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Abstract

We study the Hopf-Galois module structure of algebraic integers in some finite ex-

tensions of p-adic fields and number fields which are at most tamely ramified. We

show that if L/K is a finite unramified extension of p-adic fields which is Hopf-

Galois for some Hopf algebra H then the ring of algebraic integers OL is a free

module of rank one over the associated order AH . If H is a commutative Hopf

algebra, we show that this conclusion remains valid in finite ramified extensions of

p-adic fields if p does not divide the degree of the extension. We prove analogous

results for finite abelian Galois extensions of number fields, in particular showing

that if L/K is a finite abelian domestic extension which is Hopf-Galois for some

commutative Hopf algebra H then OL is locally free over AH . We study in greater

detail tamely ramified Galois extensions of number fields with Galois group isomor-

phic to Cp ×Cp, where p is a prime number. Byott has enumerated and described

all the Hopf-Galois structures admitted by such an extension. We apply the results

above to show that OL is locally free over AH in all of the Hopf-Galois structures,

and derive necessary and sufficient conditions for OL to be globally free over AH in

each of the Hopf-Galois structures. In the case p = 2 we consider the implications

of taking K = Q. In the case that p is an odd prime we compare the structure of

OL as a module over AH in the various Hopf-Galois structures.
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Chapter 1

Introduction

Classical Galois module theory seeks to describe the algebraic integers in a finite

Galois extension of global or local fields with respect to the Galois group. Let L/K

be such an extension, with Galois group G. The Normal Basis Theorem states that

there exists an element z ∈ L such that the set {σ(z) | σ ∈ G} is a K-basis for L

(a normal basis). This is equivalent to L being a free module of rank one over the

group algebra K[G]. It is natural to ask whether analogous results hold at integral

level - does there exist an element x ∈ OL such that the set {σ(x) | σ ∈ G} is

an OK-basis for OL (a normal integral basis of L)? Equivalently, is OL is a free

module (necessarily of rank one) over the integral group ring OK [G]? In the global

case, the existence of a normal integral basis is a strong condition, as in general

OL does not have a basis over OK at all, much less one consisting of the Galois

conjugates of a single element. To address this problem we employ completion - for

each prime p of OK we study the completed ring of integers OL,p, which does have

a basis over the completed ring of integers OK,p. If OL,p is a free module over the

completed integral group ring OK,p[G] for every prime p of OK then we say that

OL is locally free over OK [G]; this property is necessary but not sufficient for global

freeness. If OL is locally free over OK [G] then it defines a class in the locally free

class group Cl (OK [G]). Frohlich’s Hom Description [Frö83] of this group allows

7



CHAPTER 1. INTRODUCTION 8

us to calculate this class and determine the global structure of OL over OK [G], at

least up to stable isomorphism.

Noether’s theorem answers the local question above in terms of the ramification in

the extension - if L/K is a finite Galois extension of local (respectively global) fields

with group G, then OL is free (respectively locally free) over OK [G] if and only

if L/K is at most tamely ramified. Since Noether’s theorem provides a necessary

and sufficient condition for freeness (respectively local freeness), it is clear that

other techniques are required to study wildly ramified extensions. One of these is

to study the structure of OL as a module over a different OK-order in the group

algebra K[G], called the associated order:

AK[G] = {α ∈ K[G] | α(x) ∈ OL for all x ∈ OL}.

If L/K is at most tamely ramified then the associated order and the integral group

ring coincide, but if the extension is wildly ramified then the integral group ring is

properly contained in the associated order. By construction, the associated order

is the largest OK-order in K[G] for which OL is a module.

The first success of this approach was Leopoldt’s theorem [Leo59], that if L/Q

is an abelian extension then OL is free over AK[G]. This implies the corresponding

result for extensions of Qp, and in this case a slightly stronger result holds - if

L/K is an abelian extension of p-adic fields with Galois group G and additionally

L/Qp is an abelian extension then OL is free over AK[G] [Let98]. For extensions not

covered by these general theorems, we seek criteria for OL to be free over AK[G].

