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Abstract

There has always been an increasing demand for high density data storage. However,

the increased areal storage densities of hard disk drives require a level of miniturisation

of the recording heads where the micromagnetic details and switching mechanisms can

no longer be ignored. Furthermore, theoretical and numerical studies on thin-film

recording heads tend to separate the micromagnetics from the electromagnetic aspects

of the head during switching and hence ignore the lossy nature of head materials.

This project was aimed to develop a numerical simulation approach that simultaneously

incorporates the fundamental micromagnetic and electromagnetic details of magnetic

materials to study the fast switching process in soft magnetic materials in general, and

in thin-film inductive writers in particular. The project also was aimed at establishing

an impedance measurement system to characterise losses in magnetic recording heads,

and to allow comparison with the simulations.

This project successfully met all its original objectives. A numerical technique to simu-

late the dynamic behaviour of magnetic materials and devices has been developed, and

applied to study the switching process in thin-film recording heads. Two-dimensional

simulations of complete commercial head structures including the coils and pole regions

were carried out and parameters such as gap field rise times, gap field distributions,

and core inductances, which are important for head designers, were predicted. More-

over, the role of eddy currents delaying the magnetisation switching was elucidated.

Furthermore, it was found that the gradient of the recording fields were sharper near

the conrner regions of the poles when considering magnetic details. A high precision,

high bandwidth impedance measurement system was established to characterise losses

in magnetic heads. Fittings of measured core inductances to a proposed equivalent

circuit model of the core’s relaxation processes revealed the switching times of heads

(of the order 0.1 to 1.0ns).
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Chapter 1

Literature Review

1.1 Overview

Research on magnetic storage moves towards increasing the storage capacity of mag-

netic hard disks. This is achieved with developments of new thermally stable magnetic

recording media having high energy with less magnetic noise that are capable of sustain-

ing small recorded bits of information (Zhang et al., 2002); and with the improvement

in efficiency of inductive thin-film magnetic recording heads and the reduction of their

dimensions (Yuan et al., 2002). This overal miniaturisation enables the head to record

shorter transition and narrower tracks thus increasing the areal storage density. Ad-

vances in recording speeds have reached a point where the micromagnetics of the heads

have become a physical limit. Consequently, to continue with the rise in areal storage

densities and to push towards higher recording speeds, research has been focused on

understanding and improving flux propagation and reversal times in thin-films induc-

tive recording heads (Hicken et al., 2002; Back et al., 1999). The flux reversal time is

the time it takes for the magnetic flux in the head circuit to respond to changes in the

write current waveform. Minimising this time in the head yoke reduces the rise time

of the writing fields in the pole tip region and allows shorter and well defined magnetic
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transitions to be written onto the storage medium (Middleton et al., 2001).

High-speed experimental studies using the time-resolved magneto-optical Kerr micro-

scope on magnetic thin-films (Hicken et al., 2002) and on thin-film recording heads

(Back et al., 1999) have contributed to furthering the understanding of the switching

mechanisms in these magnetic structures. With the reduction of the size of the active

regions in thin-film recording heads (Tagawa et al., 2000), the ability to obserrve the

flux distribution during switching in the pole tip region of heads is becoming beyond the

optical resolution of this technique. As a result, modelling and simulation are becoming

increasingly important as alternative tools to understand the flux reversal process in

these small head features and to enable the optimisation of write head designs.

Static models of characterising magnetic heads include equivalent circuit models, trans-

mission line models and finite elements models (Engstrom, 1984; Paton, 1971; Jones,

1978; Arnoldussen, 1988; Yeh, 1982; Liu et al., 2001). These are either time indepen-

dent or limited in the frequency domain to the fundamental response, and ignore the

magnetic detail of the head material. Dynamic models, on the other hand, utilise full

micromagnetic description of the magnetic material (Gao and Bertram, 2001), but the

absence of electromagnetic formulation in these models neglects the eddy current effect

coming from time varying fields in the finite resistivity thin-film materials. Therefore

the need arises for a dynamic model that combines the solution to Maxwell’s equations

for the electromagnetic fields with micromagnetic models of the material to accurately

simulate the reversal process in magnetic heads.

Modern computational methods such as the FDTD algorithm will play a key role in

modelling magnetic heads in the future. The FDTD method solves the electromag-

netic phenomena for a given geometry inside a computational space and, as a result,

the magnitude and direction of the electromagnetic fields are given for the whole com-

putational space. It is possible to extend the standard FDTD algorithm to model the
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micromagnetics of materials together with the solution of Maxwell’s equations having in

this manner a better description of the reversal process. Studying and experimentally

characterising the fast switching process (dynamics) in thin-film heads is the main aim

of this research work and it is achieved through FDTD computations and impedance

measurements of actual thin-film heads.

In the next four sections different approaches that have been taken to address the

modelling and characterisation of thin films in general and thin film recording heads

in particular will be presented. Starting with several experimental studies that have

contributed to the understanding of the switching mechanisms in thin films and thin

film recording heads. Continuing with a review of purely static and purely dynamic

modelling methods in which the electromagnetic and micromagnetic phenomenon are

addressed independently. And finishing with more complex models where both phe-

nomena are combined.

This chapter concludes with a discussion on the merit of the papers referenced detailing

the strength and limitations of the different methods. Leading, based on the above

discussion, to the establishment of the research aim of this work.

1.2 Experimental Measurements

In Corb (1988) a scanning Kerr effect microscope (SKEM) was built that features

0.025µm step sizes and 5o phase resolution over a 50MHz bandwidth. Scans were made

on several NiFe and CoZr thin-film recording heads with different head geometries.

The measured values of head saturation were in rough agreement with those calculated

from a model for saturation near the back gap. The frequency response of the NiFe

heads showed that the real component of the efficiency rolled off smoothly, and the

imaginary component peaked between 15 and 40 MHz. The bandwidth increased

with DC efficiency and was two to three times lower than computed values. The



CHAPTER 1. LITERATURE REVIEW 26

frequency response of the CoZr head showed peaks and valleys that were attributed to

a misoriented easy axis. The response of the heads studied was most likely determined

by domain behavior.

With thin-film head/media systems, frequency-domain parametric measurements (SNR,

resolution, decibel overwrite, etc.) often demonstrate poor correlation with actual disk-

drive phase margin results. Superposition modelling and direct time-domain measure-

ments are required to understand these systems better. In Brittenham (1988) several

techniques were discussed: time-domain quantification of individual read and media

noise, aggregate noise and offset deconvolution from phase margin graphs, and time-

domain writeability measurements. Applications of these techniques include character-

ization of phenomena unique to thin-film systems, optimization of disk-drive electron-

ics using these systems, and the creation of improved component and drive production

tests.

A wide-field magnetooptic domain observation system with a time resolution of 10 ns

was developed to study magnetization dynamics in thin-film heads (Liu et al., 1990).

The instantaneous dynamic response on the top yoke of thin-film recording heads was

examined at any chosen instant within the drive current cycle at frequencies up to 20

MHz. Different phase responses from different domain walls in the head were observed

and interpreted in terms of hysteretic wall motion, effective field density variation in the

head, and wall orientations relative to the flux conduction direction. Two different flux

conduction mechanisms associated with two different domain structures in the central

region of the head were observed and discussed. Flux conduction in the center of the

head by motion of backgap walls and magnetization rotation for domain structures

with and without the backgap walls was observed. The domain structure with the

backgap walls is probably undesirable because the backgap wall motion may cause

a decrease in head efficiency during high-frequency operation and could cause noise

during read-back.
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Magnetization response during high frequency and high amplitude write current exci-

tations at the air-bearing surfaces (ABS) of thin film inductive and MR write heads

have been observed by using a Scanning Kerr Effect Microscope (Liu et al., 1996).

Under certain excitation conditions, bubble-like dynamic domain walls that separate

the regions of 180 out-of-phase magnetization reversals were observed predominately

at the ABS of trailing poles. This magnetization reversal mechanism is believed to be

introduced by the combined effects of eddy current damping and local magnetization

saturation, and is consistent with the model proposed by Wood et al. (1990).

Increasing data rates are requiring magnetic transducers to perform at higher frequen-

cies. Core losses, which are the combined effect of eddy current losses, damped domain

wall motion, and decreasing rotation susceptibility, act to reduce yoke permeance at

high frequencies. In Payne et al. (1996), a technique for measuring core loss and

demonstrate its application to a variety of heads was described. The method involves

least-squares fitting of measured head impedance vs. frequency spectra to the response

from an equivalent magnetic circuit having a complex and frequency-dependent induc-

tance. The result is a description of how the complex inductance varies with frequency,

thereby characterizing the core loss.

A thin-film write head model was described in Klaassen and Hirko (1996) which is

based on electrical impedance versus frequency measurements. The model includes the

effects of head saturation and eddy current damping making it useful for simulation of

the electrical input port (head coil) and magnetic output port (pole tip) signals, which

would be observed under actual write conditions.

Inductance-saturation characteristics in thin film heads are measurements of inductance

as a function of write current. These measurements typically exhibit a series of step-

like inductance discontinuities as various segments of the magnetic core saturate. In

Payne et al. (1997), a framework for interpreting the location and magnitude of these
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discontinuities was presented and the physical constitution of the core they reveal was

discussed.

1.3 Static Models

Equations for the flux, magnetic field, and current distributions in a single-turn planar

magnetic recording head were derived in Paton (1971) making the assumption that

the magnetic material has constant permeability. These equations were solved in the

frequency domain and an expression was given for the head efficiency in terms of the

head dimensions, permeability, and frequency. Expressions for the flux in a multiturn

thin film head were derived in Jones (1978) and used to obtain equations for the

efficiency and inductance as a function of film structure and permeabilities.

It is assumed that fast and slow relaxation processes both occur in a thin film recording

head. Linear response theory was applied in Engstrom (1984) to derive an equivalent

circuit, which consisted of a resistor, describing the coil resistance, in series with an

inductor, describing the fast relaxation process, in series with a parallel inductor -

resistor combination whose time constant is that of the slow relaxation process. The

complex impedance of a head was measured over a frequency range of 10 kHz to 12

MHz. An excellent fit to the experimental data was obtained by adjusting the values

of the equivalent circuit elements.

The significance of head inductance and eddy currents in limiting field rise times was

discussed in Wood et al. (1990). Poor rise times can cause severe distortion and loss of

performance at high data rates. A simple reluctance model was developed to explore

the relationship between the geometry of a head and its inductance. The model was

extended to include the effects of eddy currents, and to allow the frequency-dependent

efficiency (hence the field rise time) to be calculated. Based on this rise time, a geo-

metric model was used to calculate the positions of the recorded transitions and the
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resulting transition-shift distortion.

In Takano et al. (1995), the significance of suppressing eddy currents in recording

heads as means of achieving recording channels with both higher recording densities

and higher data rates was studied. The write characteristics of thin film heads using

CoNiFe and CoTaZr films with different values of resistivity and saturation flux den-

sity was experimentally investigated. Write characteristics were analyzed by studying

recorded patterns using sputtered magnetic particles and fringing field measurements

using electron beam tomography. From the results of this study, it was found to be

essential to increase the resistivity of the core itself for higher-density and higher-

frequency recording. It was found that heads using low resistivity film not only suffer

from the phase delay of the recording field relative to the write current, but also from

a intensity drop which results in degraded rolloffs and write sensitivity. The phase

shift could be compensated by shifting the transition during the writing process, but

this does not improve the intensity drop. Reliable high density recording systems for

frequencies of up to 100 MHz were developed for heads using CoTaZr amorphous poles.

A two-dimensional model of an MR write head was constructed using a finite element

model in Torabi et al. (1998). The model includes the eddy currents as well as nonlinear

saturation of recording head material. The recording head field (deep gap field) was

calculated as a function of write-current frequency and amplitude for two recording-

head materials, standard Ni80Fe20 and high saturation magnetization Ms material

Ni50Fe50. The analysis was also done in the time domain and was compared with

experimental data on field response, using both a microloop apparatus and impedance

measurements. Fair agreement was obtained between the model and the data. It was

observed that the deep gap field had a time delay relative to the write current, varying

as a function of current frequency and amplitude.

A physical model for planar spiral inductors on silicon, which accounts for eddy current
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effect in the conductor, crossover capacitance between the spiral and center-tap, capaci-

tance between the spiral and substrate, substrate ohmic loss, and substrate capacitance

was presented in Yue and Wong (2000). The model was verified with measured results

of inductors having a wide range of layout and process parameters. This scalable

inductor model enables the prediction and optimization of inductor performance.

Write fields and replay characteristics of gapped heads with magnetically recessed

leading poles for high-frequency digital video were described in Shute et al. (2001). An

investigation by finite-element analysis, a comparison of computed results for laminated

Sendust and Co91Nb6Zr3 heads and a discussion of the effects due to depositing a

layer of copper inside the leading gap edge was given. It was observed that recessing

the leading pole yielded an asymmetric field, while eddy currents in the copper layer

caused an advantageous redistribution of flux in the head. Predicted increases in both

maximum horizontal field and horizontal field gradient by at least 130% and 17% were

predicted for Sendust and Co91Nb6Zr3 heads, respectively, at 100 MHz. Hence, such

a head can write on higher coercivity media than a conventional gapped head. The

playback performance is also improved by an extension of the frequency response. The

linear model proposed for the phase of the spectral response is valid over a wide range

of frequencies, for each of two leading pole recessions.

In Kaya et al. (2005), an electrical circuit model of the impedance of an inductive

write element that reproduces measured impedances to within 10% up to 9 GHz and

allows interpretation in terms of the physical structure of the head was developed. The

model was used to extract the complex inductance of the magnetic yoke region of the

head as a function of frequency, which is assumed to be linearly proportional to the

yoke material permeability (after subtraction of the coil inductance). A clear negative

excursion of the real part of the permeability was seen in the analysis, indicating

gyromagnetic damping as the dominant loss mechanism, since eddy currents cannot

produce a negative real part of the permeability.
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1.4 Dynamic Models

The switching dynamics in a thin-film head for both the writing and reading modes were

studied in Soohoo (1982). To minimize magnetostatic energy, the film head was split

up into multidomains subsequent to saturation writing in the hard (or track) direction.

The domain structure was composed of elongated domains in the easy direction and

closure domains at the edges. The results of the calculations showed that domain wall

motion contributes increasingly to the effective head permeability as the track width

is decreased. In the readback process, it was found that the switching time for wall

motion τw (170 ns) in the edge domains was some two orders of magnitude larger than

τr for rotation (1 ns) in the main domains. Since these motions are coupled due to

the requirement of continuity of the perpendicular component of
−→
Ms at a 90o wall, the

switching dynamics are dominated by wall motion. A finite distribution of wall motion

threshold field Ho can give rise to different time delays in the head response, leading

to distortions in the readback signal, including the presence of wiggles at the trailing

edge.

A transmission surface model (TSM) that analyzes the conduction of flux by rota-

tion and wall motion was reported in Mallary et al. (1990). This model was used to

quantitatively compare the predicted performance of thin-film heads with longitudinal

and transverse magnetic anisotropy. The TSM analysis predicted that a transversely

oriented type of thin-film head can be operated at much higher frequencies than a

longitudinally oriented head. In addition, its group delay dispersion was much less.

Finally, its susceptibility to wall pinning was an order of magnitude less. Therefore,

the traditional adversion of head designers to the longitudinal orientation is justified

for frequencies above several megahertz

In Jayasekara et al. (1998), the initial permeabilities of NiFe single layer films and

single and multi-layer FeAlN films up to 500 MHz were presented. The permeability of
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thin (<1500Ȧ) NiFe and FeAlN films were fit with calculations based on the Landau-

Lifshitz-Gilbert model for phenomenological damping, using damping factors of 0.016

and 0.026, respectively. Transverse bias permeability measurements identified larger

ripple fields in FeAlN samples compared to those in thin NiFe samples. The perme-

ability of 2µm thick NiFe and FeAlN films were well described by eddy current theory.

The permeability roll off frequency of 2µm thick patterned FeAlN films increased from

20 to 200MHz when laminated into 32 layers separated by 25Ȧ thick SiN interlayers.

A scanning Kerr microscope set-up with picosecond time resolution and submicron

spatial resolution was used to directly measure the flux response in magnetic recording

heads in Back et al. (1999). The data rate limiting factor of a write head, which is

the flux rise time at the gap, was measured for different geometries and head materials

in polar Kerr mode. Flux propagation in the yoke, which is governed by a combina-

tion of wall displacement and magnetisation rotation, was studied by one dimensional

and two dimensional time response measurements utilising the longitudinal Kerr effect.

The local flux time response in the head was correlated to the respective micromag-

netic structure as determined by static wide-field Kerr imaging. In addition to the

intrinsic magnetic properties the flux time response was also studied by looking at the

system properties of the head/write electronics and, by using a voltage source for ex-

citation, information about classical eddy-current effects for different pole geometries

were derived. Further, non-stationary effects in the flux reversal process were shown to

produce non-linearities in the response at the write gap which contributed to non-linear

transition shift in the write process.

A three-dimensional micromagnetic tip model was utilized to study magnetization

switching dynamics and the external head fields of a write head in Gao and Bertram

(2001). For a flux rise time of 0.1 ns, the head field followed the input flux up to about

60% of saturation, and slowly approached saturation. At a flux rise time of 0.5 ns,

the head field followed the input flux closely. Calculated head held gradients agreed
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well in the gap region with the theoretical Lindholm model. At the track edge, the

perpendicular and crosstrack field components remained fairly constant.

In Wu et al. (2001), results of optical pump-probe measurements made on Ni81Fe19

films of thickness d = 50, 500 and 5000 Ȧ were presented. It was shown that the

rise time of the pulsed field within the sample may be determined, and that when

d is sufficiently small, the value of the Gilbert damping parameter may be obtained

from the decay of the magneto-optical signal. The pulsed field was found to rise more

slowly when applied perpendicular to the plane of the sample and as the thickness

of the sample was increased. By changing the orientation of the pulsed field relative

to the static magnetisation it is possible to alter the ellipticity of the trajectory of

the precessing magnetisation and observe variations in the decay of the precession.

These effects were discussed in terms of eddy current shielding of the rising field,

eddy current damping of the motion of the magnetisation, and propagation of spin

waves from the point at which the sample response is probed. For the thinnest sample

studied (d = 50Ȧ) it was found that the value of the Gilbert damping parameter was

strongly field dependent, so that, the calculated Ferromagnetic Resonance (FMR) line

width increased as the field was reduced. Under certain circumstances a second mode

of higher frequency was observed in the thickest film. It is believed that this is a

magnetostatic surface mode that was not previously been observed by means of the

optical pump-probe technique.

In Brown et al. (2002), the dynamic switching time in two classes of media by consider-

ing two different particle orientation distribution functions was studied . The switching

constant was calculated directly from the Landau-Lifshitz-Gilbert equation of motion,

which was chosen to simulate the dynamic properties of the media. A strong linear

relation between the reciprocal of the switching time and the difference between the

applied and anisotropy fields was illustrated.
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A magneto-optical pump-probe spectroscopy used to study magnetisation dynamics

with femtosecond temporal resolution was described in Hicken et al. (2002). Optically

triggered magnetic field pulses were used to induce large amplitude picosecond preces-

sional motion of the spontaneous magnetisation while direct optical stimulation was

used to manipulate the magnitude of the spontaneous magnetisation on femtosecond

time scales.

1.5 Combined Models

In Zheng and Chen (1992), the wide band transient signal propagation characteristics

along microstrip lines with ferrite substrate were presented. In the analysis how the

frequency dependent media such as ferrite may be genearally fomulated by FD-TD

method was described. The distortions of transient signal in Gaussian shape propagat-

ing along uniform or step junction microstrip were simulated by the extended FD-TD

method. Results showed the distinctive influence of applied DC magnetic field and

magnetizaton on the dispersion of transient signal. In Reineix et al. (1992), a new

method for analyzing ferrite structures was introduced.

A formulation for the FDTD treatment of partially magnetized ferrites was presented

in Pereda et al. (1993). It was based on the derivation of a system of time-domain dif-

ferential equations from an empirical expression of the permeability tensor, normally

used for designing microwave devices. This approach was applied to the full-wave anal-

ysis of waveguides loaded with partially magnetized ferrites. A more efficient FDTD

algorithm was introduced in Okoniewski and Okoniewska (1994) for the analysis of

structures involving magnetized ferrites. The critical issue of time and space synchro-

nism ensuring second order accuracy was discussed, and a method to provide it based

on extrapolation rather than interpolation used by previous authors was presented.

Numerical examples validating the method were given.
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The design of high-speed recording heads requires one to consider the effect of eddy

currents on performance. Experiments have shown that even for very thin laminations,

there is an appreciable eddy current effect for high recording frequencies. In Torre and

Eicke (1997) a technique was suggested for including these effects in a micromagnetic

calculation. This technique was implemented in a finite difference calculation and some

results were presented. The structure of the computational algorithm was considerably

different from conventional eddy current calculations

A dynamic micromagnetic model which includes gyromagnetic effects (via the Lan-

dauLifshitz equation) and eddy currents was developed and applied to the rise time

problem in thin film write heads (Sandler and Bertram, 1997). A cross-section of the

part of the head covering the coils was simulated with this model, while the rest of

the head was modeled as saturable reluctances. The reluctances did not include eddy

currents, but they did include leakage, fringing and saturation, and allowed for compu-

tation of the deep gap field. This model was used to study the details of the dynamics

of the magnetization in the yoke as well as the dependence of rise time on geometric

and material parameters. It was found that switching starts at the surfaces of the

pole and moves inward in ”transition zones.” Also, if rise time is defined as the time

it takes the deep gap field to reach 7 kOe, the rise time increases with pole thickness

but decreases with saturation magnetization and driving current.

A three-dimensional dynamic micromagnetic model including the effect of eddy cur-

rents was developed in Torres et al. (2003). Its application to magnetization reversal

processes in permalloy nanocubes of 40nm side was presented for applied fields with

rise times of 0.1ns. Under certain conditions, for damping parameters α = 0.01 and

α = 0.1, the effect of the eddy currents triggered the precessional switching anticipating

the reversal of the magnetization. For a damping constant α = 0.5, the contribution

of the eddy currents did not allow a full reversal of the magnetization.
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A finite-element method (FEM) was developed in Takano (2004) to treat a whole write

head structure as a micromagnetic model, and it was utilized to study the magnetiza-

tion dynamics and head field of a planar writer. As the head had a domain structure,

the leakage field differed from what was calculated by a conventional FEM except for

the gap region, and it could induce some adjacent track erasure (ATE) problems in

the case of high write currents. This leakage field comes from the shoulder of the

bottom yoke pedestal and the sidewall of the upper pole. A conventional FEM for

electromagnetic eddy-current field did not show much time delay of the head field rise

in core sizes of 10µm or below. On the other hand, the head field could not follow the

write current waveform perfectly, and showed time delay by the micromagnetic FEM

analysis. This indicates that the delay mainly no longer comes from eddy-current ef-

fects but magnetization dynamics of the gyromagnetic precession, damping, and flux

conduction. Furthermore, the head field rise time is affected by the damping constant,

material, yoke length, and pole-tip dimension.

As data rates increase and the size of the disk write head decreases it is likely that a

standard non-linear eddy-current simulation of a disk write head will not fully capture

dynamic effects. In Sun et al. (2004) a coupled eddy-current and micromagnetics model

for the disk write head was propossed. A simple finite difference formulation derived

from a mass-lumped finite element method was presented. This derivation allowed to

verify that, before time discretization, the semi-discrete scheme obeys the same energy

decay equality as the partial differential equation model.

Dynamic modelling of thin ferromagnetic layers, based on the coupling of Maxwell’s

equations with the nonlinear Landau-Lifschitz-Gilbert law was discussed in Vacus and

Vukadinovic (2005). A 2-D micromagnetic model was described which involved FDTD

code to determine equilibrium configurations and finite element modelling to compute

magnetostatic fields. Then, the susceptibility spectra of films supporting a weak-stripe-

domain structure were computed and successfully compared to existing measurements
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without introducing any fitting parameter.

In Takano et al. (2007), a micromagnetic modelling program for magnetic recording

head analysis was developed, taking eddy current effects into account, and used to

study the 1-GHz high-frequency response. When gyromagnetic precession is dominant

with a small damping parameter of 0.01, the eddy current field caused the delay of

the response, but the head field intensity increased a lot, compared to the no eddy

current case, this is because the eddy current field cancels the precessional motion

and improves the magnetization alignment. Since magnetic soft films have an intrinsic

small damping, low-resistivity material is preferable for high-end magnetic recording

heads.

1.6 Aim of Research

The main limitation of static models is that they ignore the magnetic detail of the

material. By using dynamic models, the micromagnetic description of the material

is accounted for, however, as these models do not include electromagnetic formulation

the eddy current effect coming from time varying fields in the finite resistivity thin-film

materials is not considered. The solution to the limitations of purely static and purely

dynamic modelling methods is the combination of both techniques. So far, two different

approaches have been adopted in developing combined methods. The first approach

consists in using finite-element modelling (FEM) that include dynamic description of

the micromagnetics of materials (Takano, 2004). The main limitation of using FEM

is that it is limited in frequency to the fundamental response. On the other hand, the

second approach consists in using the finite difference time domain method (FDTD)

in combination with micromagnetic formulation (Vacus and Vukadinovic, 2005). The

FDTD method is an explicit method for solving Maxwell’s equations that through

its structure and implementation provides a flexible platform for the electromagnetic
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simulation of a wide range of applications, it also provides almost an infinite bandwidth

due to its time domain nature and it is for these reasons that it was chosen to carry

out dynamic simulations in this work.

Again, two approaches have been adopted to solve electromagnetic problems involving

magnetic materials using the FDTD method. The first approach involved using a fre-

quency dependent permeability tensor to relate the magnetic flux density to the field

strangth in the simulated systems (Pereda et al., 1995). This is a frequency domain

approach which requires transformation into the time domain before inclusion into the

FDTD formulation, and does not yield information about the state of magnetisation

of the material. It is also limited to static applied biasing fields and does not allow

the inclusion of anisotropy and exchange fields. In the second approach Maxwell’s

equations are augmented with the Landau-Lifshitz-Gilbert (LLG) equation that de-

scribes the precessional motion of the magnetisation vectors in a magnetic material

under the influence of an effective field. Hence, this formulation allows the inclusion

of the anisotropy and exchange fields as effective fields in the model, and the elec-

tromagnetic fields due to magnetic and/or electric charges and currents are evaluated

naturally through the solution of Maxwell’s equations. Thus, this extension of the

FDTD method allows the simulation of complete magnetic devices with dielectric and

codunctive materials. Previous work using this approach were limited to small signal

approximations (Pereda et al., 1993), or with no damping involved and limited to sim-

ple magnetic structures (Zheng and Chen, 1992; Reineix et al., 1992; Okoniewski and

Okoniewska, 1994). The effects of anisotropy and exchange forces were not included in

these treatments. Moreover, there were no analysis of the stability of the solution of

the LLG equation and no treatments of boundary conditions.

The aim of this research is therefore to study and experimentally characterise the

fast switching process (dynamics) in thin-film heads. This is achieved through FDTD

computations and impedance measurements of actual thin-film heads. The FDTD
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computations include micromagnetic description of materials in the form of the solution

to the LLG equation and therefore the effects of anisotropy and exchange fields are

considered in the model. The impedance measurements provide time constants closely

related to the micromagnetic effect due to the magnetic nature of the head materials

and thus allow comparison with the computation results.



Chapter 2

Introduction to Magnetic
Recording

2.1 Introduction

Magnetic hard disk drives are the dominant mass storage devices used in modern

computers. Figure 2.1 shows a picture of a typical magnetic hard disk drive. Every

disk drive has an interface to a micropocessor located at the edge of the printed circuit

board (PCB), which is hidden on the other side of the shown disk drive. The PCB also

contains data detection and write current generation electronics. The mechanical servo

and control system includes the spindle, actuators, suspension arms and control chips.

The spindle holds one or more flat circular disks, onto which the data is recorded.

The disks are made from a non-magnetic material and are coated with a thin layer of

magnetic material. Each recording head is located at the trailing end of a slider which

is mounted at the end of a stainless steel suspension arm. The arm is moved by a coil

of wire mounted within a very strong magnetic field which is referred to as an actuator

and allows positioning the head very quickly and accurately. The pair formed by the

recording head and the recording disk surface is known as the head-disk assembly.

The operation of the head-disk assembly is based on a self-pressurized air-bearing

40
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Figure 2.1: Inside of a magnetic hard disk drive showing main components.

between the slider and the spinning disk, which maintains a constant separation (called

the flying height) between them, as shown in Figure 2.2. By positioning the head-slider

along the radial direction, different data tracks can be written on the disk. Each data

track is divided into many data sectors. Each sector stores a fixed amount of data.

The typical formatting provides space for 512 bytes of user-accessible data per sector.

The read/write head is an essential component in all magnetic recording systems. An

inductive head is basically a horseshoe-shaped soft magnet with an air gap and a coil.

Ferrite ring heads consist of magnetically soft bulk ferrites machined into head struc-

tures where the coil is mechanically wounded around. Thin-film heads are manufac-

tured using integrated circuit (IC) technology, therefore there is no machining involved.

Using IC technology allows the miniaturisation of the head with its consequent advan-

tages, e.g. higher track density. Ferrite ring heads were extensively used in hard disk

drives in the beginning. However, nowadays thin-film heads have largely replaced ring

heads in hard disk drives.

This chapter is intended as a general description of magnetic recording systems, in
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Figure 2.2: Schematic of a typical hard disk assembly.
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particular those used in computer hard disk drives. Thus, the basic principles of

operation of such a systems will be reviewed in detail in the next sections. Then, the

chapter will continue focusing on thin-film heads for longitudinal recording, first on

their fabrication process and materials and later on current methods to characterise

the heads. This chapter provides the basis for the background and fundamental theories

used throughout this thesis.

2.2 The Reading and Recording Processes

2.2.1 Overview

The magnetic recording process converts an electric current signal into an equivalent

magnetisation in a magnetic disk. This is done with a transducer that transforms the

electrical signal into a magnetic field through which the disk passes. As a final result

the disk surface presents a magnetic remanence which is related to the magnitude of

the field. This transducer is referred to as the head.

Figure 2.3 represents the write-read process in a magnetic recording system. The

magnetic head consists of a magnetic yoke and a coil. When the coil is excited with a

write current, a magnetic field is induced in the yoke. As a result of the material’s high

permeability (at least 300 times that of free space) and the small separation between

the poles, the generated magnetic flux in the yoke is linked through the gap. Due to

the separation between the poles, a small part of the field leaks from the generated

flux and it is radiated outside the head. This portion of the field is used to store the

binary information in the disk by means of magnetising its material in the appropriate

direction at fixed intervals. The write field must be larger than the medium’s coercivity

to magnetise the medium along the field direction. By switching the direction of

the write field or the write current, magnetisation transitions can be written in the
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Figure 2.3: Writing and reading processes in a longitudinal magnetic storage system.

medium. In the reading process the sequence is just the opposite. The medium with

transitions is passed underneath the gap. The relative motion between the head and

the magnetostatic stray fields produced by the magnetic transitions generates induced

voltage pulses in the coil due to the magnetic flux linked through the yoke.

When the magnetisation of the medium is parallel to the disk plane and the direction of

travel the mode of recording is said to be longitudinal. On the contrary, in perpendicular

recording the magnetisation of the medium is normal to the disk plane. Longitudinal

recording has been used traditionally and it is still used, but perpendicular recording is

gaining momentum due to its high density advantages. Note that this thesis focuses on

thin-film heads used for longitudinal recording in magnetic hard drives but nevertheless

the theory contents in this chapter also apply to perpendicular recording. Ideally, the

pattern of magnetisation created by a recording signal would be like that shown in

Figure 2.3. If the recording signal is a square wave with a fundamental frequency f
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and the medium moves with a velocity v, the wavelength of the recorded pattern is

λ =
v

f
(2.1)

and its bit length is defined as

b =
λ

2
(2.2)

The linear density Dl is defined as the inverse of the bit length. The track density Dw

is defined as the inverse of the track pitch or the distance between adjacent data track

centres. The areal data density Da is computed as the linear density times the track

density and specifies the bits that can be recorded per unit area in the medium.

2.2.2 Reading Process

Before analysing in detail the readback signal, the reprocity principle will be introduced.

The reciprocity principle is based on the fact that the mutual inductances M12 and M21

between two inductive circuits are the same when the medium surrounding the circuits

is linear (i.e. in the absence of ferromagnetic material).

M12 = M21 = Lm (2.3)

Consider two coils linked by a mutual inductance Lm as shown in Figure 2.4. A current

i1 in the left coil will cause a flux φ21 through the coil to the right given by

φ21 = Lmi1 (2.4)

In a similar way, the flux φ12 through the left coil as a result of a current i2 in the right

coil is given by

φ12 = Lmi2 (2.5)

Thus it is possible to write

φ12

i2
=

φ21

i1
(2.6)
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Figure 2.4: Reading process. (a)Magnetic interaction between two circuits, (b) record-
ing medium with a relative speed v with respect to the head poles used to work out
the readback signal and (c) readback signal.
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Now take the left coil to represent the head’s coil and the right coil to carry a current

representing a magnetised element of the recording medium. Considering only x com-

ponents, a write current iw in the head’s coil produces a head field Hx(x, y). The flux

through the coil representing the medium due to current iw is related to the head field

as

φ21 = µ0Hx(x, y)dydz (2.7)

where dydz is the area of the magnetised element through which the flux passes. The

current im that represents the magnetisation at point x′ in the medium can be expressed

as

im = Mx(x
′)dx′ (2.8)

or

im = Mx(x − x)dx (2.9)

where x = vt is the moving distance of the medium relative to the head as shown in

Figure 2.4. Substituting (2.9) and (2.7) in (2.6) gives the flux in the head’s coil as

φ12 = µ0Mx(x − x)
Hx(x, y)

iw
dxdydz (2.10)

Integration over the total volume of the recording medium leads to the total flux in

the coil

φ12 = µ0

∫ +∞

−∞

∫ d+δm

d

∫ +∞

−∞

Mx(x − x)
Hx(x, y)

iw
dxdydz (2.11)

Note that the head’s coil current iw is the write current rather than the readback

current. The head field Hx is normally proportional to the write current iw. Therefore,

the magnetic flux φ12 is in general independent of the write current.

