a substantial gradient for 

HCO3
- secretion by conductive pathways. In contrast, in vivo conditions where mucosal 

concentrations may be in excess of 100 mM, the calculated equilibrium potential would be 
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around -28 mV, much lower than the TEP measured here. Secondarily active Cl-/HCO3
- 

exchange will therefore become increasingly important as the concentration of HCO3
- 

increases in the gut lumen (Grosell et al., 2001; Grosell et al., 2005; Grosell, 2006). 

Furthermore, it has been observed that blocking anion exchange with DIDS leads to 

compensatory HCO3
- secretion via anion conductance (Novak, 2000) which could help 

explain the observed reduction in TEP and significant increase in Gt (Figures 6.9A and 

6.9B, respectively). While DIDS is widely used as a pharmacological blocker of anion 

exchangers and Cl- channels, the CFTR is insensitive to DIDS (Marshall et al., 2002) and 

as this channel is also capable of transporting HCO3
- it will therefore be a potential 

conductive pathway accounting for the sustained mucosal HCO3
- secretion observed in 

Figure 6.9C. It is important to remember that there are also a number of additional effects 

of DIDS including the activation of cation conductance in Xenopus oocytes (Diakov et al., 

2001; Stumpf et al., 2006) which could explain some of the observed changes in TEP and 

Gt. In these experiments the dramatic reduction, and in some case abolition of HCO3
- 

secretion, in response to mucosal hyperosmolarity cannot be attributed to the inhibition of 

anion exchange.

5.4.3 Physiological significance

There is a clear distinction in the response of the intestine to hyperosmolarity induced by 

Cl- salts and impermeant osmolytes (Figure 6.11). This begs the question, why are there 

such different responses to the same increase in osmotic pressure and what would be their 

physiological significance? It would seem the answer lies with salinity adaptation, as an 

estuarine species the killifish must be capable of readily augmenting its osmotic and ionic 

homeostasis. The application of CaCl2 and MgCl2 increased the concentration of luminal 

Cl- (as well as Ca2+ and Mg2+), and osmolarity, conditions that would not be dissimilar to 

what the gastrointestinal tract may experience when environmental salinity increases and 

drinking rate is consequently elevated (Chapter 1, Section 2.1). Even though HCO3
- 

secretion was not stimulated in response to Ca2+ as expected, intestinal Cl- absorption 

increased (discussed in Section 5.2.2) which in vivo would inevitably contribute to 

increased levels of Cl- in the blood and an associated increase in plasma osmolarity. For 

example, when killifish were rapidly transferred from freshwater to full strength seawater 

the osmotic pressure of the blood plasma increased (by as much as 65 mOsm kg-1), in turn 
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this hyperosmotic shock activated Cl- secretion by the gills (Zadunaisky et al., 1995), and 

this has subsequently been associated with elevated expression of CFTR in the intestine 

and mitochondria-rich cells following similar salinity transfer (Singer et al., 1998).

In contrast, mucosal hyperosmolarity induced by the non-ionic osmolytes (mannitol and 

sucrose) does not lead to a concomitant increase in intestinal Cl- absorption. Although these 

investigations are far from complete, the proposal that apical H+ secretion is upregulated, 

acidifying the lumen and titrating mucosal HCO3
-, consequently reducing luminal osmotic 

pressure is an appealing hypothesis worthy of additional study. Since the killifish is 

stomachless, the anterior intestine (used in these studies), will be the main site of digestion 

receiving pancreatic and biliary inputs and therefore experience large shifts in osmotic 

pressure during digestion, as well as coping with ingested seawater. It is worth noting that 

although mannitol and sucrose are both carbohydrates, it was very unlikely that the 

reduction in HCO3
- secretion resulting from this specific hyperosmotic challenge was a 

digestive response. For example, gastric secretions have been shown to increase the buffer 

capacity of chyme entering the intestine by 33 % in human subjects (Fordtran and Walsh, 

1973). However, Babkin and Bowie (1928) have shown that the killifish does not undertake 

acidic digestion. Furthermore, the use of isolated sections of intestine by these experiments 

means that any pancreatic or biliary inputs will be absent, and also any digestive enzymes 

secreted by the intestinal cells themselves are unlikely to be significant (Fänge and Grove, 

1979). In addition, only sucrose significantly altered buffer capacity (Figure 6.10), yet was 

clearly unable to account for the sustained rates of mucosal acidification shown in Figure 

6.6.
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Chapter Seven

Is there a role for the calcium-sensing receptor in the 

regulation of ion and fluid transport by the marine teleost 

intestine?
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1. Summary

The functional implications of the calcium-sensing receptor (CaR), particularly in relation 

to gastrointestinal physiology, reveals a variety of potential roles from nutrient sensing to 

modulating ion and fluid transport, immune function and also epithelial renewal, yet for 

teleosts there is almost no direct evidence in support of these ideas. Activation of the CaR 

by its primary ligand, Ca2+ is thought to be responsible for the stimulation of HCO3
- 

secretion as demonstrated by the intestine of the seawater-adapted European flounder in 

vitro and in vivo. The aim of the present study was to investigate a potential role for the 

CaR in the regulation of ion and fluid transport by the teleost intestine. Considering the 

possibility that the receptor is modulated by extracellular ionic strength, using the in vitro 

paired gut sac technique with a reduced ionic strength mucosal saline resulted in an overall 

decrease in the rate of HCO3
- secretion in response to elevated mucosal Ca2+, while fluid 

absorption was reversed and preparations displayed net secretion. Similarly, lowering the 

ionic strength and osmolality of the mucosal saline had identical effects on ion and fluid 

transport in the presence of 20 mM Ca2+ compared to controls. Mucosal application of 

gadolinium (Gd3+) and neomycin, both recognised agonists of the CaR, did not produce 

responses in terms of HCO3
- secretion and fluid transport that were fully consistent with the 

influence of Ca2+. Upon analysing the thermodynamics of the gut sac system it became 

clear that as HCO3
- accumulated within the mucosal saline over the course of an incubation 

the electrochemical potential for secondarily active Cl-/HCO3
- exchange would be 

substantially diminished. By contrast, when using the Ussing chamber with pH stat 

titration, a favourable gradient for HCO3
- secretion was constantly maintained. Taking into 

account potential limitations on intracellular HCO3
- production, and the influence of 

unstirred layers within the static mucosal saline, it was subsequently argued that the gut sac 

was an inappropriate technique for measuring increases in HCO3
- secretion in vitro. Having 

already presented compelling evidence of a role for Ca2+ in the stimulation of HCO3
- 

secretion, CaCO3 production and fluid transport in vivo, addition of Gd3+ and neomycin to 

the perfusion salines did not significantly influence intestinal HCO3
- secretion or fluid 

absorption compared to controls. It was suggested that the role of the CaR would in fact be 

largely redundant in vivo, instead HCO3
- secretion would be determined by two factors. 

Firstly, the ability to generate high levels of intracellular HCO3
-, and secondly the creation 
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of a localised gradient for apical HCO3
- exit as it is consumed in the formation of CaCO3. 

Alternatively, under in vitro conditions, where CaCO3 would be unlikely, the presence of 

additional Ca2+ stimulates HCO3
- secretion (presumably via a CaR) to encourage CaCO3 

production and removal of the excess Ca2+. While this would appear true for the Ussing 

chamber technique, it was disappointing to learn that the inability to observe this same 

process, and the effects on ion and fluid transport using gut sacs, were most probably 

undermined by the constraints of this technique.

2. Introduction

There is growing evidence that the calcium-sensing receptor (CaR) is likely to influence a 

number of different functions in the teleost intestine, including the rate of HCO3
- secretion, 

where the receptor is thought to mediate this process by signalling changes in luminal Ca2+ 

concentrations (Wilson et al., 2002). It was hypothesised that elevated mucosal Ca2+ would 

stimulate HCO3
- secretion, and possibly net Cl- absorption (via Cl-/HCO3

- exchange), and in 

turn drive additional fluid absorption. Unfortunately, the in vitro gut sac experiments 

described previously have so far been unsuccessful in resolving the effect of mucosal Ca2+ 

on intestinal HCO3
- secretion. From analysis of the data presented in Chapter 4, elevated 

Ca2+ appeared to reduce net NaCl and fluid transport in the anterior and mid portions of the 

intestine (Section 4.1). Furthermore, in the absence of serosal HCO3
-/CO2 these transport 

processes were abolished across all sections of the gut (Section 4.3). It was subsequently 

argued that a CaR might be involved in mediating this rather unexpected response (Section 

5.3.4). 

Interestingly, a reduction in NaCl and fluid transport in the presence of elevated luminal 

Ca2+ is contrary to the demonstration of increased HCO3
- secretion both in vitro (Wilson et 

al., 2002) and in vivo (Wilson et al., 2002; Chapter 5). With the possibility that activation 

of the CaR can mediate HCO3
- secretion (Wilson et al., 2002), as well as net NaCl transport 

(Chapter 4), and consequently water absorption by the teleost intestine, the following study 

set out to try and demonstrate a functional role for the receptor. A brief review of the 

literature on the CaR in fish, with particular emphasis on the gut, reveals that in spite of its 
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name the receptor is likely to have a variety of roles, as it has the capacity to recognise and 

respond to a number of different physiological ligands.

2.1 Calcium homeostasis

Teleosts have successfully demonstrated adaptation to a range of ambient Ca2+ 

concentrations, from ion poor freshwater, containing as little as 0.001 mM Ca2+ (Gonzalez 

et al., 2005), to seawater (~10 mM), and beyond for species at hyper-salinities such as the 

killifish, Fundulus heteroclitus (Griffith, 1974). The maintenance of stable concentrations 

of ionised Ca2+ within the body depends on the integration of a number of specialised 

tissues (discussed previously in Chapters 4 and 5). Briefly, the intestinal CaR has a pivotal 

role in maintaining Ca2+ homeostasis and is purported to modulate the 

synthesis/release/action of various hormone factors which (in addition to other tissue 

specific effects) are known to influence the trafficking of Ca2+ across the intestine. For 

example, transition of the vitamin D endocrine system in the euryhaline rainbow trout 

(Oncorhynchus mykiss), from promoting intestinal absorption of Ca2+ to its inhibition, and 

vice versa, is thought to be under the control of a CaR. The receptor is considered to 

regulate expression of vitamin D receptors in the intestine in response to changes in 

environmental salinity, and specifically the external Ca2+ concentration (Larsson et al., 

2003). This would be consistent with previous work in rat parathyroid cells where it has 

been demonstrated that extracellular Ca2+ regulates vitamin D receptor mRNA expression 

(Garfia et al., 2002) via the CaR (Rodriguez et al., 2007). 

Parathyroid hormone-related protein (PTHrP) is a hyper-calcaemic factor in teleost fish, 

likely produced by the pituitary gland (Fraser et al., 1991; Danks et al., 1993), and has been 

shown to significantly increase intestinal Ca2+ uptake by the gills and intestine (Guerreiro 

et al., 2007). The caudal neurosecretory system (CNSS) consists of a collection of large 

neurosecretory cells, called Dahlgren cells, localised in the posterior region of the spinal 

cord. These cells are thought to be involved in a range of physiological processes including 

osmoregulation, reproduction and nutrition (Winter et al., 2000). Co-localisation of PTHrP 

and the CaR to Dahlgren cells from the European flounder suggest that the synthesis and/or 

secretion of PTHrP may also be under the control of Ca2+ signals from the nervous system 

(Ingleton et al., 2002). Similarly, stanniocalcin is one of the principal hypo-calcaemic 

factors in marine teleosts which has direct effects on intestinal Ca2+ transport, and is also 
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mediated by a CaR responding to changes in circulating levels of Ca2+ (Radman et al., 

2002).

2.2 Salinity sensor

The broad distribution of the CaR in tissues that do not necessarily have an intrinsic role in 

Ca2+ homeostasis indicates a much broader relevance for the receptor. For example, with 

modulation of CaR sensitivity by ionic strength (Quinn et al., 1998), this has led to the 

consideration that the receptor also operates as a salinity sensor, capable of detecting 

alterations in the salinity of the surrounding water (Nearing et al., 2002). Molecular studies 

detailing the cloning and characterisation of the teleost CaR have indeed confirmed that its 

activation is also modulated by changes in ionic strength (Nearing et al., 2002; Loretz et 

al., 2004). 