It was in the search for such criteria that the Hopf algebra structure of the group

algebra K[G] was first exploited. Childs’ theorem [Chi00, (12.7)] is that if L/K is

a finite Galois extension of p-adic fields with Galois group G and AK[G] is a Hopf
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order in K[G] then OL is free over AK[G].

In a slightly different direction, we have the notion of a Hopf-Galois structure

on a finite separable extension of fields L/K. This consists of a K-Hopf algebra of

dimension [L : K] acting on the extension in a “Galois like” way. If L/K is a Galois

extension then the group algebra K[G] gives one such structure, and we call this

the classical structure. However, a given extension may also admit a number of

nonclassical structures. A theorem of Greither and Pareigis [Chi00, (6.8)] reduces

the enumeration of the Hopf-Galois structures admitted by a given separable exten-

sion to a purely group theoretic problem, and shows that the corresponding Hopf

algebras all occur as “twisted” forms of certain group algebras. Work of Childs

and Byott [Chi00, (7.3)] simplified the calculations required in the enumeration of

Hopf-Galois structures, and a theorem of Byott [Byo96] identifies precisely those

Galois extensions which admit only the classical Hopf-Galois structure.

For a finite separable extension of local or global fields L/K, Hopf-Galois mod-

ule theory seeks to describe the ring of integers OL with respect to the various

different Hopf-Galois structures admitted by the extension. Within each Hopf al-

gebra H we define an associated order analogous to the associated order in the

group algebra K[G]:

AH = {h ∈ H | h.x ∈ OL for all x ∈ OL},

and study the structure of OL as a module over each AH . If the extension L/K

admits a number of Hopf-Galois structures, we can compare the structure of OL as

a module over the associated orders in the various Hopf algebras. Childs’ theorem

generalises to this setting: if the K-Hopf algebra H gives a Hopf-Galois structure

on a finite separable extension of p-adic fields L/K and the associated order AH
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is a Hopf order in H then OL is free over AH . Byott [Byo00] exhibited a class of

wildly ramified Galois extensions p-adic fields L/K for which OL is not free over

AK[G], the associated order in the classical structure given by K[G], but for which

OL is free over AH , the associated order in some Hopf algebra H giving a nonclas-

sical structure on the extension. So from the point of view of describing OL, for

these extensions the classical structure is not the “correct” structure to use, and a

nonclassical structure gives a more satisfactory description of the algebraic integers.

As we have seen above, a motivation for the use of Hopf algebras in Galois module

theory is a desire to have some generalisation of Noether’s theorem hold for wildly

ramified extensions. However, by Greither and Pareigis’s theorem the number of

Hopf-Galois structures admitted by an extension is independent of the ramifica-

tion in the extension, and so a tamely ramified extension may admit a number

of structures. If the extension L/K is Galois then it admits at least the classical

structure, with Hopf algebra K[G]. If the extension is at most tamely ramified

then Noether’s theorem asserts that the associated order AK[G] coincides with the

integral group ring OK [G] and that OL is free (or locally free) over OK [G]. It is not

known whether analogous results hold for any nonclassical structures admitted by

the extension. It is certainly natural to investigate the structure of OL as a module

over AH in each of the Hopf-Galois structures admitted by the extension, and we

might also ask whether the associated order in each nonclassical structure has a

simple description, as does the associated order in the classical structure. In this

thesis we answer these questions for certain classes of tamely ramified extensions

of number fields and p-adic fields.

Chapter 2 contains background information on algebras and orders, idèles and

class groups, Galois module theory, Hopf algebras and Hopf-Galois module theory.

In chapter 3 we prove two results concerning the Hopf-Galois module structure of
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finite extensions of p-adic fields. We show that if L/K is a finite unramified Galois

extension of p-adic fields and H is a Hopf algebra giving a Hopf-Galois structure

on the extension then OL is free over the associated order AH . We also show that

if L/K is a finite extension of p-adic fields such that the degree of the extension is

coprime to p and H is a commutative Hopf algebra giving a Hopf-Galois structure

on the extension then OL is free over AH . In both cases we find that the associated

order has the same simple description. We also prove analogous results for abelian

Galois extensions of number fields. In particular we show that if L/K is an abelian

Galois extension of number fields and H is a Hopf algebra giving a Hopf-Galois

structure on the extension then OL,p is free over AH,p for almost all primes p of

OK , and that if L/K is a tamely ramified abelian Galois extension of number fields

of prime power degree and H is a commutative Hopf algebra giving a Hopf-Galois

structure on the extension then OL is locally free over AH .