The readback voltage is related to the flux as

V (x) = −∂φ

∂t
= −∂x

∂t

∂φ

∂x
= v

∂φ

∂x
(2.12)
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which applied to (2.11) gives

V (x) = −µ0v

∫ +∞

−∞

∫ d+δm

d

∫ +∞

−∞

∂Mx(x − x)

∂x

Hx(x, y)

iw
dxdydz (2.13)

The derivative of the magnetisation represents the magnetic charge density. Expression

(2.13) shows that a head senses the moving magnetic charge. If there is no charge

density in the medium or the velocity is zero, then there is no readback signal.

A single step transition with a moving center x = vt is expressed as

Mx(x − x) =

{

−Mr for x < x
Mr for x > x

(2.14)

where Mr is the remanence magnetisation of the medium. Then

∂Mx(x − x)

∂x
= −∂Mx(x − x)

∂x
= −2Mrδ(x − x) (2.15)

here, δ(x− x) refers to the δ-function. Substituting (2.15) into (2.13) after integration

gives

Vx(x) = 2µ0vWMrδm
Hx(x, d)

iw
(2.16)

This means that the readback signal of a thin magnetic medium with a single infinites-

imal transition is in the shape of the head field profile at the medium. For this reason,

the head field expression is often called head sensitivity function.

When considering multiple transitions, linear superposition applies as long as the tran-

sitions are not written too closely. Then, the readback voltage from a sequence of

magnetic transitions is given by the sum of the single pulses corresponding to the

individual magnetic trasitions. That is

V (x) =
∑

n

(−1)nVpulse(x − xn) (2.17)

where xn is the center of the nth individual magnetic transition, (−1)n represents the

alternating polarity of the magnetic transitions, and Vpulse represents an individual

single pulse.
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The voltage waveform of a modified nonreturn-to-zero (NRZI) current pattern is shown

in Figure 2.3. NRZI coding means that a bit ”1” corresponds to a write current change,

while a bit ”0” corresponds to no change. The write current is either positive or

negative but never zero. As seen in Figure 2.3, actual magnetisation transitions and

voltage pulses are not ideal step functions. Quite the opposite, they are softened as a

result of the finite time that takes for the magnetisation to reach its orientation.

It can be seen from equation (2.16) that the readout signal amplitude and resolution

both depend on the head field distribution and transition length.

2.2.3 Writing Process

The writing process of a magnetic transition is shown in Figure 2.5. The DC erased

magnetic medium is moving to the right relative to the recording head. The current

initially magnetises the medium to the right. At the moment the current switches

direction, the head field direction switches to the left. The head field rise time is

actually finite but assumed to be zero here. The section of the magnetic medium

enclosed by the write field is in this way magnetised to the left, a magnetic transition

is formed at the right edge of the write bubble. As the medium moves to the right, the

write field stays with the head gap, and the transition center moves out of the influence

of the write field. On the contrary, the transition at the left edge of the write bubble

gets erased as the medium moves to the right.

In digital magnetic writing the magnetisation of the medium is more or less saturated

by the write field, i.e. any increase of the write current will not result in a proportional

increase in the magnetisation. This is a basic characteristic of a nonlinear process, and

thus the write process in digital magnetic recording is generally nonlinear as opposed

to the readback process. In order to reproduce well defined voltage pulses from a

magnetic medium, sharp magnetic transitions must be written.
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Figure 2.5: Formation of a magnetic transition.

The Williams-Comstock model (Williams and Comstock, 1971) provides an analytical

expressions for the digital magnetic write process. In this model, magnetic transitions

are presumed to be described by an arctangent function. The magnetisation distribu-

tion as a function of the applied field is assumed to be

M(H) =
2Ms

π
arctan

(

Htotal + Hc

Hc

tan
πS

2

)

(2.18)

where Ms is the saturation magnetisation, Htotal is the total field, Hc is the coercive

field of the medium and S = Mr/Ms is the remanence squareness. When recording,

the demagnetising field Hd due to the magnetisation of the medium and the applied

field or head field H together determine the magnetisation, that is, Htotal = Hd + H .

The remanence squareness specifies the shape of the M-H loop, for the particular case

of S = 1 the shape of the hysteresis loop is rectangular. On the other hand, the
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magnetisation distribution as a function of space is assumed to be

M(x) =
2Mr

π
arctan

(

x − x0

ax

)

(2.19)

where Mr represents the remanence magnetisation, ax the transition width and x0 the

transition center. The magnetisation gradient, which causes the reply pulse, is given

by

∂M

∂x
=

∂M(Htotal)

∂Htotal

∂Htotal

∂x
(2.20)

where

∂Htotal

∂x
=

∂H

∂x
+

∂Hd

∂x
(2.21)

Equation (2.20) means that the magnetisation gradient is proportional to the product

of the slope of the hysteresis loop and the total field gradient. Hence the requirements

for short transition lengths are high total field gradients and rectangular hysteresis

loops. At the time of switching the write current, the written transition is still under

the influence of the head field. As the transition center moves away from the write

bubble, the head field disminishes and only the demagnetising field remains. This

results in a relaxation of the magnetisation. Figure 2.6 shows the shape of a typical

M-H hysteresis loop, the demagnetisation curves after removal of the write field and the

demagnetising field as a function of the magnetisation. Note the demagnetising field

oposses the magnetisation as expected. In the relaxation process, every point in the

magnetic transition moves along one of the dotted curves of Figure 2.6 to reach its final

magnetic state. At the transition centre x = x0, the magnetisation and demagnetising

field should be both zero. Then, if x = x0 position of the medium is to have zero

remanence once the write field is removed, it must be subjected to a field −H1 just

slightly below the coercive point −Hc on the hysteresis loop, so that the magnetisation

will return to zero as the head field is removed (along the corresponding dotted curve).

For very steep hysteresis loops S ≃ 1, H1 is approximately Hc.
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Figure 2.6: Magnetisation relaxation.

The transition length ax in equation (2.19) can be determined by solving (2.20) at

the transition center x = x0. The aim is now to find an expression for each partial

derivative in (2.20). As shown in Figure 2.6, the shape of the hysteresis loop near the

coercivity can be aproximated by a straight line with slope

m =
∆y

∆x
=

Mr

Hc(1 − S∗)
(2.22)

where S∗ is the coercive squareness which is related to the slope at the coercive point

and must not be confused with the remanence squareness S. Thus the slope of the

hysteresis loop near the coercive point is

∂M

∂H
=

Mr

Hc(1 − S∗)
(2.23)

By taking the derivative of (2.19) with respect to x at the transition center, the mag-
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netisation gradient is

∂M

∂x

∣

∣

∣

∣

x=x0

=
2Mr

π

ax

a2
x + (x − x0)2

∣

∣

∣

∣

x=x0

=
2Mr

πax
(2.24)

The head field H can be described as the field generated in a Karlqvist head (see

Section 2.4.2). Then its longitudinal component is determined by

Hx =
Hg

π

[

tan−1

(

x + g/2

y

)

− tan−1

(

x − g/2

y

)]

(2.25)

The head field must be evaluated at the centre of the magnetic medium, that means

that y is the distance from the head pole tip to the center of the magnetic medium,

y = d + δm/2, where d is the flying height and δm is the thickness of the medium. The

head field gradient at the transition centre x = x0 is then

∂Hx

∂x

∣

∣

∣

∣

x=x0

=
Hg

πy

[

1

1 + ((x0 + g/2)/y)2
− 1

1 + ((x0 − g/2)/y)2

]

(2.26)

by defining Q as

Q =
Hg

πHc

[

y2

y2 + (x0 + g/2)2
− y2

y2 + (x0 − g/2)2

]

(2.27)

it is possible to rewrite (2.26) as

∂Hx

∂x

∣

∣

∣

∣

x=x0

=
HcQ

y
(2.28)

The demagnetising field along the center of the medium is (see Appendix A)

Hd(x) = −2Mr

π

[

tan−1

(

x − x0

ax

)

− tan−1

(

x − x0

ax + δm/2

)]

(2.29)

Therefore, the demagnetising field gradient at the transition center is

∂Hd

∂x

∣

∣

∣

∣

x=x0

= −2Mr

π

[

1

ax
− 1

ax + δm/2

]

= −Mrδm

π

1

ax (ax + δm/2)
(2.30)

Note that at the transition centre, the demagnetising field is zero, but its gradient is

nonzero.
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Now, substitution of (2.23), (2.24), (2.28) and (2.30) into (2.20) and (2.21) and asuming

a thin medium, δm << ax, gives

2Mr

πax

=
Mr

Hc(1 − S∗)

[

HcQ

y
− Mrδm

πa2
x

]

(2.31)

Multiplying both sides by a2
x and rearranging the equation, it is possible to write

a2
x −

2(1 − S∗)y

πQ
ax −

Mrδmy

πHcQ
= 0 (2.32)

which is a quadratic equation of ax with positive solution

ax =
(1 − S∗)y

πQ
+

√

[

(1 − S∗)y

πQ

]2

+
Mrδmy

πHcQ
(2.33)

where y = d + δm/2. In the special case of a square M-H hysteresis loop, S∗ = 1,

equation (2.33) becomes

ax =

√

Mrδmy

πHcQ
(2.34)

In general, S∗ ≃ 1 thus ax can be approximated to (2.34). To achieve high linear

density, the transition length parameter ax must be reduced as much as possible. This

implies large medium coercivity Hc, small Mrδm product, small flying height d such

that y = d + δm/2 is small, and large coercive squareness S∗.

From equations (2.20) and (2.34), the final length of the recorded transition is deter-

mined by the recording head field gradient. Therefore higher field gradients are needed

to record shorter transitions and therefore increase the linear density of the system.

2.3 Thin-Film Recording Heads

Figure 2.7 shows the typical internal configuration of a thin-film head. The drawing

to the left represents the cross section through the center of the head (i.e. x-y plane

or side view). This section is expanded to show detail from the poles to the center
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Figure 2.7: Top view of a typical thin-film head. The diagram to the left shows the
cross section through the dashed line. The diagram to the bottom represents the front
view of the head poles.
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of the coils as shown by the dashed lines. In the top view of the head (x-z plane) it

is possible to observe complete coil turns whereas the end view (y-z plane) shows the

pole tip detail. The heads are fabricated in consecutive steps in which thin layers of

material are deposited over a base or substrate. These steps will be briefly discussed

next.

2.3.1 Fabrication

The substrate is the material where the different head material layers are deposited. It

is typically a disk wafer aproximately 2.5mm thick and 12cm in diameter (R. E. Jones,

1980). The different layers are built up one at a time on the surface of this wafer as

shown in Figure 1.8 from top to bottom. After all film depositions, the wafer is sliced

up into many heads. On a single wafer, between 3000 and 6000 heads can be produced.

Each head is mounted to a special device called a head slider or just slider. The function

of the slider is to physically support the head and hold it in the correct position as the

recording medium moves underneath the head. The slider is suspended over the surface

of the disk at the end of the head suspension arm. The head arm is mechanically fused

into a single structure that is moved around the surface of the disk by the actuator

(see Figure 2.1).

The first film to be deposited on the substrate is a thin film of alumina to provide a

smooth surface for further processing and insulation of the heads from the conductive

slider body. The next layer to be deposited is the lower film which forms one of the

two pole tips at the air bearing surface. The inslulating gap layer is deposited on

top of the lower film. A hole in this insulation layer is made near the coil center to

allow physical contact between the lower and upper films and make a complete yoke.

Subsequent layers of insulation must also provide a hole for this purpose. Another

insulation layer is deposited on top of the gap layer prior to the coil deposition. Then



CHAPTER 2. INTRODUCTION TO MAGNETIC RECORDING 57

Figure 2.8: Thin-film head’s fabrication process.
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the coil is lithographically patterned. A second insulating layer is deposited to provide

insulation between the coil and the upper thin film. A hole in this second insu- lating

layer allows connection of the center of the coil to the coil lead. The deposition of the

upper thin film is next. The second pole tip at the air bearing surface is formed by this

layer. The overpass lead that provides electrical connection to the coil fol- lows. And

finally, a covering layer of alumina is deposited to provide protection to the sensitive

film layer from chemical or mechanical attack during further processing (e.g. slicing to

separate individual sliders, soldering of leads, mounting on the suspension arm, etc.).

2.3.2 Head Materials

Different head materials are classified according to their magnetic, electrical and me-

chanical properties. Table 2.1 sumarises the definition of magnetic, electrical and

mechanical properties generally used to characterise the materials of thin-film heads.

The magnetic layers of thin-film heads are generally made of a Ni-Fe alloy with ap-

proximately 80% Ni and 20% Fe. The typical parameters of a Ni80Fe20 alloy are shown

in Table 2.2.

In fabricating the conductor sections of the heads the most commonly used material

is Copper, characterised by a relative permittivity ǫr of 4.8 and a conductivity σ of

5.8 × 107 1/Ωm.

The most frequently used insulation and gap materials in film heads are SiO2, SiO

and Al2O3. Although all three show non-magnetic behavior, Al2O3 may be preferred

because it has the highest thermal expansion coefficient of the three, hence will have

smaller thermally induced stresses (Wang and Taratorin, 1999).

Finally, film heads must be deposited on a substrate which must exhibit good wear

characteristics. Ferrite materials have been typically used as substrate materials due
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Table 2.1: List of notation for different mateial properties. A complete review of
materials used in thin films can be found on Chapter 4, Mee and Daniel (1990).
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Table 2.2: Typical parameters of a Ni80Fe20 alloy (Wang and Taratorin, 1999).

Anisotropy field Hk 200 to 400 A/m
Saturation induction Bs ≃ 10 Tesla
Low frequency permeability µr 2000 to 4000
Electrical conductivity σ 5.6 × 106 1/Ωm
Damping constant α 0.01 to 0.1

to its characteristic hardness and durability.

2.4 Characterisation of Recording Heads

2.4.1 Losses in Magnetic Materials

Understanding the loss mechanisms in magnetic materials is of practical importance

in order to characterise the heads. The losses in magnetic materials can be divided in

three main categories: hysteresis loss, dielectric loss and relaxation loss. These three

types of losses will be discussed next.

Hysteresis Loss

Figure 2.9 represent the relationship between the applied magnetic field strength H

and the magnetisation M in a magnetic material. This is an example of non-linear

response, when plotting the relationship for increasing levels of field strength, the mag-

netisation will follow a curve up to a point where further increases in magnetic field

strength will result in no further change in the magnetisation. This condition is called

magnetic saturation Ms. If the magnetic field is now reduced linearly, the magneti-

sation will follow a different curve back towards zero field strength at which point it

will be offset from the initial magnetisation curve by an amount called the remanent
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Figure 2.9: Typical hysteresis loop.

magnetisation Mr. If this relationship is plotted for all strengths of applied magnetic

field the hysteresis loop of Figure 2.9 results where the points of zero magnetisation

occur at the coercive field of the material Hc and points with zero applied field are

offset 2Mr. The coercivity is defined as the intensity of the applied magnetic field

required to reduce the magnetisation of a given magnetic material to zero after the

magnetisation of the sample has been driven to saturation.

Every change in the magnetisation involves an energy transfer which can be defined as

∆E = W − Q (2.35)

where W represents the work of magnetic force on realignment of the magnetisation

with the applied field strength, and Q represents the dissipated heat in the material.

The work in a magnetic material whose magnetisation changes from M1 to M2 under

the effect of an external field H is defined as

W =

∫ M2

M1

HdM (2.36)

In going around the hysteresis loop of Figure 2.9 the total work is

W =

∫

−Mr

−Ms

H1dM +

∫ Ms

−Mr

H1dM +

∫ Mr

Ms

H2dM +

∫

−Ms

Mr

H2dM (2.37)
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Figure 2.10: Rearrangement of the hysteresis loop in order to compute the hysteresis
loss.

where H1 represent the right curve of the hysteresis loop and H2 represents the left

curve of the hysteresis loop. In order to compute the integrals of the right hand side

of (2.37), the hysteresis loop has been redrawn in Figure 2.10. Equation (2.37) can be

rewritten as

W =

∫

−Mr

−Ms

H1dM +

∫ Ms

−Mr

H1dM−
∫ Mr

−Ms

H2dM−
∫ Ms

Mr

H2dM (2.38)

The integrals in (2.38) correspond to the areas A1, A2, A3 and A4 of Figure 2.10

respectively. Thus, the total work equals the equivalent area of the hysteresis loop.

Now, by applying the conservation of energy principle ∆E = 0 to (2.35) results in a

dissipated heat in the material equal to the area of the hysteresis loop. This energy

dissipation is known as hysteresis loss.

Dielectric Loss

The second kind of loss comes from the shielding effect due to eddy currents in lossy

materials. A time varying magnetic field H produces an electric field E. According to

Maxwell’s curl equation for the electric field this is

∇×E = −µ
∂H

∂t
(2.39)
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This field results in a current density J given by Ohm’s law

J = σE (2.40)

These eddy currents must be taken into account in Maxwell’s curl equation for the

magnetic field as

∇×H = σE + ǫ
∂E

∂t
(2.41)

Equations (2.39) and (2.41) are first order, coupled differential equations. That is, both

the unknown fields E and H appear in each equation. Uncoupling these equations to

obtain the wave equation gives

∇2Ĕ = jωµσĔ− ω2µǫĔ = γ2Ĕ (2.42)

∇2H̆ = jωµσH̆− ω2µǫH̆ = γ2H̆ (2.43)

Where Ĕ and H̆ represent the electric and magnetic fields in the frequency domain.

Equations (2.42) and (2.43) are the wave equations for the electric and magnetic fields

in a source-free lossy material. The propagation constant γ is a parameter of the

traveling wave defined as

γ = α + jβ =
√

jωµσ − ω2µǫ =
√

jωµ(σ + jωǫ) (2.44)

Here, the propagation and atenuation constants are represented as γ and α respec-

tively in agreement with the general convention. It must be said that throughout this

thesis while not talking about propagation of electromagnetic waves α represents the

damping coefficient of the rotational motion of the magnetisation and γ represents the

gyromagnetic ratio.

Taking the square of (2.44) gives

α2 − β2 = −ω2µǫ (2.45)
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2αβ = ωµσ (2.46)

Substituting the value of α from (2.46) into (2.45) gives

α2 −
(ωµσ

2α

)2

= −ω2µǫ (2.47)

or

4
(

α2
)2

+ 4ω2µǫα2 − (ωµσ)2 = 0 (2.48)

which is a quadratic equation for α2. The attenuation constant α is then given by

α = ω
√

µǫ

(

1

2

[

√

1 +
( σ

ωǫ

)2

− 1

])
1

2

(2.49)

where the signs of the square roots have been chosen to describe a traveling wave in

the z direction that concurrently decays.

Similarly, it is possible to obtain an expression for the phase constant β as

β = ω
√

µǫ

(

1

2

[

√

1 +
( σ

ωǫ

)2

+ 1

])
1

2

(2.50)

Assuming a uniform plane wave traveling in a lossy medium across the z direction, its

electric and magnetic field take the form

Ez = E0e
−γz = E0e

−αze−jβz (2.51)

Hy = H0e
−γz = H0e

−αze−jβz (2.52)

Equations (2.51) and (2.52) show that the magnitudes of the electric and magnetic fields

decay exponentially with the traveled distance. At a particular distance, denoted as

the skin depth δ, the traveling wave reduces its value to e−1 = 0.37, as shown in Figure

2.11. That is

δ =
1

α
=

1

ω
√

µǫ

(

1/2

[

√

1 + (σ/ωǫ)2 − 1

]) 1

2

(2.53)



CHAPTER 2. INTRODUCTION TO MAGNETIC RECORDING 65

Figure 2.11: Shielding effect due to eddy currents.

When the lossy material considered is a good conductor, (σ/ωǫ)2 >> 1, the skin depth

reduces to

δ =

√

2

ωµσ
(2.54)

The appearance of eddy currents in magnetic heads implies a reduction in the flux-

carrying capacity of the core. When the eddy currents are strong enough, that is from

the time derivative of (2.39) with increasing frequency, no magnetic field penetrates to

the center section of the material. Then, the flux will be concentrated in the edges of the

core as shown in Figure 2.11 affecting the performance of the head. The effective area

through which the flux passes may be increased by dividing the core into laminations

of thicknesses equal to twice the skin depth at the frequency of interest as shown in

Figure 2.11. Another effect of eddy currents is that the rate of change of B (hence H

and M) produces a circulating eletric field or currents inside the yoke. These currents

produce an opposing field which dampens the switching of fields iside the head.

If an electric current, such as an eddy current, passes through a resistive material,

electrical energy is converted to heat. The amount of electrical energy due to an
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Figure 2.12: Complex permeability of a typical permalloy (White, 1984).

electrical current can be expressed as

E = Pt (2.55)

where P is the power in watts and t is the time in seconds. The power dissipated by

the eddy currents can be calculated as the integral of the power over the volume of the

core

P =

∫

Vcore

JEdVcore (2.56)

where J and E are calculated using (2.39) and (2.40) respectively.

The effects of eddy currents may be described by a complex permeability with a fre-

quency dependence similar to that shown in Figure 2.12. At low frequencies, the real

part of the permeability µ′ is constant and much bigger than the imaginary part µ′′ so

the permeability µ = µ′− jµ′′ is mostly real. At a certain frequency fmax, at which the

skin depth equals the lamination thickness, the real part µ′ falls with increases in fre-

quency making the imaginary part µ′′ become more important. For frequencies below
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fmax, the skin depth is greater than the lamination thickness so the total core area is

available for the flux. At higher frequencies, the flux is carried by a smaller equivalent

area which is equivalent to having the total core area with a smaller permeability. The

complex nature of the permeability allows to account for the losses.

Relaxation Loss

The third type of loss is related to the precessional motion of the magnetisation. When

a field is applied to a magnetic material, the magnetisation precesses until it is aligned

with the direction of the field. This precession is described by the equation of motion

(Gilbert, 1955)

∂M

∂t
= −γ(M × H) +

α

Ms

(

M× ∂M

∂t

)

(2.57)

As will be seen in section 3.3.2, in solving the equation of motion, a characteristic time

τ , known as the relaxation time, is involved, and hence, the name relaxation loss.

It has been observed that magnetic materials are divided into magnetic domains where

the orientation of the magnetisation is practically uniform. In between adjacent do-

mains the magnetisation rotates from one orientation to the other forming domain

boundaries or domain walls as shown in Figure 2.13. When a magnetic field is applied,

the alignment of the magnetisation happens in two different ways: domain wall motion

and domain rotation. When an external field is applied to antiparallel domains, like

domains A and B in Figure 2.13, if the direction of the field is parallel to the magnetisa-

tion of the domains, the domains with favorable orientation will grow, by displacement

of the wall, at the expense of other domains unfavorably oriented. The orientation of

the magnetisation near the favorable domain aligns with the field first, that is, the ar-

rows denoted m1, m2 and m3 will be the first to orientate themselves with the applied

field, with a precessional motion ruled by (2.57) and shown in Figure 2.13 by m4. As

soon as one arrow moves, all other arrows in the wall must rearrange themselves to
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maintain the wall condition. This corresponds to a movement of the wall as a whole,

in a direction perpendicular to the field, such as to increase the volume of the favorable

domain. Domain rotation happens when there is no reason for one domain to grow at

expenses of other with antiparallel magnetisation, it is the case of domains C and D

with respect to A. Here, the magnetisation has to proceed by rotation only, ruled again

by (2.57) and shown in Figure 2.13 by m4, gradually coming into alignment with the

applied field until the domain wall disappears.

It has been observed experimentally that both these processes occur. In fact, domain

wall motion is the process which requires least magnetic energy and is the first to occur

as the applied field is increased from zero (Anderson, 1968). At small applied fields

the domain walls move through small distances and return to their original positions

on removal of the field, this is known as reversible domain wall motion. For larger

applied fields, the domain walls are found to jump discontinuously through larger

distances and do not return to their original position on removal of the field, that is

irreversible domain wall motion. When all the unfavorable domains have disappeared,

the remaining non aligned domains orient themselves by domain rotation only until

saturation is reached.

It has been shown experimentally that domain wall motion and domain rotation cor-

respond to slow and fast processes respectively, (Jorgersen, 1995). For an isotropic

material whose properties are independent of direction, the typical domain configura-

tion of the pole tip of a magnetic thin-film head is that shown in Figure 2.14(a) where

the central wall will move from one side to the other during flux reversals, these flux

reversals are dominated by a slow process, domain wall motion. If an anisotropic mate-

rial is considered, the typical domain configuration is shown in Figure 2.14(b) and the

magnetisation reversals take place through domain rotation, which is a fast process.

The research carried out in this thesis is to study these processes along with their time

scales, and their influence on the switching speed of magnetic heads.
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Figure 2.13: Saturation of a magnetic material by domain wall motion and domain
rotation.
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Figure 2.14: Domain configuration for isotropic and anisotropic materials.

From the equation of motion (2.57), the power dissipated by the orientation of the

magnetisation is

P =

∫

V

H

(

∂M

∂t

)

dV (2.58)

which applies for both domain wall motion and domain rotation.

2.4.2 Head Models

The purpose of this section is to review several methods for characterising magnetic

heads. The inductance and efficiency of the heads are directly related to the perma-

bility of the magnetic film that the head is made of and therefore they reflect any

magnetic losses in the core material. The methods studied here to characterise the

head’s inductance and efficiency will be used in Chapter 6.

Solving magnetic field problems is in general a difficult task that involves solving dif-

ferential equations with their respective initial conditions. The application of circuit

theory to solving magnetic field problems simplifies the complexity of the calculations.
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Magnetic devices may be considered as magnetic circuits. The magnetomotive force

(mmf) is the work that would be required to carry a hypothetical isolated magnetic

pole of unit strength completely around a magnetic circuit. It can also be seen as the

force associated with a magnetic field and that produces magnetic flux. The standard

definition of magnetomotive force involves current passing through an electrical con-

ductor. The unit of magnetomotive force is the ampere-turn. Figure 2.15 represents

an coil wound around a head core material. When the coil is excited by an electric

current magnetic flux is generated through the closed path of the core. By applying

Ampere’s law, the mmf in the coil is mathematically expressed as the line integral of

the field around the closed path

∮

Hdl = Hcorelc + Hglg = NI (2.59)

and therefore it is possible to separate the mmf in the coil and the mmf in the gap

regions of a ferrite head.

Magnetic reluctance is defined by analogy to the concept of resistance in an electrical

circuit as the ratio of the magnetomotive force (mmf) in a passive magnetic circuit and

the magnetic flux in this circuit. In terms of material properties, the reluctance of a

magnetic circuit can be expressed as

R =
l

µ0µrA
(2.60)

where l is the length of the circuit in metres, µ0 is the permeability of free space, µr is

the relative magnetic permeability of the material and A is the cross-sectional area of

the circuit in square metres.

Thanks to the analogy between electric and magnetic circuits, electric circuit laws can

be applied to solve magnetic circuits. In the electric domain, a circuit is defined by

an electric voltage source, a current and a resistance whereas in the magnetic domain

a circuit is defined by a magnetic source, a magnetic flux and a reluctance. In this
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Figure 2.15: Equivalent magnetic circuit of a ferrite head. The subscripts c and g refer
to head core and the head gap respectively.

manner, for example, it is possible to define the equivalent magnetic circuit of a ferrite

head as the sum of reluctances Rc/2, Rc/2 and Rg in Figure 2.15 connected to the

magnetic source NI which links a magnetic flux φ through the circuit.

The flux flowing through the magnetic circuit is given by

φ =
NI

Rc/2 + Rg + Rc/2
=

NI

Rc + Rg

(2.61)

where the reluctances Rc and Rg are given by

Rc =
lc

µ0µrAc
(2.62)

and

Rg =
lg

µ0Ag
(2.63)

here, lc, lg, Ac and Ag represent the core and gap lengths and the core and gap cross

sectional areas respectively.

Due to magnetic losses, the magnetomotive force (mmf) in the gap is less than the

magnetomotive force applied in the coil. The ratio of the mmf in the gap to that in

coil is a quantity η known as the head efficiency. That is

η =
Hglg
NI

(2.64)
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Considering the cross section of the core and the gap to be uniform and of values Ac

and Ag, the flux through the magnetic circuit can be expressed as

φ = µ0µrHcoreAc = µ0HgAg (2.65)

then, solving (2.65) for Hcore and Hg and substituting in (2.59) and (2.64) gives

η =
lg/µ0Ag

lg/µ0Ag + lc/µrµ0Ac

(2.66)

or in terms of the core and gap reluctances (2.62) and (2.63)

η =
Rg

Rg + Rc

(2.67)

Clearly, the reluctance of the core effectively divides the magnetomotive force created

by the current in the turns, so only a fraction η of the magneto motive force appears

between the pole tips of the head. This fraction can approach unity only as the product

of permeability and magnetic cross section approaches infinity, or as the magnetic path

length approaches zero.

The head inductance, which is important in characterising the head frequency response,

can also be derived from magnetic circuit models. The inductance is defined as the

ratio of the magnetic flux linkage to the current through the coil, that is

L =
Nφ

I
(2.68)

Again, substituting the values of Hcore and Hg from (2.65) in (2.59) and solving for φ

gives

φ =
NI

lg/µ0Ag + lc/µrµ0Ac
(2.69)

Now substituting (2.68) in (2.69) leads to

L =
N2

lg/µ0Ag + lc/µrµ0Ac

=
N2

Rg + Rc

(2.70)

Equations (2.66) and (2.70) show that the efficiency and inductance of a magnetic head

are functions of the permeability of the magnetic material and therefore they reflect

the magnetic losses that occur in the head core.
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2.5 Organisation of Thesis

A comprehensive introductory chapter to discuss possible approaches to the problem

set was given in Chapter 1. This is supported by a comprehensive literature survey of

alternative approaches that details the strengths and limitations of different methods

and arguments the final choice followed.

A general introduction to magnetic recording focused on hard disk drives and their

basic performance was given in this chapter. The reading and recording processes were

described first. Then, the fabrication process of thin-film heads was explained. This

introduction chapter concluded with the characterisation of recording heads including

a study of the losses and several methods for magnetic head modelling.

Chapter 3 will focus on the general electromagnetic theory and the micromagnetic

models which form the basis behind the numerical work in this research. The former

is centered around Maxwell’s equations and the electric and magnetic properties of

matter whereas the latter is a general description of the micromagnetic model from

its atomic origins to the actual equation of motion that was used to model magnetic

materials in Chapter 5.

The FDTD algorithm is described in detail in Chapter 4, from its basic formulation

to numerical dispersion and the stablishment of stability conditions. Reflections into

the main computational space are then studied to develop a perfectly matched layer

boundary condition to absorb outgoing waves for the experiments in Chapter 5 with

satisfactory results. This chapter also analyses in detail the extension of the classical

FDTD method to model magnetic materials. This includes important implementation

issues and studies of the stability requirement of the extended scheme.

Code has been written in Matlab to fully implement both the standard and the ex-

tended FDTD algorithms. The preformance of the developed code has been tested
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over a number of test cases in Chapter 5. Then linear and non-linear simulations of an

actual head structure are demonstrated.

The experiments in Chapter 6 start with a study of the physical dimensions of two

commercial thin-film heads using the SEM. The chapter continues with derivations of

equivalent circuit models that best describe the impedance of thin-film heads including

the relaxation effects of the domain wall motion and the rotational magnetisation. By

fitting these models to measured impedance spectra, information about the time scales

of these relaxation processes will be presented.

The main text of this thesis concludes with a discussion in Chapter 7 where the back-

ground theory is summarised and the research aims are reviewed. The limitations of

the numerical simulations leave open future lines of research which are described at

the end of this chapter.



Chapter 3

Theory

3.1 Introduction

Prior to analysing magnetic recording in depth heads it is necessary to review the theory

involved in the performance of such devices. In particular the electromagnetic theroy of

Maxwell’s equations which provide the relationship between the electric and magnetic

fields in a medium; and the theory of micromagnetics which gives an explanation of

the magnetic behaviour of matter in the presence of fields. These theories will be used

in the numerical implementation and experimental work carried out in this thesis.

The organisation of this chapter is as follows. First the basic concepts of the electri-

cal and magnetic properties of matter will be reviewed in detail. Dielectric, magnetic

and conducting materials will be studied with the corresponding definition of polarisa-

tion, permittivity, magnetisation, permeability, currents and conductivity. Maxwell’s

equations and the corresponding electromagnetic wave propagation will be described.

Then the micromagnetic model will be analysed, from its origin in the atomic model

and the angular momentum of the electrons to the actual equation of motion of the

magnetisation and the effective field that generates its rotation.

76
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Figure 3.1: Formation of a dipole between two opposite charges of equal magnitude Q

3.2 General Electromagnetic Theory

3.2.1 Electrical Properties of Matter

Dielectric Materials, Polarisation and Permittivity

Dielectrics or insulators are materials whose dominant charges in atoms and molecules

are held in place by atomic and molecular forces, and they are not free to travel. Thus

ideal dielectrics do not contain any free charges (such as in conductors).

For dielectrics, the formation of electric dipoles is usually referred to as orientational

polarisation. The effect of this polarisation can be represented by a dipole (see Figure

3.1) with a dipole moment dpi given by

dpi = Qli (3.1)

where Q is the magnitude of each of the negative and positive charges whose centers

are displaced by distance li.

The total electric dipole moment of a given material is obtained by summing the dipole

moments for all the orientational polarisation dipoles represented by the Bohr atomic

model. For a volume ∆V where there are Ne electric dipoles per unit volume, or a
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Figure 3.2: Dielectric salb connected to an applied electric field E

total of Ne∆V electric dipoles, the total electric dipole moment is

pt =
Ne∆V
∑

i=1

dpi (3.2)

The electric polarisation vector P can then be defined as the dipole moment per unit

volume, or

P = lim
∆V →0

[

1

∆V
pt

]

(3.3)

The units of P are coulombs per square meter (C/m2) which is representative of a

surface charge density.

For dielectrics, the interaction between the polarisation dipoles and an applied electro-

magnetic field provides the material with the ability to store electric energy. Figure 3.2

shows a DC voltage source connected across two parallel plates separated by distance

s. The charges on the dielectric material align themselves with the applied field form-

ing electric dipoles. The polarisation vector P gives rise to the surface charge density

found on the upper and lower surface of the dielectric slab as shown in Figure 3.2.

Whereas the applied electric field E maintains its value, the electric flux density D

inside the dielectric material differs from what would exist where the dielectric material

is replaced by free space. The electric flux density D inside the dielectric material can
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be expressed as

D = ǫ0E + P (3.4)

where ǫ0 is a constant known as the permittivity of free space, E is the applied electric

field, and P is polarisation vector given by equation (3.3).