The identification of a specific Ca2+-sensing mechanism in the olfactory system of the 

euryhaline sea bream (Sparus aurata), where the firing rate of the olfactory nerve varied 

with environmental Ca2+ pointed to a role for the CaR in the detection of external Ca2+ 

concentrations (Hubbard et al., 2000). Identification and localisation of a CaR to the 

olfactory nerves and epithelium of not only the sea bream (Flanagan et al., 2002) but also 

the stenohaline freshwater goldfish, Carassius auratus (Hubbard et al., 2002), as well as 

the anadromous Atlantic salmon, Salmo salar (Nearing et al., 2002; Dukes et al., 2006) and 

the euryhaline puffer fish, Fugu rubripes (Naito et al., 1998). These observations would 

appear consistent with involvement of the receptor in communication, via the central 

nervous system, of changes in environmental Ca2+ leading to either behavioural avoidance 

of, or physiological adjustment to, a salinity challenge. 

It has been speculated that due to expression of the receptor in the olfactory epithelium 

along with the pituitary and CNSS, suggests that signals originating from changes to 

external salinity (and specifically Ca2+), are integrated with endocrine and neuroendocrine 

activity (Loretz et al., 2004; Loretz, 2008). The pituitary and CNSS are not only involved 

in Ca2+ homeostasis but also osmoregulation. For example, many of the hormones that 

modulate osmoregulatory functions within the body, such as ion and fluid transport by the 

intestine, originate from the pituitary gland (Buddington and Krogdahl, 2004) including 

oxytocin (Baldisserotto and Mimura, 1997), arginine vasotocin (Bond et al., 2002) and 

prolactin (Manzon, 2002). Similarly, neuroendocrine factors synthesised and secreted by 
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the CNSS, specifically urotensins I and II, are also considered to have a role in 

osmoregulatory adaptation (Winter et al., 2000).

2.3 Intestinal ion and fluid transport

The CaR is expressed in the intestine of a number of teleost species including the sea 

bream (Flanagan et al., 2002; Hang et al., 2005), Atlantic salmon and winter flounder, 

Pseudopleuronectes americanus (Nearing et al., 2002), tilapia, Mossambicus oreochromis 

(Loretz et al., 2004) and European flounder (Cooper, C. A., personal communication). 

Aside from the peripheral influence of the CaR via the endocrine system, its presence along 

the gut itself implies a more direct role for the receptor. Apical localisation (Nearing et al., 

2002; Loretz et al., 2007), places the CaR in direct contact with the contents of the gut 

where it will be able to monitor and respond to changes in extracellular Ca2+. Along with 

the modulation of receptor sensitivity by ionic strength, which in vivo would confer a 

substantial modification to the EC50 for Ca2+ (discussed in Chapter 6, Section 2.4), makes 

the CaR an attractive candidate for the regulation of intestinal HCO3
- secretion. 

Generally, evidence of a role in ion and fluid transport along the gastrointestinal tract is 

limited to a handful of experiments which have shown that activation of the CaR in rat 

colonic crypts (by extracellular Ca2+) reverses ion and fluid secretion and promotes 

absorption (Geibel et al., 2006). A similar influence has been proposed for fluid transport in 

the gastric glands of the amphibian stomach (Gerbino et al., 2007). In other types of 

transporting epithelia too the CaR has been shown to exert an influence on ion and fluid 

movement, for example, reducing water re-absorption in the kidney by altering the 

hydraulic permeability of the inner medullary collecting duct (Sands et al., 1997). Similarly 

in rat pancreatic ducts a CaR monitors extracellular Ca2+ moderating fluid secretion 

accordingly (Bruce et al., 1999). More pertinently, fluid re-absorption by the urinary 

bladder of the winter flounder is modulated by a CaR which regulates NaCl co-transport 

(Nearing et al., 2002).

2.4 Epithelial barrier function

The CaR has been localised within the intestinal tissue itself, in particular to isolated cells 

within the lamina propria of the sea bream, which were tentatively identified as leucocytes 

(Flanagan et al., 2002). This indicates that the receptor could be poised to influence the 
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barrier function of the intestinal epithelia by acting as a sensor or messenger between the 

internal and external compartments. Described as the largest immunologic organ in the 

vertebrate body (Takahashi and Kiyono, 1999), the gut is continuously exposed to the 

environment where it is likely to encounter numerous pathogens; hence expression of the 

CaR in white blood cells, as observed by Flanagan et al. (2002), could imply a possible role 

in an immune response. Furthermore, activation of the CaR in colonic myofibroblast cells, 

found between the epithelia and lamina propria, leads to the synthesis and secretion of 

factors known to regulate cell proliferation (Peiris et al., 2007). The intestine is in a 

constant state of renewal, and in mammals cell proliferation takes place in specialised 

structures known as the crypts of Lieberkühn (Sancho et al., 2003). The activity of the CaR 

is also modulated by polyamines (Quinn et al., 1997), which are crucial factors for normal 

rates of cell proliferation and differentiation required to sustain the rapid turnover of 

gastrointestinal epithelial cells (Loser et al., 1999), hence, the involvement of a CaR in 

these processes has also been considered (Chattopadhyay et al., 1998; Hebert et al., 2004). 

Interestingly, the crypts of Lieberkühn have been noted as conspicuously absent from the 

teleost intestine (Field et al., 1978). However, while the process of epithelial regeneration 

has not been extensively studied in fish, recent work has identified equivalent structures 

from the intestine of the common wolf-fish (Anarhichas lupus). These regularly distributed 

crypts reach into the lamina propria and were recognised as the site of cell re-generation 

(Hellberg and Bjerkas, 2005). There are also other reports of the CaR acting as a regulator 

of proliferation and differentiation in a number of other cell types including the human 

colon cell line, Caco-2 (Kallay et al., 1997), ovarian surface epithelial cells (Hobson et al., 

2000), osteoblasts (Dvorak et al., 2004), keratinocytes (Tu et al., 2004) and mesangial cells 

of the glomerulus (Kwak et al., 2005).

2.5 Digestion and nutrient sensing

The intestine is not only a major osmoregulatory organ in teleosts, but as well as 

contributing to Ca2+ homeostasis it will naturally be responsible for digestion and nutrient 

absorption, and subsequently need to successfully integrate these essential functions. This 

is perhaps exemplified by lack of disturbance in the efficacy of protein digestion and amino 

acid absorption by the rainbow trout (Dabrowski et al., 1986), and postprandial acid-base 

balance (i.e. the alkaline tide) in the flounder (Taylor et al., 2007), maintained in either 
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freshwater or seawater. Similarly, there were no disturbances in systemic Ca2+ homeostasis 

in Gulf toadfish (Opsanus beta) following consumption of a Ca2+-rich meal (Taylor and 

Grosell, 2006a). However, while knowledge of the regulating mechanism(s) behind these 

capabilities remains little understood, there is potential scope for involvement of a CaR 

receptor in some or all of these processes.

In addition to its various cationic agonists, the CaR can also be activated by a large number 

of L-amino acids, showing a particular preference for those possessing aromatic groups. In 

addition, amino acids can also enhance the sensitivity of the CaR by reducing the EC50 for 

receptor activation by Ca2+ (Conigrave et al., 2000). These findings suggest that the CaR 

offers an intriguing molecular link between protein digestion and Ca2+ metabolism, as well 

as explanations for long-standing observations on the ability of amino acids to directly 

stimulate various phases of digestion, such as the secretion of gastric acid and release of 

pancreatic fluid (Conigrave et al., 2000; Brown and MacLeod, 2001; Busque et al., 2005; 

Conigrave and Brown, 2006). Such evidence for a similar mechanism of nutrient sensing in 

the teleost intestine is currently limited to structural similarities in the receptor, specifically 

the serine residues located in the extracellular domain of the CaR which have been linked 

to the binding of Ca2+ and amino acids (Zhang et al., 2002). These residues were found 

conserved (at identical positions) in the CaR cloned and characterised from the tilapia 

(Loretz et al., 2004). Such consistencies in structure across taxa may explain the 

widespread expression of the receptor along the gastrointestinal tract in fish (Flanagan et 

al., 2002; Nearing et al., 2002; Loretz et al., 2004), as well as mammals (Cima et al., 1997; 

Gama et al., 1997; Cheng et al., 1999; Chattopadhyay et al., 1998; Rutten et al., 1999; 

Hebert et al., 2004).

From a comparative perspective, a similar capacity of the teleost CaR to sense amino acids 

alongside Ca2+, contributes an additional layer of intrigue to the prospective role(s) of the 

receptor in the intestine, specifically, integrating the complex demands from 

osmoregulation, Ca2+ homeostasis and digestion. For example, these alternate modes of 

receptor operation may be beneficial considering that drinking rate (and consequently Ca2+ 

intake) increases following ingestion of a meal in seawater-adapted flounder (Whittamore, 

J. M. and Wilson, R. W., unpublished observations), in addition to the Ca2+ content of the 

meal itself. Furthermore, amino acids are recognised as potent stimulators of intestinal 

cholecystokinin (CCK) release in mammals (Konturek et al., 1973; Douglas et al., 1988), 
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with the CaR proposed as a potential mediator of this response (Conigrave and Brown, 

2006). CCK is an important neuropeptide which has a number of vital roles in digestion 

including control of gall bladder motility, pancreatic enzyme secretion and the slowing 

down of gastric emptying (Crawley and Corwin, 1994). Interestingly, the release of 

intestinal CCK to the blood circulation has also been documented in response to amino 

acids within the lumen of the teleost intestine (Aldman and Holmgren, 1995; Koven et al., 

2002).

 

2.6 Aims and objectives

A brief review of the existing literature has revealed that the CaR possess a range of 

characteristics that make it ideally suited to operating within the intestine. However, it 

should be stressed that many of the functions of the CaR discussed for teleosts, particularly 

in relation to the gastrointestinal tract are speculative, based on a growing body of evidence 

that is primarily consigned to mammalian models and thus requires direct, physiologically 

relevant studies before any firm conclusions can be made for teleosts. The aim of the 

present study was therefore to evaluate whether the CaR does indeed have a role in ion and 

fluid transport by the teleost intestine, and in particular the regulation of HCO3
- secretion. 

The first set of experiments employed the in vitro paired gut sac technique to investigate 

whether altering the ionic strength or osmolality of the mucosal saline would modify the 

sensitivity of the receptor to luminal Ca2+. This would mimic in vivo changes in gut fluid 

composition as it moves along the intestine and any enhancement of receptor sensitivity to 

Ca2+ might reveal a response in HCO3
- secretion, which has so far eluded detection in vitro. 

While there are some compelling arguments supporting a role for the CaR in regulating 

HCO3
- secretion (Wilson et al., 2002), as well as ion and fluid transport (discussed in 

Chapter 4, Section 5.3.4) by the teleost intestine, there is currently little direct evidence of a 

functional role for the receptor in these processes in vitro. A second set of gut sac 

experiments sought to address this by applying known agonists of the receptor in a bid to 

explore the possibility that the CaR is involved in the regulation of ion and fluid transport. 

Although the effects of elevated mucosal Ca2+ using the in vitro gut sac preparation have 

proven ambiguous so far, there is however a clear, definitive response to Ca2+ following 

perfusion of the intestine in vivo (Chapter 5). The final set of experiments involved 

perfusing the intestine in vivo with CaR agonists against a background of 10 mM Ca2+ and 
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observing the effects on HCO3
- production and secretion as well as accompanying ion and 

fluid transport. If successful in providing some direct, functional evidence for a CaR, this 

study would open up opportunities to integrate the physiological responses at the tissue and 

whole animal level, with a detailed molecular characterisation of the intestinal CaR in a bid 

to more fully understand its role in a model euryhaline teleost.

3. Materials and Methods

3.1 Experimental animals

European flounder, Platichthys flesus, were obtained from local fishermen in Flookburgh, 

Cumbria, U.K. (n = 19, mean body mass 413 ±19 g and 31.4 ±0.4 cm, total length) and 

Fremington, North Devon, U.K. (n = 9, mean body mass 450 ±41 g and 33.7 ±0.7 cm, total 

length). A small number of fish used in these experiments had been purchased from 

Aquarium Technology, Dorset, UK (n = 4, mean body mass 335 ±29 g and 31.6 ±1.0 cm, 

total length). All fish were transported to the School of Biosciences, University of Exeter 

where they were held in marine aquarium facilities in 150 litre tanks of flowing, aerated 

artificial seawater as part of a recirculating seawater system maintained at 34.2 ±0.3 ppt 

and 11.6 ±0.3 °C, under a 12 hour light: dark photoperiod. At least 7 days were allowed for 

the fish to acclimate after arriving in the aquarium. Food was typically withheld for 72 

hours prior to experimentation, otherwise the fish were maintained on a diet of fresh 

ragworm (Nereis virens) fed once per week.