For the remainder of the thesis we consider a particular class of tamely rami-

fied Galois extensions of number fields. By Byott’s uniqueness theorem a Galois

extension of prime degree p admits only the classical Hopf-Galois structure. We

therefore consider the simplest case for which we have nonclassical structures, Ga-

lois extensions of degree p2. In particular we consider Galois extensions of number

fields L/K with group isomorphic to Cp×Cp. We assume that our ground field con-

tains a primitive pth root of unity, and so such extensions are formed by adjoining

the pth roots of two elements of K. In chapter 4 we derive congruence conditions

on these elements which are equivalent to the extension being tamely ramified, and

calculate explicit bases of OL,p over OK,p for each prime p of OK . In chapter 5

we reproduce results of Byott, who showed that an elementary abelian extension

of degree p2 admits precisely p2 Hopf-Galois structures, and used Greither and

Pareigis’s theorem to describe the Hopf algebras, finding in particular that they

are all commutative. We give the Wedderburn decompositions of these algebras as



CHAPTER 1. INTRODUCTION 12

products of extensions of K, and use these to describe the unique maximal order

in each algebra, giving explict local bases for each prime of OK . Finally we derive

formulae for the action of the Hopf algebras on elements of L.

In the final three chapters we consider the local and global structure of OL over the

associated orders in the various Hopf-Galois structures admitted by the extension.

By the results of chapter 3 we know that OL is locally free over AH in each of

the Hopf-Galois structures, and we begin chapter 6 by giving explicit generators of

OL,p over AH,p for each prime p of OK . We then give an explicit description of the

unit group A×H,p for each prime p of OK , which we shall require when determining

conditions for global freeness the final chapters.

Chapter 7 covers in detail the case p = 2, and chapter 8 the case when p is an

odd prime number. Each of these chapters is structured in the same way. For

each Hopf algebra H giving a Hopf-Galois structure on L/K we “sandwich” the

locally free class group Cl (AH) between products of ray class groups, and interpret

the class representing OL as a product of classes of fractional ideals. This gives

necessary and sufficient conditions for OL to be globally free over each AH . In

the case p = 2 we also consider in detail extensions where the base field is Q, and

derive a condition for OL to be free over each AH in terms of the representability

questions for certain quadratic forms. We give examples of extensions exhibiting a

variety of global behaviours. In the case when p is an odd prime we prove a partial

result concerning the comparison of the structure of OL over AH in the various

nonclassical Hopf-Galois structures admitted by the extension.



Chapter 2

Background

In this chapter we collect first the algebraic and arithmetic results which we shall

require in what follows. We then introduce Hopf algebras and the notion of a Hopf-

Galois structure on a finite separable extension of fields, along with theorems which

allow us to enumerate and describe all of the Hopf-Galois structures admitted by a

given extension. Finally we present Hopf-Galois module theory as a generalisation

of classical Galois module theory, and results which will allow us to study the

structure of a ring of algebraic integers with respect to a Hopf-Galois structure.

2.1 Preliminaries

2.1.1 Algebras and Orders

Definition 2.1.1. Let R be a commutative ring with unity. An R-module A is

called an R-algebra if it has the following additional structure:

• A map µ : A⊗R A→ A called the multiplication map

• A map ι : R→ A called the unit map

such that the following diagrams commute:

13



CHAPTER 2. BACKGROUND 14

• Associativity:

A⊗R A⊗R A

1⊗µ

��

µ⊗1 // A⊗R A

µ

��
A⊗R A

µ // A

• Unitary:

A⊗R R
1⊗ι // A⊗R A

µ

��
A⊗R R module mult.

// A

and

R⊗R A
ι⊗1 // A⊗R A

µ

��
R⊗R A module mult.

// A

Definition 2.1.2. Let K be a field, and A a K-algebra.