The electric flux denstity D of (3.4) can also be related to the applied electric field

intensity E by a parameter designated as ǫ, with units of farads per meter (F/m), such

that

D = ǫE (3.5)

As the polarisation vector P is in the same direction as the applied field E, it can be

expressed in terms of E as

P = P
E

E
(3.6)

or

P = ǫ0χeE (3.7)

where

χe =
P

ǫ0E
(3.8)

The parameter χ is known as the dimensionless quantity electric susceptibility.

Substituting (3.7) into (3.4) and using (3.5) it is possible to write

D = ǫ0E + ǫ0χeE = ǫ0(1 + χe)E = ǫE (3.9)

Therefore

ǫ = ǫ0(1 + χe) (3.10)
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Figure 3.3: Atomic model to represent magnetic materials (a) orbiting electron and
(b) equivalent electric loop

The parameter ǫ is called the static permittivity of the medium. It is common to express

the permittivity of a medium in terms of its relative value to that of free space as

ǫr =
ǫ

ǫ0

= 1 + χe (3.11)

which is refered to as the relative permittivity.

Magnetic Materials, Magnetisation and Permeability

Magnetic materials are those that exhibit magnetic polarisation when they are sub-

jected to an applied magnetic field. The magnetisation phenomenon is represented by

the alignment of the magnetic dipoles of the material with the applied magnetic field

and is similar to the alignment of the electric dipoles of the dielectric material with the

applied electric field.

The behaviour of a magnetic material can be predicted by using simple atomic models

to represent the atomic lattice structure of the material like the one shown in Figure

3.3(a). Each orbiting electron can be modeled by an equivalent small electric current
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loop of area ds whose current flows in the direction oppostite to the electron orbit, as

shown in Figure 3.3(b). The fields produced by a small loop of electric current at large

distances are the same as those produced by a linear bar magnet (magnetic dipole) of

length d.

By referring to the equivalent loop model of Figure 3.3(b), the angular momentum

associated with an orbiting electron can be represented by a magnetic dipole moment

dmi such that

dmi = IidSi = n̂iIidSi (3.12)

For atoms that possess many orbiting electrons, the total magnetic dipole moment mt

is equal to the sum of all the individual magnetic dipole moments dmi represented by

(3.12). For a volume ∆V where there are Nm obiting electrons (equivalent loops) per

unit volume, the total magnetic dipole moment is

mt =
Nm∆V
∑

i=1

dmi (3.13)

A magnetic polarisation (magnetisation) vector M is then defined as

M = lim
∆V →0

[

1

∆V
mt

]

(3.14)

The magnetisation vector M resulting from the realignment of the magnetic dipoles

is better illustrated by considering a slab of magnetic material with a magnetic field

Ba applied across it, as shown in Figure 3.4. Ideally, on a microscopic scale, for most

magnetic material all the magnetic dipoles will align themselves so that their individual

magnetic moments point in the direction of the applied field. However, this depends

on the magnitude of the field for each application. Taking as an example the storage

layer of a magnetic disk the magnetic dipoles would not align with the field unless

the applied field was very large. In the limit, as the number of magnetic dipoles and
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Figure 3.4: Magnetic slab subjected to an applied magnetic field

their corresponding equivalent electric loops become very large, the currents of the

loops found in the interior parts of the slab are cancelled by those of the neighboring

loops (opposite circled current arrows shown on Figure 3.4). On a macroscopic scale a

net nonzero equivalent magnetic current, resulting in an equivalent magnetic current

surface density, is found on the exterior surface of the slab. This equivalent magneitc

current density Jms is responsible for the introduction of the magnetisation vector in

the direction of B.

The magnetic flux density across the slab is increased by the presence of M so that

the net magnetic flux density at any interior point of the slab is given by

B = µ0(H + M) (3.15)

where µ0 is a constant known as the permeability of free space, H is the applied magnetic

field, and M is given by equation (3.14).

The magnetic flux denstity B can also be related to the applied magnetic field intensity

H by a parameter designated as µ, with units Henries per meter (H/m), such that

B = µH (3.16)
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Comparing (3.15) and (3.16) indicates that M is also related to H by

M = χmH (3.17)

where χm is a dimensionless quantity called the magnetic susceptibility.

Substituting (3.17) into (3.15) and using (3.16) it is possible to write

B = µ0(H + χmH) = µ0(1 + χm)H = µH (3.18)

Therefore

µ = µ0(1 + χm) (3.19)

The parameter µ is called the static permeability of the medium. It is common to

express the permability of a medium in terms of its relative value to that of free space

as

µr =
µ

µ0
= 1 + χm (3.20)

which is refered to as the relative permeability.

Conductive Materials, Currents and Conductivity

The current through a given cross sectional area is defined as the electric charge passing

through the area per unit time, that is

∆I = lim
∆t→0

[

∆Q

∆t

]

(3.21)

It is useful to define the current density J as the current per unit area such that

J =
∆I

∆S
(3.22)
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Figure 3.5: Current in a filament

Now consider the filament of Figure 3.5. If there is a flow of charge, of volume density

ρv, at a velocity v = vzẑ, from (3.21), the current through the filament is

∆I = lim
∆t→0

[

∆Q

∆t

]

= lim
∆t→0

[

ρv∆S
∆z

∆t

]

= ρv∆Svz (3.23)

Hence in general using (3.22) for every J component it can be said that

J = ρvv (3.24)

In (3.24) J is defined as convection current density in Amperes per square meter

(A/m2). Convection current, as distinct from conduction current, does not involve

conductors and consequently does not satisfy Ohm’s law (3.30). It occurs when a

current flows through an insulating medium such as liquid, rarefied gas, or vacumm.

Conduction currents require a conductor. A conductor is characterised by a large

amount of free electrons that provide conduction current as consequence of an applied

electric field. When an electric field E is applied, the force on an electron with charge

−e is

F = −eE (3.25)
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Since the electron is not in free space, it suffers constant collision with the atomic

lattice and drifts from one atom to another. If the electron with mass m is moving

in an electric field E with an average drift velocity v, according to Newton’s law, the

average change in momentum of the free electron must match the applied force. Thus

mv

τ
= −eE (3.26)

or

v = −eτ

m
E (3.27)

where τ is the average time interval between collisions. This indicates that the drift

velocity of the electron is directly proportional to the applied field. If there are n

electrons per unit volume, the electronic charge density is given by

ρv = −ne (3.28)

Thus the conduction current density is

J = ρvv =
ne2τ

m
E (3.29)

or

J = σE (3.30)

where σ = ne2τ/m is known as the conductivity of the conductor. The relationship in

(3.30) is known as the Ohm’s law for conductor materials.

The third type of current denoted as displacement current will be explained in detail

in section 3.2.2 when talking about Maxwell’s equations.

A conductor has abundance of charge that is free to move. Consider an isolated con-

ductor, such as shown in Figure 3.6(a). When an external electric field Ee is applied,

the positive free charges are pushed along the same direction as the applied field, while
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Figure 3.6: (a)An isolated conductor under the influence of an applied field and (b) a
conductor has zero electric field under static conditions

the negative free charges move in the opposite direction. This charge migration takes

place very quickly. The free charges do two things. First, they accumulate on the

surface of the conductor and form an induced surface charge. Second, the induced

charges set up an internal induced field Ei, which cancels the externally applied field

Ee inside the conductor. The result is illustrated in Figure 3.6(b). This leads to an

important property of a conductor, a perfect conductor cannot contain an electrostatic

field within it.

Linear, Homogeneous, Isotropic and Non-dispersive Media

The electrical behaviour of materials when they are subjected to electromagnetic fields

is characterised by their constitutive parameters (ǫ, µ and σ).

Materials whose constitutive parameters are not functions of the applied field are usu-

ally known as linear, otherwise they are considered as nonlinear. In practise, many

material exhibit almost linear characteristics as long as the applied fields are within

certain ranges. Beyond those points, the material may exhibit a high degree of nonlin-

earity.
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When the constitutive parameters of media are not functions of position, the materi-

als are called homogeneous, otherwise they are nonhomogeneous. Almost all materials

exhibit some degree of nonhomogeneity. However for most materials used in prac-

tise the nonhomogeneity is so small that the materials are threated as being purely

homogeneous.

Anisotropic materials are those whose constitutive parameters are a function of the

direction of the applied field, otherwise they are known as Isotropic. Many materials,

especially crystals, exhibit a rather high degree of anisotropy. For such materials, the

permittivities and susceptibilities can not be represented as a single value. Instead,

they have to be represented as 3 × 3 tensor matrices.

If the constitutive parameters of a material vary as a function of frequency, they are

denoted as being dispersive, otherwise they are nondispersive. All materials used in

practise display some form of dispersion. The permittivities and conductivities, es-

pecially of dielectric materials, and the permeabilities of ferromagnetic materials and

ferrites exhibit rather pronounced dispersive characteristics.

3.2.2 Maxwell’s Equations

Gauss’s Law

Gauss’s law states that the total electric flux through any closed surface is equal to the

total charge enclosed by that surface as shown in Figure 3.7(a).
∮

S

D · dS =

∫

v

ρvdv = Qenc (3.31)

By applying the divergence theorem (Sadiku, 2001) to the left hand side of equation

(3.31) yields
∮

S

D · dS = Qenc =

∫

v

∇ · Ddv (3.32)
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Figure 3.7: Flux lines due to: (a) isolated electric charge and (b)magnetic charge

comparing the two volume integrals in equations (3.31) and (3.32) results in

ρv = ∇ ·D (3.33)

which is the differential form of Gauss’s law.

Conservation of Magnetic Flux

The magnetic flux through a surface S is given by

Ψ =

∫

S

BdS (3.34)

The magnetic flux line is the path to which B is tangential at every point. Magnetic

flux lines always close upong themselves as in figure 3.7(b). This is due to the fact that

it is not possible to have isolated magnetic poles (or magnetic charges). Therefore the

total flux through a closed surface in a magnetic field must be zero.
∮

B · dS = 0 (3.35)

This equation is refered to as the law of conservation of magnetic flux. Again, by

applying the divergence theorem to equation (3.35) gives
∮

S

B · dS =

∫

v

∇ · Bdv = 0 (3.36)



CHAPTER 3. THEORY 89

therefore

∇ · B = 0 (3.37)

which is the differential form of (3.35).

Faraday’s Law

The induced electromotive force in any closed circuit is equal to the time rate of change

of the magnetic flux linked by the circuit. Expressed mathematically as
∮

L

E · dl = − d

dt

∫

S

B · dS (3.38)

where the negative sign shows that the induced voltage acts in such a way as to create

a current in the closed path opposing the flux producing it. Applying Stoke’s theorem

to equation (3.38) gives
∫

S

(∇× E) · dS = −
∫

S

∂B

∂t
· dS (3.39)

Then

∇× E = −∂B

∂t
(3.40)

Equation (3.40) shows that the time varying E field is not conservative (∇×E 6= 0).

Displacement Current

Ampere’s circuit law states that the line integral of the tangential component of H

around a closed path is the same as the net current Ienc enclosed by the path.
∮

H · dl = Ienc (3.41)

By applying Stoke’s theorem to the left hand side of equation (3.41)
∫

S

(∇× H) · dS = Ienc (3.42)
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where

Ienc =

∫

S

J · dS (3.43)

Comparing the surface integrals in equations (3.41) and (3.43) clearly reveals that

∇× H = J (3.44)

However the divergence of the curl of any vector field is equal to zero. Hence,

∇ · (∇× H) = 0 = ∇ · J (3.45)

The continuity of current equation is given by

∇ · J = −∂ρv

∂t
(3.46)

which differs from zero when varying currents are considered. Thus equation (3.44)

must be modified to agree with (3.46). A new term must be added so that it becomes

∇× H = J + Jd (3.47)

where Jd is defined such that

∇ · J + ∇ · Jd = 0 (3.48)

thus,

∇ · Jd = −∇ · J =
∂ρv

∂t
=

∂

∂t
(∇ · D) = ∇ · ∂D

∂t
(3.49)

or

Jd =
∂D

∂t
(3.50)

rewriting (3.44)

∇×H = J +
∂D

∂t
(3.51)

The term Jd is known as the displacement current density and J represents the con-

duction current. The insertion of Jd into (3.44) was one of the major contributions of

Maxwell. Without the term Jd, electromagnetic wave propagation would be impossi-

ble.
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Final Form of Maxwell’s Equations

James Clerk Maxwell is regarded as the founder of electromagnetic theory in its present

form. Maxwell’s work led to the discovery of electromagnetic waves. Maxwell published

the first unified theory of electricity and magnetism (Maxwell, 1873). The theory com-

prised all previously known results plus the introduction of the displacement current

with the prediction of existence of electromagnetic waves. The laws of electromag-

netism that Maxwell put together in the form of four equations are shown in the more

generalised form, when time varying conditions are considered, in equations (3.52) to

(3.55) in their differential and integral forms.

∇ · D = ρv

∮

S

D · dS =

∫

v

ρvdv (3.52)

∇ · B = 0

∮

S

B · dS = 0 (3.53)

∇× E = −∂B

∂t

∮

L

E · dL = − ∂

∂t

∫

S

B · dS (3.54)

∇× H = J +
∂D

∂t

∮

L

H · dL =

∫

S

(

J +
∂D

∂t

)

· dS (3.55)

Maxwell’s equations are complemented by the equation of continuity (3.56) and the

constitutive relations (3.57) to (3.59).

∇ · J = −∂ρv

∂t
(3.56)

In a linear, homogeneous, and isotropic medium characterised by σ, ǫ, and µ, the

constitutive relations

D = ǫE = ǫ0E + P (3.57)

B = µH = µ0(H + M) (3.58)

J = σE +
∂D

∂t
(3.59)

hold for time varying fields.
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The Wave Equation

The two curl equations (3.54) and (3.55) of Maxwell’s equations in differential form are

first order coupled differential equations. That is, both the unknown fileds E and H

appear in each equation. Usually it is desirable, for convenience in solving for E and

H, to uncouple these equations. This can be accomplished at the expense of increasing

the order of the differential equations to second order.

Taking the curl of both sides of equations (3.54) and (3.55) and assuming a homoge-

neous and source free medium, it can be written

∇×∇×E = −µ∇×
(

∂H

∂t

)

= −µ
∂

∂t
(∇× H) (3.60)

∇×∇× H = ∇×
(

J +
∂D

∂t

)

= σ∇× E + ǫ
∂

∂t
(∇× E) (3.61)

Substituting (3.55) into the right hand side of (3.60) and applying the vector identity

∇×∇× A = ∇(∇ · A) −∇2A (3.62)

to the left hand side, it is possible to rewrite (3.60) as

∇(∇ · E) −∇2E = −µσ
∂E

∂t
− µǫ

∂2E

∂t2
(3.63)

For a source free region (ρv in (3.52) equals 0)

∇ · D = ǫ∇ · E = 0 (3.64)

consequently the wave equation for the electric field in a source free region reduces to

∇2E = µσ
∂E

∂t
+ µǫ

∂2E

∂t2
(3.65)

In a similar way it is possible to obtain the wave equation for the magnetic field leading

to

∇2H = µσ
∂H

∂t
+ µǫ

∂2H

∂t2
(3.66)
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For a source free and lossless medium (ρv = 0 and σ = 0), the wave equations (3.65)

and (3.66) reduce to

∇2E = µǫ
∂2E

∂t2
(3.67)

∇2H = µǫ
∂2H

∂t2
(3.68)

Asuming time variations of the form ejωt and taking Fourier transforms

∇2Ĕ = −ω2µǫĔ (3.69)

∇2H̆ = −ω2µǫH̆ (3.70)

Using the expansion of the laplacian ∇2 in a cartesian coordinate system, (3.69) be-

comes

∂2Ĕ

∂x2
+

∂2Ĕ

∂y2
+

∂2Ĕ

∂z2
= −ω2µǫĔ (3.71)

Since the cartesian coordinate system is orthogonal, (3.71) is separable into its indi-

vidual component parts so that there is an equivalent differential equation for each of

the components of the vector.

∂2Ex

∂x2
+

∂2Ex

∂y2
+

∂2Ex

∂z2
= −ω2µǫEx (3.72)

∂2Ey

∂x2
+

∂2Ey

∂y2
+

∂2Ey

∂z2
= −ω2µǫEy (3.73)

∂2Ez

∂x2
+

∂2Ez

∂y2
+

∂2Ez

∂z2
= −ω2µǫEz (3.74)

Where there is a variation of the field quantities in only one direction, z, then

∂

∂x
=

∂

∂y
= 0 (3.75)

and equation (3.71) becomes

∂2Ĕ

∂z2
= −ω2µǫĔ (3.76)
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Equation (3.76) may now be separated into three similar equations involving the three

component parts of the electric field. They are

∂2Ex

∂z2
= −ω2µǫEx (3.77)

∂2Ey

∂z2
= −ω2µǫEy (3.78)

∂2Ez

∂z2
= −ω2µǫEz (3.79)

Equation (3.77) is a differential equation which will have a solution of the form

Ex = Ae−γz + Beγz (3.80)

where

γ2 = −ω2µǫ (3.81)

In (3.80), γ is a parameter of the travelling plane wave called the propagating constant

which in general has real and imaginary parts of the form

γ = α + jβ (3.82)

where α is called the attenuation constant and β the phase constant. Here α and γ

must not be confused with the damping coefficient and gyromagnetic ratio. Provided

that µ and ǫ are both real, the propagation constant has no real part therefore no losses

are incurred in the propagating wave

γ = jβ (3.83)

where

β = ω
√

µǫ (3.84)

However, if there are any losses incurred by the wave as it propagates through the

medium, the wave will be attenuated and the propagation constant γ will have real

and imaginary parts.
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Inspection of equation (3.80) shows that it represents two traveling waves. The first

term represents a wave travelling in the positive z direction and the second represents

a wave travelling in the opposite direction.

The electromagnetic wave described above is denoted as a plane wave due to the fact

that the fields described by it are constant in a plane (in this case, xy) at an instant

in time for a wave propagating along an axis normal to the plane (in this case, z).

The above analysis forms the fundamental basis of wave propagation which describes

how the electromagnetic fields behave inside magnetic recording heads. This analysis

will be used in later chapters when understanding the propagation of electromagnetic

waves inside thin-film recording heads, when studying the eddy current shielding effects,

when developing absorbing boundary conditions, etc.

3.3 The Micromagnetic Model

3.3.1 Atomic Theory of Magnetism

In the simple picture of an atom the electron is taken to move in a closed orbit about the

central nucleus. Since it carries a charge, the electron represents current circulating in a

closed loop and it has already been seen that this produces a magnetic dipole moment.

Incidentally, such a picture also accounts for the non-existence of a free magnetic pole,

since only dipoles are produced even on the atomic scale.

m =

∫

idS (3.85)

The moment of the electron in orbit will be given by equation (3.85) where i is the

current equivalent to the circulating electron and the integration gives the total orbital

area, (Anderson, 1968). For the simple case of a circular orbit of radius r in which

the electron, of charge -e, rotates at a constant angular velocity ω, since the electron
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Figure 3.8: Evaluation of the momentum for the general non-circular electron orbit

makes ω/2π revolutions per second the equivalent current i = −eω/2π. The magnetic

moment is then given by

m = −eω

2π
πr2 = −1

2
eωr2 (3.86)

The angular momentum of the electron, G, is given by meωr2, where me is the mass

of the electron, so that

m = − e

2me
G (3.87)

For the more general case of a non-circular orbit the vector dS must be evaluated which

is equal in magnitude to the area it represents and has the direction of the normal to

the surface. Considering an orbit as in Figure 3.8, let the area dS be described by the

triangle of which dS is the base and r the distance from the reference point. The area

of this triangle is (dS sin θ)r/2 and (dS× r)/2 represents a vector of magnitude equal

to the area in the direction normal to the plane in which it lies. Thus the expression

for the magnetic moment can be written as

m =

∫

1

2
i(dS× r) (3.88)

The magnitude of the current will be given by i = dq/dt where q is charge, and if it

moves with a linear velocity v then idS = (dq/dt)vdt = dqv, thus

m =
1

2

∫

dq(v× r) (3.89)
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Figure 3.9: Plane coil carrying a current i for illustration of magnetic torque.

But angular momentum of a particle of mass me in a orbit is, by definition

G = me(v × r) (3.90)

and, in the absence of external forces, this is a constant. Thus

m =
G

2me

∫

dq (3.91)

i.e.

m = − eG

2me
= −γG (3.92)

where −e is the total electronic charge, me is the rest mass of the electron and γ =

µoe/2me is known as the gyromagnetic ratio.

If a plane coil, carrying a current i, is placed in a region of uniform magnetic flux, B, it

will experience a torque whose magnitude depends on the area of the coil, the current,

and the component of B in the plane of the coil. This may be seen by reference to

Figure 3.9. Considering the coil to be divided up into strips, parallel to the x -axis,
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such as ACDE. The y-axis is taken perpendicular to the direction of B sin θ, which is

in the plane of the coil. The flux density B, itself, comes out of the paper at an angle

θ to the normal and its other component is B cos θ perpendicular to the plane of the

coil. The elements of the coil AE and DC are assumed to be connected by wires CA

and ED which carry the current i. The whole coil may be made up from such strips

and the wires such as CA and ED may then be eliminated, since they carry equal and

opposite current, leaving only the coil carrying the current i.

Due to B cos θ, there will be a force on each section of the strip. These forces will

be in the plane of the coil, each perpendicular to one of the wires AE, DC, CA, and

ED. They will be in equilibrium, producing no net force on the strips. The B sin θ

component will generate no forces on ED and CA, since they are parallel to it. There

will, however, be equal and opposite forces, perpendicular to the plane of the coil, on

each of AE and DC, producing a torque on the strip. The forces, and hence the torque,

will be proportional to the projection of AE and DC on the y-axis, these being the

elements of ds (in this case δy) perpendicular to B sin θ. Thus, the torque on the strip

will be given by one of the forces times the distance between them, i.e. (iδyB sin θ)ED,

and will tend to turn the strip about the y-axis. Now δyED is the area of the strip and

can be represented by a vector ds having a magnitude equal to the area and direction

normal to the strip. The torque can then be written

L = ids × B (3.93)

since the vectors ds and B have the angle θ between them and assuming the coil is in

free space, equation (3.93) becomes

L = iµ0ds× H = m× H (3.94)

Thus, when a field is applied to the atom a torque is exerted on the dipole moment,

and, since torque is rate of change of angular momentum, it can be written

L = Ġ = m ×H (3.95)
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Figure 3.10: Precessional motion without damping factor

Now m and G are proportional and collinear from equation (3.92) since γ is a scalar

so that

Ġ = −γG × H (3.96)

Since the product of two vectors is another vector perpendicular to both, Ġ must

always be normal to G and H. Thus, referring to Figure 3.10, if G and H are in the

plane ξ at any instant, Ġ is perpendicular to the plane, i.e. if G is drawn from a fixed

point, its tip must move in a circle, so that G precesses about H. Expanding (3.96),

the following expression is obtained

Ġ = −γ [̂ı(GyHz − GzHy) + ĵ(GzHx − GxHz) + k̂(GxHy − GyHx)] (3.97)

If the field, H is applied in the -z direction as in Figure (3.10) then

Ġx = γHGy

Ġy = −γHGx

Ġz = 0







(3.98)
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Since dGz/dt is zero, Gz itself must evidently be a constant. Referring to Figure 3.10,

Gz = G cosα, and so the angle α must be constant. Thus the effect of the field is to

cause G (and hence m) to precess about the field direction at a constant angle.

Differentiating (3.98) yields

G̈x = γHĠy = γH(−γHGx) = −γ2H2Gx (3.99)

Equation (3.99) is the well-known second-order differential equation with solution

Gx = A cos(−γHt + φ) (3.100)

where A is the peak amplitude in the x-y plane and φ a constant phase angle; similarly

Gy = A sin(−γHt + φ)

The peak amplitude of G in the x-y plane is constant and of value G sin α so that the

full solution of equation (3.98) is

Gx = G sin α cos(ωpt + φ)
Gx = G sin α sin(ωpt + φ)
Gz = G cosα







(3.101)

where ωp = −γH is the angular precession frequency depending only on the value

of the field and the gyromagnetic ratio. The negative sign indicates the direction of

the precession, which is that of a right-handed screw along the direction of H. Were

−γH positive the opposite would apply. The value α is simply the angle between the

direction of the dipole moment and the axis along which the field is applied at the

moment of switching it on.

The above theory is, of course, over-simplified as may be seen by means of a simple

experiment. If a gyroscope is set spinning and hung from a suitable stand on the

end of a long thread, it can be made to precess by setting its axis at an angle to the

vertical and releasing it. The gyroscope will precess about the vertical, the direction

of the gravitational force, which is the analogue of the magnetic field in the case of the
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atomic gyroscope. However, the precessional motion will be observed to be a spiral

with the precessional angle (α in Figure 3.10) gradually decreasing until the gyroscope

hangs vertically. This is due to the frictional damping forces on the gyroscope due

to air; if a pointer attached to the lower end of its axis is allowed to dip into a bowl

of water, increasing the damping, it spirals in to the vertical position more quickly.

Equation 3.96 contains no damping term and is therefore incomplete.

3.3.2 The Equation of Motion

Since the magnetisation vector is always oppositely directed to the angular momentum

vector, equation (3.96) gives the basic equation of motion of the magnetisation as

∂M

∂t
= −γ[M × H] (3.102)

where H is the effective field acting on M and γ is the gyromagnetic ratio (Tan et al.,

2005). The magnetisation is assumed to have a spatial as well as a time-dependence,

so the time derivative is written as a partial derivative. According to equation (3.102)

the magnetisation will precess about the direction of H at a constant angle so long as

H is a uniform, constant field. In practice, the magnetisation spirals into parallelism

with the applied field due to damping effects. This is described by the Landau and

Lifshitz damping effect (Landau and Lifshitz, 1935) expressed in equation 3.103 where

the damping factor λ is a constant, (Bertotti, 1998).

∂M

∂t
= −γ[M ×H] + λ[M × (M ×H)] (3.103)

An alternative damping term has been proposed by Gilbert (1955) of the form

α

Ms

[

M× ∂M

∂t

]

(3.104)

and this reduces to the Landau-Lifshitz term, for small values of α if λ = γα/Ms. For

a number of applications in ferromagnetic resonance the Gilbert term gives a better
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description of the loss mechanisms. The full equation of motion of magnetisation used

in this work is therefore

∂M

∂t
= −γ(M × H) +

α

Ms

(

M× ∂M

∂t

)

(3.105)

Above equation is known as Gilbert’s equation (Gilbert, 1955). A full comparison

of the original Landau-Lifshitz form and Gilbert’s modification is given in Mallinson

(1987).

If damping is neglected (α = 0), the solution of equation (3.105) will be given by

equation (3.98), where the field H = Hz, is in the z -direction only. Thus

dMx

dt
= γMyH

dMy

dt
= −γMxH

dMz

dt
= 0



























(3.106)

which corresponds to precession of the magnetisation at a constant angle and angular

frequency given by

ω0 = −γH (3.107)

If the damping term α is now included, expanding the vector product gives

∂Mx

∂t
= ω0My +

α

Ms

(

My

∂Mz

∂t
− Mz

∂My

∂t

)

∂My

∂t
= −ω0Mx +

α

Ms

(

Mz

∂Mx

∂t
− Mx

∂Mz

∂t

)

∂Mz

∂t
=

α

Ms

(

Mx

∂My

∂t
− Mz

∂Mx

∂t

)

(3.108)
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Figure 3.11: Rotation of the magnetisation vector with damping effect (continuous
line) and without damping (doted line)

These equations may be solved simultaneously to give

∂Mx

∂t
=

ω0

1 + α2
My +

ω0α

1 + α2

MxMz

Ms

∂My

∂t
= −

ω0

1 + α2
Mx +

ω0α

1 + α2

MyMz

Ms

∂Mz

∂t
= − ω0α

1 + α2
Ms +

ω0α

1 + α2

M2
z

Ms

(3.109)

When α ≪ 1 equations (3.109) have the same form as the solution of the Landau-

Lifshitz equation with λ = γα/Ms.

Considering the case of a z directed field the solution of the system of equations (3.109)

for an initial angle θ0 between the applied field and the magnetisation is:

Mx = Ms sin[θ(t)] cos[φ(t)]
My = Ms sin[θ(t)] sin[φ(t)]
Mz = Ms cos[θ(t)]

(3.110)

where

θ(t) = 2 tan−1

[

tan

(

θ0

2

)

e
−t
τ

]

(3.111)

φ(t) =

(

ω0 −
φ0

2

)

t (3.112)
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and

τ =
αω0

1 + alpha2
(3.113)

Thus as t → ∞, θ tends to zero or 180◦ and the magnetisation tends to alignment with

the applied field as shown in Figure 3.11. τ is clearly a characteristic time, known as

the relaxation time, for this process.

3.3.3 The Effective Field

The free energy of a ferromagnetic body is composed of several energy contributions;

accordingly, several field contributions add up to the effective magnetic field Heff. An

equilibrium configuration of M can be found by locally minimising the free energy,

(Brown, 1978). Therefore, the free energy of a ferromagnetic specimen can be written

as

E = Eext + Eexch + Eanis + Edemag (3.114)

Where Eext is the energy due to the interaction between an applied field and magnetic

moments, Eexch is the energy due to quantum mechanical exchange effects between

nearest neighbors, Eanis is the energy due to the crystalline anisotropy and Edemag is

the demagnetising energy arising from the interactions of magnetic moments.

Assuming the magnetic material considered occupies a volume V, then the energy due

to the interaction between the external applied field Hext and the magnetic moments

can be expressed as (Tan et al., 2005)

Eext = −µ0

∫

V

M · Hextdv (3.115)

In the same manner, the demagnetising energy can be expresed in terms of the demag-

netising field Hdemag as (see Appendix A)

Edemag = −1

2
µ0

∫

V

M · Hdemagdv (3.116)
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Figure 3.12: Schematic representation of the change in the angle between neighbouring
spins i and j.

Equation (3.116) represents the interaction of each dipole with the demagnetising field

Hdemag created by the other dipoles, the factor 1
2

is needed in order to avoid counting

twice the interaction of the dipoles.

In ferromagnetic materials the atomic spins interact with each other, each of them

trying to align the others in its own direction. This interaction between them originates

from the quantum mechanical properties of spins (Aharoni, 2000). The force that tries

to align spins is known as exchange interaction and it is normally expressed as the

exchange energy between the spins. The exchange force has very short range, it affects

nearest neighbours only. It is a very strong force between such neighbours, but it does

not extend to spins which are farther away. With small angles between neighbouring

spins, large changes of the angle over a distance of many atoms do not involve a large

exchange energy. Therefore domain wall formation is the natural way of reducing the

exchange energy in a magnetic material.

The interaction between adjacent spins can be represented as in Figure 3.12 where mi

and mj are unit vectors parallel to the local spin direction, therefore parallel to the

local direction of the magnetisation vector. Si represents the position vector between

them. From quantum mechanics, the exchange energy among spins can be written in
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terms of the angle φi,j between spin i and j as

E = JS2
∑

neighbours

φ2
i,j (3.117)

Where J is a parameter of the material known as exchange integral, the convention is

that a positive J means a ferromagnetic coupling that tends to align spins parallel to

each other, while a negative J means an antiferromagnetic coupling. For small angles

|φi,j| ≃ |mi − mj |, then taking the first-order expansion in a Taylor series gives

|mi − mj | = |(Si · ∇)m| (3.118)

Substitution of (3.118) into (3.117) and integranting over the ferromagnetic body yields

Eexch =

∫

V

Ax

µ0M2
s

(

(∇Mx)
2 + (∇My)

2 + (∇Mz)
2
)

dv (3.119)

where Ax is the exchange stifness constant of the ferromagnetic material, Ms is the

saturation magnetisation and Mx, My and Mz are the x, y and z components of the

magnetisation.

The anisotropy or magnetocrystalline energy of a ferromagnetic crystal acts in such

a way that the magnetisation tends to be directed along certain crystallographic axes

which, accordingly, are called directions of easy magnetisation, while the directions

along which it is most difficult to magnetise the crystal are called hard directions. It is

found experimentally to require the expenditure of a certain, and often considerable,

amount of energy to magnetise a crystal to saturation in a hard direction, referred to

the lower energy required to saturate along a direction of easy magnetisation. The

excess energy required in the hard direction is known as anisotropy energy. If there is

only one easy direction in the material, then it is refered to as uniaxial anisotropy.

The uniaxial anisotropy energy is a function of only one parameter, the angle θ between

the easy axis and the direction of the magnetisation. It is often expressed in terms of

the anisotropy energy density function wuniaxial as

wunixial = −K1 cos2 θ + K2 cos4 θ = −K1m
2
z + K2m

4
z (3.120)
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where it is assumed that z is parallel to the easy crystallographic axis and m is a

unit vector parallel to the magnetisation M and the parameters K1 and K2 are the

anisotropy constants for which values are taken from experiments (Aharoni, 2000).

The right hand side of (3.120) is the power series expansion of the central term. This

expansion may be carried to higher orders, but none of the known ferromagnetic ma-

terials seem to require it. In all known cases even the term K2 << K1 or negligible

which justifies the use of the power series expansion (Aharoni, 2000).

The anisotropy energy is then obtained by integrating the anisotropy density function

over the ferromagnetic body

Eanis =

∫

V

(

−K1m
2
z + K2m

4
z

)

dv (3.121)

A deep insight into the nature of the exchange and anisotropy energy terms is stated

in (Kittel, 1949; Brown, 1978).

The effective field is defined via the variational derivative of E with respect to M

Heff = − ∂E
∂M

(3.122)

Accordingly, it can be written as

Heff = Hext + Hexch + Hanis + Hdemag (3.123)

where Hext, Hexch, Hanis andHdemag are the external field, exchange field, anisotropy

field and demagnetising fields respectively. The externally applied field Hext is known

in general, the demagnetising field Hdemag is dependant on the geometry and magnetic

state of the sample. Hexch and Hanis can be obtained from (3.119) and (3.119) using

(3.122).

Hexch = −∂Eexch

∂M
=

2Ax∇2M

µ0M2
s

(3.124)

Hanis = −∂Eanis

∂M
=

2Mz

µ0M2
s

(

K1 − 2K2
M2

z

M2
s

)

k (3.125)
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where ∇2 denotes the Laplacian and k represents a unit vector in the z direction.

All the above theory will be used later in the implementation of the extended FDTD

algorithm to simulate magnetic materials.