3.2 In vitro experiments

3.2.1 General experimental approach

The design, preparation and execution of the following experiments were identical to the 

paired gut sac protocol described previously (Chapter 4, Section 3.3). Briefly, gut sacs were 

made from the anterior, mid and posterior thirds of the intestine and experiments involved 

an initial 2 hour incubation period with a ‘control’ mucosal saline containing 5 mM Ca2+, 

before rinsing the sac and refilling with a high Ca2+ (20 mM Ca2+) mucosal saline and 

incubating for a further 2 hours.
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3.2.2 Is HCO3
- secretion modulated by ionic strength and osmolality?

Having already demonstrated that HCO3
- secretion is specifically stimulated by Ca2+ in the 

flounder intestine using the in vitro Ussing chamber approach with a reduced osmolality 

saline (Wilson et al., 2002), it was logical that this same question, asked previously for the 

killifish (Chapter 6, Section 2.4), was also considered using flounder gut sacs. The first set 

of experiments in this study therefore employed a reduced ionic strength mucosal saline, 

using mannitol to maintain osmotic pressure at ~320 mOsm kg-1, identical to the ‘regular’ 

serosal saline used previously (see Chapter 4, Section 3.2). A second set of experiments 

subsequently evaluated the influence of the ‘reduced osmolality’ mucosal and serosal 

salines (~280 mOsm kg-1) on the response of the tissue to elevated luminal Ca2+. A detailed 

description of each of these salines is listed in Table 7.1 below.

3.2.3 Applying agonists of the calcium-sensing receptor (CaR)

Two commonly used agonists of the CaR, gadolinium (Gd3+) as GdCl3, and neomycin (in 

the form of neomycin sulfate) were applied (separately) in gut sacs as part of the following 

investigation. These experiments were carried out with the ‘reduced ionic strength’ mucosal 

saline as conditions of reduced ionic strength are recognised as increasing the sensitivity of 

the receptor to its agonists (Quinn et al., 1998; Nearing et al., 2002; Loretz et al., 2004), 

and would therefore present the most favourable conditions for activation of the receptor.

With no studies having previously documented the use of these agonists in the intestine 

another consideration was the appropriate dosage at which to apply them. The CaR is more 

sensitive to changes in net charge rather than specific ligand. This explains why members 

of the trivalent lanthanide series, such as Gd3+, are capable of activating the receptor with 

concentrations in the micro-molar range, as opposed to the typical milli-molar 

concentrations required for Ca2+ or Mg2+ (McLarnon and Riccardi, 2002). Similarly, the 

potency of aminoglycoside antibiotics (e.g. neomycin, kanamycin and gentamicin) 

correlates with the number of attached amino groups (McLarnon et al., 2002). In trials, 

neomycin was found to be the most potent of these, possessing 6 amino groups and thus 

having a potential maximum charge of 6+ (Josepovitz et al., 1982; McLarnon et al., 2002). 

Both Gd3+ and neomycin have been used successfully by numerous investigators, but 

appear largely confined to studies on individual cells or cultured cell lines. Perhaps the 
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most pertinent use of these agonists, in relation to the present study, has been with bladder 

'sacs', made from the urinary bladder of the winter flounder, where they were applied at 

concentrations ranging from 19-250 µM for Gd3+ and 50-250 µM for neomycin (Nearing et 

al., 2002). For the current experiments it was eventually decided to use a relatively high 

concentration of each compound (1 mM) dissolved directly in the ‘control’ mucosal saline.

For each of these experiments a total of 3 successive 2 hour incubations periods was 

undertaken as opposed to two. The first two incubations consisted of the ‘control’ saline 

followed by ‘control + 1 mM CaR agonist’. A third flux period was introduced to observe 

whether the effects on ion and fluid transport (if any) were reversible following 

Table 7.1: The inorganic salts and additional solutes used in the composition of the mucosal 

and serosal salines employed in the following experiments. The concentration of each 

component is given in mmol l  -1  . Osmolarity was calculated from the osmotic coefficient of   

each constituent and presented in mOsm l  -1  .  

Mucosal salines Serosal salines
Control High Ca2+

Reduced 

ionic 

strength**

Reduced 

osmolality

Reduced 

ionic 

strength

Reduced 

osmolality
Regular Reduced 

osmolality

NaCl 49.0 45.0 49.0 45.0 146.0 130.0
KCl 5.0 5.0 5.0 5.0 3.0 2.5
MgCl2.6H2O 25.0 32.5 10.0 17.5 - -
CaCl2.6H2O 5.0 5.0 20.0 20.0 2.0 2.0
MgSO4.7H2O 70.0 80.0 70.0 80.0 0.9 0.9
NaHCO3 1.0 1.0 1.0 1.0 8.0 8.0
Na2HPO4 - - - - 0.5 0.5
KH2PO4 - - - - 0.5 0.5
HEPES (Free acid) - - - - 4.0 4.0
HEPES (Na+ salt) - - - - 4.0 4.0
D-Mannitol 58.0 - 58.0 - - -

D-Glucose - - - - 6.0 6.0
L-Glutamine - - - - 6.0 6.0
L-Glutathione - - - - 1.0 1.0

pH - - - - 7.80 7.80
Osmolarity* 321 284 320 283 323 292
*These are the theoretical, calculated osmolalities of the salines as originally made up. The osmotic 
pressure of the mucosal, and corresponding serosal saline, were matched exactly prior to each experiment.
**It should be noted that prior checks of saline pH revealed that both neomycin sulphate and GdCl3 were 
slightly acidic and it was therefore necessary to correct for this using NaOH.
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application of either Gd3+ or neomycin, as would be expected following activation of the 

CaR. Indeed, Nearing et al. (2002) found that the inhibition of Jv in bladder sacs after 

administration of either Gd3+ of neomycin was fully reversible. Thus, at the end of the 

second incubation period the sac was emptied and gently rinsed 3 times with 1-1.5 ml of 

‘control’ mucosal saline before being refilled and incubated for a further 2 hours.

3.2.4 Saline design and composition

A similar composition of reduced ionic strength and osmolality salines detailed in the 

previous chapter (Chapter 6, Section 3.6) was applied in the present work with the flounder 

and details are shown in Table 7.1. For the high Ca2+ version of each mucosal saline the 

concentration of Ca2+ was increased four-fold from 5 to 20 mM in keeping with previous in 

vitro experiments (Chapters 4 and 6). 

3.3 In vivo experiments

3.3.1 Experimental approach and salines

The surgical procedures, perfusion protocol along with the sampling regime and analysis 

detailed in Chapter 5 (Section 3.2) were followed for the present in vivo experiments. Once 

surgery was complete the intestine was perfused with saline containing either Gd3+ or 

neomycin, the same agonists applied in vitro, with a nominal concentration of 1 mM 

chosen for each (Table 7.2).

3.4 Data presentation and analysis

Data are presented as mean ±SE. For the in vitro experiments, positive numbers were 

indicative of net absorption and negative numbers of net secretion. Differences in rates of 

ion and fluid transport between anterior, mid and posterior sections of the intestine were 

assessed by a two-way ANOVA, using a General Linear Modelling (GLM) procedure, 

where section of the intestine, and incubation period were factors. This analysis also 

included calculation of an interaction term between these factors. Differences in net fluxes 

between treatments were assessed by paired t-tests. Where appropriate, following multiple 

paired comparisons, a modified Bonferroni correction of the probability value 

270



Chapter 7

Table 7.2: The inorganic salts used in the composition of the   in vivo   perfusion salines   

employed by the present study. The concentration of each component salt is given in mmol 

l  -1  . Theoretical osmolarity (mOsm l  -1  ) was calculated based on the osmotic coefficient of   

each salt.

Salt Perfusion treatment
Control Control (+ Gd3+)* Control (+ Neomycin)

NaCl 50.0 50.0 50.0
KCl 5.0 5.0 5.0
MgCl2.6H2O 80.0 80.0 80.0
CaCl2.6H2O 10.0 10.0 10.0
MgSO4.7H2O 10.0 10.0 10.0

GdCl3 - 1.0 -
Neomycin sulfate - - 1.0

*As before, the pH of the saline was corrected with NaOH since GdCl3 is slightly acidic. However, unlike 
the acidic effect of neomycin observed with the reduced ionic strength mucosal saline (which contained 
mannitol), addition to the in vivo perfusion saline produced no change in pH. 

associated with each additional paired t-test was applied to reduce the possibility of 

incurring a type-1 error (Holm, 1979; Sokal and Rohlf, 1994).

The data collected from the in vivo experiments with Gd3+ and neomycin were compared to 

the ‘control’ perfusion saline. All data expressed as a proportion were arcsine transformed 

prior to analysis and significant differences between treatments tested for by one-way 

ANOVA using a General Linear Modelling (GLM) procedure. Post-hoc, pair-wise 

comparisons were made using Bonferroni simultaneous tests. For data failing to meet the 

assumptions of approximate normality and equality of variance, the non-parametric 

Kruskal-Wallis test was performed with post-hoc comparisons made using Dunns 

procedure. All statistical tests were accepted as significant at P <0.05 following prior 

examination of approximate normality and equality of variance. Statistical analysis was 

carried out using Minitab v13.1 and graphs drawn using SigmaPlot v9.0.

4. Results

4.1 The influence of saline composition on HCO3
- secretion

4.1.1 Regular mucosal saline
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For the benefit of the reader and ease of comparison with the data from the ‘reduced ionic 

strength’ and ‘reduced osmolality’ salines used in the present study, data that had 

previously been collected using the ‘regular’ serosal saline and presented in Chapter 4 

(Section 4.1) are shown again here in Figure 7.1.
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Figure 7.1: The mean (±SE) net fluxes of sodium, chloride and bicarbonate (nmol cm  -2   h  -1  ),   

alongside net fluid transport (  µ  l cm  -2   h  -1  ) by gut sacs from the flounder intestine under   

control conditions (dark shading), and in response to a 15 mM increase in mucosal Ca  2+   

concentration (light shading) using the ‘regular’ mucosal saline. These data were 

previously shown in Chapter 3 (Section 4.1).
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4.1.2 Reduced ionic strength mucosal saline

There was a significant overall reduction in HCO3
- secretion by 12 % following the 

increase in mucosal Ca2+ up to 20 mM, but secretion remained unchanged in the posterior 

section of the intestine. Even though there was a net secretion of Na+ and very low rates 
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Figure 7.2: The mean (±SE) net fluxes of sodium, chloride and bicarbonate (nmol cm  -2   h  -1  ),   

alongside net fluid transport (  µ  l cm  -2   h  -1  ) by gut sacs from the flounder intestine under   

control conditions (dark shading), and in response to a 15 mM increase in mucosal Ca  2+   

concentration (light shading) using the ‘reduced ionic strength’ mucosal saline. Data are 

presented for anterior, mid and posterior sections, as well as the average value for the entire 
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intestine. Asterisks indicate a significant difference (P <0.05) from corresponding the 

control incubation (n = 6).

of Cl- absorption, there was, on average, net fluid absorption from mucosa to serosa during 

the control incubation. However, under high Ca2+ conditions, while net NaCl transport 

remained largely unchanged there was a significant turnaround of fluid transport rates, 

from absorption to secretion (Figure 7.2).

4.1.3 Reduced osmolality saline

With the osmotic pressure of the saline reduced by approximately 40 mOsm kg-1 a very 

similar pattern of ion and fluid transport was observed (Figure 7.3) compared to the 

previous experiment using reduced ionic strength saline. Net HCO3
- secretion by both 

anterior and mid sections of the intestine was significantly reduced by 19 % and 13 %, 

respectively, and almost significant overall (P = 0.054). With comparable rates of Na+ and 

Cl- transport shown previously in Figure 7.2, there was however a significant reduction in 

net Na+ secretion for the mid and posterior portions of the gut. Fluid transport was again 

reversed in the presence of elevated mucosal Ca2+, which was almost significant for the 

posterior gut sacs (P = 0.064).