• A is semisimple if it is the direct sum of a finite number of minimal left ideals.

• A is separable if for every extension field L of K, including K itself, L⊗K A

is a semisimple L-algebra.

Definition 2.1.3. Let R be a Dedekind domain with field of fractions K and let A

be a finite dimensional K-algebra. An R-order in A is a subring Λ of A satisfying

the following conditions:

• The centre of Λ contains R.

• Λ is finitely generated as an R-module.

• Λ⊗R K = A.
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An R-order in A is called maximal if it is not properly contained in any larger

R-order in A.

Example 2.1.4. Let G be a group of order n. Let R be a Dedekind domain with

field of fractions K, and suppose char(K) - n. Then the group algebra

K[G] =

{∑
g∈G

kgg | kg ∈ K

}

is a separable K-algebra with multiplication µ induced linearly from the multipli-

cation in G and unit map ι given by k 7→ k1G for k ∈ K. The group ring

R[G] =

{∑
g∈G

rgg | rg ∈ R

}

is an R-order in K[G].

We now state two results concerning maximal orders. We shall use these in Chapter

3, where we shall require information about maximal orders in commutative group

algebras.

Proposition 2.1.5. Let R be a Dedekind domain with field of fractions K, and let

A be a commutative separable K-algebra. Then there is a unique maximal R-order

in A, namely the integral closure of R in A.

Proof. See [CR81a, (26.10)].

Proposition 2.1.6. Let G be a group of order n. Let R be a Dedekind domain

with field of fractions K, and suppose char(K) - n. Let Λ be any R-order in K[G]

containing R[G]. Then

R[G] ⊆ Λ ⊆ n−1R[G].

In particular, R[G] is maximal if and only if n ∈ R×.

Proof. See [CR81a, (27.1)].
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2.1.2 Local Fields

Definition 2.1.7. A ring R is called a discrete valuation ring if it is a principal

ideal domain which has a unique non-zero prime ideal m.

We call a generator π of m a uniformiser of R. Since R is a principal ideal domain,

the unique non-zero prime ideal m is a maximal ideal, and so the quotient ring R/m

is a field. It is called the residue field of R. The unit group R× of R comprises

precisely those elements of R which do not lie in m. Any nonzero element x ∈ R

may be written as x = uπn for some u ∈ R× and n ∈ N ∪ {0}. The integer n is

independent of the choice of π, and so we may define the valuation of x to be n. The

units of R are precisely those elements having valuation zero. For x, y ∈ R, we write

x ∼ y if x and y have the same valuation, i.e. differ only by a unit. Let K be the

field of fractions of R. The valuation on R extends to a valuation v : K → Z∪{∞},

with the convention that v(0) =∞. Conversely, if we are given a field K together

with a valuation v : K → Z ∪ {∞}, then the set R = {x ∈ K | v(x) ≥ 0} is a

discrete valuation ring. It is called the valuation ring or the ring of integers of K

with respect to v.

Definition 2.1.8. Let K be a field, v : K → Z ∪ {∞} a valuation on K with

valuation ring R, and m the unique prime ideal of R. Suppose that the residue

field R/m is finite, having q elements. We define the normalised absolute value on

K associated to v, denoted |.|v, by |x|v = q−v(x). We call K a local field if it is

complete with respect to this absolute value.

Example 2.1.9. Let K be a number field, and p a prime of OK lying above a

prime number p ∈ Z. Then the residue field OK/p is finite. We define a valuation

vp : K → Z ∪ {∞} as follows: we set vp (0) =∞, and for x ∈ K×, we set vp (x) to

be the power of the prime p appearing in the factorisation of the fractional ideal

xOK . The field K is not complete with respect to the absolute value associated to

this valuation, but we may form its completion, which we denote by Kp. This is
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a local field. We write OK,p for its valuation ring (ring of integers), and p for its

maximal ideal. Local fields obtained in this way are called p-adic fields, and will

be one of our main objects of study in this thesis.