3.4 Summary

The general electromagnetic theory and the micromagnetic model which form the basic

theory behind this research have been studied in detail. In the general electromagnetic

theory section electrical properties of matter such as permittivity, permeability and

conductivity, and the formulation of Maxwell’s equations and the concept of wave

propagation were introduced. The origin of micromagnetism, the formulation of the

equation of motion and the individual contributions to the effective field which rules

the equation of motion were also described.



Chapter 4

The Finite Difference Time Domain
Method

4.1 Introduction

The FDTD method is a numerical approximation to the time dependant form of

Maxwell’s equations. Maxwell’s partial differential equations of electrodynamics repre-

sent a fundamental unification of electric and magnetic fields predicting electromagnetic

wave phenomena (Hagness and Taflove, 2000).

The FDTD method treats impulsive behaviour naturally; being a time domain tech-

nique, it directly calculates the impulse response of an electromagnetic system. There-

fore, a single FDTD simulation can provide either ultrawideband temporal waveforms

or the sinusoidal steady state response at any frequency within the excitation spec-

trum. FDTD treats nonlinear behavior naturally. Being a time domain technique; the

algorithm directly calculates the nonlinear response of an electromagnetic system.

The FDTD algorithm is a systematic approach. With it, specifying a new structure

to be modelled is reduced to a problem of mesh generation rather than the potentially

complex reformulation of an integral equation.

109
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Computer memory capacities are increasing rapidly. While this trend positively in-

fluences all numerical techniques, it is of particular advantage to the FDTD method

which is founded on discretizing space over a volume, and therefore inherently requires

a large random access memory.

The FDTD algorithm can be extended to model non-linear, dispersive and therefore

magnetic materials. This is, in adition to all above reasons, why the FDTD algorithm

was chosen to solve Maxwell’s equations in this thesis.

4.2 Maxwell’s Equations Rearrangement for the

FDTD method

Maxwell’s curl equations in linear, isotropic, nondispersive, lossy materials are:

∂H

∂t
= −1

µ
∇×E − 1

µ
(Msource + σ∗H) (4.1)

∂E

∂t
= −1

ε
∇×H − 1

ε
(Jsource + σE) (4.2)

The vector components of the curl operators of (4.1) and (4.2) written in Cartesian

coordinates yield the following system of six coupled scalar equations for H and E:

∂Hx

∂t
=

1

µ

[

∂Ey

∂z
− ∂Ez

∂y
− (Msourcex

+ σ∗Hx)

]

(4.3)

∂Hy

∂t
=

1

µ

[

∂Ez

∂x
− ∂Ex

∂z
− (Msourcey

+ σ∗Hy)

]

(4.4)

∂Hz

∂t
=

1

µ

[

∂Ex

∂y
− ∂Ey

∂x
− (Msourcez

+ σ∗Hz)

]

(4.5)

∂Ex

∂t
=

1

ε

[

∂Hz

∂y
− ∂Hy

∂z
− (Jsourcex

+ σEx)

]

(4.6)
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∂Ey

∂t
=

1

ε

[

∂Hx

∂z
− ∂Hz

∂x
− (Jsourcey

+ σEy)

]

(4.7)

∂Ez

∂t
=

1

ε

[

∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez

+ σEz)

]

(4.8)

Where σ and σ∗ are electric and magnetic conductivities respectively, µ is the per-

meability, ε represents the permittivity and Jsource and Msource are the electric and

magnetic sources.

The system of six coupled partial differential equations of (4.3) to (4.5) and (4.6)

to (4.8) forms the basis of the FDTD numerical algorithm for electromagnetic wave

interactions with general three dimensional objects.

To obtain a two dimensional model, it is assumed that the structure being modelled

extends to infinity in the z direction with no change in the shape or position of its

transverse cross section. If the incident wave is also uniform in the z direction, then

all partial derivatives of the fields with respect to z must equal zero. Under these

conditions, the full set of Maxwell’s curl equations given by (4.3) to (4.8) reduces to

∂Hx

∂t
=

1

µ

[

−∂Ez

∂y
− (Msourcex

+ σ∗Hx)

]

(4.9)

∂Hy

∂t
=

1

µ

[

∂Ez

∂x
− (Msourcey

+ σ∗Hy)

]

(4.10)

∂Hz

∂t
=

1

µ

[

∂Ex

∂y
− ∂Ey

∂x
− (Msourcez

+ σ∗Hz)

]

(4.11)

∂Ex

∂t
=

1

ε

[

∂Hz

∂y
− (Jsourcex

+ σEx)

]

(4.12)
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∂Ey

∂t
=

1

ε

[

−∂Hz

∂x
− (Jsourcey

+ σEy)

]

(4.13)

∂Ez

∂t
=

1

ε

[

∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez

+ σEz)

]

(4.14)

Consider grouping equations (4.9) to (4.14) according to the field vector components.

The group formed by (4.9), (4.10) and (4.14) involves only Hx, Hy and Ez. This set

of components is denoted as the transverse magnetic mode with respect to z (TMz) in

two dimensions:

∂Hx

∂t
=

1

µ

[

−∂Ez

∂y
− (Msourcex

+ σ∗Hx)

]

(4.15)

∂Hy

∂t
=

1

µ

[

∂Ez

∂x
− (Msourcey

+ σ∗Hy)

]

(4.16)

∂Ez

∂t
=

1

ε

[

∂Hy

∂x
− ∂Hx

∂y
− (Jsourcez

+ σEz)

]

(4.17)

In a similar way it is possible to obtain the equations for the transverse electric mode

TEz by grouping (4.11), (4.12) and (4.13).

4.3 The Yee Algorithm

In 1966 Yee originated a set of finite difference equations for the time dependent

Maxwell’s curl equations system of (4.3) to (4.8) for the lossless materials case σ∗ = 0

and σ = 0 (Yee, 1966). Yee’s algorithm persists in having great usefulness, since its

fundamental basis is very robust.

The Yee algorithm solves for both electric and magnetic fields in time and space using

the coupled Maxwell’s curl equations rather than solving for the electric field alone (or
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the magnetic field alone) with a wave equation. Using both E and H information, the

solution is more robust than using either alone (i.e. it is accurate for a wider class

of structures). Both electric and magnetic material properties can be modelled in a

straightforward manner. Features unique to each field such as tangential H singularities

near edges and corners, azimuthal (looping) H singularities near thin wires, and radial

E singularities near points, edges, and thin wires can be individually modelled if both

electric and magnetic fields are available.

As illustrated in Figure 4.1, the Yee algorithm centers its E and H components in

three dimensional space so that every E component is surrounded by four circulating H

components, and every H component is surrounded by four circulating E components.

This provides a simple picture of three dimensional space being filled by an interlinked

array of Faraday’s Law and Ampere’s Law contours. For example, it is possible to

identify Yee E components associated with displacement current flux linking H loops,

as well as H components associated with magnetic flux linking E loops. In effect,

the Yee algorithm simultaneously simulates the pointwise differential form and the

macroscopic integral form of Maxwell’s equations. The latter is extremely useful in

specifying field boundary conditions and singularities.

In addition, the Yee space lattice has the following attributes: The finite difference

expressions for the space derivatives used in the curl operators are central difference

in nature and second order accurate; continuity of tangential E and H is naturally

maintained across an interface of dissimilar materials if the interface is parallel to one

of the lattice coordinate axes. For this case, there is no need to specially enforce field

boundary conditions at the interface. At the beginning of the problem, the material

permittivity and permeability at each field component location are specified. This

leads to a stepped or ”staircase” approximation of the surface and internal geometry

of the structure, with a space resolution set by the size of the lattice unit cell. The

location of the E and H components in the Yee space lattice and the central difference
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Figure 4.1: Position of the electric and magnetic field vector components about a cubic
unit cell of the Yee space lattice.
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operations on these components implicitly enforce Gauss’ Law. Thus, the Yee mesh

is divergence free with respect to its E and H fields in the absence of free electric and

magnetic charges.

As illustrated in Figure 4.2, the Yee algorithm also centers its E and H components

in time in what is termed a leapfrog arrangement. All of the E computations in the

modelled space are completed and stored in memory for a particular time point using

previously stored H data. Then all of the H computations in the space are completed

and stored in memory using the E data just computed. The cycle begins again with

the recomputation of the E components based on the newly obtained H. This process

continues until time stepping is concluded. Leapfrog time stepping is fully explicit,

thereby avoiding problems involved with simultaneous equations and matrix inversion.

The finite difference expression for the time derivatives are central difference in nature

and second order accurate. The time stepping algorithm is nondissipative. That is,

numerical wave modes propagating in the mesh do not spuriously decay due to a

nonphysical artifact of the time stepping algorithm.

4.4 Finite Differences Notation

A space point in a uniform, rectangular lattice is denoted as

(x, y, z) = (i∆x, j∆y, k∆z) (4.18)

Here ∆x, ∆y, and ∆z are, respectively, the lattice space increments in the x, y, and

z coordinate directions, and i, j, and k are integers. Further, any function u of space

and time evaluated at a discrete point in the grid and at a discrete point in time is

expressed as

u(i∆x, j∆y, k∆z, n∆t) = un
i,j,k (4.19)
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Figure 4.2: Space time chart of the Yee algorithm for a one dimensional wave showing
the use of central differences for the space derivatives and leapfrog for the time deriva-
tives. Initial conditions for both electric and magnetic fields are zero everywhere in the
grid.
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where ∆t is the time increment, assumed uniform over the observation interval, and n

is an integer.

Yee used centred finite difference or central difference expressions for the space and

time derivatives that are both simply programmed and second order accurate in the

space and time increments. Consider his expression for the first partial space derivative

of u in the x-direction, evaluated at the fixed time tn = n∆t:

∂u

∂x
(i∆x, j∆y, k∆z, n∆t) =

un
i+ 1

2
,j,k

− un
i− 1

2
,j,k

∆x
+ O[(∆x)2] (4.20)

Where O[(∆x)2] is the approximation error due to the discretization of the computa-

tion space. Note the ±1/2 increment in the i subscript (x-coordinate) of u, meaning a

space finite difference over ±∆x/2. Yee chose this notation because he wished to in-

terleave his E and H components in the space lattice at intervals of ∆/2. For example

the difference of two adjacent E components, separated by ∆x and located ±∆/2 on

either side of an H component, would be used to provide a numerical approximation

for ∂E/∂x to permit stepping the component in t time. For completeness, the numer-

ical approximations for ∂u/∂y and ∂u/∂z can be written by incrementing the j or k

subscript of u by ±∆y/2 or ±∆z/2, respectively.

By analogy, Yee’s expression for the first time partial derivative of u, evaluated at the

fixed space point (i , j, k) is:

∂u

∂t
(i∆x, j∆y, k∆z, n∆t) =

u
n+ 1

2

i,j,k − u
n− 1

2

i,j,k

∆t
+ O[(∆t)2] (4.21)

Now the ±∆/2 increment is in the n superscript (time coordinate) of u, denoting a time

finite-difference over ±∆t/2. Yee chose this notation because he wished to interleave

his E and H field components in time at intervals of ∆t/2 for purposes of implementing

a leapfrog algorithm.
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4.5 Finite Difference Expression for the

Two-Dimensional TMz Mode

Two dimensional implementations of the TMz mode will be used in Chapter 5 to

simulate magnetic head stuctures. The TMz mode was chosen to carry out simulations

where the source is an electric current flowing in the z direction because it gives a

better description of the propagation of magnetic fields around the current, that is Hx

and Hy.

Previous ideas and notation are now applied to achieve a numerical approximation of

Maxwell’s curl equations in two dimensions given by the system of equations of (4.15)

to (4.17). Considering first the Ez field component in equation (4.17) and applying

the central difference expressions (4.20) and (4.21) for the time and space derivatives

following Figure 4.1, at for example Ez(i + 1
2
, j + 1

2
, n) yields

(Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

− Ez|
n− 1

2

i+ 1

2
,j+ 1

2

)/∆t =

= 1/εi+ 1

2
,j+ 1

2

(

(Hy|ni+1,j+ 1

2

− Hy|ni,j+ 1

2

)/∆x − (Hx|ni+ 1

2
,j+1

− Hx|ni+ 1

2
,j
)/∆y

−Jsourcez
|n
i+ 1

2
,j+ 1

2

+ σi+ 1

2
,j+ 1

2

Ez|ni+ 1

2
,j+ 1

2

)

(4.22)

Note that all field quantities on the right-hand side are evaluated at time step n,

including the electric field Ez appearing due to the material conductivity σ. Since Ez

values at time step n are not assumed to be stored in the computer’s memory (only the

previous values of Ez at time step n − 1/2 are assumed to be in memory), some way

to estimate such terms is needed. A very good way forward is to use the semi-implicit

approximation (or interpolation):

Ez|ni+ 1

2
,j+ 1

2

= (Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

+ Ez|
n− 1

2

i+ 1

2
,j+ 1

2

)/2 (4.23)

Here Ez values at time-step n are assumed to be simply the arithmetic average of the

stored values of Ez at time-step n− 1/2 and the yet to be computed new values of Ez
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at time-step n + 1/2. Substituting (4.23) into (4.22) after multiplying both sides by

∆t and rearranging yields the desired explicit time step relation for Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

=

(

1 −
σ

i+ 1
2

,j+ 1
2

∆t

2ε
i+1

2
,j+1

2

)/(

1 +
σ

i+ 1
2

,j+ 1
2

∆t

2ε
i+ 1

2
,j+ 1

2

)

Ez|
n− 1

2

i+ 1

2
,j+ 1

2

+

(

∆t
ε
i+1

2
,j+ 1

2

)/(

1 +
σ

i+ 1
2

,j+ 1
2

∆t

2ε
i+1

2
,j+ 1

2

)

((

Hy|ni+1,j+ 1

2

− Hy|ni,j+ 1

2

)

/∆x

−
(

Hx|ni+ 1

2
,j+1

− Hx|ni+ 1

2
,j

)

/∆y − Jsourcez
|n
i+ 1

2
,j+ 1

2

)

(4.24)

The semi implicit assumption of (4.23) has been found to yield numerically stable and

accurate results for values of σ from zero to infinity, (Hagness and Taflove, 2000). As

seen above, this assumption avoids simultaneous equations for Ez|n+ 1

2 .

Similarly, it is possible to derive finite-difference expressions based on Yee’s algorithm

for the Hx and Hy field components given by Maxwell’s equations in (4.15) to (4.17). In

addition, a set of updating coefficients for the electric and magnetic fields components

at a general location (i,j) can be defined as follows

Ca|i,j =

(

1 − σi,j∆t

2εi,j

)/(

1 +
σi,j∆t

2εi,j

)

(4.25)

Cb|i,j =

(

∆t

εi,j
∆

)/(

1 +
σi,j∆t

2εi,j

)

(4.26)

Da|i,j =

(

1 −
σ∗

i,j∆t

2µi,j

)/(

1 +
σ∗

i,j∆t

2µi,j

)

(4.27)

Db|i,j =

(

∆t

µi,j∆

)/(

1 +
σ∗

i,j∆t

2µi,j

)

(4.28)

where ∆x = ∆y = ∆ is assumed. Now the final equations for the TMz mode can be

written as

Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

= Ca|i+ 1

2
,j+ 1

2

Ez|
n− 1

2

i+ 1

2
,j+ 1

2

+Cb|i+ 1

2
,j+ 1

2







Hy|ni+1,j+ 1

2

− Hy|ni,j+ 1

2

+Hx|ni+ 1

2
,j
− Hx|ni+ 1

2
,j+1

−Jsourcez
|n
i+ 1

2
,j+ 1

2

∆







(4.29)
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Figure 4.3: Two dimensional Yee cell field components distribution for the TMz mode.

Hx|n+1
i+ 1

2
,j+1

= Da|i+ 1

2
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2
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(4.30)

Hy|n+1
i+1,j+ 1

2

= Da|i+1,j+ 1
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∆





(4.31)

With the system of finite-difference expressions of (4.29) to (4.31), the new value of an

electromagnetic field vector component at any lattice point depends only on its previous

value, the previous values of the components of the other field vector at adjacent points

(see Figure 4.3), and the known electric and magnetic current sources.

4.6 Finite Difference Expression for the

Two-Dimensional TEz Mode

In a similar manner to the above procedure it is possible to obtain the finite difference

expression for the two-dimensional TEz mode. Here only the final form of the expres-
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sion is stated. It will be use in next chapter to carry out simulation of an actual head

pole tip.
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(4.34)

Considering the TEz mode as completely independent from the TMz, the above formu-

lation is correct for a two-dimensional Yee’s grid centered around Hz. It is important

that the electric and magnetic field are staggered in time. However, if a full three-

dimensional model is being considered, the time and space index in equations (4.32)

to (4.34) must be rewritten accordingly to a three dimensional Yee’s cell containing all

field components, see Figure 4.1.

4.7 Numerical Dispersion

The FDTD algorithm for Maxwell’s curl equations causes nonphysical dispersion of

the simulated waves in a free-space computational lattice. That is, the phase velocity

of numerical wave modes can differ from the velocity of light c by an amount vary-

ing with the wavelength, direction of propagation in the grid, and grid discretisation.
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An intuitive way to view this phenomenon is that the FDTD algorithm embeds the

electromagnetic wave interaction with the structure of interest in a tenuous numeri-

cal aether having properties very close to vacuum, but not quite. This aether causes

propagating numerical waves to accumulate delay or phase errors that can lead to

nonphysical results such as broadening and ringing of pulsed waveforms, imprecise

cancelation of multiple scattered waves, anisotropy, and pseudorefraction, (Hagness

and Taflove, 2000). Numerical dispersion is a factor in FDTD modelling that must be

accounted for to understand its operation and its accuracy limits.

The basic procedure for the numerical dispersion analysis involves substitution of a

plane, monochromatic, traveling-wave trial solution into the finite-difference system

that describes Maxwell’s equations, (Hagness and Taflove, 2000). After algebraic ma-

nipulation, an equation is derived that relates the numerical wavevector components,

the wave frequency, the time-step, and the grid space increments.

The finite-difference expressions for the two-dimensional TMz mode are

Hx|
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2

i,j+ 1

2

− Hx|
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2
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2
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(4.35)
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(4.37)

The plane wave solution that will be introduced in (4.35) to (4.37) is defined as

Ez|ni,j = Ezo
ej(ωn∆t−k̃xi∆x−k̃yj∆y) (4.38)

Hx|ni,j = Hxo
ej(ωn∆t−k̃xi∆x−k̃yj∆y) (4.39)
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Hy|ni,j = Hyo
ej(ωn∆t−k̃xi∆x−k̃yj∆y) (4.40)

where k̃x and k̃y are the x and y components of the numerical wavevector, ω is the

wave angular frequency and the first j to the left of the exponential represents the

complex number
√
−1.

After substituting (4.38) to (4.40) into (4.35) to (4.37) and some simplifications yields

Hxo
=

∆tEzo

µ∆y

sin
(

k̃y∆y/2
)

sin (ω∆t/2)
(4.41)

Hyo
=

∆tEzo

µ∆x

sin
(

k̃x∆x/2
)

sin (ω∆t/2)
(4.42)
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2
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=
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ǫ
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k̃y∆y

2

)

− Hyo

∆x
sin

(

k̃x∆x

2

)]

(4.43)

Upon substituting Hxo
of (4.41) and Hyo

of (4.42) into (4.43), leads to

[

1

c∆t
sin

(

ω∆t

2

)]2

=

[

1

∆x
sin

(

k̃x∆x

2

)]2

+

[

1

∆y
sin

(

k̃y∆y

2

)]2

(4.44)

where c = 1/
√

µǫ is the speed of light in the material being modeled. Equation (4.44) is

the general numerical dispersion relation of the Yee algorithm for the two-dimensional

TMz mode which will be used in next section to establish a stability condition for the

two-dimensional FDTD algorithm.

4.8 Stability

The FDTD algorithm requires that the time step ∆t has a specific bound relative to

the lattice space increments ∆x and ∆y. This bound is necessary to avoid numerical

instability, an undesirable possibility with explicit differential equation solvers that
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can cause the computed results to spuriously increase without limit as time-marching

continues.

If a complex-valued numerical angular frequency ω̃ = ω̃real + jω̃imag is allowed, with an

imaginary part which is responsible for instability, (4.44) can be rewritten as

[

1

c∆t
sin

(

ω̃∆t

2

)]2

=

[

1

∆x
sin

(

k̃x∆x

2

)]2

+

[

1

∆y
sin

(

k̃y∆y

2

)]2

(4.45)

solving (4.45) for ω̃ yields

ω̃ =
2

∆t
sin−1 (ξ) (4.46)

where

ξ = c∆t

√

√

√

√

1

(∆x)2
sin2

(

k̃x∆x

2

)

+
1

(∆y)2
sin2

(

k̃y∆y

2

)

(4.47)

From (4.47) it is noticed that

0 ≤ ξ ≤ c∆t

√

1

(∆x)2
+

1

(∆y)2
≡ ξupper bound (4.48)

for all possible real values of k̃, that is, those numerical waves having zero exponential

attenuation per grid space cell. ξupper bound is obtained when each sin2 term under

the square root of (4.47) simultaneously reaches a value of 1. This occurs for the

propagating numerical wave having the wavevector components

k̃x = ± π

∆x
; k̃y = ± π

∆y
(4.49)

It is clear that ξupper bound can exceed 1 depending upon the choice of ∆t. This can

yield complex values of sin−1 (ξ) in (4.46), and therefore complex values for ω̃ which

give rise to numerical instability. To investigate further, the range of ξ given in (4.48)

is divided in two subranges

Stable Range: 0 < ξ < 1
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Here, sin−1 (ξ) is real-valued and hence, real values of ω̃ are obtained in (4.46). With

ω̃imag = 0, a constant wave amplitude with time is obtained.

Unstable Range: 1 < ξ < ξupper bound

This subrange exists only if

ξupper bound = c∆t

√

1

(∆x)2
+

1

(∆y)2
> 1 (4.50)

The unstable range is defined in an equivalent manner by

∆t > 1

/

c

√

1

(∆x)2
+

1

(∆y)2
≡ ∆tstable limit2D

(4.51)

Now, ω̃imag 6= 0 therefore the numerical wave exponentially grows with time hence the

stability requirement for the FDTD method is for ∆x = ∆y

∆t <
∆x√

2c
(4.52)

The above criterion will be used throughout this work and in subsequent chapters for

the choice of ∆t in order have a stable solution.

The spatial increment ∆x is chosen to provide sufficient points to sample the shortest

wavelength in the simulation (normally determined by the bandwidth of the wavesource)

and/or the smallest feature in the simulated geometry. ∆x will be chosen first such as

it covers the smallest region of the implemented geometry with enough resolution, at

least 5 cells, then condition (4.52) will be satisfied by choosing the apropriate ∆t.
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4.9 Perfectly Matched Layer (PML)

Since the initial work of Yee (Yee, 1966), the finite-difference time-domain technique

has been widely used in electromagnetic computations. One of the inconveniences

of this technique lies in the fact that the Maxwell equations have to be solved in a

discretized domain whose sizes need to be restrained. Nevertheless, open problems

involving theoretically boundless space extension can be solved when applying special

conditions on the boundaries of the computational domain, in order to absorb the out-

going waves, otherwise, these waves would be reflected into the computational domain

and result in incorrect computations.

To absorb the outgoing waves, the outer boundary of the space lattice must be ter-

minated in an absorbing material medium (Hagness and Taflove, 2000). Ideally, the

absorbing medium is only a few lattice cells thick, reflectionless to all impinging waves

over their full frequency spectrum, highly absorbing, and effective in the near field of

a source or a scatterer.

In 1994 Berenger introduced a highly effective absorbing material designated the per-

fectly matched layer, or PML (Berenger, 1994). The innovation of Berenger’s PML

is that plane waves of arbitrary incidence, polarization, and frequency are matched at

the boundary while in early attempts the absorbing boundary was matched only to

normally incident plane waves. To achieve this, Berenger derived a novel split-field

formulation of Maxwell’s equations where each vector field component is split into two

orthogonal components. The principles of this technique and field splitting modifica-

tions will be described in the next section.

Numerical experiments comparing Berenger’s PML with previous standard second or-

der Mur absorbing boundary condition (Mur, 1981) show that the PML global error is

in between 10−7 and 10−12 times that of the Mur ABC (Katz et al., 1994).
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4.9.1 Reflectionless matching condition

Considering a plane wave incident normally at the interface between two materials, the

reflection coefficient is:

Γ =
Z1 − Z2

Z1 + Z2
(4.53)

where the wave impedances in region 1 (free space), Z1, and region 2 (lossy material),

Z2, are given by

Z1 =

√

µ1

ε1
; Z2 =

√

µ2 (1 + σ∗/jωµ2)

ε2 (1 + σ/jωε2)
(4.54)

Where the subscript 1 or 2 refers to the free space or lossy material region respectively.

Then, by setting ε1 = ε2 and µ1 = µ2 and further enforcing the condition

σ

ε
=

σ∗

µ
(4.55)

yields Γ = 0, a reflectionless region 1 / region 2 interface for the normally impinging

wave. These conditions form the bases of the PML and will be implemented next in

the TMz mode formulation.

4.9.2 Field splitting modification of Maxwell’s equations in

TMz mode

Maxwell’s curl equations (4.15) to (4.17) as modified by Berenger for a TEz plane wave

impining in the lossy materal region 2 are

µ2
∂Hx

∂t
+ σ∗

yHx = −∂Ez

∂y
(4.56)

µ2
∂Hy

∂t
+ σ∗

xHy = −∂Ez

∂x
(4.57)

ε2
∂Ezx

∂t
+ σxEzx =

∂Hy

∂x
(4.58)
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ε2
∂Ezy

∂t
+ σyEzy =

∂Hx

∂y
(4.59)

Here the subscript 2 refers to the lossy material region and Ez is assumed to be split

into two additive subcomponets

Ez = Ezx + Ezy (4.60)

Further, the parameters σx and σy denote electric conductivities and the parameters

σ∗

x and σ∗

y denote magnetic losses.

Berenger’s formulation represents a generalization of normally modelled physical media.

If σx = σy = 0 and σ∗
x = σ∗

y = 0, the system (4.56) to (4.59) reduces to Maxwell’s

equations in a lossless medium. If σx = σy = σ and σ∗

x = σ∗

y = 0, (4.56) to (4.59)

describes an electrically conductive medium. And if ε2 = ε1, µ2 = µ1, σx = σy = σ,

σ∗

x = σ∗

y = σ∗ and (4.55) is satisfied, then (4.56) to (4.59) describe an absorbing medium

that is impedance-matched to region 1 for normally incident plane waves as discussed

in section 4.9.1.

4.9.3 Structure of an FDTD grid employing Brenger’s PML

From Berenger’s field formulation it is possoble to observe that if σy = σ∗
y = 0, the

medium can absorb a plane wave having field components (Hy, Ezx) propagating along

x, but does not absorb a wave having field components (Hx, Ezy) propagating along y,

since in the first case propagation is governed by (4.57)and (4.58), and in the second case

by (4.56)and (4.59). The converse situation is true for waves (Hy, Ezx) and (Hx, Ezy)

if σx = σ∗

x = 0. These properties of particular Berenger media characterized by the

pairwise parameters sets (σx, σ
∗

x, 0, 0) and (0, 0, σy, σ
∗

y) are the fundamental premise of

this absorbing boundary condition. That is, if the pairwise electric and magnetic losses

satisfy (4.55), then at interfaces normal to x and y, respectively, the Berenger media

has zero reflection of electromagnetic waves.
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Figure 4.4: Structure of a two dimensional FDTD grid employing the Berenger’s PML.

The above analysis permitted Berenger to propose the two dimensional FDTD grid

scheme shown in Figure 4.4 which uses PMLs to greatly reduce outer-boundary reflec-

tions. Here, a free-space computation zone is surrounded by PML backed by a perfect

magnetic conductor, i.e. Hx = Hy = 0. At the left and right sides of the grid (x1 and

x2), each PML has σx and σ∗

x matched according to (4.55) along with σy = σ∗

y = 0 to

permit reflectionless transmission across the vacuum-PML interface. At the lower and

upper sides of the grid (y1 and y2), each PML has σy and σ∗

y matched according to

(4.55) along with σx = σ∗

x = 0. At the four corners of the grid where there is overlap

of two PMLs, all four losses (σx, σ
∗

x, σy, σ
∗

y) are present and set equal to those of the

adjacent PMLs. These boundary conditions will be used in the split field formulae of

the FDTD TMz mode implementation in Chapter 5.
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4.9.4 PML performance

The continuous space

When used to truncate an FDTD lattice, the PML has a thickness d and is terminated

by the outer boundary of the lattice. If the outer boundary is assumed to be a perfect

magnetic conductor wall, as shown in Figure 4.4, finite power reflects back into the

primary computation zone. For a wave impinging upon the PML at angle θ relative to

the w-directed surface normal (where w means x or y), this reflection can be computed

using transmission line analysis, yielding (Hagness and Taflove, 2000)

R(θ) = e−2σwZd cos(θ) (4.61)

Here, Z and σw are,respectively, the PML’s characteristic wave impedance and its con-

ductivity, referred to propagation in the w-direction. In the context of an FDTD sim-

ulation, R(θ) is referred to as the ”reflection error” since it is a non-physical reflection

due to the perfect magnetic conductor wall that backs the PML. This error decreases

exponentially with σw and d. However, the reflection error increases as exp(cos(θ)),

reaching the worst case for θ = 90◦. At this grazing angle of incidence, R = 1 and the

PML is completely ineffective. To be useful within an FDTD simulation, R(θ) must

be as small as possible. Clearly, for a thin PML, σw must be as large as possible to

reduce R(θ) to acceptably small levels, especially for θ approaching 90◦.

The discrete space

Theoretically, reflectionless wave transmission can take place across a PML interface

regardless of the local step-discontinuity in σ and σ∗ presented to the continuous im-

pinging electromagnetic field. However, in FDTD or any discrete representation of

Maxwell’s equations, numerical artifacts arise due to the finite spatial sampling. Con-
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sequently, implementing a PML as a single step-discontinuity of σ and σ∗ in the FDTD

lattice leads to significant spurious wave reflection at the PML surface.

To reduce this reflection error, Berenger proposed that the PML losses along the direc-

tion normal to the interface gradually rise from zero (Berenger, 1994). Assuming such

a grading, the PML remains matched. Pursuing this idea, consider as an example an

x-directed plane wave impinging at angle θ upon a perfect magnetic conductor backed

PML slab of thickness d, with the front planar interface located in the x = 0 plane.

Assuming the graded PML conductivity profile σx(x), then the reflection factor is

R(θ) = e−2Z cos(θ)
R d

0
σx(x)dx (4.62)

Several profiles have been suggested for grading σx(x). The most successful use a

polynomial variation of the PML loss with depth x (Berenger, 1996). Polynomial

grading is simply

σx(x) =
(x

d

)m

σx,max (4.63)

This increases the value of the PML σx from zero at x = 0, the surface of the PML, to

σx,max at x = d controlled by the degree of polynomial through m, the perfect magnetic

conductor outer boundary. Substituting (4.63) into (4.62) yields

R(θ) = e−2Zσx,maxd cos(θ)/(m+1) (4.64)

For a fixed d, polynomial grading provides two parameters: σx,max and m. A large

m yields a σx(x) distribution that is relatively flat near the PML surface. However,

deeper within the PML, σx increases more rapidly than for small m. In this region,

the field amplitudes are substantially decayed and reflections due to the discretisation

error contribute less. Typically, 3 ≤ m ≤ 4 has been found to be nearly optimal for

many FDTD simulations (Berenger, 1996; 1997; Gedney, 1996).
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For polynomial grading, the PML parameters can be readily determined for a given

error estimate. For example, let m, d, and the desired reflection error R(0) be known,

then, from (4.64), σx,max is computed as

σx,max = −(m + 1) ln[R(0)]

2Zd
(4.65)

Discretisation error

The design of an effective PML requires balancing the theoretical reflection error,

R(0), and the numerical discretization error. For example, (4.65) provides σx,max for

a polynomial-graded conductivity given a predetermined R(0) and m. If σx,max is

small, the primary reflection from the PML is due to its perfect magnetic conductor

backing. Equation (4.62) provides a fairly accurate approximation of the reflection

error for this case. However, σx,max is normally chosen to be as large as possible to

minimize R(0). Unfortunately, if σx,max is too large, the discretization error due to the

FDTD approximation dominates, and the actual reflection error is potentially orders

of magnitude higher than that predicted by (4.62). Consequently, there is an optimal

choice for σx,max that balances reflection from the perfect magnetic conductor outer

boundary and discretization error.

It was postulated by Berenger (Berenger, 1996; 1997) that the largest discretization

error manifested as reflection occurs at x = 0, the PML surface. Any wave energy

that penetrates further into the PML and then is reflected undergoes attenuation both

before and after its point of reflection, and typically is not as large a contribution.

Thus, it is desirable to minimize the discontinuity at x = 0. As discussed earlier, one

way to achieve this is by flattening the PML loss profile near x = 0. However, if the

subsequent rise of loss with depth is too rapid, reflections from deeper within the PML

can dominate.

Through an extensive series of numerical experiments, it was demonstrated in (Gedney,
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1996; He, 1997) that, for a broad range of applications, an optimal choice for a 10-cell

thick, polynomial graded PML is R(0) ≈ e−16 . For a 5-cell thick PML, R(0) ≈ e−8 is

optimal. From (4.65), this leads to an optimal choice for σx,max for polynomial grading

in a 10 cell thick PML:

σx,max = −(m + 1)(−16)

(2Z)(10∆)
=

0.8(m + 1)

Z∆
(4.66)

The simulations of head structures carried out in Chapter 6 will use a 10 cell thick

PML with polynomial grading as in (4.66) to avoid reflections in the computational

space.

4.10 Maxwell Equations for Non-linear

Magnetic Materials

When a linear magnetic material is considered, the magnetic flux density B is propor-

tional to the magnetic field H by a constant called the permeability of the material

as in equation (3.16). If a non-linear magnetic material is considered, equation (3.16)

does not apply and the more fundamental equation (3.15) is needed where the mag-

netisation vector is taken into account to calculate the magnetic flux density, repeated

here for convenience.

B = µo(H + M)

To extend the FDTD method to non-linear magnetic materials, first consider Maxwell’s

curl equations for a general medium.

∂B

∂t
= −∇× E (4.67)

∂D

∂t
= ∇×H (4.68)
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where B is as above and

D = ǫE (4.69)

Substituting B and D into (4.67) and (4.68) yields

∂H

∂t
= − 1

µo
∇× E− ∂M

∂t
(4.70)

∂E

∂t
=

1

ǫ
∇×H (4.71)

The nonlinearity introduced by the term ∂M/∂t is described by Gilbert’s equation

(3.105) repeated here for convenience.