4.2 The effect of calcium-sensing receptor (CaR) agonists on ion and fluid transport in 

vitro

4.2.1 Gadolinium (Gd3+)

Applying 1 mM Gd3+ resulted in a significant reduction in HCO3
- secretion for the anterior 

and mid sections which was not reversible. For the posterior gut sacs there was a 
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Fluid

Section of intestine

Ant Mid Pos Avg

N
e

t f
lu

id
 tr

a
n

sp
o

rt
, J

v 
(

l c
m

-2
 h

-1
)

-3

-2

-1

0

1

2

3

4

5

Chloride

Ant Mid Pos Avg

N
e

t 
ch

lo
ri

de
 fl

u
x,

 J
C

l (
n

m
o

l c
m

-2
 h

-1
)

-1250

-1000

-750

-500

-250

0

250

500

750

1000

1250

1500
Sodium

Ant Mid Pos Avg

N
e

t 
so

d
iu

m
 fl

u
x,

 J
N

a
 (

n
m

o
l c

m
-2

 h
-1

)

-1250

-1000

-750

-500

-250

0

250

500

750

1000

1250

1500

Control
High Ca2+

Bicarbonate

Section of intestine

Ant Mid Pos Avg

N
e

t b
ic

a
rb

on
a

te
 f

lu
x,

 J
H

C
O

3
-  (

n
m

o
l c

m
-2

 h
-1

)

-700

-600

-500

-400

-300

-200

-100

0

*

*
*

*
*

* *

A B

C D

Figure 7.3: The mean (±SE) net fluxes of sodium, chloride and bicarbonate (nmol cm  -2   h  -1  ),   

alongside net fluid transport (  µ  l cm  -2   h  -1  ) by gut sacs from the flounder intestine under   

control conditions (dark shading), and in response to a 15 mM increase in mucosal Ca  2+   

concentration (light shading) using the ‘reduced osmolality’ mucosal saline. Data are 

presented for anterior, mid and posterior sections, as well as the average value for the entire 

intestine. Asterisks indicate a significant difference (P <0.05) from corresponding the 

control incubation (n = 6).

non-significant 18 % reduction in net HCO3
- secretion rate but this was restored after 

rinsing out the Gd3+ (Figure 7.4C). Indeed, the posterior portion of the intestine behaved a 
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little differently than more distal sections for the other ions too. While Na+ and Cl- transport 

rates appeared largely unaffected there was a substantial, but not statistically significant 

increase in transport rates during the final incubation period (recovery after Gd3+) compared 

to the initial control (Figures 7.4A and B). Interestingly, the response of fluid transport 

across treatments seemed to closely mirror that of HCO3
- secretion (Figure 7.4D). 
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Figure 7.4: The mean (±SE) net fluxes of sodium, chloride and bicarbonate (nmol cm  -2   h  -1  ),   

alongside net fluid transport (  µ  l cm  -2   h  -1  ) by gut sacs from the flounder intestine under   

control saline conditions (dark shading), and in response to 1 mM Gd  3+   (light shading)   

using the ‘reduced ionic strength’ mucosal saline. Data are presented for anterior, mid and 
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posterior sections, as well as the average value for the entire intestine. Asterisks indicate a 

significant difference (P <0.05) from the corresponding initial control incubation (n = 6).

4.2.2 Neomycin

The response of ion and fluid transport to 1 mM neomycin displayed trends similar to those 

seen with Gd3+ but were less convincing with no statistically significant differences 

between treatments (Figure 7.5). 
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Figure 7.5: The mean (±SE) net fluxes of sodium, chloride and bicarbonate (nmol cm  -2   h  -1  ),   

alongside net fluid transport (  µ  l cm  -2   h  -1  ) by gut sacs from the flounder intestine under   
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control conditions (dark shading), and in response to 1 mM neomycin (light shading) using 

the ‘reduced ionic strength’ mucosal saline. Data are presented for anterior, mid and 

posterior sections, as well as the average value for the entire intestine. Asterisks indicate a 

significant difference (P <0.05) from the corresponding initial control incubation (n = 6).

4.3 The effect of calcium-sensing receptor (CaR) agonists on ion and fluid transport in 

vivo

4.3.1 Bicarbonate production and excretion

The inclusion of the CaR agonists Gd3+ or neomycin did not enhance the rates of HCO3
- 

secretion or carbonate precipitation compared to controls (Figure 7.6). 
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Figure 7.6: The mean (±SE) net production and excretion of bicarbonate (HCO3
-   + 2CO  3

2-  )   

equivalents (µEq kg  -1   h  -1  ) by the intestine of the flounder perfused with salines containing 1   

mM of the CaR agonists Gd  3+   or neomycin compared with the control over a total of 3   

days. The open bars represent the total amount of bicarbonate equivalents (intestinal fluid + 

278



Chapter 7

rectal fluid + precipitates) produced and shaded bars show the amount that had been 

incorporated into precipitates only (n = 8, 4 and 4 for the control, Gd  3+   and neomycin   

treatments, respectively.

Similarly, the acid-base characteristics of the voided rectal fluid did not change 

significantly in the presence of these agonists (Table 7.3).

Table 7.3: The mean (±SE) values of pH, TCO2 (mM) and calculated HCO3
-   equivalents (  µ  

Eq l  -1  ) measured in rectal fluid samples from the flounder following perfusion of the   

intestine for 3 days with salines containing the CaR agonists, Gd  3+   and neomycin compared   

with the control (n = 8, 4 and 4 for the control, Gd  3+   and neomycin, respectively).  

Perfusion treatment
Control Gadolinium Neomycin

pH 8.57 ±0.03 8.54 ±0.05 8.67 ±0.04
TCO2 (mM) 61.2 ±4.7 50.1 ±8.6 57.8 ±4.5
[HCO3

- + 2CO3
2-] (µEq l-1) 68.4 ±5.6 55.9 ±10.0 65.8 ±4.7

4.3.2 Fluid transport

Figure 7.7 shows that over 3 days the proportion of fluid absorbed by the intestine was 

slightly reduced for fish undergoing perfusion with saline containing Gd3+ or neomycin. 

Interestingly, between the control and neomycin treatments water absorption fell by 14 % 

(from 47.2 % to 33.3 %) but was not quite significantly different (F2, 13 = 3.68, P = 0.054).
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Perfusion treatment
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Figure 7.7: The mean (±SE) proportion of fluid absorbed by the flounder intestine 

following perfusion with salines containing 1 mM of the CaR agonists Gd  3+   or neomycin,   

compared with the control (n = 8, 4 and 4 for the control, Gd  3+   and neomycin treatments,   

respectively).

5. Discussion

The present study set out to demonstrate a role for the CaR in the marine teleost intestine, 

specifically its influence on HCO3
- secretion, and associated ion and fluid transport, both in 

vitro and in vivo. The first set of experiments investigated whether the response of the 

proposed receptor to Ca2+could be modulated by changes in ionic strength and osmolality 

of the mucosal saline in vitro. Demonstration of consistent ion and fluid transport rates over 

consecutive incubation periods, as described in Chapter 3, but in the presence of these 
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particular salines are missing from the data set. With additional time a series of consecutive 

control experiments would have been performed to help validate the data presented here. 

However, Grosell et al. (2005) did not find any significant differences in ion and fluid 

transport rates over 3 consecutive 2 hour incubations using a mucosal saline of a similar 

composition to the reduced ionic strength and reduced osmolality salines employed here. 

With a reasonable level of confidence it was assumed that flux rates would have been stable 

over consecutive incubation periods, but where relevant in the following discussion, this 

should be kept in mind as a potential caveat.

5.1 Why is HCO3
- secretion in gut sacs NOT stimulated by Ca2+?

Altering the ionic strength and osmolality of the mucosal saline did not change the 

response of HCO3
- secretion to high Ca2+ originally observed with the ‘regular’ saline 

(Figure 7.1), with the exception that the reductions in HCO3
- in the anterior and mid 

sections were now statistically significant (Figures 7.2 and 7.3). In terms of a CaR, these 

results are perhaps not too surprising given that the EC50 for receptor activation by Ca2+ 

would have only been reduced from around 5 to 2.5 mM in relation to the change in ionic 

strength during these experiments, based on the CaR characterised from dogfish kidney 

(Nearing et al., 2002). Since the concentration of Ca2+ was increased by such a large 

amount (5 to 20 mM), it can be argued that the potential gain in sensitivity from reducing 

ionic strength in these experiments would have been largely irrelevant. 

In spite of this, and the success of in vivo experiments exploring the regulation of HCO3
- 

secretion by Ca2+ (Wilson et al., 2002; Wilson and Grosell, 2003; Chapter 5), along with a 

clear demonstration of a role for Ca2+-specific HCO3
- secretion in vitro (Wilson et al., 

2002), the gut sac experiments performed here have not matched this expectation in 

support of a role for Ca2+ in the stimulation of HCO3
- secretion. While a substantial part of 

the discussion from Chapter 4 (Section 5.1) was devoted to demonstrating that there did not 

appear to be any obvious limitations to HCO3
- secretion it was decided to return to this 

possibility. The following discussion has sought to employ a more rigorous examination of 

the role for Cl-/HCO3
- exchange. Specifically, attention has been focussed on the 

electrochemical driving forces behind HCO3
- secretion, in a bid to try and understand why 

secretion by gut sac preparations from the present study, as well as Chapter 4, appear to be 
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limited in terms of their capacity for HCO3
- secretion and subsequently failed to show the 

expected response to Ca2+. 

5.1.1 Thermodynamic considerations for HCO3
- secretion in vitro

Once more rates of HCO3
- secretion in vitro in these experiments appeared very consistent 

between 400 and 600 nmol cm-2 h-1, displaying little variation, irrespective of the 

accompanying changes in Na+ and Cl- transport (Figures 7.1 to 7.5, see also Chapter 3, 

Section 4.3). A reason for such consistency could be the favourable electrochemical 

gradient for the movement of HCO3
- across the tissue from the serosal to mucosal side. 

With 8 mM serosal HCO3
- and 1 mM mucosal HCO3

- at the start, calculation of the Nernst 

equilibrium potential (for details see Chapter 6, Section 5.4.2) reveals that the serosal to 

mucosal gradient for the movement of HCO3
- would only be abolished if the transepithelial 

potential difference (TEP) were equal to or greater than +51.0 mV (serosa positive). The 

actual TEP, measured directly by Grosell et al. (2005) for flounder gut sacs, under near-

identical conditions to the present study, was around -16 mV confirming a substantial 

electrochemical gradient for the movement of HCO3
- into the mucosal saline in these 

preparations. This value for the TEP compares well with -11.1 to -13.8 mV (Wilson et al., 

2002), and -13.5 to -14.5 mV (Wilson and Grosell, 2003), obtained from anterior sections 

of the flounder intestine mounted in the Ussing chamber under asymmetrical conditions, as 

well as in vivo measurements (-13.7 to -19.7 mV) made along the intestinal tract of this 

same species in two-thirds (21 ppt.) seawater (Bury et al., 2001). 

While useful, this cursory analysis does not impart the relative contribution of (secondary) 

active HCO3
- secretion since the energy stored in this gradient will be capable of not only 

driving apical Cl-/HCO3
- exchange (Grosell, 2006), but also conductive exit across the 

apical membrane (Dixon and Loretz, 1986), and paracellular movement across the tight 

junction (Grosell et al., 2001). Following re-arrangement of the Nernst equation, passive 

transepithelial movement of HCO3
- into the mucosal saline would be thermodynamically 

feasible up to a mucosal concentration of 15.4 mM HCO3
-. Interestingly, Grosell et al. 

(2005) made a very similar prediction (17 mM) based on experimental observations of the 

relationship between measured HCO3
- secretion rates and the ratio of HCO3

- concentrations 

on the mucosal and serosal sides of the tissue. However, for the present study, the average 

concentration of HCO3
- recovered in the mucosal saline at the end of an incubation under 
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control conditions with reduced ionic strength mucosal saline was 7.9 ±0.3 mM (n = 54) far 

below these predicted limits.

5.1.2 The driving forces for Cl-/HCO3
- exchange

A more informative approach to assessing the limitations of HCO3
- secretion would be to 

consider the electrochemical driving forces which exist across the apical and basolateral 

membranes in vitro, and more specifically the energy for apical Cl-/HCO3
- exchange. 