∂M

∂t
= −γ(M × H) +

α

Ms

(

M× ∂M

∂t

)

4.11 Discretisation of the Equation of Motion

To discretise all of above equations, central finite difference expressions for the space

and time derivatives described in equations (4.20) and (4.21) are used. These expres-

sions are easy to program and also provide second order accuracy.

Equation (4.71) follows the same expression as in the normal FDTD method therefore

no changes are needed for the Ez component in the 2D TMz mode.

Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

= Ca|i+ 1

2
,j+ 1

2

Ez|
n− 1

2

i+ 1

2
,j+ 1

2

+Cb|i+ 1

2
,j+ 1

2

(

Hy|ni+1,j+ 1

2

− Hy|ni,j+ 1

2

+Hx|ni+ 1

2
,j
− Hx|ni+ 1

2
,j+1

)

(4.72)

Equation (4.70) has a new term ∂M/∂t, which is discretised using central differences

in time, and it must be included in the final expressions for Hx and Hy.

Hx|n+1
i+ 1

2
,j+1

= Da|i+ 1

2
,j+1Hx|ni+ 1

2
,j+1

+Db|i+ 1

2
,j+1

(

Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

− Ez|
n+ 1

2

i+ 1

2
,j+ 3

2

)

−Mx|n+1
i+ 1

2
,j+1

+ Mx|ni+ 1

2
,j+1

(4.73)
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Hy|n+1
i+1,j+ 1

2

= Da|i+1,j+ 1

2

Hy|ni+1,j+ 1

2

+Db|i+1,j+ 1

2

(

Ez|
n+ 1

2

i+ 3

2
,j+ 1

2

− Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

)

−My|n+1
i+ 1

2
,j+1

+ My|ni+ 1

2
,j+1

(4.74)

Where the coefficients C and D are as described previously in section 4.5.

An expression for the magnetisation vector components can be obtained by expanding

the vector product in Gilbert’s equation (3.105) and solving for ∂Mx/∂t, ∂My/∂t and

∂Mz/∂t; this yields

∂Mx

∂t
=

γ

Ms(1 + α2)
[Ms(HzMy − HyMz) + αMx(HyMy + HzMz)

−αHx(M
2
s − M2

x)]

(4.75)

∂My

∂t
=

γ

Ms(1 + α2)
[Ms(HxMz − HzMx) + αMy(HxMx + HzMz)

−αHy(M
2
s − M2

y )]

(4.76)

∂Mz

∂t
=

γ

Ms(1 + α2)
[Ms(HyMx − HxMy) + αMz(HxMx + HyMy)

−αHz(M
2
s − M2

z )]

(4.77)

Now applying central time differences to (4.75) to evaluate Mx at time step n + 1/2:

Mx|n+1 − Mx|n
∆t

= f(Hx, Hy, Hz, Mx, My, Mz)|n+ 1

2 (4.78)

and rearranging terms gives the time marching scheme for Mx

Mx|n+1 = Mx|n + f(Hx, Hy, Hz, Mx, My, Mz)|n+ 1

2 ∆t (4.79)

where f(Hx, Hy, Hz, Mx, My, Mz) is a function of the magnetic field and the magneti-

sation vector components coming from (4.75) and has the form

f(Hx, Hy, Hz, Mx, My, Mz) =
γ

Ms(1 + α2)

[

Ms(HzMy − HyMz)

+αMx(HyMy + HzMz)

−αHx

M2
s − M2

x

M2
y + M2

z

]

(4.80)
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The magnetisation components are evaluated at the same spatial location as the mag-

netic field components in the Yee’s cell. Time marching expressions for My and Mz are

derived in the same manner. From equation (4.79) it is noticed that My, Mz, Hy and

Hz are used to compute the new value of Mx, however, these are placed at different

locations than Mx within the Yee’s cell, therefore spacial interpolation is needed. It

is also noticed that equation (4.79) uses Mx, My, Mz , Hx, Hy and Hz evaluated at

time step n + 1/2 while their values are only known at time step n, with n being an

integer, thus time extrapolation is required. The proper space and time discretisation

of Gilbert’s equation to maintain second order accuracy are addressed in detail next.

4.12 Space and Time Syncronism

Here two different problems are addressed to maintain second order accuracy of the cen-

tral difference scheme. First, Hx, Hy, Hz, Mx, My and Mz are not known at time step

n + 1/2 in (4.79) or any other M (the same applies for the time marching expressions

for My and Mz). A simple approach to solve this problem is to use an extrapolation

scheme (Okoniewski and Okoniewska, 1994) in which the current value of a variable

depends on the previous values using the backward differencing approximation

u|n+ 1

2 ≃ u|n− 1

2 +
∂u

∂t

∣

∣

∣

∣

n− 1

2

∆t (4.81)

The unknown value of u|n− 1

2 on the right side of the equation can be expressed as the

average of u|n−1 and u|n and the derivative can be estimated using the standard central

differences in (4.21). These operations lead to the second order accurate time marching

formalism for correct integration into the FDTD scheme.

u|n+ 1

2 ≃ u|n−1 + u|n
2

+ u|n − u|n−1 =
1

2
(3u|n − u|n−1) (4.82)

To illustrate the time synchronism, Mx will be computed for time step n + 1. From
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(4.79), Hx, Hy, Hz, Mx, My and Mz must be known at time step n + 1/2 in order to

evaluate Mx|n+1. This is done by applying the time synchronism equation (4.82) to all

vector components of H and M using previous values at time steps n and n − 1.

Hx|n+ 1

2 =
1

2
(3Hx|n − Hx|n−1) (4.83)

Hy|n+ 1

2 =
1

2
(3Hy|n − Hy|n−1) (4.84)

Hz|n+ 1

2 =
1

2
(3Hz|n − Hz|n−1) (4.85)

Mx|n+ 1

2 =
1

2
(3Mx|n − Mx|n−1) (4.86)

My|n+ 1

2 =
1

2
(3My|n − My|n−1) (4.87)

Mz|n+ 1

2 =
1

2
(3Mz|n − Mz|n−1) (4.88)

Now, all components on the right side of equations (4.83) to (4.88) are known, however,

it is not yet possible to compute the magnetisation vector at time step n + 1 in the

time marching scheme because space syncronism has not been applied.

In the Yee’s cell, the M components are evaluated at the same spatial location as the

H components. Therefore when any component of the magnetisation vector say Mx is

being computed at a given point, say (i + 1
2
, j), the y and z components of H and M

used to compute Mx are located at different space locations as shown in Figure 4.5.

Thus, all the components in equations (4.83) to (4.88) must be reallocated to Mx

position. This is done by interpolation of all components surrounding Mx in the Yee’s

cell (Okoniewski and Okoniewska, 1994). This can be easy understood by a graphical

example. Figure 4.5 represents the space synchronism operations needed to compute
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Figure 4.5: Reallocation of components in a 2D Yee’s cell for space synchronisation

Mx (blue circle) where My at spatial point (i + 1
2
, j) will be the average of the four My

components surrounding Mx in Figure 4.5. This is the operation represented by the

red arrows denoted below as My Mx.

My Mx|
n+ 1

2

i+ 1

2
,j

=
My|

n+ 1

2

i,j− 1

2

+ My|
n+ 1

2

i,j+ 1

2

+ My|
n+ 1

2

i+1,j− 1

2

+ My|
n+ 1

2

i+1,j+ 1

2

4
(4.89)

The same must be done with Hy Mx (red arrows operation)

Hy Mx|
n+ 1

2

i+ 1

2
,j

=
Hy|

n+ 1

2

i,j− 1

2

+ Hy|
n+ 1

2

i,j+ 1

2

+ Hy|
n+ 1

2

i+1,j− 1

2

+ Hy|
n+ 1

2

i+1,j+ 1

2

4
(4.90)

In a similar way Mz Mx (Mz to compute Mx) is described by the operation represented

by green arrows.

Mz Mx|
n+ 1

2

i+ 1

2
,j

=
Mz|

n+ 1

2

i+ 1

2
,j− 1

2

+ Mz|
n+ 1

2

i+ 1

2
,j− 1

2

2
(4.91)

The same must be done with Hz Mx if any (green arrows operation).

Hz Mx|
n+ 1

2

i+ 1

2
,j

=
Hz|

n+ 1

2

i+ 1

2
,j− 1

2

+ Hz|
n+ 1

2

i+ 1

2
,j− 1

2

2
(4.92)

Hx and Mx to compute Mx will remain the same as they are already in the same spatial

position as Mx.

Mx Mx|
n+ 1

2

i+ 1

2
,j

= Mx|
n+ 1

2

i+ 1

2
,j

(4.93)
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Hx Mx|
n+ 1

2

i+ 1

2
,j

= Hx|
n+ 1

2

i+ 1

2
,j

(4.94)

Then the values obtained from (4.89) to (4.94) are used in (4.80) to calculate f(Hx, Hy,

Hz, Mx, My, Mz) at time step n+1/2. To finish the computation of Mx|n+1 the previous

result and the known value of Mx at time n are introduced in (4.79).

The purpose of all these operations refered here as space and time synchronism is to

maintain the second order accuracy in the differentiating scheme.

4.13 Boundary Conditions

From the minimisation of the total energy in a magnetic material, the following bound-

ary condition is derived (Brown, 1978; Aharoni, 2000):

∂M

∂n
= 0 (4.95)

where n is the direction normal to the material surface. For example, solving (4.95) at

the left boundary of the material (n = −x) involves the following operations

Mx|i+ 1

2

= Mx|i+ 3

2

(4.96)

My|i = My|i+1 (4.97)

Mz|i+ 1

2

= Mz|i+ 3

2

(4.98)

and similar equations would apply for other directions of n.

The perfectly matched layer (PML) around the computational space used in normal

FDTD to absorb the outgoing waves can be used for the extended method as far as

the magnetic material is surrounded by the computational space and not in contact

with the PML areas. This is based on the fact that the magnetisation vector has zero

value outside the material (it doesn’t exist) therefore the extended equations without

the magnetisation are the same as in the normal FDTD method.
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4.14 Stability of the Extended Method

Due to the rotation of the magnetisation in a magnetic material another upper limit

in ∆t must be considered to make a stable solution for Gilbert’s equation. The worst

case happens when damping is neglected and a strong field is applied in one direction,

therefore the magnetisation describes a circular movement perpendicular to the applied

field with a precession angular frequency ω0 = γH which in this particular case will be

equal to the maximum rotational angular frequency of the magnetisation. Then, the

equation of motion can be written as:

dMx

dt
= ω0My

dMy

dt
= −ω0Mx

dMz

dt
= 0



























(4.99)

In order to obtain an equation explicitly for, say Mx, expression (4.99) must be differ-

entiated to give:

d2Mx

dt2
= ω0

dMy

dt
(4.100)

Substituting dMy/dt from (4.99) into (4.100) yields the ordinary differential equation

for Mx:

d2Mx

dt2
= −ω2

0Mx (4.101)

Now, applying central finite differences to this equation:

Mn+1
x − 2Mn

x + Mn−1
x

(∆t)2
= −ω2

0M
n
x (4.102)

and solving for Mn+1
x yields the explicit time marching scheme for Mx

Mn+1
x = 2Mn

x − Mn−1
x − ω2

0∆t2Mn
x

= Mn
x (2 − ω2

0∆t2) − Mn−1
x

(4.103)
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Figure 4.6: Region where cos−1 ξ is real valued

Using a complex exponential solution Mx = Mse
jω0t and substituting in (4.103) gives

ejω0(n+1)∆t = ejω0n∆t(2 − ω2
0∆t2) − ejω0(n−1)∆t (4.104)

Expanding the exponential terms and applying Euler’s relation to the exponential terms

gives

2 cos (ω0∆t) = 2 − ω2
0∆t2 (4.105)

Equation (4.105) is similar to (4.45) in the fact that it relates the angular frequency of

the system to the time increment. Furthermore

ω0∆t = cos−1

(

1 − ω2
0∆t2

2

)

= cos−1 ξ (4.106)

As in the general case, stability is found for the values of ξ that make ω0∆t in equation

(4.106) real.

Figure 4.6 represents the region where the function cos−1 ξ has real values (and therefore

expression (4.106) has only real values). To have a real valued expression ξ must be

between -1 and 1. For any other value of ξ the function cos−1 ξ will be complex valued
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Figure 4.7: Solution of (4.101) sampled with (a) ∆t = 2/ω0 which makes the system
unstable and (b) ∆t = 0.1/ω0 which makes the system stable.

and therefore the rotation of magnetisation will produce an unstable solution. At the

limits of ξ shown in Figure 4.6

ξ = 1 − ω2
0∆t2

2
= 1 → ∆t = 0 (4.107)

ξ = 1 − ω2
0∆t2

2
= −1 → ∆t =

2

ω0
(4.108)

Therefore defining the range of ∆t for the stable solution of the oscillator equation

(4.101)

0 < ∆t <
2

ω0
= UpperBound (4.109)

This is clearly understood by an example. Figure 4.7(a) represents a sampled solution

of (4.101) with a sampling rate of ∆t = 2/ω0 which is just over the limit in (4.109)

therefore the system is unstable and the solution grows to infinity as time goes on.

Figure 4.7(b) is an example of a stable solution where ∆t = 0.1/ω0 implies a stable

solution.

Although equation (4.109) defines the stable range when the magnetisation is intro-

duced, equation (4.51) still needs to be considered as it rules the stability of the differ-

encing algorithm. Therefore the time increment of the system ∆t must be bounded in

such a way that satisfies both (4.109) and (4.51) to avoid instability.
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To finalise with the stability section, the solution to Gilbert’s equation is convergent

when the magnetisation is aligned with the applied filed or expressed mathematically

as:

|M× H|
|M| · |H| ≈ 1 (4.110)

This then provides a test of convergence in the numerical implementation.

4.15 Extended FDTD Routine

To summarise, the flowchart of the main loop of the extended algorithm is shown

in Figure 4.8. First, the general initialisation where the constants and variables are

declared and the stability condition is satisfied through the apropriate choice of the

time and space intervals ∆t and ∆x. Next, the z component of the electric field is

computed as in the normal FDTD method (4.72). Then, the magnetisation vector M

is calculated (the fields that M depends on are extrapolated, time synchronisation,

and interpolated, space synchronisation, in order to be used to calculate the new M

values). After that, the appropriate magnetic boundary condition is enforced. Once

the magnetisation vector has been calculated, the new magnetic field components Hx

and Hy can be calculated using (4.73) to (4.74). At the end of the process, the current

sources if any are updated. This completes a cycle of the main loop, the new field

values are delayed ∆t seconds in time with respect to their previous values. The cycle

is then repeated until the total simulation time is reached.
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Figure 4.8: Flowchart of the main loop of the FDTD algorithm for non-linear magnetic
materials
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Figure 4.9: Time chart of the extended algorithm showing the leapfrog due to the time
derivatives.
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4.16 Summary

The FDTD algorithm has been explained and general expressions have been given to

allow its implementation. Dificulties in implementing the FDTD algorithm such as

stability and reflections into the computational space have been stated and studied.

To avoid instability a stability condition has been obtained. To avoid reflections into

the computational space a perfectly matched layer boundary condition has been con-

sidered. An extended FDTD method for modelling of non-linear magnetic materials

has been proposed. General expressions relating field propagation to the rotational

magnetisation have been given to allow the implementation of the extended method.

Difficulties in implementing the extended method such as the reallocation of the fields

and the enforced boundary condition on the material surfaces have been analysed. Fi-

nally, the stability of the extended method has been studied and an expression has

been given to assure the stability of the method.



Chapter 5

Modelling and Simulation of
Thin-Film Heads
Using the FDTD Method

5.1 Introduction

The finite difference time domain (FDTD) technique is an explicit and versatile time

domain method for solving Maxwell’s equations. It provides spatial and temporal

representation of electric and magnetic fields within the simulation space and offers an

infinite bandwidth for fields and sources due to its time domain nature (Hagness and

Taflove, 2000). Thus it provides the ideal platform for studying the high frequency

dynamics in magnetic recording heads.

Previous extensions to the FDTD method to model Ferrites were limited to including

a frequency dependant permeability tensor (Pereda et al., 1995), or a linearised form of

the equation of motion of the magnetisation (Okoniewski and Okoniewska, 1994) with-

out detailed treatment of anisotropy and exchange forces. They also lacked treatment

of boundaries and numerical stability. A full treatment of the damped, precessional

motion of the magnetisation in a magnetic material, as described by the LLG equa-

147
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tion (Brown, 1978), has been implemented and tested in the following sections for the

purpose of this thesis. The effective field in this implementation includes magnetocrys-

talline anisotropy fields, exchange fields, applied fields, and the magnetostatic and eddy

current fields (both computed naturally by the FDTD method). Implementation of this

new approach requires resolution of a number of issues. First, the conflict between the

local nature of fields and magnetisation components in space in the equation of motion,

and the uncolocated nature of the FDTD cell where fields are displaced by half-cells

in space.

One of the main aims of this research is to perform numerical simulations of actual

thin-film heads that include a micromagnetic description of the material and therefore

this chapter covers the essence behind this work. In the following sections the extended

FDTD method described in Chapter 4 will be built up from the initial FDTD model for

linear materials and tested for a number of structures before attempting to simulate the

head structures obtained by experimentation in Chapter 6. First, the standard FDTD

algorithm will be implemented and surrounded by an absorbing PML boundary, as

described in Chapter 4. Then the correct implementation of current sources and the

propagation of electromagnetic waves within the computational space will be studied.

The chapter will continue with the implementation of materials having linear properties

inside the computational space to observe reflections and the penetration of the waves as

related to the concept of skin depth studied in Chapter 2. Implementation of magnetic

materials having non-linear properties will follow and magnetic fields and magnetisation

distributions will be analysed using the micromagnetic theory explained in section 3.3.

Finally, the purpose of this chapter, to compute numerical simulation of practical

and/or realistic head structures, will be dealt with. The head geometry and materials

were obtained by experimentation in Chapter 6. The results of the simulations will be

analysed in detail to observe the effects introduced by the micromagnetic formulation

into the FDTD method.
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5.2 The Computational Space and PML

Absorbing Boundary Condition

The computational space is defined as the region where the electric and magnetic

fields E and H are being computed. Considering the two-dimensional TMz mode,

the computational space consists of three field matrices, Ez, Hx and Hy. Due to the

characteristic positioning of electric and magnetic fields in a Yee’s cell the three field

matrices have different dimensions. In a TMz mode two-dimensional Yee’s cell at a

given position, every Ez component of the electric field is surrounded by four magnetic

field components as shown in Figure 5.1.

The mathematical representation of an im × jm dimensional computational space con-

sists of a matrix with dimensions [im× jm] representing the z component of the electric

field Ez, and another two matrices with dimensions [im × (jm + 1)] and [(im + 1)× jm]

representing the x and y components of the magnetic field, Hx and Hy. In this manner

each field component at a given position (i, j) in the Yee’s cell diagram of Figure 5.1

can be easily addressed, the Ez component in the diagram corresponds with the row j,

column i element of the electric field matrix Ez|i,j, Hy1 and Hy2 are addressed as Hy|i,j
and Hy|i+1,j respectively and Hx1 and Hx2 as Hx|i,j and Hx|i,j+1. At a given iteration

n, the updated Ez matrix represents the electric field at time (n+ 1
2
)∆t whereas the up-

dated Hx and Hy matrices represent the magnetic field components at time (n + 1)∆t.

That is Ez|n+ 1

2 , Hx|n+1 and Hy|n+1. ∆t is the time step of the FDTD algorithm that,

in combination with the grid size ∆x, ensures that the stability condition (4.52) is

satisfied.

The computational space will be initially filled with air and later on with dielectric,

conductor and magnetic materials to observe the propagation of electromagnetic waves

through them. Linear materials can be defined by specifying their electrical and mag-

netic parameters, i.e. relative permeability (µr) and permittivity (ǫr), and electrical
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Figure 5.1: Two-dimensional TMz mode Yee’s cell at position (i, j) and mathematical
representation of the computational space.

(σ) and magnetic (σ∗) conductivities, over the region of the computational space they

occupy. Note that the magnetic conductivity σ∗ is only used in the implementation of

the PML boundary which is needed to simulate an infinite computational space (i.e. to

absorb outgoing waves). Non-linear materials will be studied in detail in section 5.5. In

every iteration of the FDTD algorithm, these material parameters will have an effect on

the electromagnetic fields through the updating coefficients defined in equations (4.25)

to (4.28). For simplicity when doing matrix operations the following matrices are used

in the implementation: Ca and Cb with same dimensions as the Ez field matrix, Dax

and Dbx with same dimensions as the Hx field matrix and Day and Dby with same

dimensions as the Hy field matrix. The matrices defined in Table 5.1 together with the

updating coefficients equations (4.25) to (4.28) and the finite difference expressions of

(4.29) to (4.31) form the basic two-dimensional TMz mode FDTD algorithm. However,

with this simple implementation the computational space is surrounded by a perfect

magnetic conductor which reflects all the outgoing waves back into the computational
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Table 5.1: Summary of matrices and dimensions in main computational space of the
standard FDTD algorithm.

Updating Coefficients
Field Matrices ǫr and σ µr and σ∗

Ez[im × jm] Ca[im × jm] Dax[im × (jm + 1)]
Hx[im × (jm + 1)] Cb[im × jm] Dbx[im × (jm + 1)]
Hy[(im + 1) × jm] Day[(im + 1) × jm]

Dby[(im + 1) × jm]

space.

As seen in section 4.9, in order to implement an infinitely large theoretical space exten-

sion the computational space must be surrounded by an absorbing boundary material

or perfectly matched layer (PML). If this is not implemented the propagating electro-

magnetic waves would be reflected into the computational space and result in incorrect

computations. For the purpose of this work a 10-cell thick PML boundary with poly-

nomial grading was implemented around the computational space.

An efficient implementation of a 10-cell thick PML requires some modification of the

matrices in Table 5.1. The PML region must surround the main computational space as

in Figure 4.4, thus, all matrices must be increased in size each one having twenty more

rows and twenty more columns. The field splitting modification studied in section 4.9.2

lead to the following finite difference expressions for the PML regions of the FDTD

algorithm

Ezx|
n+ 1

2

i+ 1

2
,j+ 1

2

= Cax|i+ 1

2
,j+ 1

2

Ezx|
n− 1

2

i+ 1

2
,j+ 1

2

+Cbx|i+ 1

2
,j+ 1

2

(

Hy|ni+1,j+ 1

2

− Hy|ni,j+ 1

2

) (5.1)

Ezy|
n+ 1

2

i+ 1

2
,j+ 1

2

= Cay|i+ 1

2
,j+ 1

2

Ezy|
n− 1

2

i+ 1

2
,j+ 1

2

+Cby|i+ 1

2
,j+ 1

2

(

+Hx|ni+ 1

2
,j
− Hx|ni+ 1

2
,j+1

) (5.2)

Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

= Ezx|
n+ 1

2

i+ 1

2
,j+ 1

2

+ Ezy|
n+ 1

2

i+ 1

2
,j+ 1

2

(5.3)
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Hx|n+1
i+ 1

2
,j+1

= Dax|i+ 1

2
,j+1Hx|ni+ 1

2
,j+1

+Dbx|i+ 1

2
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(

Ez|
n+ 1

2

i+ 1

2
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− Ez|
n+ 1

2

i+ 1

2
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2

) (5.4)

Hy|n+1
i+1,j+ 1

2

= Day|i+1,j+ 1

2

Hy|ni+1,j+ 1

2

+Dby|i+1,j+ 1

2

(

Ez|
n+ 1

2

i+ 3

2
,j+ 1

2

− Ez|
n+ 1

2

i+ 1

2
,j+ 1

2

) (5.5)

Where the updating coefficients Cax, Cay, Cbx, Cby, Dax, Day, Dbx and Dby are calcu-

lated using the PML material conductivities σx, σy, σ∗
x and σ∗

y as follows

Cax|i,j =

(

1 − σx|i,j∆t

2εi,j

)/(

1 +
σx|i,j∆t

2εi,j

)

(5.6)

Cay|i,j =

(

1 − σy|i,j∆t

2εi,j

)/(

1 +
σy|i,j∆t

2εi,j

)

(5.7)

Cbx|i,j =

(

∆t

εi,j

∆

)/(

1 +
σx|i,j∆t

2εi,j

)

(5.8)

Cby|i,j =

(

∆t

εi,j

∆

)/(

1 +
σy|i,j∆t

2εi,j

)

(5.9)

Dax|i,j =

(

1 − σ∗
x|i,j∆t

2µi,j

)/(

1 +
σ∗

x|i,j∆t

2µi,j

)

(5.10)

Day|i,j =

(

1 −
σ∗

y |i,j∆t

2µi,j

)/(

1 +
σ∗

y |i,j∆t

2µi,j

)

(5.11)

Dbx|i,j =

(

∆t

µi,j∆

)/(

1 +
σ∗

x|i,j∆t

2µi,j

)

(5.12)

Dby|i,j =

(

∆t

µi,j∆

)/(

1 +
σ∗

y |i,j∆t

2µi,j

)

(5.13)

The main computational space parameters are initially set up to be free space, therefore

σx = σy = σ∗

x = σ∗

y = 0 applies. Furthermore, if any material region is to be defined
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in the main computational space its parameters must be defined such as σx = σy =

σmaterial and σ∗

x = σ∗

y = σ∗

material. In this manner, the above equations in the main

computational space reduce to the system of equations in (4.29) to (4.31) and the set

of updating coefficients (4.25) to (4.28) studied in section 4.5. In the PML regions

the electrical and magnetic conductivities have finite values according to Figure 4.4

but changing their values gradually within the thickness of the PML boundary. The

optimal value of the electrical conductivity σmax is expressed in equation (4.66). Then

the magnetic conductivity σ∗ can be computed as

σ∗ = σ
µ0µr

ǫ0ǫr
(5.14)

The grading of the PML is done by increasing the conductivity values from zero in the

inner boundary to σmax and σ∗

max at the outer boundary. These gradually increasing

values of the electrical and magnetic conductivities are taken into account in the al-

gorithm through the updating coefficient matrices and therefore all outgoing traveling

waves will be absorbed at the PML boundary.

With this implementation of the PML each iteration of the main loop of the FDTD

algorithm will only require to traverse the matrices at once without the need of special

intervals especially dedicated to the wave absorbing functions of the PML boundary.

5.3 Sources and Propagation

Sources of electromagnetic waves can be classified in two different categories, they

can be soft or hard sources. The difference between them lies in the way they are

implemented. Soft sources are updated to the current value of the field whereas hard

sources take the place of the current value of the field. For instance, to generate a

point source at position (is, js) inside of a TMz mode computational space the electric
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field Ez matrix should be excited at the source position as

Ez|is,js
= Ez|is,js

+ Source (5.15)

in order to implement a soft source. On the other hand, if the excitation takes the

form

Ez|is,js
= Source (5.16)

a hard source is implemented. The sources of electromagnetic waves are in general

time dependant functions and the waveforms to be used in this work are summarised

in Figure 5.2. They are the Gaussian pulse of amplitude A and decay rate τ centered

around t0 and mathematically expressed as

S1 = Ae−( t−t0
τ )

2

(5.17)

and the step function of amplitude A and rise time τ is given by

S2 = A
(

1 − e
−t
τ

)

(5.18)

A point source located at the center of a two-dimensional FDTD computational space

generates a radially propagating cylindrical wave centered on the source point which

eventually, assuming that the appropriate absorbing boundary has been implemented,

exits the computational space. For the purpose of this work, as the excitations on

magnetic heads take the form of electric currents through a coil, electromagnetic waves

coming from electric current excitations will be studied. The soft source in equation

(5.15) is equivalent to applying a current source Jsourcez
directly in the Ez field equation

(4.29) of the two-dimensional FDTD algorithm for the TMz mode.

In addition to radiating fields to infinity, soft sources implemented as in (5.15) can

deposit charge and generate charge-associated fields. Such charge can exist even though

there is no explicit storage location for it. Indeed, the charge exists only insofar as
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Figure 5.2: Typical time dependant source amplitude waveform over a 5ms time interval
(a) Gaussian pulse centered at t0 = 1ns, unitarian amplitude and decay rate τ = 0.3ns.
(b) Step function of unitarian amplitude and rise time τ = 0.3ns.

diverging fields exist. These diverging fields can persist indefinitely and hence, remain

in the computational domain even after all of the radiated fields have exited.

To understand this, consider the relation between the electric field E and the electric

charge density ρ in free space given by Gauss’ law

ǫ0∇ · E = ρ (5.19)

Thus, when the electric field diverges from a point, (5.19) states that the charge density

is nonzero. The relation between the electric current density J and the electric charge

density ρ is then given by the continuity equation

∇ · J = −∂ρ

∂t
(5.20)

Figure 5.3 shows the magnitude of the electric and magnetic fields for three consec-

utive time steps in a two-dimensional FDTD lattice which was excited at the center

with a soft Gaussian pulse current point source, equation (5.17). In this visualisation

it is possible to observe the propagation of the electromagnetic fields and the electric
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Figure 5.3: Soft current source at the center of an FDTD lattice and the electric field
associate to the charge. Simulation parameters: ∆x = 1mm, ∆t = 1.6ps, t1 = 49.6ps,
t1 = 99.2ps, t1 = 148.8ps. Soft source parameters: Gaussian point source current
characterised by an amplitude of 40mA, decay rate τ = 5ps and delay t0 = 33ps.
Computational space properties set up to free space.
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Figure 5.4: Current in a filament. (a) cross section of the filament showing the direction
of the current and the distribution of the generated magnetic fields. (b) FDTD imple-
mentation of current sources, note the direction of the magnetic field components. The
gray region represents the filament therefore the appropriate electrical conductivity
and permittivity must be set to those of the actual filament.

field associated with the charge due to the divergence of the electric fields which still

remains after all the fields have disappeared. This field magnitude associated with the

electric charge may cause incorrect computations, therefore an alternative implemen-

tation using magnetic field excitation hard sources will be considered next.

Figure 5.4(a) shows the magnetic field generated around a filament carrying a current.

Assuming that the current is the z direction, it can be implemented in a TMz mode

FDTD lattice by setting up the x and y component of the magnetic field, Hx and Hy,

around the filament as in Figure 5.4(b) to a certain value which will be calculated

according to Ampere’s law (3.41). That is

Hx = Hx(source) (5.21)

Hy = Hy(source) (5.22)

such as that Hx(source) and Hy(source) represent the electric current density Jz through

the filament. When implementing sources, the electrical properties of the coil material

(e.g. copper) must be set up and taken into account by the algorithm through the
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updating coefficients. Assuming as an example a grid cell size of 1µm for the diagram

in Figure 5.4(b), a 10mA current would be implemented by setting up the value of the

magnetic field component around the filament to 1000A/m, which comes from solving

Gauss’ law for H, 10mA = H[10 × 1µ]m. The magnetic field components inside the

cross section of the source have zero value because the contribution due to adjacent

current densities Jz located at the center of every individual cell cancel each other. Note

that arrows pointing upwards and downwards in the diagram correspond to positive

and negative values of the vertical component Hy and arrows pointing rightwards and

leftwards correspond to positive and negative values of the horizontal component Hx.

This is the way in which electric currents are implemented through this work, rather

than applying a soft source (Jz), to avoid the problem of charges. In order to prove

the above statement, the same FDTD lattice used in Figure 5.3 was excited now with

a hard Gaussian current point source and the results are shown in Figure 5.5 where

no charge-associated electric field remains as the time goes on and the propagating

electromagnetic field leave the computational space.

Besides enforcing the source fields on the computational lattice, the electrical and

magnetic properties of the source material must be defined inside the computational

space in order to fully simulate electric currents in a filament. If this is not implemented

there would be fields inside the filament which is not in agreement with reality. The

typical parameters of a perfect electric conductor (e.g. copper) are conductivity σ =

5.8 × 107 [1/Ωm] and relative permittivity ǫr = 4.8. Material structures inside the

computational domain are considered next.
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Figure 5.5: Hard current source excitation with no remanent charge effect. Simulation
parameters: ∆x = 1mm, ∆t = 1.6ps, t1 = 49.6ps, t1 = 99.2ps, t1 = 148.8ps. Hard
source parameters: Gaussian point source current characterised by an amplitude of
40mA, decay rate τ = 5ps and delay t0 = 33ps. Computational space properties set
up to free space.
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Figure 5.6: Propagation of the electric field Ez arising from an electric current on a
TMz mode FDTD lattice containing a region of conductive material at four consecutive
time instants. (a)t = 50ps, (b)t = 100ps, (c)t = 150ps and (d)t = 200ps.

5.4 Computational Space

Containing Linear Materials

Materials are defined by setting up their electrical and magnetic parameters, ǫ, σ, µ

and σ∗ over a region of the space. These parameters are taken into account when

computing the electric and magnetic fields through the updating coefficients (4.25) to

(4.28).

Consider a TMz computational domain with dimensions 75×50mm where a rectangular

hard current source of dimensions 5×30mm (A in Figure 5.6) and a 10×10mm region
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made of conductive material (B in Figure 5.6). The space increment of the main grid is

∆x = 1×10−3m and the corresponding time increment for stability is ∆t = 1.67ps. The

source region A is made of a good conductor material, characterised by σ = 5.8× 10+7

1/Ωm and ǫr = 4.8. The permeable material region B has properties σ = 5 × 10+6

1/Ωm and µr = 2000. The excitation is a Gaussian current source with an amplitude of

14mA, time delay t0 = 30ps and decay rate τ = 5ps. Figure 5.6 shows the propagation

of the generated electric field Ez by the excitation source at four consecutive time

instants at a sampling rate of 50ps where reflections from the material structure B can

be observed. In this example the propagation of electric field was chosen for ilustration.

However, similar plots can be obtained to ilustrate the propagation of magnetic fields.

The rise time of the source excitation is very small which in turn forces a very large

frequency range. The Fourier transform of the source pulse allows the estimation of the

cut off frequency or -3dB point, which, for this particular waveform, is about 100GHz.

The skin depth of material B at the maximum frequency of operation computed using

equation (2.54) is δ = 1.59×10−12mm, which is in agreement with Figure 5.6(d) where

no field can be observed inside the material region.

Figure 5.7 shows the propagation of a Gaussian pulse with decay time τ = 100µs

through a one-dimensional medium containing a section of linear material with relative

permeability µr = 200 and electrical conductivity σ = 4.5× 1021/Ωm. For this partic-

ular example, the material region skin depth at the cut off frequency is δ = 18.8µm.

Therefore, the field penetrating the material is subjected to an exponential decay where

its amplitude has been decreased to e−1 when the skin depth is reached.

Materials defined with the method described in this section are considered linear as

it is assumed that the magnetic field density B is a linear function of the magnetic

field H. Non-linear materials, where the relation between B and H is not linear, are

addressed in the next section.
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Figure 5.7: Propagation of a Gaussian pulse on a computational space containing a
linear material. The skin depth of the material region at the frequency of the pulse is
δ = 20µm
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5.5 Computational Space

Containing Non-Linear Materials

The purpose of this section is to implement and test the extended FDTD algorithm

described in Chapter 4. This method combines the micromagnetic description of ma-

terials with the field solution of Maxwell’s equations and therefore would be used to

characterise non-linear magnetic behaviour of materials.

The main repercussion of a non-linear magnetic behaviour is that the magnetic flux

density B can no longer be expressed as a linear function of the magnetic field H,

instead, it must be expressed as a function of the sum of the applied magnetic field H

and the magnetisation M of the material as stated in equation (3.15).

As seen in section 3.3.2 the magnetisation of a non-linear magnetic material is described

by a differential equation called the equation of motion (3.105) which analytical solution

for the particular case of a z directed magnetic field was given in (3.110). Thus, the

first problem to overcome in describing non-linear materials is to obtain an accurate

solution for Mx, My and Mz in the equation of motion for any given effective field H.

A finite difference method for solving the equation of motion was given in section 4.11

which will be now tested and compared with the analytical solution.

Figure 5.8 compares the solution of the equation of motion using the method described

in section 3.3.2 with the analytical solution given in (3.110) for two different values

of the damping coefficient α and a z directed effective field. To obtain these results

a very strong applied field of 20kOe was applied to a material having a saturation

magnetisation of 100A/m for a period of time of 100ps. As expected, the response of

the material with greater damping factor is quicker. It is also observed that the results

obtained using the discretisation of the equation of motion are in agreement with the

analytical solution.
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Figure 5.8: Solution of the equation of motion for a z directed effective field using the
analytical solution and the method explained in section 4.11 for two different values of
the damping coefficient (a) α = 0.1 and (b) α = 0.6.

The next step in describing non-linear materials is to implement the modified FDTD

algorithm described in section 4.15 where magnetic materials are characterised by their

conductivity σ and magnetisation M, i.e. no relative permeability µr is defined. The

material’s conductivity affects the electromagnetic fields of the calculations as before

through the updating coefficients (4.25) to (4.28). The magnetisation vector is now

taken into account directly in the algorithm’s equations through the time derivative

(time difference of Mx and My components) as shown in (4.73) and (4.74). In order to

compute the new values of the magnetisation at each iteration, syncronisation in time

and in space are required (section 4.12). Enforcing synchronism yields to the definition

of a new set of auxiliary matrices that must be added to the computational space.

These are listed in Table 5.1, section 5.2.

From equations (4.73) and (4.74), four new matrices are needed which represent the x

and y components of the magnetisation at time instants n and n + 1. That is, Mx|n,
Mx|n+1, My|n and My|n+1. The magnetisation components at time instant n + 1 are
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obtained using the system of equations (4.75) to (4.77). Hence, as Mz is used in all

three equations, matrices for the z component of the magnetisation at time n and

n+1 are also needed, that is Mz|n and Mz|n+1. Mx, My and Mz matrices are the same

size as Hx, Hy and Ez respectively. Here the magnetic field components represent the

effective field (section 3.3.3).

As described in section 4.12, equation (4.82) must be applied to every component that

appears on the right hand side of equations (4.75) to (4.77) in order to solve the problem

of time synchronism. This leads to the definition of matrices Hx|n+ 1

2 , Hy|n+ 1

2 , Hz|n+ 1

2 ,

Mx|n+ 1

2 , My|n+ 1

2 and Mz|n+ 1

2 . However, in order to compute the above matrices at

time instant n + 1
2
, their values at time n − 1 need to be stored in memory hence the

need for Hx|n−1, Hy|n−1, Hz|n−1, Mx|n−1, My|n−1 and Mz|n−1.

The contributions to the effective field from the demagnetising field Hdemag is taken

into account inherently by the nature of the FDTD algorithm in the computed magnetic

field. If the externally applied field Hext takes the form of a radiating hard source, the

propagating fields are computed inherently by the algorithm from a propagating hard

source. On the other hand, this external field can be obtained separately, as the case of

uniformly distributed applied fields from current sources, and then added to the FDTD

computed field. The anisotropy and exchange fields (Hanis, Hexch) need to be obtained

separately and added to the magnetic field resulting from the FDTD computations

before synchronism. The anisotropy field Hanis depends on the z component of the

magnetisation and was given in (3.125). An expression for the exchange field was given

in (3.124). The Laplacian ∇2 of each vector component of M can be evaluated using

second order accurate finite differencing. Considering the x component and assuming

∆x = ∆y = ∆z = ∆h, the Laplacian yields

∇2Mx =
∂2Mx

∂x2
+

∂2Mx

∂y2
+

∂2Mx

∂z2
(5.23)

In two dimensions there is no variation in the z direction, thus ∂2/∂z2 = 0. Then by
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taking finite central differences

∇2Mx = [Mx(x + ∆h, y) + Mx(x − ∆h, y)
Mx(x, y + ∆h) + Mx(x, y − ∆h)
−4Mx(x, y)] /(∆h)2

(5.24)

Expressions for ∇2My and ∇2Mz can be derived in a similar way.

Figure 5.9(a) represents the left hand boundary (−x directed) of a magnetic material

where the Mx component at the boundary (x = i) is highlighted in gray for illustration.

If ∇2Mx is computed using equation (5.24), at the air/magnetic material boundary

there is a mismatch between the magnetisation values at (i − 1) and (i + 1) resulting

in an incorrect exchange field even if the magnetisation is uniform inside the magnetic

material. To overcome this incorrect computation an extrapolation approximation is

used. Considering the x component, the exchange field at position (i + 1) can be

expressed as

Hx exch|i+1 =
Hx exch|i + Hx exch|i+2

2
(5.25)

Then

Hx exch|i = 2Hx exch|i+1 − Hx exch|i+2 (5.26)

The same problem appears when considering other boundaries and expressions similar

to (5.26) must be applied. The final result is the modification of the exchange field

component at the outer boundary of the material as a function of the two immediate

inner boundaries shown in figure 5.9(b). This boundary modification applies to the

three components of the exchange field.

The space synchronism or reallocation of magnetisation and effective magnetic field

components to Mx position, described in equations (4.89) to (4.92), requires the defi-

nition of four new matrices My Mx|n+ 1

2 ,Mz Mx|n+ 1

2 , Hy Mx|n+ 1

2 and Hz Mx|n+ 1

2 . Note

that Mx and Hx are already collocated. In a similar manner, the reallocation of

components to My and Mz positions requires the definition of the following matrices:
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Figure 5.9: Computation of the x component of the exchange field Hx exch in a magnetic
material (a) −x directed boundary showing Mx component of the magnetisation (b)
the outer boundary of the exchange field has to be modified as a function of the two
inner boundaries to obtain an accurate result.
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Mx My|n+ 1

2 , Mz My|n+ 1

2 , Hx My|n+ 1

2 , Hz My|n+ 1

2 , Mx Mz|n+ 1

2 , My Mz|n+ 1

2 , Hx Mz|n+ 1

2

and Hy Mz|n+ 1

2 .

To complete the discussion of the extended algorithm, the magnetic boundary con-

ditions are described next. The magnetic material boundary condition described in

section 4.13 must be applied at every iteration of the main FDTD algorithm. In or-

der to satisfy equation (4.95) for the magnetisation M, a similar procedure to that in

Figure 5.9(b) is applied. In this particular case, the magnetisation components at the

outer boundary of the material are set equal to the values at the first inner boundary

following the condition ∂M/∂n = 0. The same 10-cell thick PML absorbing material

boundary that was used in the standard FDTD implementation is used in the ex-

tended algorithm. Table 5.2 with their associate dimensions summarises the definition

of matrices in the extended FDTD computational space.

In order to test the algorithm, the magnetisation of a 400 × 70µm block of magnetic

material has been switched from its original orientation in the y direction towards the

direction of an external applied field in the x direction as shown in Figure 5.10. This

external field was implemented in two different ways, that is, as an applied field inside

the LLG equation with magnitude 8.5×106A/m (represented in the diagram of Figure

5.10(a)) and as the result of a current excitation around the material (Figure 5.10(b)).

The magnetic block is defined by a low electrical conductivity σ = 5000 1/Ωm, which

allows deeper penetration of the fields inside the block, a saturation magnetisation of

8 × 105A/m initially oriented in the y direction and a damping coefficient of α = 0.1.

The space increment of the main grid is ∆x = 0.1µm and the corresponding time

increment for stability is ∆t = 0.0167ps. Uniaxial anisotropy was considered for this

experiment, with K1 >> K2, then, expression (3.125) reduces to

Hk =
2Ku

µ0Ms
(5.27)

The typical values of saturation magnetisation and anisotropy field for a Ni80Fe20 ma-

terial are Ms = 800kA/m and Hk = 400A/m (Wang and Taratorin, 1999). Then the
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Table 5.2: Summary of matrices and dimensions in the main computational space of
the extended FDTD algorithm.

Essential Matrices Updating Coefficients Auxiliary Matrices
Ez|n[im × jm] Ca[im × jm] Mz|n[im × jm]
Hx|n[im × (jm + 1)] Cb[im × jm] Mz|n+1[im × jm]
Hy|n[(im + 1) × jm] Dax[im × (jm + 1)] Hx|n−1[im × (jm + 1)]
Mx|n[im × (jm + 1)] Dbx[im × (jm + 1)] Hy|n−1[(im + 1) × jm]
Mx|n+1[im × (jm + 1)] Day[(im + 1) × jm] Hz|n−1[im × jm]
My|n[(im + 1) × jm] Dby[(im + 1) × jm] Mx|n−1[im × (jm + 1)]
My|n+1[(im + 1) × jm] My|n−1[(im + 1) × jm]

Mz|n−1[im × jm]

Hx|n+ 1

2 [im × (jm + 1)]

Hy|n+ 1

2 [(im + 1) × jm]

Hz|n+ 1

2 [im × jm]

Mx|n+ 1

2 [im × (jm + 1)]

My|n+ 1

2 [(im + 1) × jm]

Mz|n+ 1

2 [im × jm]
Hanis[im × jm]
Hx exch[im × (jm + 1)]
Hy exch[(im + 1) × jm]
Hz exch[im × jm]

My Mx|n+ 1

2 [im × (jm + 1)]

Mz Mx|n+ 1

2 [im × (jm + 1)]

Hy Mx|n+ 1

2 [im × (jm + 1)]

Hz Mx|n+ 1

2 [im × (jm + 1)]

Mx My|n+ 1

2 [(im + 1) × jm]

Mz My|n+ 1

2 [(im + 1) × jm]

Hx My|n+ 1

2 [(im + 1) × jm]

Hz My|n+ 1

2 [(im + 1) × jm]

Mx Mz|n+ 1

2 [im × jm]

My Mz|n+ 1

2 [im × jm]

Hx Mz|n+ 1

2 [im × jm]

Hy Mz|n+ 1

2 [im × jm]
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Figure 5.10: Magnetic material bar under the effect of a magnetic field. The magnetic
field is applied in LLG equation in configuration A and by an external current in
configuration B.

anisotropy constant, Ku, was chosen to be Ku = 200J/m3 to fit the above values.

Exchange interaction was also considered using equation (3.124). The magnetic field

magnitude at the observation point in the center of the material is shown in Figure

5.11(b), the applied field in configurations A and B has a rise time of 1ps, the difference

between the rise time of both plots in Figure 5.11(b), corresponding to configurations

A and B, is due to the penetration of the fields inside the material. Figure 5.11(a)

shows the magnitudes of each magnetisation component, Mx, My and Mz, at the ob-

servation point in the center of the material. The final magnetisation points towards x

for both experiments as expected. Figure 5.11(c) shows the convergence check of the

magnetisation orientation given by

|M× H|
|M||H| (5.28)

which clearly tends to zero meaning the vectors M and H are parallel.

Figure 5.12(a) shows the configuration of another simulation used to test the extended

algorithm. It consists of a block of magnetic material with the same dimensions as

before having two external coils underneath that generate a magnetic field pointing
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Figure 5.11: (a) Rotational magnetisation due to an applied field for configurations A
and B. (b) Magnetic field magnitude at observation point. (c) Convergence check of
the magnetisation orientation.
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Figure 5.12: Magnetisation distribution. (a) Diagram of the excitation configuration
using an external field generated by a current. (b) Final distribution of the magneti-
sation. The black and grey arrows represent the magnetisation and the magnetic field
respectively.

towards the y direction at the center of the slab. The initial magnetisation was pointing

in the z direction and, as previously indicated, the current forces a field in the y

direction at the center of the material. The magnetic field excitation and the material

and simulation parameters are the same as in the previous simulation. The orientation

of the magnetisation in the whole material block at time 25ps is shown in Figure 5.12(b).

It can be clearly seen that the magnetisation (dark arrows) orientates everywhere in

the same direction of the magnetic field (light arrows).

5.6 FDTD Simulation of Thin-Film Heads

The standard and extended FDTD algorithms have been implemented and tested over

a block of material in the previous sections. The results of different simulations have

shown the FDTD modelling as a powerful technique that includes both dynamic calcu-

lations of the micromagnetics of the head material and the description of the electro-

magnetic fenomena. Next, the standard and extended FDTD algorithms will be tested
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using the geometry and parameters of an actual commercial thin-film head.

5.6.1 Thin-film Head Geometry and Parameters

The detailed method of obtaining the physical dimensions of two commercial thin-film

heads and their material characterisation is described in Section 6.2 of this thesis. This

provided the physical dimensions and material composition of the two different thin-

film heads. In order to run an FDTD simulation, these material compositions and

geometry must be specified within the computational space of both the standard and

the extended FDTD algorithm. It is observed from Table 6.1 that the most recently

manufactured head (Head B) will require a extremely small grid size due to its level of

miniaturisation which in turn, to satisfy the stability requirement for FDTD stated in

equation (4.52), enforces a very small time step. Using very small time steps results

in a very large number of time iterations of the algorithm. As an example, to obtain

the results of a few nanoseconds of head operation will take an average of two months

(depending on how small the head is) for the algorithm to come to an end. Due to this

difficulty, the parameters of the larger head (Head A) will be used to implement the

simulations.

Figure 5.13 represents a scaled diagram of the geometry of the head used in the simula-

tions which corresponds with the experimental data from head A obtained in Chapter

6. The front gap height is 0.5µm which is the smallest dimension within the head and

therefore determines the smallest grid size ∆x. In this case, the criterion will be to

have at least five cells resolution in the front gap region, and thus, the grid size is

chosen to be ∆x = 0.1µm.

The coil turns are made from a high conductivity material (copper) defined by an

electrical conductivity σ = 5.8 × 1071/Ωm and relative permittivity ǫr = 4.8. The

magnetic material of the thin films is made from a typical NiFe permalloy material
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Figure 5.13: Scaled diagram of the head geometry with dimensions: front gap height=
0.5µm, a= 56.7µm, b= 11.5µm, c= 33.3µm, d= 11.9µm, e= 4.6µm, f= 2.7µm, g=
10.2µm, h= 12.4µm, i= 4.6µm, j= 4.6µm. For simulation purposes the axis are taken
as shown where the z -axis represents the anisotropy axis.

defined by an electrical conductivity of σ = 5 × 1061/Ωm and, in the case of magnetic

linear material, a relative permeability of µr = 2000. When considering the case of non-

linear material, the parameters of a typical NiFe ferrite are a saturation magnetisation

Ms = 800 × 103[A/m] (Wang and Taratorin, 1999) and the damping coefficient α.

This damping coefficient is highly dependant on the thickness and the proportion of

Ni and Fe of the thin film (Wu et al., 2001). For the purpose of this thesis a value

of α = 0.1 is assumed. The remaining areas of the computational space, including

insulating material regions, will be treated as free space.

5.6.2 Implementation and Results

Following section 4.5, the TMz mode will be used in order to implement the current in

the coil turns properly. The computational space where the geometry of Figure 5.13



CHAPTER 5. MODELLING OF THIN-FILM HEADS 175

is to be implemented is a two-dimensional lattice of [590x225] cells with a cell size of

∆x = 0.1µm. As before, the cell size is chosen to obtain a resolution of 5 cells in the

smallest region of the head, i.e. the front gap. A 0.1µm cell size in combination with

stability condition (4.52) leads to a time step for the algorithm of ∆t = 0.167fs. A step

function current with an amplitude A = 15mA and a rise time τ = 20ps implemented

as described in Figure 5.4(b) was used to excite the coil turns represented in Figure

5.13. In order for the simulation to reach the steady state the total simulation time

should be at least five times the rise time of the source. Twice that time was chosen

to allow the switching of the magnetisation leading to a total simulation time of 2ns.

With the time step ∆t as above, in order to run 2ns of simulation time the algorithm

required 12 million iterations. The computational space was surrounded by a 10 cell

thick PML using polynomial grading to absorb outgoing waves. The parameters used

to define non-linear materials in the magnetic simulation were Ms = 8 × 105A/m,

σ = 5 × 106 1/Ωm, Ku = 200J/m3, and α = 0.1.

In order to store each sample, the standar FDTD simulation requires 26345603 bytes

of free memory while the extended FDTD simulation memory requirement is slightly

higher, 153558419 bytes. The computer used for simulations had a 2 Gigabyte of RAM

memory, therefore, memory does not represent a limiting factor for the purpose and

computer equipment used to carry out the simulations.

Figure 5.14 represents the magnitude of the magnetic fields at three different time in-

stants, t1 = 0.1ns, t2 = 0.2ns and t3 = 0.45ns, of the simulation using the standard

FDTD algorithm. Notice the formation of the write field to the right of the head as

the simulation progresses. The magnetic field strength resulting from considering the

rotation of the magnetisation inside the magnetic material of the thin films is shown

in Figure 5.15. Figure 5.15 is analogous to Figure 5.14 using the extended FDTD

algorithm. Comparing Figures 5.14 and 5.15 leads to a few observations. It takes

more time to develop the write field in the gap region with the extended algorithm as
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Figure 5.14: Magnetic field magnitude for three time instants (t1 = 0.1ns, t2 = 0.2ns
and t3 = 0.45ns) computed using the standard FDTD algorithm (no magnetisation is
considered) and a 15mA current step excitation with rise time constant 20ps.
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Figure 5.15: Magnetic field magnitude at time t1 = 0.1ns, t2 = 0.2ns and t3 = 0.45ns,
computed using the extended FDTD algorithm (i.e. considering magnetisation rota-
tion) and a 15mA current step excitation with rise time constant 20ps.
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Figure 5.16: Applied mmf (number of coil turns times applied current) and resulting
gap mmf (gap field times the gap length) for the standard and the extended FDTD
algorithms.

shown Figure 5.16. This is directly related to the time constant τr due to magneti-

sation rotation and reflects the time it takes for the magnetisation to switch. Figure

5.16 indicates that for this particular head geometry more than 0.5ns are required to

switch the magnetisation and reach equilibrium, which is in agreement with the exper-

imental measurements described in Chapter 6 where the time constant for rotational

magnetisation for this particular head was τr = 1.42ns.

The switching of the magnetisation is an energy consuming process and therefore it

reduces the efficiency of the head resulting in a smaller write field or write bubble as

can be seen in Figure 5.17. Figure 5.17(b) shows that the field concentrates in the head

pole corners leading to the feature seen at the top right of the gap, and eventually to

an unstability which will be discussed next.
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Figure 5.17: Zoomed images of the gap region showing the magnetic field magnitude
at time 0.2ns corresponding to (a) the standard FDTD algorithm and (b) the extended
FDTD algorithm.
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With regard to time stepping and stability, only condition (4.52) has been enforced

in the simulation of Figures 5.14 and 5.15. Satisfying the stability limit stated by

the extended algorithm in condition (4.109) is not an easy task, particularly at the

head corners where the effective field becomes large, thus demanding a smaller time

step to stabilise the magnetisation solutions. In order to satisfy (4.109), the maximum

effective field acting in the material must be estimated. Once the effective field is

estimated, the maximum precession frequency can be calculated as ω0 = γH and then

the upper limit for the time step is computed as ∆t = 2/ω0. However as seen in

section 3.3.3, the effective field is formed by the addition of several fields, most of them

are very easy to obtain but others, like the demagnetising field, are very complex in

nature which makes their estimation very difficult. However, a lower estimate may be

obtained and compared with the courant stability limit by assuming that the maximum

field in the head is equal to Ms. In this case ω0 = γH = 1.77 × 1011rad/s and

hence ∆t = 2/ω0 = 11.3ps which is within the limits of the courant stability criterion

(∆tcourant = 0.167fs).

In particular, the demagnetising field concentrates in the corners of the material with

its magnitude being particularly large in comparison to any other part of the mate-

rial. This can be clearly seen in Figure 5.15 as the effective field concentrates at the

inner corners of the magnetic material. This extremely large field gives rise to a very

large precession frequency ω0 which violates the courant stability condition (4.109) or

requires a very small time step. The time step in the extended method simulation was

fixed and determined by the smallest head feature using courant condition. Due to the

previously mentioned increase in the precession frequency originated by the concen-

tration of the fields in some regions of the head, the algorithm became unstable after

0.45ns of simulation time. That is the total simulation time of the experiments shown

in this section using the head geometry shown in Figure 5.13.

As discussed in section 3.3.3, the effective field is formed by several field contributions
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which make the rotational motion of the magnetisation a complex process. When

the dimensions considered are very small, the exchange field contribution, which is

proportional to the square of the inverse of the distance between adjacent spins, is larger

than the anisotropy contribution and therefore becomes more important. Exchange

fields try to align adjacent spins in the same direction, and thus, help to make the

system more stable. However, considering the exchange fields contribution did not

avoid the increase in the precession frequency indicated above resulting in an unstable

solution after 0.45ns of simulation time. This is because the influence of the exchange

field was small in the corners since ∆x was larger than the exchange length for the head

material considered in this work (exchange length=
√

2Ax/µ0M2
s ≃ 5nm for NiFe)

Figure 5.18 shows the magnetic field distribution near the gap region at time 0.45ns for

both the standard and the extended FDTD algorithms. By comparison, it is observed

that when using the extended method, the field strength is smaller and the effective

field concentrates at the head corners. As explained above, these effects are due to the

switching of the magnetisation and the demagnetising fields. The arrow plot of Figure

5.18(b) represents the orientation of the magnetisation. The direction of the magnetic

flux density can be visualised by observing the orientation of the magnetisation arrows,

it is obvious that there is a flux linking both thin films through the gap resulting in

the external radiation of the write field.

Figure 5.19 shows the Karlqvist’s head field for the geometry of the simulations, that

is a gap height of 0.5µm and a gap field strength of 10 × 104 A/m. A comparison

with Figure 5.18 shows that the Karlqvist’s head fields near the head poles are not

accurately described.

Figure 5.20 is obtained by plotting the magnetic field components Hx and Hy at the

head surface and at a distance of 100nm from the head surface in the gap region.

Having in mind that the disk surface in a recording system would be parallel to this
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Figure 5.18: Magnetic field distribution of the head geometry near the gap region at
simulation time 0.45ns. (a) Contour plot of the field strength for linear material and
(b) contour plot of the field strength and arrow plot of the magnetisation for non-linear
material.
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Figure 5.19: Karlqvist’s head field for the geometry of the simulations. Gap length 0.5
µm, Gap field strength 10 × 104 A/m.

Figure 5.20: Recording gap fields simulating a plane parallel to the disk surface in
a recording system. (a) Fields at the pole surface and (b) at 100nm from the head
surface.
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Figure 5.21: Computed inductances with and without the inclusion of the rotational
magnetisation using an average thin film width W = 45µm.

plane, the field magnitude responsible for orientating the magnetisation of the disk in

one direction or another will be proportional to the plot in Figure 5.20. In particular,

Hy is the main field responsible for the recording process in longitudinal media. Higher

field gradients are observed in the pole corner regions with the inclusion of the magnetic

details of the core material. This has the implication that shorter transition lengths

are recorded in practice than predicted by models that ignore the magnetic detail of

the core material.

The inductance of a magnetic circuit is defined as the ratio of the magnetic flux linkage

through a closed surface to the current, that is

L =
N
∮

B · dS
I

(5.29)

As the simulations of the head geometry in Figure 5.13 are two-dimensional (x, y), the

integral of the magnetic flux density B through the cross sectional area of the head
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(x, z ) or (y, z ) can not be evaluated. However, working in two dimensions (x and y)

means that the magnitude of the fields are the same along the third dimension (z ).

Then it is possible to give a slightly modified figure of inductance based on the average

thin film width W as

L =
NW

∫

B · dL
I

(5.30)

Here, W is considered the average thin film width in the z direction. For this particular

head experiment W was set to be five times the upper pole width which was measured

in Chapter 6 and found to be 9µm, and hence W = 45µm was used to compute the

inductances of the core material. These are shown in Figure 5.21 for the standard and

extended FDTD algorithms. The experimental measurements carried out in Chapter

6 yielded an inductance of 74.8nH for this particular head geometry. Although the

magnetisation has not been completely switched and therefore the head has not yet

reached the steady state the general tendency of both plots in Figure 5.21 does not

disagree with the experimental value of inductance due to domain rotation (the orien-

tation of the magnetisation in this model is considered to take place only by domain

rotation).

Figure 5.22 represents the configuration used to carry out simulations of the upper

pole of head A in TEz mode. These were aimed to study the effects of eddy currents

on the switching time due to a field step applied perpendicular to plane of paper,

with 20ps time constant and 12 × 103A/m amplitude. The simulation parameters

were ∆x = 0.5µm, ∆t = 0.83333fs and total simulation time 1ns. The material

parameters were the same as in the previous non-linear simulation, σ = 5 × 1061/Ωm,

Ms = 800 × 103A/m and damping coefficient α = 0.1. Demagnetising fields were

included as another term in the direction of the applied field into the effective field

expression. Considering the head pole as the infinite cylinder represented in Figure
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Figure 5.22: Configuration of the upper pole simulation in the TEz mode. Only the
zoomed image of the upper pole is defined in the simulation. The excitation is applied
uniformly as indicated by Happ.

5.23, the demagnetising energy can be expressed as

Edemag =
µ0

2
(NxM

2
x + NyM

2
y + NzM

2
z ) (5.31)

where due to the cylindrical geometry and orientation in the z direction, Nx = Ny = 1/2

and Nz = 0. Then

Edemag =
µ0

2

(

M2
x

2
+

M2
y

2

)

(5.32)

The applied energy can be expressed as

Eh = −µ0MHapp (5.33)

where Happ = Hzk, then

Eh = −µ0MzHz (5.34)

Now, considering the total free energy as the applied and demagnetising field contri-

butions

E(M) =
µ0

2

(

M2
x

2
+

M2
y

2

)

− µ0MzHz (5.35)
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Figure 5.23: Infinite cylinder geometry used to justify the way in which the demag-
netising field is included in the simulation of the the upper pole simulation in the TEz

mode.

or by normalising by µ0Ms

Ê(m) =
1

4
(m2

x + m2
y) − mzhz (5.36)

Since m2
x + m2

y + m2
z = 1, then

Ê(m) =
1

4
(1 − m2

z) − mzhz (5.37)

which concludes with effective field expression as

heff = − ∂Ê
∂m

=
(mz

2
+ hz

)

k (5.38)

The magnetic fields and the magnetisation were evaluated at the center of the head

pole. Figure 5.24(a) shows that eddy currents produce opposing fields to the applied

field that increase the time taken to achieve magnetisation equilibrium (minimum en-

ergy state), causing a 0.13ns delay in the switching time of the magnetisation and

therefore of the head, as shown in Figure 5.24(b). The expanded plot in Figure 5.24(a)
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Figure 5.24: Eddy current effect at the head pole. (a) Applied field and corresponding
eddy current field. (b) Out of plane magnetisation versus time showing a 0.13ns delay
in switching due to eddy current fields.
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Figure 5.25: Eddy current effect at the head pole. (a) Contour and arrow plot of the
current density (A/m2) at 0.02ns. (b) Magnetisation precession with (dashed plot) and
without (solid plot) eddy current fields.
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represents eddy current field due to ∂M/∂t which is negligible. Figure 5.25(a) shows

the current density across the head pole, its distribution agrees with the theory of

eddy currents studied in Chapter 2. The eddy current fields introduce a delay in the

switching of the magnetisation and also modify its precession as can be seen in Figure

5.25(b).
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5.7 Summary

Code has been written in Matlab to fully implement the FDTD algorithm in two di-

mensions (transverse magnetic TMz, and transverse electric TEz modes). A perfectly

matched layer (PML) has been implemented to terminate the simulation space and

attenuate outgoing waves with negligible reflections. The correct implementation of

current sources has been described. The propagation of electromagnetic waves origi-

nated from current sources and its associate phenomena, such as wave reflection, wave

penetration, skin depth, etc. have been studied and observed and it is in agreement

with theorical computations.

The extended FDTD method with inclusion of the dynamic model of the magnetisation

precession has been implemented. To verify the performance of the algorithm, FDTD

simulations of a block of material having non-linear properties have been carried out.

The precession of the magnetisation has been observed and as predicted by the theory

the final magnetisation was aligned with applied field after a period of precession around

it.

Two-dimensional TMz and TEz simulations of an actual head geometry have been

carried out. The TMz simulation described the cross sectional area of the head and

was aimed to study field distributions, field rise times and inductance figures. It was

observed a delay in the formation of the write field when the magnetisation is considered

compared with the simulation of linear materials. The magnetic field distribution

near the gap region showed that the field strength is smaller and the internal field

concentrates on the head corners which affects the stability of the extended method.

Also, higher recording field gradients are observed in the pole corner regions with the

inclusion of the magnetic details of the core material. The rise time of the computed

mmf is in agreement with the time constant obtained by experimentation in Chapter

6. Inductance figures have been computed for both linear and non-linear materials,
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the results were in agreement with the inductance of the head that was measured in

Chapter 6.

The TEz mode simulation focused on the upper pole of the head and was aimed to

study the effect of eddy currents. It was observed that eddy currents produce opposing

fields to the applied field that increase the time towards magnetisation equilibrium. A

delay of 0.13ns in the switching time of the magnetisation was observed for one of the

head structures considered in this work. The eddy current density distribution was

plotted. It was observed that eddy currents introduce a delay in the switching time of

the magnetisation.



Chapter 6

Thin-Film Heads Measurements

6.1 Introduction

This chapter is intended to study the losses in recording thin-film heads, particularly

on those losses with magnetic origin. Considering the performance of the head, a

magnetic field excitation H originated by the current flowing through the coil generates

a magnetic flux φ that is proportional to the magnetic flux density B. If the head is

considered as the simple system represented in Figure 6.1, its response is described by

a permeability function µ which contains information on the magnetic losses in the

system (Engstrom, 1984).

The equivalent impedance of a magnetic head is typically defined as a pure inductor plus

the effects of the coil resistance, capacitance and inductance (see Figure 6.2(a)). The

pure inductor is related to the head magnetic material whereas the rest of components

are originated in the wires and contacts. An inductor is defined as the circuit or part

of a circuit that has the properties of inductance. In magnetic terms, the inductance

can be defined as the ratio of the magnetic flux φ to the current i.

L =
∂φ(µ)

∂i
(6.1)

193
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Figure 6.1: System representation of a recording thin-film head. The transfer function
of the system is defined by a permeability funcion µ.

Since the inductance is related to the permeability function µ through the magnetic

flux φ, it allows the quantification of magnetic losses in the system. In electrical terms,

the inductance is defined as the imaginary part of the impedance divided by the angular

frequency ω

L =
Im{Z}

ω
(6.2)

thus it is a measurable parameter. The impedances of actual heads will be measured

and from them inductance figures will be obtained to allow quantification of the mag-

netic losses in the heads.

Magnetic losses are mainly due to domain wall motion and rotational magnetisation.

These two phenomena are described by several parameters, e.g. time constants, which

are related to the material the head is made of. The problem now lies in deriving an

expression that relates the inductance to the parameters that describe the magnetic

losses. This expression can then be used to estimate the value of the important pa-

rameters that describe the losses from the measured value of the inductance of actual

heads.

As mentioned before, this chapter focuses on the quantification of magnetic losses.

This chapter also includes the study of the physical geometry and materials of the

heads which were used in Chapter 5 to specify the head dimensions and materials for
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Figure 6.2: Example of equivalent circuit for impedance measurements: (a) equivalent
electrical circuit with lumped elements, R=50Ω, L=60nH and C=5.5pF; (b) magnitude
of the impedance (Ω) of the equivalent circuit as a function of the frequency (MHz).

the FDTD simulation. Thus, the first part of this chapter presents Scanning Electron

Microscope (SEM) analysis of two thin-film commercial heads. These images were

used to obtain actual dimensions and material composition of the different parts of the

heads. This is followed by the derivation of an expression for the head inductance as

a function of the time constants for domain wall motion and rotational magnetisation.

Then the experimental impedance measurements are addressed, first with a review of

all the equipment needed to perform the measurement followed by the procedure and

results of the measurements. The final part of the chapter deals with the estimation of

the time constants for rotational magnetisation and domain wall motion using a least

squares fit to the measured inductances.
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6.2 The Heads

An initial set of 587 heads from 38 different batches dating from 1996 to 2005 was

available to make a study of impedance characteristics. These were classed per batch

and year of manufacturing. For every batch, a study of the geometry of the contact

pads was carried out to select a subset with similar separation between tracks allowing

measurement with a single probe, repeated batches from the same manufacturer and

year were discarded. The initial set was reduced in this way to 7 batches and 93

heads, the most abundant separation between tracks in the contact pads was roughly

1.5mm. The impedance of one head per batch was measured and stored in a file for

later computations. Based on the fact that they all had similar impedance figures and

selecting an old and a modern head, the final set was reduced to only two batches.

These two were manufactured by Seagate in 1997 and 2005 respectively. A complete

study of the geometry and head materials was carried out over the two selected batches.

For simplicity, in this text the heads belonging to the batch manufactured in 1997 will

be denoted as head A whereas the heads from the 2005 batch will be denoted as head

B.