Similar analyses have been carried out by Grosell et al. (2001) and Grosell (2006), based 

on in vivo data and the associated Nernst equilibrium potentials for Cl- and HCO3
-. It was 

calculated that for anion exchange to be thermodynamically feasible in the anterior 

intestine the intracellular HCO3
- concentration would need to greater than 10 mM, and even 

higher in more distal regions in vivo (as the HCO3
- content of the gut fluid increases and Cl- 

decreases). Currently, there are no available measurements of intracellular HCO3
- 

concentration in the teleost intestine although estimates based on the Henderson-

Hasselbach equation from previous in vitro studies range from 0.6 mM in the goby (Dixon 

and Loretz, 1986) to 1.5 mM in the Pacific sanddab (Grosell et al., 2001). For the present 

gut sac preparations the cytosolic HCO3
- concentration was similarly calculated using the 

Henderson-Hasselbach equation:  

pHi = pKapp + log10 ([HCO3
-]i / α × PCO2) (1)

where, pHi is the intracellular pH (assumed to be ~7.4), pKapp is the dissociation constant of 

carbonic acid (6.13) from Boutilier et al. (1984), α the solubility coefficient of CO2 (0.057 

mM mmHg), and PCO2 the partial pressure of CO2 within the cell, which was calculated as 

3.8 mmHg for 0.5 % CO2 (760 mmHg × 0.005), assuming there were no limitations on CO2 

diffusion across the cell membrane. Using this information, and re-arranging equation 1 

gives an intracellular concentration of HCO3
- of 4.0 mM for the European flounder in vitro.

5.1.3 The electrochemical potential (Δµ)

The next step to determining the thermodynamic feasibility for Cl-/HCO3
- exchange in vitro 

involved calculation of the electrochemical potential (in kJ mol-1) for Cl- and HCO3
- across 
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the apical (Δµapical) and basolateral (Δµbasolateral) membranes using the following equation 

from Loretz (1995):

Δµ = RT ln([Xi] / [Xo]) + zFΔE (2)

where, [Xi] and [Xo] are the concentrations (mM) of the given ion in the cytoplasm and 

bathing solution, respectively. ΔE is the potential difference (V) across the specified 

membrane. R, T, z and F have their usual meanings. The apical membrane potential 

difference (ΔEapical) was taken as -100 mV with reference to the cytoplasm, under 

asymmetrical conditions (Loretz, 1995), and with TEP at -16 mV (Grosell et al., 2005) the 

potential difference across the basolateral membrane (ΔEbasolateral) was calculated as -84 mV 

(cytosol negative) using the following expression:

TEP = ΔEapical – ΔEbasolateral (3)

Data on ionic activities in the cytoplasm of the teleost intestine are rather limited although 

intracellular Cl- has been determined for the winter flounder (Duffey et al., 1979; Smith et 

al., 1980) using an ion-specific microelectrode reporting an activity of about 30 mM. Along 

with the intracellular HCO3
- concentration of 4 mM, calculated from equation 1, the 

resulting electrochemical potentials are presented below (Table 7.4).

Table 7.4: The electrochemical potentials, Δµ (kJ mol  -1  ) of Cl  -   and HCO  3
-   across the   

intestinal epithelia of the European flounder at the beginning and the end of gut sac 

experiments   in vitro  . The mucosal concentrations are the actual mean (±SE) values   

measured during the control incubation period from experiments with the reduced ionic 

strength mucosal saline (n = 54). Where Δµ is <0 transport will be thermodynamically 

feasible. The direction of ion movement along its electrochemical potential gradient is 

indicated in parentheses where m = mucosa, c = cytoplasm and s = serosa.

Time

(h)

Ion Concentration (mM) Δµ (kJ mol-1)
Mucosal Cytoplasm Serosal Apical Basolateral Transepithelial

0 Cl- 103.1

±0.1

30 153 6.73

(c→m)

-4.25

(c→s)

2.48

(s→m)

284



Chapter 7

HCO3
- 1.1

±0.0

4 8 12.70

(c→m)

-6.46

(c→s)

6.24

(s→m)

2 Cl- 100.7

±0.7

30 153 6.78

(c→m)

2.53

(s→m)
HCO3

- 7.9

±0.3

4 8 8.04

(c→m)

1.57

(s→m)

active Cl-/HCO3
- exchange to occur across the apical membrane can subsequently be 

calculated as the sum of the electrochemical potentials for Cl- and HCO3
- presented in table 

7.4:

ΔµCl-/ HCO3- = ΔµCl- + -ΔµHCO3- (4)

Note that the sign for Δµ HCO3
- is negative indicating movement out of the cell in the 

opposite direction to Cl-. The electrochemical potential for Cl-/HCO3
- exchange at the 

beginning of the incubation period was -5.92 kJ mol-1. This shows that the process of apical 

Cl-/HCO3
- exchange would have been thermodynamically permissible, driven by energy 

contained in the large outward gradient for HCO3
- exit. After 2 hours the Δµ for Cl-/HCO3

- 

exchange would have been reduced more than 5-fold to -1.14 kJ mol-1. The above 

calculations serve to demonstrate that the energy for Cl-/HCO3
- exchange would be greatly 

diminished, and lends support to the notion that HCO3
- secretion was indeed becoming 

limited towards the end of a 2 hour flux period. Even though, based on these figures, it was 

still theoretically possible for Cl-/HCO3
- exchange to take place, in realistic terms this 

would be an unlikely prospect, as discussed below. 

5.1.4 Is diffusion of CO2 into the epithelial cell limited?

One of the pivotal assumptions of the above analysis will be the calculation of intracellular 

HCO3
-, since the thermodynamics of the system dictate that with higher concentrations of 

HCO3
- in the cell, the more energy there will be to drive apical Cl-/HCO3

- exchange. As a 

small neutral molecule, it was naturally assumed that CO2 would freely diffuse across the 

basolateral cell membrane. However, since the permeability of Xenopus oocytes to CO2 can 

be increased by the presence of the aquaporin water channel, AQP1 (Nakhoul et al., 1998) 

this suggests that for some membranes permeability to CO2 may be intrinsically limited, 

285



Chapter 7

and for some epithelia such properties may in fact be a necessity. For example, parietal and 

chief cells of the gastric glands, which secrete acid and pepsin into the stomach do not 

benefit from the protection of the mucus-bicarbonate barrier. Instead, they are uniquely 

resistant to acidification by being almost completely impermeable to H+, NH3 and CO2 

(Boron et al., 1994; Waisbren et al., 1994). It has more recently been shown that the apical 

membrane of colonocytes from the guinea pig also possess a reduced permeability to CO2, 

more than 200 times lower than red blood cells (Endeward and Gros, 2005). 

While the potential for AQP1 to act as a channel for CO2 has been the subject of debate 

(Fang et al., 2002; Verkman, 2002), molecular simulations conclude that AQP1 could act as 

a CO2 transporting channel in epithelia with low intrinsic CO2 permeability (Hub and de 

Groot, 2006; Wang et al., 2007). Interestingly, AQP1 is abundantly expressed in the 

intestine of the Japanese eel (Aoki et al., 2003), European eel (Martinez et al., 2005) and 

sea bream (Raldua et al., 2008), but is localised almost exclusively to the apical membrane, 

with the exception of a novel aquaglyceroporin from the intestine of the sea bream (Santos 

et al., 2004). Additional support for the limited diffusion of CO2 across the basolateral 

membrane of the flounder intestine is evident from the gut sac experiments in Chapter 4, 

where the serosal saline was gassed with 2 % CO2 instead of 0.5 %, but the resulting 

mucosal HCO3
- secretion remained unchanged (Section 4.2, Figure 7.3). If CO2 were able 

to move freely into the cell then the intracellular concentration of HCO3
- would have been 

expected to be considerably higher in the presence of 2 % CO2 and therefore capable of 

driving additional Cl-/HCO3
- exchange in gut sacs as demonstrated by (Grosell et al., 2005), 

yet this was clearly not the case.

5.1.5 Additional barriers to Cl-/HCO3
- exchange in gut sacs

While intracellular PCO2, and subsequently intracellular HCO3
-, may have been over-

estimated in terms of serosal CO2 entering the cell, conversely, CO2 from cellular 

metabolism would contribute to PCO2. The flounder is considered to rely largely on 

endogenous CO2 to fuel HCO3
- secretion. However, in vitro, without an intact blood supply, 

oxidative metabolism and the functional capacity of the tissue are likely to be depressed 

(Lifson and Parsons, 1957; Whitlock and Wheeler, 1964; Ochsenfahrt, 1979; Foulkes, 

1996; Wilson et al., 2002). In the absence of extracellular CO2 (i.e. HCO3
-/CO2-free serosal 

saline) the flounder intestine has been shown to produce sufficient HCO3
- capable of 
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driving secretion in vitro, albeit at much reduced rates, almost 50 % lower than measured 

here (Chapter 4, Section 4.3). To create high intracellular HCO3
- required to overcome 

these thermodynamic constraints it has been suggested that linkage of the cytoplasmic 

carbonic anhydrase (CA) to the apical Cl-/HCO3
- exchanger forming a so-called 

‘metabolon’ (Srere, 1987) would dramatically increase the activity of the exchanger 

(Grosell, 2006). By linking these processes, the diffusional distance between the CA and 

the Cl-/HCO3
- exchanger is reduced thus permitting the development of high, localised 

intracellular concentrations of HCO3
- which would enhance transport (Sterling et al., 2001; 

2002). 

However, if cellular metabolism, and consequently CO2 production, was being limited in 

vitro the significance of such a metabolon would not necessarily be realised. Furthermore, 

the static conditions of the mucosal saline within the gut sac, which were neither gassed nor 

stirred, would provide the opportunity for a large unstirred boundary layer to form. Also, 

since the diffusion of HCO3
- through gastrointestinal mucus is 11 times slower than through 

saline (Livingston et al., 1995), HCO3
- would be likely to concentrate against the 

membrane and be counter-productive to any localised HCO3
- concentrations built up on the 

inner side of the membrane. Indeed this situation would most probably diminish the 

gradient for HCO3
- secretion much more rapidly than suggested from the electrochemical 

profiles of Cl- and HCO3
- in Table 7.4. For example, even with the possibility for low rates 

of endogenous HCO3
- production and limited diffusion of CO2 into the cell from the serosal 

side, if intracellular HCO3
- were indeed as high as 4 mM in vitro, then with an average 

concentration in the bulk fluid of 7.9 mM, it would only require a concentration of 13.4 

mM HCO3
- within the unstirred layer on the mucosal side to eliminate Cl-/HCO3

- exchange. 

In addition, with only another 2 mM the Nernst equilibrium potential of 15.4 mM 

(calculated in Section 5.1.1), for all forms of HCO3
- secretion would be reached.

5.1.6 Summary

In answer to the original question of why Ca2+ has proven unsuccessful in stimulating 

HCO3
- secretion in vitro, a problem which has consistently plagued this research, it would 

appear to be down to the choice of technique. By finally considering the thermodynamics 

of HCO3
- transport it would appear that by its very nature the gut sac preparation was 

simply not suited to measuring large increases in HCO3
- secretion. As the HCO3

- 
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concentration in the enclosed, unstirred mucosal saline increased, the electrochemical 

gradient for secretion decreased (exemplified in Table 7.4). In contrast, the previous work 

of Wilson and co-workers (2002) employing the pH stat system where mucosal pH was 

clamped at 7.8, and the mucosal saline was well-stirred and oxygenated. Under these 

experimental conditions any such thermodynamic constraints would have been greatly 

minimised and the gradient for HCO3
- secretion maintained, subsequently producing a clear 

47 % increase in the presence of elevated mucosal Ca2+. While the ideas behind the use of 

the gut sac preparation to demonstrate an increase in HCO3
- secretion were essentially 

sound, such experiments were likely to have been fundamentally flawed all along. If these 

arguments are correct then this would prove a bitterly disappointing conclusion to almost 3 

years of time and effort in pursuit of using this technique to stimulate HCO3
- secretion in 

vitro. 

5.2 The role of CaCO3 production in HCO3
- secretion in vivo

The preceding sections have provided some illuminating discussion on the driving forces 

for HCO3
- which leads into the question of how secretion would be regulated in vivo. 

Concentrations of HCO3
- in the rectal fluid of the flounder range from 29 to as high as 114 

mM, and with only 4 to 10 mM in the blood (personal observations), this is far beyond the 

equilibrium potential for HCO3
- exit. This point has been addressed by Grosell et al. 

(2001), and more recently in a review by Grosell (2006). It was suggested that linkage of 

the apical Cl-/HCO3
- exchanger and CA (in the form of a metabolon), along with a high 

metabolic turnover of CO2, producing a greater intracellular PCO2, would together create 

the high, localised intracellular HCO3
- concentrations required to overcome these 

thermodynamic constraints in vivo. However, another aspect that was not considered by 

these investigators was the reduction in localised HCO3
- concentrations created by 

carbonate precipitation. As CaCO3 crystallisation takes place against the cell surface 

(Humbert et al., 1986; 1989) and hence will consume two molecules of HCO3
- in this 

region, then in combination with a high intracellular HCO3
- concentration, this could 

further enhance the gradient for HCO3
- to exit (Figure 7.8).

5.2.1 Is a CaR required for HCO3
- secretion in vivo?
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If the above hypothesis, illustrated in Figure 7.8, were correct then it would suggest that the 

rate of HCO3
- secretion in vivo would not necessarily be under the control of a CaR, instead 

a combination of physical factors could potentially regulate secretion in vivo, namely the 

ability to generate high intracellular HCO3
- concentrations (Grosell, 2006) and an enhanced 

gradient for HCO3
- exit created by CaCO3 precipitation (Figure 7.8). This was previously 

considered by Wilson et al. (2002) who argued against a role for CaCO3 in promoting the 

gradient for further secretion as the stimulation of HCO3
- secretion by Ca2+ was equally 

apparent using the pH-stat system, where the gradient across the apical membrane was 

sustained by clamping luminal pH, CO2 (and subsequently HCO3
-) to a constant value. 

Contrary to this view, while this does indeed suggest a role for the CaR under such specific 

in vitro conditions, it is certainly does not seem to be the case in vivo and without prior 

understanding of how Ca2+, and presumably the CaR, operates to increase HCO3
- secretion 

it is not possible to extrapolate this mechanism to the situation in vivo. 

A B
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Figure 7.8: Panels A and B show transmission electron micrographs of the apical portion of 

the intestinal epithelium from the seawater-adapted European eel which has been incubated 

with lanthanum as an electron-dense tracer for Ca  2+   (Reproduced from Humbert   et al  .,   

1989). (A) Mucus globules exiting from the goblet cell (gc), demonstrates how Ca  2+   

becomes concentrated in the mucus as soon as it is extruded from the epithelium (x 8,000. 

Bar = 1 μm). (B) Needle-like Ca  2+  -rich crystals are clearly visible within the overlying   

mucus layer along with very fine precipitates deposited on the microvilli (mv) (x 8,000. 

Bar = 2 μm). (C) A simple schematic diagram illustrating the potential role for CaCO3 

crystallisation in HCO3
-   secretion, in conjunction with a Cl  -  /HCO  3

-   exchanger which is   

linked to carbonic anhydrase (CA) as part of a transport metabolon, helping create a 

favourable gradient for HCO3
-   secretion within the localised micro-environment at the   

apical membrane of the epithelial cell.

Interestingly, the failure of receptor agonists Gd3+ and neomycin to stimulate HCO3
- 

secretion during perfusion of the intestine (Figure 7.6) would actually favour the notion 

that the rate of precipitation will determine what additional HCO3
- secretion takes place and 

not the CaR, yet by no means can this be considered definitive. The application of Gd3+ as 

an agonist was perhaps not the most appropriate choice for use within the intestinal lumen 

which was rich in HCO3
- and CO3

2-, since this trivalent lanthanide will easily form 
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complexes with these anions (Caldwell et al., 1998), and is likely to have become 

incorporated into the CaCO3 precipitates as Gd2(CO3)3. However, the rate of precipitation in 

the presence of Gd3+ was actually 20 % lower than the control, and was reduced by almost 

one third with neomycin, although neither result was statistically significant (Figure 7.6). In 

addition, there was also a reduction in the proportion of fluid absorbed by one third (from 

47.2 % to 33.3 % in the neomycin and control treatments, respectively) which was almost 

significant. There were no differences in the simultaneous rates of Na+ and Cl- transport 

that could help explain this change in fluid absorption. Figure 7.10 reveals little difference 

in net Na+ absorption between treatments (F2, 13 = 0.39, P = 0.684), although net Cl- 

absorption in the presence of neomycin was more than 20 % lower than the control but was 

not close to significance (F2, 13 = 1.01, P = 0.390). 

The sample sizes of experiments involving these agonists were small (n = 4) compared to 

the control, which may preclude the detection of statistically significant differences, yet 

there are trends in the data suggesting potential differences. However, it was not clear 

whether this would have been a direct result of neomycin acting upon the CaR, particularly 

since its application in vitro did not have a convincing effect on ion and fluid transport 

(Figure 7.5). For example, neomycin is a widely used aminoglycoside antibiotic, which is 

included in oral solutions as part of the pre-operative prophylactic treatment of the gut prior 

to surgery (Nichols et al., 2005). Interestingly, Walsh et al. 
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Perfusion treatment

Control Gadolinium Neomycin

N
et

 io
n 

flu
x,

 J
io

n 
(

m
ol

 k
g-1

 h
-1

)

0

200

400

600

800
Sodium
Chloride

Figure 7.9: The mean (±SE) net sodium (open bars) and chloride (shaded bars) fluxes 

(µmol kg  -1   h  -1  ) by the intestine of the flounder perfused with salines containing the CaR   

agonists Gd  3+   and neomycin compared with the control over a total of 3 days (n = 8, 4 and   

4 for the control, Gd  3+   and neomycin treatments, respectively).  

(1991) concluded that carbonate precipitation by the Gulf toadfish does not involve 

intestinal microbes and combined application of the antibiotics, sisomycin and ampicillin 

(at a dose of 50 ppm each), reduced bacterial counts per intestine more than 1,000-fold 

(from 7.7 × 107 to 2.2 × 104), with no effect on the rate of CaCO3 production. The amount 

of neomycin used in the current perfusion experiments was 10 times greater than the total 

antibiotic dose administered by Walsh et al. (1991). Since there is still much to learn about 

the actual process of CaCO3 formation by the teleost intestine, if these trends for reduced 

precipitation and fluid absorption in the presence of neomycin (Figures 7.6 and 7.7), were 

proven beyond reasonable doubt, then it would open up the possibility that there may 
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indeed be a role for the microflora of the gut in CaCO3 production, particularly since 

bacteria are capable of forming carbonate minerals (Boquet et al., 1973; Novitsky, 1981).

5.3 A role for the CaR in vitro

In the Ussing chamber where the process of CaCO3 crystallisation is unlikely, given such 

low concentrations of HCO3
- and CO3

2-, and with a sustained gradient for HCO3
- secretion, 

the tissue is able to respond to elevated mucosal Ca2+ by increasing the rate of HCO3
- 

secretion to (presumably) encourage CaCO3 formation and removal of the excess Ca2+, with 

this process most likely being mediated via the CaR (Wilson et al., 2002). However, with 

no observed increases in HCO3
- secretion in response to Ca2+ in the gut sac preparation 

(Figures 7.1 to 7.3), it was proposed that in order for the tissue to effectively deal with this 

Ca2+ challenge the epithelium reduces fluid absorption, in some cases leading to secretion. 

This would not only help to prevent Ca2+ concentrating at the apical membrane, but the 

inhibition of NaCl absorption would lead to hyper-polarisation of the membrane closing 

any voltage-gated, L-type Ca2+ channels and thus further reducing the opportunity for entry 

of Ca2+ into the tissue, helping to preserve Ca2+ homeostasis (Chapter 4, Section 5.3.4). 

Since any increase in HCO3
- secretion in gut sacs has been undermined by the constraints 

of the technique, the demonstration of net fluid and NaCl secretion, under high Ca2+ 

conditions (Figures 7.2 and 7.3), help support this hypothesis. The effect of elevated Ca2+ 

concentration in Figures 7.2 and 7.3 is consistent with how the CaR operates in other 

transporting epithelia (Sands et al., 1997; Bruce et al., 1999; Fellner and Parker, 2002; 

Nearing et al., 2002; Geibel et al., 2006; Gerbino et al., 2007), and it was subsequently 

proposed that these responses may also be under control of the receptor. However, attempts 

to demonstrate the control of intestinal ion and fluid transport using agonists of the CaR, 

Gd3+ and neomycin were not very convincing (Figures 7.4 and 7.5). 

For Gd3+, while HCO3
- was significantly reduced in the anterior and mid sections, 

accompanied by dramatically lower fluid transport rates (but no secretion), these were not 

recoverable after rinsing (with the possible exception of the posterior sections), hence they 

were contrary to the reversible nature of the response expected if Gd3+ were operating via 

the CaR (Nearing et al., 2002). Furthermore, there was no evidence to suggest that NaCl 

co-transport was being adversely affected, in fact experiments with the reduced ionic 
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strength saline were characterised by consistent net Na+ secretion, while rates of net Cl- 

transport were conspicuously low (Figures 7.2, 7.4 and 7.5). 

Aside from the avid binding of Gd3+ to anions such as HCO3
- and CO3

2-, this trivalent 

lanthanide is also a potent blocker of Ca2+ channels in a range of cells (Boland et al., 1991). 

For example, Ca2+ channels of cardiac myocytes from the guinea pig were completely 

blocked by Gd3+ displaying an EC50 of just 1.4 μM (Lacampagne et al., 1994). In addition, 

5 μM completely inhibited L-type Ca2+ currents in rat pituitary cells (Biagi and Enyeart, 

1990), and partial inhibition of L-type channels was observed with 10 and 50 μM Gd3+ in 

ventricular myocytes from the rat (Sadoshima et al., 1992). Overall, since NaCl co-

transport (and the putative Ca2+ channels) were considered to be the intended targets in gut 

sacs following activation of the CaR with Gd3+ (as well as neomycin), the experimental 

evidence presented in Figures 7.4 and 7.5 were not consistent with a role for the CaR. 

5.4 Is Cl-/HCO3
- exchange a driving force for fluid transport in vitro?

A rather puzzling aspect of the data presented in Figures 7.2 to 7.5, that deserves attention 

is how net fluid absorption was able to take place even though there was substantial net 

secretion of Na+, and relatively little net Cl- transport. In these experiments fluid cannot be 

driven by a transepithelial differences in osmotic pressure, and must therefore be coupled to 

ion transport, yet fluid absorption from mucosa to serosa persisted in the apparent absence 

of net NaCl co-transport, the principal driving force behind fluid absorption in vitro and in 

vivo. 

An unfortunate oversight of experiments using the reduced osmolality saline was that these 

conditions did impose an osmotic challenge on the tissue. This saline exerted an osmotic 

pressure of ~280 mOsm kg-1, approximately 40 mOsm kg-1 lower than what the intestine 

was likely to be experiencing in vivo (~320 mOsm kg-1) prior to dissection. Hence, the cells 

would have been initially hypertonic to the bathing media, and as such this would have 

drawn water into the tissue. These gut sac preparations would therefore have benefited 

from a period of adjustment (discussed in Chapter 3, Section 5.1), allowing the tissue to 

adapt to these new conditions, before commencing the control incubation. Henceforth, 

these results are not referred to as part of the following discussion. 