The end view image of the head is defined as seen from the disk surface. The side view

of the head is that corresponding to the cross section at the center of symetry of both

thin films. The top view of the head is defined as seen from a plane parallel to both

films and situated on the same side as the upper film. Figure 6.3 shows diagrams of

typical end and side views with comon names of dimensions.

By simple observation with an optical microscope, it is possible to observe the top and

end views of a given head. Figure 6.4 shows a top view image of head A where the coil

and other metal contacts are clearly visible. However, as the resolution of this kind of

optical microscope image does not allow accurate determination of head dimensions,

a scanning electron microscope (SEM) was used to accurately estimate the geometry
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Figure 6.3: Diagram plot of a magnetic head illustrating the names of the most common
dimensions.

Figure 6.4: Microscopic detail of an actual head (top view). The coil is clearly visible.
End and side view for cross section are indicated by arrows.
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Figure 6.5: End view of head A under an electronic microscope. (a) Difference in thin
film width detail and (b) gap region.

of the heads. Without inflicting permanent damage to the head it is only possible to

observe the end view of the head using the SEM. Top view images can not be taken

because the head is coated with a protective layer that prevented using the SEM to

study the poles. Figure 6.5 shows end views with different magnification of head A.

Front gap height and lower and upper thin film width and thicknesses can be obtained

from this image (see Figure 6.3). These are shown in Table 6.1. In Figure 6.5(a) the

difference in width of both upper and lower films is easily observable. Prior to using

the sample in the electron microscope, a 5nm gold coating was applied and connected

to a ground plane to avoid electrostatic charge.

Lower and upper thin film and gap lengths, back gap height, number of turns, coil

cross-sectional area, and some other parameters can be obtained from a cross sectional

image of the head (side view). In order to obtain a side view image, half of the head

was cut out and therefore the head became unusable. The head sample was placed

side down on a 2.5cm resin deposition cylinder, filled and left overnight to dry off.

Special care was taken when pouring the resin to avoid any displacement of the sample

from its vertical position. The sample was then polished with sand paper until the

desired head section was visible. Special care was taken at this stage to stop polishing

at or near the middle of the head and not pass through it. The final stage consisted

of smoothing the surface by polishing with a fine diamond disk. Figure 6.6 shows an

electron microscope image of head A’s cross-section with two different magnifications.
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Figure 6.6: Cross-sectional side view of head A. Complete turns of the coil are noticed
in the low magnification image. Clearly head A is a 16 turn head.

In the low magnification image it is possible to observe the complete turns and some

metallic contacts. Images in Figures 6.5 and 6.6 are scaled therefore they allow the

estimation of the actual dimensions of the head.

The same experimental procedure was applied to head B. Figures 6.7 and 6.8 show the

end and cross-section images of the head respectively. The technological advances in

eight years are noticed in the overall dimensions. A comparison between Figures 6.6

and 6.8 shows that head B is approximately 4 times smaller than head A (see Table

6.1).

INCA software from Oxford Instruments was used to study the material of the head’s

cross-section. The electronic microscope collects and analyses X-rays emitted from the

sample therefore it is possible to display them as an X-ray spectrum. For the purpose

of this work, four regions were analysed. These were the coils, the thin films, and the

insulation region to the interior and the exterior of the head. The analysis indicated

that thin-films are made of NiFe, coil is made of Copper and the insulation layers are
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Figure 6.7: SEM images of end view of head B under an electronic microscope with
detail of thin film width and gap region.

Figure 6.8: Cross-section side view of head B. Clearly head B is a 6 turn head.
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Table 6.1: Dimension comparison between the two studied heads. The cross-section of
the head represents the x-y plane. Gap height and film thicknesses are taken in the y

direction, the overall length is taken in the x direction and the bottom and top film
widths are taken in the z direction.

Head A Head B
Number of turns 16 6
Front gap height 450nm 100nm
Lower film length 60µm 20µm
Film thickness 4.5µm 1.2µm
Bottom film width 165µm 60µm
Top film width (gap region) 9µm 200nm

made of carbon.

6.3 The Resistance-Reluctance Model

In order to obtain an expression linking the inductance of the head to the time constants

of the rotational magnetisation and the domain wall motion the resistance-reluctance

model, introduced in Chapter 2, will be used. This model is based on the analogy

between electric and magnetic circuits. Figure 6.9(a) shows an electric circuit with a

voltage source and a resistive element. The relationship between current and voltage

satisfies Ohm’s law given by

v(t) = i(t)R (6.3)

where v(t) represents the electric potential difference, expressed in Volts, i(t) is the

electric current, expressed in Amperes, and R the electric resistance, expressed in

Ohms.

When the equivalent magnetic circuit of Figure 6.9(b) is considered, Ohm’s law becomes

Ψ(t) = φ(t)R (6.4)
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Figure 6.9: Analogy between an electric circuit and a magnetic circuit: (a) representa-
tion of an electric circuit with an electric voltage source, current and resistance, and (b)
representation of the analogue circuit in the magnetic domain with a magnetic source,
magnetic flux and reluctance.

now, Ψ is the magnetic potential difference, expressed in ampere-turns, φ is the mag-

netic flux, expressed in weber, and R is the reluctance, expressed in Henry−1.

The electric resistance of a given material is defined as

R =
l

σA
(6.5)

where l and A represent the closed path length and the area of the material the electric

current is flowing in, and σ represents the electrical conductivity of the material.

In the same manner, the magnetic reluctance is defined as

R =
l

µ0µrA
(6.6)

again, l and A represent the closed path length and the area of the material the flux

is flowing through, and µ = µ0µr is the permeability. Equations (6.5) and (6.6) reflect

the similarities between the reluctance and resistance of a given material in the electric

and magnetic domains.
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For linear systems the relation expressed in equation (6.4) can be extended to the

frequency domain by taking the Fourier transform

Ψ(jω) = Φ(jω)Zm(jω) (6.7)

in which Zm is the complex magnetic impedance given by

Zm(jω) =
l

µ0µr(jω)A
(6.8)

Its magnitude |Zm| is expressed in Henry−1.

The interaction between the electric and magnetic domains in the time domain is from

Gauss’ and Faraday’s laws:

Ψ(t) = Ni(t) (6.9)

v(t) = N
∂φ(t)

∂t
(6.10)

and in the frequency domain by taking the Fourier transform:

Ψ(jω) = NI(jω) (6.11)

V (jω) = jωNΦ(jω) (6.12)

where N is the number of turns.

The relation between electrical impedance and magnetic impedance can be derived by

substituting Ψ(jω) and Φ(jω) form equations (6.11) and (6.12) into equation (6.7).

Thus

Ze(jω) =
jωN2

Zm(jω)
(6.13)

This expression will be used in the following analysis.
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6.4 Equivalent Circuit of a Magnetic Impedance

When analysing a circuit containing both electric and magnetic impedances, it is fre-

quently desirable to replace the magnetic impedances by their equivalent circuits in

the electric domain. Then, the constraints they impose are accounted for by simple

circuit analysis. Before defining an equivalent circuit for the magnetic impedance it

is worth studying the magnetic losses which in fact are the origin of any individual

circuital component of the equivalent circuit. Magnetic losses can be modeled by the

introduction of a complex frequency dependent relative permeability

µr(jω) = µ′

r(ω) + jµ′′

r(ω) (6.14)

Substituting equation (6.8) into (6.13) the electric impedance of a lossy conductor is

found to be

Ze(jω) = jωµ0µr(jω)N2

(

A

l

)

(6.15)

or expressed in terms of its real and imaginary parts using (6.14)

Ze(jω) = jωL(ω) + R(ω) (6.16)

where

L(ω) = µ0µ
′

r(ω)N2A

l
(6.17)

R(ω) = ωµ0µ
′′

r(ω)N2A

l
(6.18)

Equation (6.16) shows that the electrical equivalent circuit of a lossy dielectric is a

series connection of an inductance L(ω) and a resistance R(ω).

Equations (6.17) and (6.18) show that the component values of L and R are frequency

dependent and therefore can not be determined by simple circuit analysis of frequency

independent electrical component values.



CHAPTER 6. THIN-FILM HEADS MEASUREMENTS 205

In order to avoid this frequency dependence of the circuital components, it is possible to

describe the complex permeability in equation (6.14) in terms of the physical relaxation

effects of the domain wall movement and of the rotational magnetisation (Blanken and

Vlerken, 1991) as

µr(jω) =
χw

1 + jωχwτw
+

χr

1 + jωχrτr
+ 1 (6.19)

where χw and χr are the non-dimensional susceptibilities of the domain wall move-

ment and the rotational magnetisation respectively. The time constants τw and τr are

material properties and are expressed in seconds.

Substituting (6.19) in the general equation for the magnetic impedance (6.8) gives

Zm(jω) =
l

µ0A

/(

χw

1 + jωχwτw
+

χr

1 + jωχrτr
+ 1

)

(6.20)

dividing numerator and denominator by l/µ0A gives

Zm(jω) = 1

/(

χw

l
µ0A

+ jωχwτw
l

µ0A

+
χr

l
µ0A

+ jωχrτr
l

µ0A

+
1
l

µ0A

)

(6.21)

or

Zm(jω) = 1

/(

1
l

χwµ0A
+ jωτw

l
µ0A

+
1

l
χrµ0A

+ jωτr
l

µ0A

+
1
l

µ0A

)

(6.22)

by defining the magnetic reluctances R, Rw and Rr as

R =
l

µ0A
(6.23)

Rw =
R
χw

(6.24)

Rr =
R
χr

(6.25)

and the magnetic inductances Lw and Lr as

Lw = τwR (6.26)
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Figure 6.10: Equivalent circuit of a magnetic impedance: (a) in the magnetic domain
magnetic reluctances and magnetic inductances are considered; (b) in the electric do-
main electric resistances and inductances are considered.

Lr = τrR (6.27)

equation (6.22) becomes

Zm(jω) = 1

/(

1

Rw + jωLw
+

1

Rr + jωLr
+

1

R

)

(6.28)

which can be represented by the reluctance circuit of Figure 6.10(a). R is the air

reluctance of the gap, Rw and Lw represent the domain wall contribution and Rr and

Lr represent the contribution of the rotational magnetisation. The subscript m in the

impedance means that the magnetic domain is being considered.

Now, the circuital component values are frequency independent, implying that im-

plementation with simple circuital analysis in the electric domain is possible. The

reluctance values are expressed in Henry−1 and the magnetic inductance values are

expressed in Ω−1. The magnetic losses, implying power dissipation and thermal noise,

are modeled by the magnetic inductances Lw and Lr.

It must be emphasised that the magnetic inductances Lw and Lr are dependent on the
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material properties τw and τr only and not on the susceptibilities χw and χr. A change

of the susceptibility χr, e.g. caused by a change of the grain size of a polycrystalline

ferrite, changes the value of the reluctance Rr, but does not change the time constant

τr and thus does not change the value of the magnetic inductance Lr (Johnson and

Visser, 1990).

Next, application of equation (6.13) on the magnetic impedance of the circuit in Figure

6.10(a) represented mathematically by (6.28) yields

Ze(jω) = jωN2

(

1

Rw + jωLw
+

1

Rr + jωLr
+

1

R

)

(6.29)

or

Ze(jω) = 1

/(

1
jωN2

Rw

+
1

N2

Lw

)

+ 1

/(

1
jωN2

Rr

+
1

N2

Lr

)

+
jωN2

R (6.30)

which can be rewritten as

Ze(jω) = 1

/(

1

jωLw
+

1

Rw

)

+ 1

/(

1

jωLr
+

1

Rr

)

+ jωL (6.31)

with electrical parameters

L =
µ0N

2A

l
(6.32)

Lw = χwL (6.33)

Lr = χrL (6.34)

Rw =
L

τw

(6.35)

Rr =
L

τr
(6.36)
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Figure 6.10(b) shows the equivalent electrical circuit described by equation (6.31),

where L is the inductance corresponding to the winding of the coil and the electric

resistances and inductances Rw, Rr, Lw and Lr are the contribution of domain wall

motion and rotational magnetisation respectively. The magnetic circuits on one hand

and their corresponding electrical equivalent form dual circuits (Colin-Cherry, 1948).

6.5 Extension to a Magnetic Head

When a magnetic head is being considered, it is assumed that the current circulating

through the coil generates two fluxes, namely the flux through the ferrite core φcore

and the stray flux φstray. The former flows through a magnetic impedance similar to

that of Figure 6.10(a) and the latter flows through a magnetic reluctance connected

in parallel. Figure 6.11 shows the magnetic impedance equivalent dual circuits in the

magnetic and electric domains for a magnetic head. So far, wire resistance and parasitic

capacitance are not accounted for. It is this capacitance that causes the resonance in

the impedance figure. Therefore, to complete the head model in the electric domain,

the wire resistance must be connected in series and then the parasitic capacitance in

parallel to the electrical circuit of Figure 6.10(b) yielding the circuit of Figure 6.12

which is the complete electrical equivalent of a magnetic head, i.e. only the electric

domain is being considered and the constraints of the magnetic domain are accounted

for by a rearrangement of equivalent impedances. Using this equivalent circuit allows

the computation of impedance graphs like the one shown in Figure 6.13.

The physical process involved in an actual head which leads to the resonance can be

explained by looking at the simple equivalent circuit of Figure 6.2(a). The impedance

of the inductor varies as ωL thus it becomes zero at low frequencies, i.e. equals to a

short circuit and therefore only the resistor R is accounted for in the impedance figure.

As the frequency increases ωL soon becomes much larger than R and the coil behaves as
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Figure 6.11: Equivalent circuit of the magnetic impedance of a head (a) in the magnetic
domain and (b) in the electric domain. The total flux in figure (a) is the contribution
of two fluxes, the flux through the ferrite core and the stray flux.

Figure 6.12: Complete equivalent circuit of a magnetic head in the electric domain.
Wire resistance and parasitic capacitance have been added to the circuit of Figure
6.11(b) for resonance. Only the electric domain is being considered.
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Figure 6.13: Magnitude of the electrical impedance (Ω) as a function of frequency
(MHz) of a magnetic head using the equivalent circuit of Figure 6.12 and parameters
Rwire = 50Ω, Cpar = 6pF, Lstray = 10nH, L = 25nH, Lw = 6nH, Rw = 10Ω, Lr = 7nH
and Rr = 20Ω.

an ideal inductor. As the frequency rises to higher values, the parasitic capacitance of

the coil becomes important. The impedance of the capacitor is proportional to 1/ωC,

which is large for small ω. For small enough frequencies a capacitor is considered as

an open circuit and when it is connected in parallel to a load impedance, it draws

no current. But at high frequencies, due to the high impedance of the inductor, it is

easier for the current to flow through the equivalent capacitor representing the parasitic

capacitance between the turns, rather than through the inductor. Thus, the current

in the coil jumps from one turn to the other instead of going around and around.

Although the current is intended to go around the loop, it takes the easier path, the

path of least impedance. This causes the resonance observed in Figure 6.2(b) forcing

the magnitude of the impedance to have a maximum value.

The resonance frequency is that at which the impedance of a circuit is purely resistive.

When working with circuits involving parallel connections, it is preferable to work
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with admittances for simplicity of the equations which reduce to a sum of admittances.

As the admittance is the inverse of the impedance, at the resonance frequency, the

admittance is also purely resistive. The admittance of the circuit in figure 6.2(a) is

Y (jω) =
1

Z(jω)
=

1

R + jωL
+ jωC (6.37)

or expressing the series connection of the inductor and the resistor in terms of its real

and imaginary parts

Y (jω) =
R − jωL

R2 + ω2L2
+ jωC (6.38)

rearranging terms gives

Y (jω) =
R

R2 + ω2L2
+ jω

(

C +
L

R2 + ω2L2

)

(6.39)

The resonance is found at the frequency that satisfies Im{Y (jω)} = 0, that is

C +
L

R2 + ω2
0L

2
= 0 (6.40)

thus

ω0 =

√

L − R2C

L2C
(6.41)

or

f0 =
ω0

2π
=

1

2π

√

L − R2C

L2C
(6.42)

The magnitude of the admittance is given by

|Y (jω)| =
R

R2 + ω2L2
+ ω2

(

C +
L

R2 + ω2L2

)2

(6.43)

At the resonance frequency, the second term in equation (6.43) becomes zero. For

all other frequencies this term in greater than zero therefore the admittance reaches

its minimum value at the resonance frequency and in turn the impedance gets to its

maximum. For the parameter values of Figure 6.2(a) the resonance frequency given by

(6.42) is 277.1 MHz which agrees with the frequency at which Figure 6.2(b) shows the

maximum value.



CHAPTER 6. THIN-FILM HEADS MEASUREMENTS 212

6.6 Low Frequency Approximation

As discussed previously, the resonance effect introduced by the coil capacitance becomes

important at high frequencies. For all other frequencies, the capacitor can be considered

as an open circuit. From equation (6.37), it is possible to consider the capacitor as an

open circuit if the following approximation is satisfied

jωC << j Im

{

1

R + jωL

}

(6.44)

that is

jωC <<
jωL

R2 + ω2L2
(6.45)

Solving (6.45) for ω gives

ω <<

√

L − CR2

CL2
(6.46)

and applying (6.41)

ω << ω0 (6.47)

Thus as long as ω << ω0 it is possible to dismiss the resonance effect of the parasitic

capacitance and simplify the expression for the impedance to a great extent. The circuit

in Figure 6.2(a) without the equivalent capacitor of the parasitic capacitance becomes

the series connection of the inductor L and the resistor R. Hence the expression of the

impedance reduces to a sum, Z = R+ jωL. This approximation applies to all resonant

circuits where there is a capacitor in parallel to a load impedance.

The assumption of (6.47) when analysing the circuit of Figure 6.12 allows the measured

inductance to be approximated. This can be obtained by considering the impedance

of the circuit if the stray capacitance is dismissed

Z(jω) = Rwire + jω(Lstray + L) + Zw(ω) + Zr(ω) (6.48)
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where

Zw(ω) = 1

/(

1

Rw
+

1

jωLw

)

=
jωLwRw

Rw + jωLw
(6.49)

and

Zr(ω) = 1

/(

1

Rr
+

1

jωLr

)

=
jωLrRr

Rr + jωLr
(6.50)

or in terms of their real and imaginary parts

Zw(ω) =
ω2RwL2

w

R2
w + ω2L2

w

+ j
ωLwR2

w

R2
w + ω2L2

w

(6.51)

and

Zr(ω) =
ω2RrL

2
r

R2
r + ω2L2

r

+ j
ωLrR

2
r

R2
r + ω2L2

r

(6.52)

To give expressions (6.51) and (6.52) a physical meaning, it is possible to define the

time constants of the domain wall motion and the rotational magnetisation as

τw =
Lw

Rw
(6.53)

τr =
Lr

Rr
(6.54)

then (6.51) and (6.52) become

Zw(ω) =
ω2Lwτw

1 + ω2τ 2
w

+ j
ωLw

1 + ω2τ 2
w

(6.55)

Zr(ω) =
ω2Lrτr

1 + ω2τ 2
r

+ j
ωLr

1 + ω2τ 2
r

(6.56)

It is observed that both (6.55) and (6.56) have resistive and inductive parts which are

frequency dependant thus it is possible to write

Zw = Rwall(ω) + jωLwall(ω) (6.57)
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Zr = Rrot mag(ω) + jωLrot mag(ω) (6.58)

where Rwall(ω), Rrot mag(ω), Lwall(ω) and Lrot mag(ω) are

Rwall(ω) =
ω2Lwτw

1 + ω2τ 2
w

(6.59)

Rrot mag(ω) =
ω2Lrτr

1 + ω2τ 2
r

(6.60)

Lwall(ω) =
Lw

1 + ω2τ 2
w

(6.61)

Lrot mag(ω) =
Lr

1 + ω2τ 2
r

(6.62)

Substituting (6.57) and (6.58) in (6.48) gives

Z(jω) = Rwire + Rwall(ω) + Rrot mag(ω)

+jω(Lstray + L + Lwall(ω) + Lrot mag(ω)) (6.63)

being therefore

L(ω) =
∑

Li = Lstray + L + Lwall(ω) + Lrot mag(ω) (6.64)

the inductance of the equivalent circuit. Which is in agreement with (Prabhakar and

Filips, 1999)

1

ω
Im{Z(jω)} ≡ L(ω) ≃

N
∑

i=1

Li(ω) (6.65)

where Li(ω) represents the inductive contribution of domain wall movement, rotational

magnetisation, the stray reluctance and the winding itself.
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6.7 Head Saturation

This section shows a way to separate the effects of the rotational magnetisation and

domain wall motion from that of the wire itself. It can be done by saturating the head

under a strong external field. In this manner rotational magnetisation and domain wall

motion are not present.

As seen in section 3.2.1, the magnetisation M is a field quantity that defines the

magnetic flux density B as

B = µ0(H + M) (6.66)

A relation between the magnetisation M and the magnetic field strength H exists in

many materials. In diamagnetic and paramagnetic materials, this relation is usually

linear.

M = χmH (6.67)

Where χm is called the magnetic susceptibility which leads to the relative permeability

µr that defines the material. However, in ferromagnetic materials there is no one-

to-one correspondence between M and H but they are still related to one another.

This nonlinear relation is described by the hysteresis loop that describes the material.

An example of a hysteresis loop for a ferromagnetic material is shown in Figure 6.14.

Briefly, when an external field is applied to a ferromagnet, the magnetic dipoles align

themselves with the external field generating an increase in the overall magnetisation.

Even when the external field is removed, part of the alignment remains. The mate-

rial has become magnetised. There is a point to the right of the graph where further

increases in the magnetic field strength H will result in no further change in the mag-

netisation M, this condition is denoted as magnetic saturation. The magnitude of the

magnetisation when the material is saturated is called saturation magnetisation Ms. If

the magnetic field is then reduced linearly, the magnetisation follows a different curve
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Figure 6.14: Hysteresis loop for a ferromagnetic material. Ms denotes the saturation
magnetisation and Mr the remanent magnetisation.

back towards zero magnetic field strength. The magnitude of the magnetisation at this

point is denoted remanent magnetisation Mr. In an ideal hysteresis loop Ms and Mr

represent the same quantity and the backwards curve is flat.

The saturation condition involves that neither domain wall motion nor rotational mag-

netisation are present. That is, in terms of relaxation constants

χw = 0 (6.68)

χr = 0 (6.69)

Substituting (6.68) and (6.69) in (6.19) results in µr = 1 which is equivalent to having

a material with the same magnetic properties as free space. When substituted in (6.33)

and (6.34) gives

Lw = 0 (6.70)

Lr = 0 (6.71)

thus the overall impedance of inductors Lw and Lr can be considered as a short circuit

in the equivalent circuit of Figure 6.12. When a current finds a short circuit in parallel
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Figure 6.15: Equivalent circuit of a saturated magnetic head in the electric domain.
Note that there are no lumped elements related to domain wall motion or rotational
magnetisation.

with any load, it flows through the short circuit and the load has no influence in the

analysis. Therefore the circuit in Figure 6.12 under saturation conditions reduces to

Figure 6.15. Applying the low frequency approximation (6.47) allows to dismiss the

stray capacitance and to compute the impedance as

Zsat(jω) = Rwire + jω(Lstray + L) (6.72)

where the subscript sat means that the head is saturated. The procedure of saturating

the head in order to separate magnetic and electric losses was introduced in section

6.1. By subtracting the saturated impedance in (6.72) from the unsaturated one in

(6.63) gives

Z(jω) − Zsat(jω) = Rwall(ω) + Rrot mag(ω)

+jω(Lwall(ω) + Lrot mag(ω)) (6.73)

where the contribution of domain wall motion and rotational magnetisation are isolated

from the overall impedance. This allows, for example, by measurement of saturated and

unsaturated inductances of the same head the estimation of the relaxation constants

χw and χr.
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6.8 Impedance Measurements

The impedance is defined as the total opposition that a device or circuit offers to

the flow of an alternating current at a given frequency. It is represented as a complex

quantity that consists of a real part or resistance R, and an imaginary part or reactance

X:

Z = R + jX (6.74)

Resistance and reactance determine the magnitude and phase of the impedance through

the following relations:

|Z| =
√

R2 + X2 (6.75)

∠Z = tan−1

(

X

R

)

(6.76)

A device with a purely resistive impedance exhibits no phase shift between the voltage

and current. A component with a finite reactance induces a phase shift between the

voltage across it and the current through it. A reactive component is distinguished

by the fact that the sinusoidal voltage across the component is in quadrature with the

sinusoidal current through the component. This implies that the component alternately

absorbs energy from the circuit and then returns energy to the circuit. A pure reactance

will not dissipate any power. The reactance can be inductive or capacitive. Inductive

reactance takes the form XL = ωL whereas capacitive reactance, XC = 1/ωC. Thus

it is possible to define the inductance L and the capacitance C of a device as

L =
XL

ω
(6.77)

C =
1

XCω
(6.78)

The admittance is defined as the inverse of the impedance and its real and imaginary

parts are denoted as conductance G and susceptance B respectively. A similar analogy

to that in (6.77) and (6.78) applies to susceptance and admittance.

Y =
1

Z
= G + jB (6.79)
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The Agilent 4396B impedance analyser with a 43961A impedance test kit was used to

measure thin-film head impedances (see Figure 6.16(a)). This instrument uses an I-V

method to measure the impedance of a DUT (Device Under Test). The I-V method

computes the impedance from the measured voltage and current by application of

Ohm’s law. In consequence, the measurement error does not depend on the impedance

of the DUT because the I-V method measures the impedance directly from the ratio

of the voltage and current. This way of operation provides constant accuracy which

is the major advantage of the I-V method. The Agilent 4396B operates from 100 kHz

to 1.8 GHz with 1 mHz resolution and its integrated source provides -60 to +20 dBm

of output power with 0.1 dB resolution. The dynamic magnitude and phase accuracy

are +/-0.05 dB and +/-0.3 deg so that it can accurately measure gain and group delay

flatness.

The measurement set up of the 4396B is shown in Figure 6.17. The instrument has

three ports namely RF OUT, R and A port. The source signal is output from RF

OUT port. The R port receiver measures a voltage. The A port receiver measures the

voltage across the equivalent input impedance of the analyser R0 to obtain a current

and therefore compute the impedance of the DUT. The test signal level actually applied

to the DUT depends on the test signal level from the 4396B, the output impedance,

the insertion loss of the Impedance Test Kit, and the impedance of the DUT. The

simplified equivalent circuit of the impedance analyser is shown in Figure 6.17(b), the

output signal is divided by the input impedance R0 and the impedance of the DUT. It

is possible to use the following equation to determine the signal level actually applied

to the DUT in volts.

VDUT = VSET
ZDUT

ZDUT + R0

(6.80)

where VDUT is the voltage level that is actually applied to the DUT, VSET is the

voltage level set oscillator, ZDUT is the impedance of the DUT, and R0 is the 50Ω

input impedance. The instrument allows to introduce the desirable power level PSET
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Figure 6.16: Equipment used to measure the head impedances. (a) Impedance analyser
(Agilent 4396B), (b) Impedance test kit (Agilent 43961A), (c) DC bias power source
(Agilent E364xA), (d) high frequency coaxial cable and connectors, (e) high frequency
probe (Picoprobe 40A), (f) calibration substrate (Picoprobe CS17) and (g) position-
ing station (custom made). On the bottom of the image (h) a zoomed image of the
positioning station is shown.
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Figure 6.17: Agilent impedance analyser 4396B (a) measurement circuit and (b) test
signal level equivalent circuit.

of the RF OUT port in dBm. The output voltage level is defined as the level when the

RF OUT port is 50Ω terminated. Therefore

VSET =

√

10
PSET

10 0.001R0 (6.81)

The combination of the 4396B impedance analyser and the 43961A test kit allows to

measure the impedance of a DUT connected to the measurement port. To connect the

instrument to the contact pads of the DUT a test fixture was constructed. The fixture

used to carry out the measurements consists of a Picoprobe 40-A-GS-1500-DP high

frequency probe with a fixed pitch of 1.5mm between its differential contacts or tips,

and connected to the analyser by a high frequency 50Ω coaxial cable. The Model 40A

microwave probe provides direct viewing of the probe tips for accurate positioning. The

probe with its reliable low resistance contact is one of the key features to providing

highly repeatable measurements. It comes with spring loaded tips which ensure a

reliable contact to the probing surface. The configuration of the tip footprints is the
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Figure 6.18: Schematic drawing of the Picoprobe 40A microwave probe used for mea-
surement of thin-film head imedances. (a) Top view, (b) side view and (c) detail of the
probe tip.

typical ground-signal (GS), as shown in Figure 6.18(b). Connection to the Model 40A

is through a female SMA connector. The probe operates from DC to 40GHz, it has 1.6

dB typical insertion loss and the return loss is less than 30dB to 4GHz. Figure 6.16(e)

shows an actual image of the 40A probe.

In order to complete the measurement equipment, it was necessary to construct a

positioning station that allows the probe to make contact with the DUT. The station

used was custom made and allows movement in three dimensions, as shown by Figure

6.19. The main part of the station is a 25mm travel translation stage attached to

a 300x300mm breadboard through a right angle bracket, to allow movement in the

z direction. The probe is then attached to the positioner through another bracket.

The movement in the x and y directions is possible through two PVC slotted boards

and a set of screws. The upper board is carved with the dimensions of the calibration

substrate to avoid handling and for easy calibration. The contact pads of the heads are

attached to the upper board using commercial two side tape. The heads are saturated

by applying an external strong magnetic field (3000 - 7000 Oe) from a permanent

magnet.
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Figure 6.19: Detail of the custom made positioner used for measurement. A 25mm
travel translation stage allows movement in the z direction and two custom made PVC
boards allow movement in the x and y directions.
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Measurement errors in network analysis can be separated into two categories: ran-

dom and systematic errors. Random errors are non-repeatable measurement variations

and are usually unpredictable. Systematic errors on the other hand, are repeatable

measurement variations which include mismatch and leakage signals in the test setup,

isolation characteristics between the reference and test signal paths, and system fre-

quency response. In most microwave measurements, systematic errors are the most

significant source of measurement uncertainty. The process that mathematically com-

pensates for the systematic errors in the measurement system is denoted as calibration.

To calibrate an instrument is to define a calibration plane, at which the specific mea-

surement accuracy can be obtained. Standard devices, typically open, short and load,

must be connected to the instrument at the calibration plane then the instrument is

adjusted mathematically so that it measures within its specified accuracy. Each stan-

dard has a precisely known or predictable magnitude and phase response as a function

of frequency. The Picoprobe’s calibration substrate was used to calibrate the mea-

surement system at the pole tips of the probe. This means that the calibration plane

is at the pole tips which are the end point of the measurement system thus no other

kind of compensation is needed to improve the accuracy in the measurement. As this

calibration kit substrate is not from the same manufacturer as the impedance analyser

the compensation parameters were not preprogrammed in the instrument and were

programmed and stored in the instrument’s memory for further use. The calibration

procefure was repeated each time a measurement parameter (e.g. oscillator signal level)

was changed.

The impedance analyser displays the information in several ways such as real part of

the impedance, imaginary part of the impedance, magnitude of the impedance, phase

of the impedance, the corresponding admittance plots, Q factor, inductive reactance,

capacitive reactance, reflection coefficient, and many others. As they are all based on

mathematical computations there is only need to know and store a couple of measured

data that completely define the impedance. Then, only the magnitude and phase of
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Figure 6.20: Magnitude of the impedance (Ω) of a head with different RF OUT port
power levels. (a) PSET = 0dBm and (b) PSET = −60dBm. With low power level the
measurement becomes noisy.

the impedance were saved to a file for each measurement. If needed, the remaining

displayed data can be obtained from the stored impedance by mathematical computa-

tion.

Prior to measurement, there were several configuration parameters to set up in the

analyser. First, the range of frequencies was set from 100 kHz to 1GHz which is a

range large enough that covers sufficient bandwidth to allow the observation of the

resonance introduced by the parasitics at high frequencies and the linear behavior of

the head at low frequencies. The number of points represents the number of samples

uniformly distributed within the frequency range. It was chosen to be 512. The decision

was made in consequence of bearing in mind that for some cases only the samples at low

frequencies will be considered and the remaining samples will be dismissed. Another

important setting is the power level PSET of the RF OUT port. If it is too large, the

head may become saturated at the poles. If it is too small, the magnetisation of the

head which is initially aligned with its easy direction will not be switched and therefore

no magnetisation will contribute to the measurement. Also with a low power level there
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Figure 6.21: Write current dependence of the yoke inductance, (Prabhakar and Filips,
1999).

will not be enough resolution, the measurement becomes noisy as shown in Figure 6.20.

In consequence, the power level must be a compromise between three factors namely

it has to be high enough to provide sufficient current to switch the magnetisation and

to obtain enough resolution and at the same time small enough to avoid saturation.

One possible way of studying the effect of the applied signal power and hence current

is to measure the head inductance as a function of increasing DC current and at a

relatively low frequency. As the current increases and the head becomes saturated,

the inductance switches value to indicate head saturation. Figure 6.21 shows a typical

inductance vs DC current response of a magnetic thin-film head, (Prabhakar and Filips,

1999). The saturation point of this particular head is 30mA.

With the measurement equipment available it is possible to apply a maximum DC

bias current of 20 mA to carry out a similar measurement. For higher currents the

equipment may be damaged. The procedure involves measuring the inductance of

heads A and B at a fixed frequency of 10MHz and varying DC currents from 0 to
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Figure 6.22: Write current dependence of the heads. (a) Head A, the shift in the
inductance values at 16mA indicates saturation. (b) Head B, saturation occurs for
currents higher than 20 mA.

20mA. The power level on the analyser was set to -15dBm which from (6.81) equals

to an AC voltage signal of approximately 40mV rms. The measured magnitude of the

impedance of the heads at 10MHz is roughly 10Ω, this means an applied AC current

of 4mA. The 4mA alternating current was added to the DC bias current supplied from

the power supply in order to obtain the inductance of the heads as a function of DC

current.

The purpose of this measurement is to ensure that the head is not saturated when

the impedance measurements are taken. Figures 6.22 (a) and (b) represent the DC

current dependence of the head inductances of heads A and B respectively. In Figure

6.22(a), it is observed that the inductance decreases as the current rises to values greater

than about 16mA. The shift in the inductance value indicates saturation near this DC

current value. On the other hand, Figure 6.22(b) does not show any dependence which

indicates that saturation occurs at higher DC bias current levels.

Coming back to the analyser settings, reasonable results were obtained by setting the

power level to 0dBm, which using (6.81) corresponds to an rms voltage of 223mV.
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(a) (b)

Figure 6.23: Magnitude and Phase of the impedance of the heads. (a) Head A and (b)
head B. The magnitude of the impedance is given in Ω and the phase in degrees.