From very similar gut sac experiments with flounder, Grosell et al. (2005) also found that 

net Na+ transport was unexpectedly characterised by secretion, yet observed a strong 
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correlation between net Cl- absorption and fluid transport suggesting that this provided 

(part of) the driving force, and presumably involved Cl-/HCO3
- exchange. Similarly, Cl- 

absorption persisted alongside HCO3
- secretion in gut sacs from the intestine of the lemon 

sole (Parophrys vetulus) when presented with Na+-free bathing solutions, and in addition to 

displaying sensitivity to mucosal DIDS, suggested Cl-/HCO3
- exchange as a driving 
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Figure 7.10: The net fluxes (nmol cm  -2   h  -1  ) of Cl  -   and HCO  3
-   in relation to net fluid   

transport (µl cm  -2   h  -1  ) using the overall mean values pooled from the anterior, mid and   

posterior gut sacs from all control incubations in the present study employing the reduced 

ionic strength mucosal saline (from Figures 2, 4 and 5) (n = 54).

force for fluid absorption (Grosell et al., 2001). However, contrary to these conclusions, 

Figure 7.10 shows that the measured rate of HCO3
- secretion in the present study was very 

much independent of fluid transport (R = 0.021, P = 0.882), but there was a significant 

relationship with net Cl- flux (F1, 52 = 32.16, P = <0.001). This would therefore make Cl-

/HCO3
- exchange an unlikely driving force for fluid absorption in the present study.
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Having previously considered the thermodynamics behind HCO3
- secretion (Section 5.1), 

do the varying mucosal saline conditions presented to the tissue impose constraints on other 

ion fluxes? Examination of the electrochemical profiles for Na+, K+ and Cl- (Table 7.5) 

indicates that apical NaCl cotransport remains feasible even at mucosal Na+ concentrations 

as low as 50 mM. However, under these latter conditions the overall direction of the 

transepithelial electrochemical driving force acting on Na+ is reversed (from -0.28 to 1.13 

kJ mol-1), thus favouring a net entry of this ion into the mucosal saline. This is reflected by 

the accompanying measured fluxes of Na+ which change from net absorption (504 ±176 

nmol cm-2 h-1) with the ‘regular’ mucosal saline (containing 90 mM Na+) to net secretion 

(-549 ±104 nmol cm-2 h-1) with the ‘reduced ionic strength’ saline.

The apparent net secretion of Na+ into the mucosal saline observed in Figures 7.2 to 7.5 is 

therefore likely to be passive, a consequence of the asymmetrical concentration of this ion 

in the bathing solutions. As Na+ is pumped into the lateral intercellular space by Na+-K+-

ATPase (providing the energy for apical NaCl cotransport), it will leak back into the 

mucosal saline, presumably across the tight junction (Table 5). Field et al. (1979) made a 

similar suggestion for the intestine of the winter flounder (Pseudopleuronectes americanus) 

to try and explain the preponderance of net Cl- flux over net Na+ flux, characteristic of 

marine teleost epithelia. Further evidence that the distribution of Na+ across the gut sac 

influences net Na+ flux and subsequently fluid absorption is demonstrated in Figure 7.11. A 

comparison of measured Na+ flux rates by gut sacs from the European flounder reveals a 

significant linear relationship with the concentration of Na+ present in the mucosal saline 

(F1, 4 = 197.21, P = <0.001). Interestingly, the predicted net Na+ flux in relation to the 

concentration of mucosal Na+ crosses the x-axis at 
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Table 7.5: A comparison of the electrochemical potentials,   Δµ   (kJ mol  -1  ) for Na  +  , K  +   and Cl  -   as well as apical NaCl co-transport, for the   

‘regular’ and ‘reduced ionic strength’ mucosal salines used with gut sacs from the flounder. Where Δµ is <0 transport will be 

thermodynamically feasible and the direction of ion movement along its electrochemical gradient is indicated in parentheses (where, m = 

mucosa, c = cytoplasm and s = serosa). Accompanying this analysis are the mean (±SE) net fluxes of each ion (nmol cm  -2   h  -1  ).  

Ion Concentration (mM) Δµ (kJ mol-1) Apical cotransport Δµ (kJ mol-1)
Mucosal Cytoplasm Serosal Apical Basolateral Transepithelial

(Δµapical + Δµbasolateral)

Na+-K+-2Cl- Na+-Cl-
Overall net 

flux*

(nmol cm-2 h-1)
‘Regular’ mucosal saline
Na+ 91 15 155 -13.91

(m→c)

13.63

(c→m)

-0.28

(m→s)
K+ 5 87 3.5 -2.89

(m→c)

-0.50

(c→s)

-3.39

(m→s)
Cl- 135 30 153 6.09

(c→m)

-4.25

(c→s)

1.84

(s→m)

-4.62 -7.83

504 ±176
-134 ±16
789 ±205

‘Reduced ionic strength’ mucosal saline
Na+ 50 15 155 -12.50

(m→c)

13.63

(c→m)

1.13

(s→m)
K+ 5 87 3.5 -2.89

(m→c)

-0.50

(c→s)

-3.39

(m→s)
Cl- 114 30 153 6.49

(c→m)

-4.25

(c→s)

2.24

(s→m)

-2.41 -6.01

-549 ±104
-50 ±17
55 ±138

*Average net fluxes from anterior, mid and posterior sections of the intestine (n = 6).
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73.5 mM, almost the exact point at which Na+ would be at electrochemical equilibrium 

across the tissue based on the Nernst equation (80.6 mM). Beyond this point fluid 

absorption continues but at a reduced rate and independent of associated net Na+ transport 

(Figure 7.11). 

Mucosal sodium concentration (mM)

0 20 40 60 80 100 120

N
et

 s
o

di
um

 f
lu

x,
 J

N
a
 (

n
m

ol
 c

m
-2

 h
-1

)

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

1200

1400

N
et

 f
lu

id
 t

ra
ns

p
or

t,
 J

v 
(

l c
m

-2
 h

-1
)

-6

-4

-2

0

2

4

6

8

Sodium
Fluid

a

a

b

b
c

c

d

d

e

e

f

f

E = 0

y = -1835 + 25x
(r2 = 0.980)

Figure 7.11: The relationships between net sodium flux, JNa (nmol cm  -2   h  -1  ), net fluid   

transport rate, Jv (µl cm  -2   h  -1  ) and the concentration of Na  +   (mM) in the mucosal saline with   

gut sacs from the European flounder. The majority of the data was collated from previous 

chapters and presented as mean ±SE for the anterior, mid and posterior sections of the 

intestine combined: a) Chapter 2 (n = 10), b) Chapter 3 (n = 5), c) Chapter 4 (n = 6), d) 

Present study (reduced ionic strength, n = 6), e) Grosell   et al  . (2005) f) Present study   

(reduced osmolality, n = 6).

In summary, there was no evidence to suggest that in the absence of net Na+ absorption, Cl-

/HCO3
- exchange significantly contributed to fluid absorption, contrary to previous in vitro 

observations (Grosell et al., 2005). Examination of the electrochemical profiles for Na+, K+ 
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and Cl- revealed that apical NaCl cotransport was still energetically feasible and would 

therefore be capable of driving fluid into the tissue, which would subsequently follow 

basolateral Cl- exit, while Na+ passively recycled back into the mucosal saline thus 

accounting for the net negative Na+ flux.
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The present study has not been able to demonstrate a direct role for Ca2+-sensing receptors 

in the regulation of intestinal HCO3
- secretion in two model, euryhaline teleosts, the 

European flounder (Platichthys flesus) and killifish (Fundulus heteroclitus). Application of 

in vitro and in vivo techniques in Chapters 3 to 7, further exploring the fundamental 

characteristics of HCO3
- production, secretion and CaCO3 precipitation by the intestine has 

already inspired detailed analysis and rather lengthy discussion on a variety of topics in and 

around this fascinating aspect of fish physiology. In this final section I have therefore 

decided to highlight two particularly interesting perspectives which merit further 

consideration and offer potential directions for future inquiry. The first of these follows on 

from the arguments put forth in Chapter 7 and presents a case for an alternate role for the 

CaR in relation to the regulation of HCO3
- secretion. Secondly, considering HCO3

- secretion 

and CaCO3 precipitation as novel driving forces for fluid absorption, there is a short 

discussion of the potential implications for our current understanding of the nature of 

intestinal fluid transport by marine teleosts.

1. The Ca2+-sensing receptor and regulation of intestinal HCO3
- secretion

Given the apparent limitations to measuring HCO3
- secretion when using the gut sac 

technique, (described in Chapter 7, Section 5.1), perhaps the most logical next step would 

have been to replicate the in vitro experiments performed by Wilson et al. (2002), utilising 

the Ussing chamber with the European flounder and apply agonists of the receptor, such as 

Gd3+ and neomycin. On the face of it this would help to resolve the issue of whether the 

intestinal CaR is actually involved in HCO3
- secretion. However, if these experiments 

revealed that HCO3
- secretion were stimulated by CaR agonists, this could prove 

misleading, particularly if the data were interpreted as support for the hypothesis that the 

CaR directly regulates HCO3
- secretion by the teleost intestine. The inability to carry out 

such an experiment (as the Ussing chamber equipment was not available at Exeter, and 

flounder were not available in Miami), combined with the failure of Ca2+ to stimulate 

HCO3
- secretion in vitro, using either the gut sac technique with the flounder (Chapters 4 

and 7), or Ussing chamber with the killifish (Chapter 6), have forced a re-think of this 

original suggestion. Consequently, the proposal that HCO3
- secretion may not be modulated 
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by an intestinal CaR after all, but determined by the accompanying rates of intracellular 

HCO3
- production and luminal CaCO3 precipitation (Chapter 7, Section 5.2.1) is an 

interesting one.

Widespread expression of the CaR along the gastrointestinal tract (Chapter 1, Section 

4.3.1), and potentially fascinating links with digestion, Ca2+ homeostasis and epithelial 

renewal (reviewed in Chapter 7, Section 2), offer plenty of scope for a direct, functional 

role for the receptor in the gut of teleost fish. Furthermore, there can be no question that the 

intestine has the capacity to directly and rapidly respond to elevated luminal Ca2+ by 

increasing HCO3
- secretion, and this could be via a CaR (Wilson et al., 2002). However, is 

involvement of the receptor in regulating HCO3
- secretion a largely redundant function? 

The in vitro experiments performed by Wilson and co-workers took place under mucosal 

conditions imposed by the pH stat titration which are quite uncharacteristic for a teleost in 

seawater (pH 7.8, with HCO3
-, CO3

2- and CO2 all close to zero), thus providing a favourable 

gradient for HCO3
- secretion from serosa to mucosa. Perhaps a more appropriate 

experiment would have been to set the pH stat to a higher pH value (8.2-8.5), thus 

imposing more in vivo-like conditions across the tissue, before testing the effects of Ca2+ on 

HCO3
- secretion. 

Yet, if there were no effect of mucosal Ca2+ in vitro when imposing a more realistic 

mucosal pH and HCO3
- gradient as suggested above, it could still be argued that 

involvement of an intestinal CaR in mediating HCO3
- secretion would be of considerable 

relevance for euryhaline species, such as the European flounder. For example, when 

moving from freshwater to seawater, stimulation of the drinking reflex and therefore entry 

of Ca2+-rich fluid into the intestine will presumably demand a rapid response in terms of 

HCO3
- secretion. However, inconsistent with this argument is the lack of evidence for 

involvement of a CaR in the stimulation of HCO3
- secretion by the killifish intestine, 

another strongly euryhaline species (Chapter 6), thus suggesting there is indeed an alternate 

(or perhaps species-specific) mechanism regulating the secretion of HCO3
-. Furthermore, 

there was an unexpected, dramatic 12-fold increase in HCO3
- concentration measured in the 

intestinal fluid of the toadfish (Opsanus beta) in vivo when acclimated to 5 ppt (McDonald 

and Grosell, 2006) compared with 2.5 ppt (Figure 8.1).
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Figure 8.1: The concentration of bicarbonate (mM) in the anterior, mid, posterior and rectal 

fluids sampled from the intestine of the Gulf toadfish (  Opsanus beta  ) acclimated to a range   

of salinities from 2.5 to 70 ppt. Values are means ±SE (n = 2-8). An asterisk denotes a 

statistically significant difference in the average intestinal fluid value from 33 ppt, and 

different letters indicate a significant difference between intestinal segments within a 

particular salinity. In all cases P <0.05 (Reproduced from McDonald and Grosell, 2006). 

While the data in Figure 8.1 does not directly provide any information on rates of secretion, 

it does imply that there is a significant increase in HCO3
- secretion at low salinities. If a role 

for the intestinal CaR is unlikely, even in euryhaline species, this naturally raises the 

question of what regulatory mechanism is behind the stimulation of HCO3
- secretion. 