With the smallest value of the magnitude of the impedance being approximately 10Ω,

then the current transferred to the head is about 23mA. Figure 6.22(a) indicates that

head A may be saturated at low frequencies for that current level, however, at higher

frequencies, as the impedance of the head increases and therefore the current supplied

is smaller, the head would not be saturated.

In order to obtain accurate and repeatable measurements it is mandatory to follow

always the same procedure. That is, first to set up analyser parameters, second, to

perform open short and load calibration with the calibration substrate and finally to

take the appropriate measurement. For every change in the analyser settings, frequency

range or power level, a new calibration must be performed in order to maintain the

accuracy of the measurement. After the calibration, the calibration plane is defined at

the microwave probe tips and therefore all kind of systematic errors are compensated

for.

Measurements of the magnitude and phase of the impedance were taken on heads A and

B. Figure 6.23(a) shows the magnitude and phase of the impedance of head A which

reaches resonance at approximately 210MHz. The DC magnitude of the impedance is
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Figure 6.24: Saturation of the heads. Due to magnetic domains it is easier to saturate
the heads in the z direction, i.e. direction of easy magnetisation. (a) Position of the
head in the correct direction inside the magnet and (b) Poles on a single magnetic
domain.

20Ω whereas the magnitude when the head reaches resonance is 200Ω. Figure 6.23(b)

shows the magnitude and phase of the impedance of head B. Advances in technology

are noticed in a higher resonance point, approximately 500MHz, which in turn gives a

larger operating frequency. The smallest magnitude of the impedance is 10Ω and the

largest 250Ω at the DC value and resonance point respectively.

Further measurements on the same heads were taken under the effect of an external

magnetic field to obtain the impedance of the heads when the magnetisation is satu-

rated and only the effect of the coil is present. In order to saturate the magnetisation,

the heads were introduced between the poles of a permanent magnet which generates

a strong field greater than 3000Oe in the z direction (see Figure 6.24). It is important

to place the head such that the saturation is in the z direction, Figure 6.25(a). This is

the easy direction for saturation due to the magnetic domains and therefore the more

efficient way to saturate the head. The poles on a single domain are at the points

marked as P1 and P2 on Figure 6.24(b). Figures 6.25 (a) and (b) show the magnitude

and phase of the saturated heads A and B respectively.
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(a) (b)

Figure 6.25: Magnitude and Phase of the impedance of the heads under the effect of
an external magnetic field for saturation purposes. (a) Head A and (b) head B. The
magnitude of the impedance is given in Ω and the phase in degrees.

6.9 Estimation of Magnetic Time Constants

In this section the magnetic time constants for the rotational magnetisation and domain

wall motion will be obtained for heads A and B by fitting of the head core inductance

expressions derived through sections 6.3 to 6.7 to the measured core inductances.

Given an actual measurement y(x) and knowing the equation f(x, a1, ..., an) of unknown

parameters a1 to an that has to be satisfied by that measurement, the general graph

fitting problem consists of finding a set of parameters a1 to an such that

y(x) = f(x, a1, ..., an) + S (6.82)

where x represents the independent variable, a1 to an are the parameters to be adjusted

and S is the error or the difference between the actual and the estimated value. A good

fit will minimize the error to a certain value of accuracy. The least squares method,

Bevington (1969), estimates the error using the sum square error equation

S =
n
∑

i=1

(yi(xi) − f(xi, a1, ..., an))2 (6.83)
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and then adjusts the parameters a1 to an to minimize the error. The goodness of the

fit is generally expressed in terms of the variance which is a measure that indicates

how the actual values are spread around the estimated values.

This work focuses on magnetic losses thus the fitting problem involves inductance

figures and parameters related to rotational magnetisation and domain wall motion.

The impedance of a magnetic circuit is usually represented by a resistor-inductor series

connection Z = R + jωL. In this manner, the series inductance of a magnetic circuit

is by definition the imaginary part of the impedance divided by the angular frequency

L =
1

ω
Im{Z} (6.84)

The imaginary part of the impedance is obtained from the measured magnitude and

phase of the impedance as

Z = |Z|ej∠Z = Re{Z} + jIm{Z} (6.85)

In Figure 6.26 the inductance of head A for the saturated and unsaturated states are

shown. As predicted in (6.72) the inductance of the saturated head has almost constant

value whereas the inductance of the unsaturated head computed as (6.64) is frequency

dependant. The frequency range has been reduced to a region from DC to the frequency

where the inductance of the unsaturated head ceases to be approximately flat, from this

point onwards the low frequency approximation (6.47) is no longer valid and resonant

effects introduced by the parasitic capacitance become important. Figure 6.26 also

shows the difference between the unsaturated and the saturated inductances which

from equation (6.73) corresponds to the inductance of the magnetic core material and

accounts for the rotational magnetisation and domain wall motion. Equation (6.73)

represents the impedance of the core material. The inductance of the core is then

Lcore = Lwall(ω) + Lrot(ω) =
Lw

1 + ω2τ 2
w

+
Lr

1 + ω2τ 2
r

(6.86)
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Figure 6.26: Saturated (dashed plot) and unsaturated (continuous plot) inductance of
head A. The dotted plot indicates the difference between the two inductances.
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Figure 6.27: Fit of the inductance difference for the material of head A.

Least squares fitting was made over the difference of the unsaturated and the saturated

inductances of head A using equation (6.86) for Lw, Lr, τw and τr. The fitting rep-

resented in Figure 6.27 gave the parameters of (6.86) as Lw = 27.1nH, Lr = 74.8nH,

τw = 12.2ns and τr = 1.42ns. The standard deviation of the fiting was σ = 1.13e − 9.

The same estimation of parameters was carried out for head B. First the inductance

of the saturated head was subtracted from the inductance of the unsaturated head to

obtain the inductance of the material as shown in Figure 6.28. Then the parameters

of equation (6.86) were adjusted to give the least squares fitting shown in Figure 6.29.

These are Lw = 1.90nH, Lr = 3.56nH, τw = 4.54ns and τr = 0.10ns. The standard

deviation of the fiting was σ = 1.29e − 9.

The equivalent inductances and time constants due to domain wall and domain rotation

are shown in table 6.2. These values were obtained by least square fitting and agree
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Figure 6.28: Saturated (dashed plot) and unsaturated (continuous plot) inductance of
head B. The dotted plot indicates the difference between the two inductances.
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Figure 6.29: Fit of the inductance difference for the material of head B.

with the results of the FDTD simulations carried out in Chapter 5 and with theoretical

predictions such as those in Soohoo (1982), Sherrima and Soohoo (1986) and Engstrom

(1984).

Table 6.2: Domain wall and rotational magnetisation parameters that give the best
least square fitting to the inductance of the head core for the two studied heads.

Head A Head B
Lw 27.1nH 1.90nH
Lr 74.8nH 3.56nH
τw 12.2ns 4.54ns
τr 1.42ns 0.10ns
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6.10 Summary

A study of the physical dimensions of two different heads manufactured in an eight

year difference period was carried out by polishing off half of the head and then using

electron microscope imaging. As initially thought, the advances in technology during an

eight year period are reflected in the overall dimensions. Electron microscope analysis

of the material showed that the material of the thin films and coils were a NiFe alloy

and copper respectively.

A study of the equivalent circuits that best describe the magnetic impedance of a

thin-film head was carried out leading to an equivalent circuit model that includes the

relaxation effects of the domain wall motion and the rotational magnetisation. Satura-

tion condition was considered in the model with the conclusion that at low frequencies

the inductance of the core material can be expressed as the sum of the inductances

originated by the domain wall motion and the rotational magnetisation. To focus and

study the core impedance, the heads were saturated to reveal the impedance due to the

coil only. By substracting the saturated inductance, i.e fixed non magnetic material

related parameters, from the unsaturated inductance, i.e. the one that contains all the

information of non magnetic material related and magnetic material related parame-

ters, it is possible to isolate such effects as the domain wall motion and the rotational

magnetisation.

The magnitude and phase of the impedance were measured and stored for the two

studied heads. Resonance was observed at a frequency of 210MHz for head A and at a

frequency of 500MHz for head B. The magnitude and phase of the impedance for the

same heads were measured under the effect of an external saturating magnetic field of

magnitude higher than 3000Oe for saturation purposes. From the measured values of

impedance at saturated and unsaturated states of the heads, the inductance of the core

material for both heads was evaluated. The relaxation parameters from the equivalent
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circuit, equation (6.86), were then adjusted to give the best least squares fit to the

inductance computed from the measured data leading to the parameter values shown

in Table 6.2 which are in agreement with perviously published work (Soohoo, 1982;

Sherrima and Soohoo, 1986; Engstrom, 1984).



Chapter 7

Discussion and conclusion

Recent advances in recording technologies have allowed an increase in area storage den-

sities of hard disk drives in order to meet the ever increasing demands for information

storage. Magnetic recording research and development efforts will continue to be aimed

toward achieving higher areal density. One of the ways in which this is accomplished is

through the minituarisation of the recording heads. The dimensions of magnetic head

elements have decreased to the point where the micromagnetic switching mechanisms

of domain wall motion and domain rotation and their associated flux propagation and

reversal processes have become critical. Further advances in head and media materials

and design will be assisted by a better understanding of, and ability to control, domain

level phenomena associated with the micromagnetic behaviour of the head materials.

Theoretical and numerical studies tend to separate the micromagnetics from the elec-

tromagnetic aspects of the head during switching and hence ignore the lossy nature of

recording head material. So far, models of thin-film recording heads can be classed into

two categories. Dynamic models of thin-film recording heads that utilise full micromag-

netic description of the magnetic material but neglect eddy current effects due to the

absence of electromagnetic formulation in the models. On the other hand, static and

steady state models are either time independent or limited in the frequency domain to

238
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the fundamental response, and ignore the magnetic detail of the head material. These

two approaches have their limitations and therefore the combination of the solution to

Maxwell’s equations for the electromagnetic fields with models of the magnetic material

to accurately simulate the reversal process in magnetic heads is needed.

7.1 Conclusion

This project aimed to develop a numerical simulation approach that simultaneously

incorporates the fundamental micromagnetic and electromagnetic details of magnetic

materials to study the fast switching process in soft magnetic materials in general,

and in thin-film inductive writers in particular. This simulation approach was pri-

marily intended to provide a transient description of the micromagnetic behaviour of

lossy magnetic material in the presence of interacting electromagnetic fields in practi-

cal structures using a unified approach. The intention was therefore not to produce or

develop a pure micromagnetic technique for studying hysteresis and granular material

as it is more the domain of pure micromagnetic techniques. Nevertheless, the pre-

sented approach can be used to study the hysteresis properties of continuous magnetic

material. This project also aimed at establishing an impedance measurement set up

to characterise losses in magnetic recording heads, and to allow comparison with the

simulations. The simulations and experimental measurements results would help to

determine the factors that limit the switching times in magnetic heads and predict the

writing performance of magnetic storage systems.

This project successfully met all its original objectives. A numerical technique for

simulating the dynamic behaviour of magnetic materials and devices has been devel-

oped, and applied to study the subnanosecond switching process in thin-film recording

heads. This technique naturally combines the fundamental equation of magnetisation

motion with the solution of Maxwell’s equations using the Finite- Difference Time-
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Domain method, with the unique feature that the micromagnetic (including exchange

and anisotropy effects) and electromagnetic (electric and magnetic fields due to charges

and currents) descriptions of simulated structures are produced simultaneously. Using

this technique will help to design and study complete magnetic devices without ignor-

ing the interaction between the magnetic material and other dielectric and conductive

layers in the structure, which is important at high frequencies. Moreover, this feature

simplifies the magnetostatic computations which are inherently demanding in numeri-

cal micromagnetics, thus extending existing work in micromagnetics to more complex

geometries and applications.

Two-dimensional simulations of complete commercial head structures (including the

coils) and pole regions were carried out under picosecond excitations and predicted

parameters such as gap field distributions, gap field rise times, and core inductances

which are important for head designers. Predicted gap field distributions (Figure 5.18)

showed an accurate field description near the head poles when compared against simple

head models, e.g. Karlqvist. The predicted gap field rise time computed from the mmf

in the gap region (Figure 5.16) showed that more than 0.5ns are required to switch the

magnetisation and reach equilibrium which is in agreement with the experimental mea-

surements obtained in Chapter 6 where the time constant for rotational magnetisation

for this particular head was τr = 1.42ns (Table 6.2, head A). It was also observed a

smaller write field when the LLG equation is considered compared to the linear model

(Figure 5.17) which is in agreement with theoretical predictions as the switching of

the magnetisation is a consuming process and therefore it reduces the efficiency of the

head (Jones, 1978; Kittel, 1949). The predicted recorded gap field at a plane parallel to

the disk surface (Figure 5.20) showed higher field gradients in the pole corner regions

with the inclusion of the magnetisation when compared with the linear model which

according to the writing theory discussed in Chapter 2 implies that shorter transition

lengths are recorded than predicted by other models that ignore the magnetic detail of

the core material.
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Moreover, the role of eddy currents on magnetisation rotation times was elucidated. It

was observed that eddy currents produce opposing fields to the applied field (Figure

5.24(a)) that increase the time taken to achieve magnetisation equilibrium (Park and

Won, 2006). The delay in the switching time and therefore in the head due to these

opposing fields was found to be 0.13ns (Figure 5.24(b)), this agrees with previous

findings such as Takano et al. (2007) where a delay in the head field response due

to eddy currents was found. It was also found that these opposing fields modify the

precession of the magnetisation if they are taken into account when solving the LLG

equation (Figure 5.25(b)). The predicted current density distribution across the head

pole was in the form of circulating currents (Figure 5.25(a)) which agrees with the eddy

currents and dielectric loss theory discussed in Chapter 2.

A high precision, high bandwidth impedance measurement set up was established to

characterise losses in magnetic heads. Fittings of measured core inductances to a pro-

posed equivalent circuit model of the core’s relaxation processes revealed the switching

times of heads. The measured time constants due to domain rotation and domain wall

motion were found to be τr = 1.42ns and τw = 12.2ns respectively for head A, and

τr = 0.10ns and τw = 4.54ns for head B. These values agree with the existence of fast

and slow relaxation processes stated in Engstrom (1984) and Sherrima and Soohoo

(1986), and they show an improvement in technology when compared to previously

published work, in Soohoo (1982) τr and τw were found to be 1ns and 170ns respec-

tively. The numerical computations revealed a switching requirement larger than 0.5ns

which agrees with the measured value of τr for head A.
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7.2 Summary of Contributions

An extended FDTD method for modelling of non-linear magnetic materials has been

developed by including the solution to the Landau-Lifshitz-Gilbert (LLG) equation in

the FDTD formulation. General expression relating field propagation to the rotational

magnetisation have been given to allow the implementation of the extended method.

So far, FDTD approximations with magnetic description of materials were limited

to small signal approximations or with no damping involved and limited to simple

magnetic structures.

The solution of the LLG equation describes the precessional motion of the magenti-

sation vectors in a magnetic material under the influence of an effective field. Hence,

this formulation allows the inclusion of the anisotropy and exchange fields (which had

not been accounted for so far) as effective fields in the model, as well as the electro-

magnetic fields due to magnetic and/or electric charges and currents are evaluated

naturally through the solution of Maxwell’s equations. Also, analysis of the stability

of the solution of the LLG equation and treatments of boundary conditions have been

produced.

Actual commercial head structures have been simulated under picosecond excitations

using the developed extended FDTD method. These simulations combine the funda-

mental equation of magnetisation motion with the solution of Maxwell’s equations,

with the unique feature that the micromagnetic and electromagnetic descriptions of

simulated structures are produced simultaneously, this simplifies the magnetostatic

computations which are inherently demanding in numerical micromagnetics. They

also consider the effect of exchange and anisotropy fields as part of the effective field

that affects the head material.
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The outcomes of the work undertaken during the initial stage of this research were

presented under the title Dynamic Simulation of Fast Switching in Magnetic Recroding

Heads at IMST 2006 in Grenoble, France. At the time of submitting this thesis another

publication was being produced under the title Sub-Nanosecond Combined Electro-

magnetic and Micromagnetic Simulations Using The Finite-Difference Time-Domain

Method with the intention of submitting it to the IEEE Transactions on Magnetics.

7.3 Limitations and Further Work

The main concern or limitation of the extended FDTD technique is related to stability

and the time restrictions it imposses. As described in Chapter 4 the numerical disper-

sion due to the discretisation of Maxwell’s equations can lead to numerical instability

if certain constraints are not met. These are the bounds impossed by courant stability

condition which relates the time and space increments of the FDTD lattice. Thus for

very small structures, large simulation times are required.

The time increment in between consecutive iterations is directly related to the spatial

resolution of the grid in the FDTD algorithm through equation (4.52). The grid reso-

lution is determined by the most restrictive of two factors: the smallest feature in the

simulated structure or the shortest wavelength in the simulated space. In this partic-

ular case, where a magnetic head has been simulated, the very small front gap height

for the head geometry in Figure 6.3 determined a very small time increment resulting

in a large number of iterations. Thus, a small grid resolution results in a very small

time increment and therefore large simulation time (CPU time) to obtain the results of

a single simulation (TMz simulation of head A took fifty days overall). Large waiting

time requirements have made it impossible to carry out several simulations and other

tests over very small head structures.
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One possible solution to this limitation is the scaling of the head structure (Mallinson,

1996). When scaling is applied to the spatial increment in the FDTD algorithm,

the frequency and hence wavelength in the system must be changed appropriately to

maintain the accuracy of the simulation. The normal requirement is that

∆x =
λ

10
(7.1)

for the FDTD algorithm to correctly sample the propagating waves. However, in lossy

media this requirement might not be sufficient and if ∆x is fixed, then the wavelength

and hence frequency of propagating waves must be altered. This normally occurs

through modifying the frequency of the source in the FDTD simulation.

To illustrate this, consider the equation for the skin depth, δ, in a lossy medium:

δ =

√

2

ωµσ
(7.2)

where ω is the maximum or corner frequency. Scaling the spatial increment ∆x by a

factor of ’r’ requires that the frequency of the travelling wave to be altered as:

ω =
2

(rδ)2µσ
(7.3)

to maintain the same scaled skin depth, δ, in the lossy medium.

This frequency can be set through the time constant, T , of the first-order source in the

system as: T = 1/ω.

For example, consider the unscaled system with µr = 3000, σ = 1 × 107 1/Ωm, T =

20×10−12s, ω = 1/T = 5×1010rad/s and λ = 2× cc/ω = 0.04m. In this case, the skin

depth is: δ = 33nm. The choice of ∆x and hence ∆t is being determined by the skin

depth δ. For example, ∆x = 10nm and ∆t = ∆x/2cc = 0.0167fs. For settling time,

Ts ≃ 5T , then the number of time steps required is N = Ts/∆t = 6 × 106 time steps.

Now consider the scaled system where ∆x is scaled by a factor of r = 1000. In this

case, ∆x = 10µm, µr = 3000 and σ = 1 × 107 1/Ωm. To maintain the scaled skin
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depth in the medium as for the previous examples (i.e. 1000δ), then the frequency of

the propagating waves in the medium must now be:

ω =
2

(rδ)2µσ
= 49 × 103rad/s (7.4)

Hence the time constant of the source is T = 1/ω = 20 × 106s and ∆t = ∆x/2cc =

16.7fs.

For a settling time, Ts ≃ 5T , then the number of time steps required is N = Ts/∆t =

6000× 106 time steps. So although scaling increases ∆x and hence ∆t, the number of

time steps required to maintain the same (scaled) skin depth in lossy media must be

increased considerably.

It is certain that a small mistake in the computations propagates over each iteration in

time making the error grow bigger with the increasing simulation time. This problem

gets worse with a large number of iterations. From the simulation results obtained in

Chapter 5, particularly in the TMz mode simulation of the head cross section, there

have been observed stability problems. As discussed in the appropriate section, it is

quite difficult to satisfy the stability limit of the extended algorithm or even to establish

the conditions under which the algorithm is stable due to the concentration of large

amounts of the effective field at the head corners.

It is clear that future research on this matter will have to overcome the stability require-

ments impossed by equation (4.52) in order to simulate very small material structures.

An approach initially reported by (Zheng et al., 1999) provides accurate and numeri-

cally stable solutions for values of ∆t exceeding the stability limit. As this is a variant

of the FDTD method that uses an alternating direction implicit (ADI) time stepping

rather than the usual explicit used in Yee’s formulation, its implementation requires

to start from the beginning including implementation of PML absorbing boundaries,

implementation of sources, appropriate modification of space and time synchronism,

etc. Thus, it could not be done for the purpose of this research due to the lack of time.
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This approach is described in detail in Appendix B and described here as the principal

future line of research to continue with the contents of this work.

Moreover, to avoid the complicated interpolations introduced in the FDTD cell to

account for the non-staggered nature of the LLG equation, non-taggered methods could

be developed, (Hagness and Taflove, 2000; Liu, 1997) . This will significantly reduce

the complexity of the implementation of the extended algorithm.



Appendix A

Demagnetising Fields

In a magnetic material, there is no divergence of the inductionB. The latter can be

expressed as

B = µ0(H + M) (A.1)

while the condition of zero divergence is signified by

∇ · B = 0 (A.2)

Combining these two equations gives

∇ · H = −∇ · M (A.3)

In magnetic field problems it is usual to express the field in terms of the gradient of a

potential φ

H = −∇φ (A.4)

so that introduction of it into equation (A.3) produces a version of Poissons’s equation,

namely,

∇2φ = ∇ · M (A.5)
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wherein the quantity −∇ · M takes on the significance of a magnetic charge density.

Solution of Poisson’s equation takes the form

φ(r) = − 1

4π

∫

V ′

∇ · M
|r − r′|dV ′ − 1

4π

∫

A′

σm(r′)

|r − r′|dA′ (A.6)

where the first term is the potential arising from the volume charges within the magnetic

material, with the itegration taking place over all these charges, while the second term

is the potential arising from the surface charges σm(r′), with the integation taking

place over all the relevant surfaces of the material. The surface charge density can be

obtained from

σm(r′) = M · n (A.7)

where n is the outward normal to the surface.

Following from equation (A.6) the demagnetising field is

Hd(r) = − 1

4π

∫

V ′

∇ · M
|r − r′|2dV ′ +

1

4π

∫

A′

σm(r′)

|r − r′|2dA′ (A.8)

Use of the above equation in any generalised way is extremely difficult. However,

certain partirlar cases of interest in this work are now discussed.

First, consider a magnetisation which has only x components varying with the x di-

mension and giving rise to no surface charges. Then

∇ · M =
∂Mx

∂x
(A.9)

Use of this in equation (A.8) would give rise to a field having, in general, x, y and z

components. Considering only the x component yields

Hdx(x, y, z) = − 1

4π

∫ ∫ ∫

∂Mx

∂x′

(x − x′)dx′dy′dz′

|(x − x′)2 + (y − y′)2 + (z − z′)2|3/2
(A.10)

and when the transverse dimension is so large that the integration over z’ may take

place from −∞ to +∞, equation (A.10) becomes

Hdx(x, y) = − 1

2π

∫ ∫

∂Mx

∂x

(x − x′)dx′dy′

(x − x′)2 + (y − y′)2
(A.11)
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The second case occurs when there are no volume charges and only y components of

the magnetisation. Then ∂My/∂y = 0, but there are surface charges of magnitude My.

The y component of magnetic field is then, using equation (A.8),

Hdy(x, y, z) =
1

4π

∫ ∫

My
(y − y′)dx′dz′

|(x − x′)2 + (y − y′)2 + (z − z′)2|3/2
(A.12)

Again, when the z dimension is infinite, this becomes

Hdy(x, y) =
1

2π

∫

My
(y − y′)dx′

(x − x′)2 + (y − y′)2
(A.13)



Appendix B

Alternating Direction Implicit
Algorithm

Numerical stability of the FDTD algorithm requires a bounding of the time step ∆t

relative to the space increments ∆x, and ∆y as shown in equation (4.52). This is not

an inconvenience when modelling a moderate electrical size problems where a relatively

small number of time steps are required for completion of a single simulation. However,

there are some application of FDTD modelling in which the stability limit plays an

important roll. It is the case of the experiment carried out in this report. The cell

size ∆ needed to resolve the fine scale geometric detail of the head is fixed, to avoid

numerical instability, equation (4.44) fixes the time increment ∆t, to a very short value

which implies a big number of time steps to complete a single simulation.

To model these kind of structures, a different approach to FDTD must be used in the

way that permits accurate and numerically stable operation for values of ∆t exceed-

ing the stability limit. Algorithms using an alternating direction implicit (ADI) time

stepping rather than the usual explicit used in Yee’s are a very good solution to this

matter.

The approach presented here was reported by (Zheng et al., 1999) and has numerical
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stability for the general three dimensional case. Although the same Yee space lattice

as in conventional FDTD is used, the six field vector component are collocated rather

than staggered in time. In discussing the numerical formulation of this algorithm, we

assume that all of the field components are known everywhere n the lattice at time

step n and stored in the computer memory.

Unsimplified System of Time Stepping Equations

To advance a single time step from n to n + 1, two subiterations are performed, the

first from n to n + 1
2
, and the second from n + 1

2
to n + 1.

Subiteration 1: Advance the 6 field components from time step n to time step n + 1
2

Ex|
n+ 1

2

i+ 1

2
,j,k

= Ex|ni+ 1

2
,j,k

+ ∆t
2ǫ∆y

(

Hz|
n+ 1

2

i+ 1

2
,j+ 1

2
,k
− Hz|

n+ 1

2

i+ 1

2
,j− 1

2
,k

)

− ∆t
2ǫ∆z

(

Hy|ni+ 1

2
,j,k+ 1

2

− Hy|ni+ 1

2
,j,k− 1

2

) (B.1a)

Ey|
n+ 1

2

i,j+ 1

2
,k

= Ey|ni,j+ 1

2
,k

+ ∆t
2ǫ∆z

(

Hx|
n+ 1

2

i,j+ 1

2
,k+ 1

2

− Hx|
n+ 1

2

i,j+ 1

2
,k− 1

2

)

− ∆t
2ǫ∆x

(

Hz|ni+ 1

2
,j+ 1

2
,k
− Hz|ni− 1

2
,j+ 1

2
,k

) (B.1b)

Ez|
n+ 1

2

i,j,k+ 1

2

= Ez|ni,j,k+ 1

2

+ ∆t
2ǫ∆x

(

Hy|
n+ 1

2

i+ 1

2
,j,k+ 1

2

− Hy|
n+ 1

2

i− 1

2
,j,k+ 1

2

)

− ∆t
2ǫ∆y

(

Hx|ni,j+ 1

2
,k+ 1

2

− Hx|ni,j− 1

2
,k+ 1

2

) (B.1c)

Hx|
n+ 1

2

i,j+ 1

2
,k+ 1

2

= Hx|ni,j+ 1

2
,k+ 1

2

+ ∆t
2µ∆z

(

Ey|
n+ 1

2

i,j+ 1

2
,k+1

− Ey|
n+ 1

2

i,j+ 1

2
,k

)

− ∆t
2µ∆y

(

Ez|ni,j+1,k+ 1

2

− Ez|ni,j,k+ 1

2

) (B.2a)

Hy|
n+ 1

2

i+ 1

2
,j,k+ 1

2

= Hy|ni+ 1

2
,j,k+ 1

2

+ ∆t
2µ∆x

(

Ez|
n+ 1

2

i+1,j,k+ 1

2

− Ez|
n+ 1

2

i,j,k+ 1

2

)

− ∆t
2µ∆z

(

Ex|ni+ 1

2
,j,k+1

− Ex|ni+ 1

2
,j,k

) (B.2b)

Hz|
n+ 1

2

i+ 1

2
,j+ 1

2
,k

= Hz|ni+ 1

2
,j+ 1

2
,k

+ ∆t
2µ∆y

(

Ex|
n+ 1

2

i+ 1

2
,j+1,k

− Ex|
n+ 1

2

i+ 1

2
,j,k

)

− ∆t
2µ∆x

(

Ey|ni+1,j+ 1

2
,k
− Ey|ni,j+ 1

2
,k

) (B.2c)
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In each of the above equations, the first finite difference on the right hand side is set

up to be evaluated implicitly from as yet unknown field data at time step n + 1
2
, while

the second finite difference on the right hand side is evaluated explicitly from known

field data at time step n.

Subiteration 2: Advance the 6 field components from time step n + 1
2

to n + 1

Ex|n+1
i+ 1

2
,j,k

= Ex|
n+ 1

2

i+ 1

2
,j,k

+ ∆t
2ǫ∆y

(

Hz|
n+ 1

2

i+ 1

2
,j+ 1

2
,k
− Hz|

n+ 1

2

i+ 1

2
,j− 1

2
,k

)

− ∆t
2ǫ∆z

(

Hy|n+1
i+ 1

2
,j,k+ 1

2

− Hy|n+1
i+ 1

2
,j,k− 1

2

) (B.3a)

Ey|n+1
i,j+ 1

2
,k

= Ey|
n+ 1

2

i,j+ 1

2
,k

+ ∆t
2ǫ∆z

(

Hx|
n+ 1

2

i,j+ 1

2
,k+ 1

2

− Hx|
n+ 1

2

i,j+ 1

2
,k− 1

2

)

− ∆t
2ǫ∆x

(

Hz|n+1
i+ 1

2
,j+ 1

2
,k
− Hz|n+1

i− 1

2
,j+ 1

2
,k

) (B.3b)

Ez|n+1
i,j,k+ 1

2

= Ez|
n+ 1

2

i,j,k+ 1

2

+ ∆t
2ǫ∆x

(

Hy|
n+ 1

2

i+ 1

2
,j,k+ 1

2

− Hy|
n+ 1

2

i− 1

2
,j,k+ 1

2

)

− ∆t
2ǫ∆y

(

Hx|n+1
i,j+ 1

2
,k+ 1

2

− Hx|n+1
i,j− 1

2
,k+ 1

2

) (B.3c)

Hx|n+1
i,j+ 1

2
,k+ 1

2

= Hx|
n+ 1

2

i,j+ 1

2
,k+ 1

2

+ ∆t
2µ∆z

(

Ey|
n+ 1

2

i,j+ 1

2
,k+1

− Ey|
n+ 1

2

i,j+ 1

2
,k

)

− ∆t
2µ∆y

(

Ez|n+1
i,j+1,k+ 1

2

− Ez|n+1
i,j,k+ 1

2

) (B.4a)

Hy|n+1
i+ 1

2
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2

= Hy|
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2

i+ 1

2
,j,k+ 1

2

+ ∆t
2µ∆x

(

Ez|
n+ 1

2
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2

− Ez|
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2
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2

)
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2
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Hz|n+1
i+ 1

2
,j+ 1

2
,k

= Hz|
n+ 1

2

i+ 1

2
,j+ 1

2
,k

+ ∆t
2µ∆y

(

Ex|
n+ 1

2

i++ 1

2
,j+1,k

− Ex|
n+ 1

2

i+ 1

2
,j,k

)

− ∆t
2µ∆x

(

Ey|n+1
i+1,j+ 1

2
,k
− Ey|n+1

i,j+ 1

2
,k

) (B.4c)

In each of the above equations, the second finite difference on the right hand side is set

up to be evaluated implicitly from as yet unknown field data at time step n + 1, while
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the first finite difference on the right hand side is evaluated explicitly from known field

data at time step n + 1
2

previously computed using (B.1) and (B.2)

Simplified System of Time Stepping Equations

The system of equations summarised above for each subiteration can be greatly sim-

plified. For subiteraion 1, this is done by substituting the expressions of (B.2) for the

H field components evaluated at time step n + 1
2

into the E field updates of (B.1).

Similarly, for subiteration 2, this is done by substituting the expressions of (B.4) for

the H field components evaluated at time step n + 1 into the E field updates of (B.3).

This yields the following simplified system of time stepping equations.

Subiteration 1: Advance the 6 field components from time step n to time step n + 1
2

[

1 + (∆t)2

2µǫ(∆y)2

]

Ex|
n+ 1

2

i+ 1

2
,j,k

−
[

(∆t)2

4µǫ(∆y)2
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2
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2
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2
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2
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)
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2
,j,k
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(

Hz|ni+ 1

2
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2
,k
− Hz|ni+ 1

2
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2
,k

)
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(
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)
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(B.5a)
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(B.5c)



APPENDIX B. ALTERNATING DIRECTION IMPLICIT ALGORITHM 254
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Equation (B.5a) yields a set of simultaneous equations for E
n+ 1

2
x when written for each

j coordinate along a y-directed line through the space lattice. The matrix associated

with this system is tridiagonal, and hence, easily solved. This process is repeated for

each y-cut through the grid where Ex components are located. Similarly, (B.5b) yields

a tridiagonal matrix system for each z-cut through the lattice to obtain E
n+ 1

2
y , and

(B.5c) yields a tridiagonal matrix system for each x-cut through the lattice to obtain

E
n+ 1

2
z .

It is also noticed that (B.6a-c) are exactly (B.2a-c), repeated here for convenience.

These H-field updating equations are now fully explicit because all of their required

E-field component data at time step n+1/2 are available upon solving (B.5a-c) in the

manner described above.

Subiteration 2: Advance the 6 field components from time step n + 1
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(B.7a)
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Equation (B.7a) yields a tridiagonal matrix system for each z-cut through the lattice

to obtain En+1
x ; (B.7b) yields a tridiagonal matrix system for each x-cut through the

lattice to obtain En+1
y ; and (B.7c) yields a tridiagonal matrix system for each y-cut

through the lattice to obtain En+1
z . Also (B.8a-c) are exactly (B.4a-c), repeated for

convenience. These H-field updating equations are now fully explicit because all of

their required E-component data at time step n+1 are available upon solving (B.7a-c)

in the manner described above. This completes the algorithm.

Too much work has been done on numerical stability for the ADI method, it is worth

to mention (Zheng and Chen, 2001) where for the first time unconditional numerical
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stability is derived for the full three dimensional case. There has been also publications

on the accuracy of the ADI-FDTD method as in (Garcia et al., 2002) where the accuracy

of the method is compared with those of the original Crank-Nicolson (from which ADI

is derived) and the Yee FDTD schemes.

As with the normal FDTD, when trying to implement the ADI scheme, care must be

taken with the implementation of current sources, this is addressed in (Garcia et al.,

2004). Also, the way to implement an efficient PML absorber boundary has been

published (Wang and Teixeira, 2003).
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