Interestingly enough, the answer could still be the CaR, but involving activation of the 

receptor in the olfactory epithelium as opposed to the intestine. At 5 ppt the osmolality of 

the surrounding water will be around 160 mOsm kg-1, compared to a measured plasma 

osmolality of 280 mOsm kg-1 (McDonald and Grosell, 2006). The fish were therefore 
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distinctly hyperosmotic to the surrounding water, and faced a passive gain of water and loss 

of salts, consequently drinking rate would have been very low, or possibly absent 

altogether. Hence, it is difficult to associate a surge in HCO3
- secretion with activation of 

the intestinal CaR via imbibed Ca2+, particularly since the intermediate salinities (10 to 33 

ppt) did not produce equivalent or even higher intestinal HCO3
- concentrations in a Ca2+-

dependent manner (Figure 8.1). Since drinking rate is positively correlated with external 

salinity (Chapter 1, Section 2.1), it should be noted that the low volume of fluid expected 

within the intestine at 5 ppt, compared to full strength seawater (33 ppt) and at 

hypersalinities (50 and 70 ppt) where the drinking rate will be many times greater, could 

have also contributed to the very high concentrations of HCO3
- observed at such a low 

salinity. However, what is most intriguing about this data set is that the difference in Ca2+ 

concentration between 2.5 and 5 ppt would only be ~0.7 mM (0.76 and 1.52 mM, 

respectively). This is almost identical to the IC50 for the firing rate of the olfactory nerve of 

the euryhaline sea bream (Sparus aurata) in response to changes in environmental Ca2+ 

concentration, which was determined as 1.67 ±0.26 mM (Hubbard et al., 2000). 

Furthermore, it has subsequently been proposed that the sensitivity of the olfactory system 

observed in teleosts is conferred by an extracellular CaR (Hubbard et al., 2000; 2002). 

These observations are indirectly supported by localisation of the receptor to the olfactory 

epithelia from a number of euryhaline teleosts (Naito et al., 1998; Flanagan et al., 2002; 

Nearing et al., 2002; Loretz et al., 2004; Dukes et al., 2006; see Chapter 7, Section 2.2 for 

more detailed discussion), consistent with purported roles in salinity adaptation (Nearing et 

al., 2002; Loretz, 2008). Distribution of the CaR in the nervous and endocrine systems of 

teleosts has also led to speculation on involvement of the receptor in a number of 

homeostatic functions, including osmoregulation (Chapter 1, Section 4.3.1). However, the 

physiological responses to olfactory signals indicating changes in environmental Ca2+ have 

yet to be explored. It was originally suggested that this could be a component of the 

homing migrations made by salmon (Bodznick, 1978). Yet more pertinently, this would 

signal activation of the appropriate physiological processes to cope with changes in salinity 

(Hubbard et al., 2000), and more specifically this could extend to the regulation of 

intestinal HCO3
- secretion. 
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2. Fluid absorption by the marine teleost intestine

2.1 Absorbing a hyperosmotic fluid

The goal of the osmoregulatory strategy of marine teleosts is to not only conserve water, 

but by doing so maintain the appropriate balance of water and salts within the body. In 

addition to NaCl absorption, the production and secretion of HCO3
- has a fundamental role 

in helping the body cope with imbibed seawater and more effectively absorb fluid from the 

intestine. It is therefore a source of curiosity as to why this absorbed fluid appears to be 

hyperosmotic in nature, based on calculations from the net fluxes of ions from the intestinal 

lumen along with associated fluid movements (Grosell, 2006; Grosell and Taylor, 2007). 

Similar findings were also confirmed for the European flounder from calculations utilising 

the in vivo perfusion data in Chapter 5 (Section 5.5.1). Absorption of a hyperosmotic fluid 

by the intestinal epithelia is considered an unavoidable consequence of HCO3
- secretion and 

basolateral H+ secretion, in conjunction with reduced levels of NaCl, corresponding with 

high concentrations of MgSO4, in the luminal fluid (Grosell and Taylor, 2007).

2.2 The influence of basolateral H+ secretion

The polarity of apical HCO3
- secretion and basolateral H+ extrusion has since been 

demonstrated in vitro (Grosell and Genz, 2006; Grosell and Taylor, 2007; Chapter 4, 

Section 4.3), as well as (indirectly) in vivo (Genz et al., 2008; Chapter 5, Section 5.4). 

Perfusion of the intestine with saline containing 90 mM Ca2+ produced up to an 8-fold 

increase in the rate of HCO3
- secretion matched almost exactly by an associated elevation in 

H+ production, theoretically contributing to the osmolarity of the absorbed fluid. To resolve 

the observed paradox between the calculated hyperosmolarity of absorbed fluid and the 

measured reduction in blood plasma osmolality in these experiments, it was suggested that 

H+ arising from intracellular CO2 hydration could be buffered by extracellular HCO3
- to 

yield CO2 concomitant with a reduction in osmotic pressure of the absorbed fluid (Chapter 

5, Section 5.5). Consistent with these observations, if the osmolarity of absorbed fluid from 

in vitro preparations excluded the associated ‘missing cation’ (presumed to be H+ and 

buffered by the extracellular fluids) this produces a substantial reduction in osmolarity, 

equivalent to an average difference of 69 mOsm l-1 (Table 8.1). This further highlights the 

benefit of this proposed buffering process to the osmotic pressure of the fluid being 
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absorbed by the intestine. However, in some cases the absorbate remained hyperosmotic 

(426-611 mOsm l-1), even after excluding the H+ concentration, yet these calculations are 

confined to preparations where net fluid absorption has been measured gravimetrically, 

which can under-estimate the value of Jv (Wilson and Grosell, in preparation; Chapter 2, 

Section 2.2), and consequently lead to the calculation of higher concentrations of Na+ and 

Cl- in the absorbed fluid (Table 8.1). Interestingly, when compared with data cited from 

recent work using gut sac preparations from the toadfish (Grosell and Taylor, 2007; Wilson 

and Grosell, in preparation), where Jv was calculated based on the marker 14C-PEG 4000, a 

distinctly hypoosmotic absorbate was produced (Table 8.1). Furthermore, it should also be 

remembered that the values for Jv presented here for in vitro experiments will not have 

benefited from the additional fluid that would be absorbed as a result of CaCO3 

precipitation which occurs in vivo, contributing to a further reduction in absorbate 

osmolarity.

2.3 Absorption of an iso-osmotic fluid

Having considered this idea further, and based on data collected in vivo (Chapter 5) and in 

vitro (Table 8.1), it is submitted that the fluid absorbed by the marine teleost intestine under 

in vivo-like conditions is actually more likely to be isoosmotic, in common with fluid-

transporting epithelia from other vertebrates, or perhaps even hypoosmotic. The challenge 

of coping with the intake of substantial amounts of divalent ions with seawater makes 

absorption of an isoosmotic fluid by the intestine dependent on the involvement of a 

number of unique processes and conditions. These include the production of CaCO3 
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Table 8.1: The reduction in osmotic pressure of fluid absorbed by the teleost intestine, following the buffering of absorbed H  +   by   

the extracellular fluid. The concentrations (mmol l  -1  ) of Na  +   and Cl  -   in the absorbate were calculated from the net fluxes of Na  +  ,   

Cl  -   (µmol cm  -2   h  -1  ) and fluid (µl cm  -2   h  -1  ) by   in vitro   preparations of the intestine from a number of euryhaline teleosts under   

asymmetrical,   in vivo  -like bathing conditions in the absence of a transepithelial osmotic gradient. The shortfall of cations required   

for charge balance in the absorbed fluid were assumed to be H  +  , and labelled ‘missing H  +  ’. The predicted osmotic pressure of the   

absorbed fluid was assumed to have an osmotic coefficient of 0.94 (Robinson and Stokes, 1965). Net fluid absorption was 

measured gravimetrically, unless stated.

Net flux

(µl or µmol cm-2 h-1)

Concentration in absorbed fluid

(mmol l-1)

Osmotic pressure of absorbed fluid

(mOsm l-1)
Jv JNa JCl Na+ Cl- ‘Missing’ H+ With H+ Without H+ Δ Osm.

European flounder1 4.85 1.11 1.28 229 264 35 475 444 32
                                          2 2.21 0.65 0.85 294 385 90 692 611 81
                                          3 2.12 0.50 0.79 236 373 137 671 548 123

Rainbow trout4 4.72 0.47 1.08 100 229 129 412 296 116
Gulf toadfish5† 6.52 0.77 1.12 118 172 54 309 260 48

                6 7.10 1.44 1.92 203 270 68 487 426 61
                  6† 4.81 0.54 0.70 112 146 33 262 232 30

†Net fluid transport (Jv) measured using the marker 14C-PEG 4000
1Chapter 2 (Figure 2.2); 2Chapter 3 (Figure 3.2); 3Chapter 4 (Figure 4.2); 4Personal observations; 5Grosell and Taylor (2007); 6Wilson and Grosell (in 
preparation)
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precipitates (Wilson et al., 2002), and retention of high concentrations of MgSO4, the latter 

being characterised by a low osmotic coefficient (Taylor and Grosell, 2006a; Grosell and 

Taylor, 2007), together these will help reduce the osmotic pressure within the intestinal 

lumen and consequently benefit the absorption of additional fluid. Similarly, it has been 

speculated that low concentrations of Ca2+ and/or elevated osmotic pressure within the 

lumen will activate apical H+ secretion, with the effect of titrating mucosal HCO3
-, which 

may also contribute to a reduction in the osmotic pressure of fluid within the gut (Grosell 

et al., 2007*; see also Chapter 4, Section 5.2.2 and Chapter 6, Section 5.4). Finally, and 

perhaps most importantly, the buffering of H+ (secreted across the basolateral membrane) 

by extracellular HCO3
- producing CO2 (which exerts a negligible osmotic pressure) will 

help further reduce the osmolarity of the hyperosmotic fluid being absorbed from the 

intestine (Chapter 5, Section 5.5.2). It would be interesting to further explore this idea and 

to what extent these various components interact (and potentially feedback on one another), 

to maintain the appropriate balance of fluid entering the body.

2.4 Further implications of intestinal H+ production

From a broader perspective, the process of basolateral H+ secretion by the intestine has 

recognised consequences for whole animal acid-base homeostasis where significant base 

excretion by the intestine will require a corresponding H+ efflux, most likely via the gills 

(Wilson et al., 1996; Wilson and Grosell, 2003; Genz et al., 2008; Chapter 5, Section 

5.4.1). The removal of H+ by the intestine into the body in the form of CO2 will 

subsequently need to be transported in the blood to the gills for excretion, and the 

hypothesis that elevated intestinal HCO3
- production and CaCO3 precipitation will incur 

higher rates of respiratory CO2 excretion are currently being addressed. Indeed, this may 

explain why branchial carbonic anhydrase (CA) expression and activity (which is not 

directly related to NaCl secretion by the gills) has been observed to increase following 

acclimation to seawater in a number of euryhaline teleosts (Kultz et al., 1992; Najib and 

*It should be noted that this latter prediction by Grosell and co-workers (2007) for apical H+ secretion 
would imply that the intestinal epithelia can indeed modulate HCO3

- secretion in response to luminal Ca2+ 

(albeit indirectly, by shifting the direction of epithelial H+ secretion). This could therefore prove a possible 
caveat to the suggestion that the intestinal CaR is essentially redundant in terms of regulating HCO3

- 

secretion.
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Martine, 1996; Blanchard and Grosell, 2006; Boutet et al., 2006; Scott et al., 2008), thus 

helping to facilitate the excretion of this additional burden of CO2. However, these 

observations do not currently extend to the European flounder where the levels of CA 

activity in the gills (Mashiter and Morgan, 1975), as well as the erythrocytes (Carter et al., 

1976; Sender et al., 1999) were found to be independent of salinity. Similarly, CA 

expression by the gill epithelium remained unchanged following intestinal perfusion with 

90 mM Ca2+ (Cooper, C. A., personal communication). 

3. Concluding remarks

After taking into consideration the discussion and analysis from the collected series of 

investigations presented here, there clearly remains much to learn about how the process of 

intestinal HCO3
- production and secretion is regulated, and this study has highlighted some 

fascinating avenues for future inquiry. The involvement of CaCO3 precipitation, and 

differential rates of apical and basolateral H+ secretion, along with the proposed role of an 

olfactory CaR, opens up the possibility that HCO3
- production and secretion is likely to be 

modulated through a combination of localised and environmental conditions. Although not 

fully understood, these potential regulatory mechanisms of HCO3
- secretion clearly 

function as a vital component to effective fluid absorption by the intestine, and ultimately 

overall body fluid balance in marine teleost fish.
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