Definition 2.1.10. Let L/K be a finite separable extension of local fields, with

valuations vL, vK , valuation rings RL, RK , maximal ideals mL,mK and uniformisers

πL, πK respectively. Let p be the characteristic of the residue field RK/mK . We

define the ramification index eL/K by eL/K = vL(πK). The residue field RL/mL is a

finite extension of the residue field RK/mK , and we define the residue field degree

fL/K to be the degree of this extension. We have the relation [L : K] = eL/KfL/K .

The extension L/K is said to be unramified if eL/K = 1, and ramified otherwise.

If L/K is ramified, then we say that it is tamely ramified (or simply tame) if

(eL/K , p) = 1, and wildly ramified (or simply wild) otherwise.

We mention another characterisation of discrete valuation rings, which is based on

the concept of a local ring. We shall make use of local rings in a different context

in Chapter 6, using results presented at the end of this chapter.

Definition 2.1.11. A commutative ring R is said to be local if it has a unique

maximal ideal.

Example 2.1.12. A commutative ring R is a discrete valuation ring if and only if

it is local, with unique maximal ideal generated by a non-nilpotent element, and is

Noetherian. That is, every increasing chain of ideals of R is eventually stationary.

2.1.3 Algebraic Number Theory

We now turn to a global setting, and review briefly some of the ramification theory

of number fields.

Definition 2.1.13. Let L/K be a finite extension of number fields with rings of
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integers OL,OK respectively. Let p be a prime of OK , and let

pOL = Pe1
1 . . .Peg

g

be the unique factorisation of pOL into prime ideals of OL. For each i = 1, . . . , g,

the residue field OL/Pi is a finite extension of the residue field OK/p, and we

denote the degree of this extension by fi. We have the relation

[L : K] =

g∑
i=1

eifi.

The prime p is said to be unramified in OL if ei = 1 for all i = 1, . . . , g, and ramified

in OL otherwise. Let p be the characteristic of the residue field k = OK/p. If p

is ramified in OL, then we say that it is tamely ramified if (ei, p) = 1 for all

i = 1, . . . , g, and wildy ramified otherwise. Equivalently, the prime p is unramified

(respectively, tamely ramified) in OL if the extension of p-adic fields LPi
/Kp is

unramified (respectively, tamely ramified) for each i = 1, . . . , g.

We call the extension L/K unramified if all primes of OK are unramified in OL,

tamely ramified (or simply tame) if every prime of OK which is ramified in OL is

tamely ramified, and wildly ramified (or simply wild) if any prime ramifies wildly.

Finally, we shall call the extension L/K domestic if it is Galois and no prime p of

OK lying above a prime number dividing [L : K] is ramified in OL.

We shall primarily be interested in studying Galois extensions of number fields,

where the Galois correspondence combined with the ramification theory outlined

above yields the following:

Theorem 2.1.14. (Hilbert’s Ramification Theory) Let L/K be a Galois ex-

tension of number fields with rings of integers OL,OK respectively, and Galois
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group G. Let p be a prime of OK , and let

pOL = Pe1
1 . . .Peg

g

be the unique factorisation of pOL into prime ideals of OL, with corresponding

residue field degrees f1, . . . , fg. Then

• G acts transitively on the primes Pi lying above p. The stabiliser of a prime

P is called the decomposition group of P and is denoted by GP,

i.e. GP = {σ ∈ G | σ(P) = P}.

• The ramification indices ei and residue field degrees fi are independent of i,

and so we have

pOL = (P1 . . .Pg)
e

with [OL/Pi : OK/p] = f for each i = 1, . . . , g, and so [L : K] = efg.

• |GP| = ef for each prime P lying above p. In particular, |GP| = 1 if and

only if p is totally split in OL.

• For σ ∈ G, we have GσP = σGPσ
−1, i.e. the decomposition groups of the

primes lying above p are conjugate. In particular, if G is abelian then they

coincide.

Proof. See [Neu99, Chapter I, §9].

We now take a finite Galois extension L/K of number fields and consider the

consequences for L of completing K with respect to the absolute value arising from

some prime ideal p of OK , as in (2.1.9). In this case the corresponding completion

of L need not be a local field, but is semilocal. That is, a finite product of local

fields.

Theorem 2.1.15. Let L/K be a finite separable extension of number fields with

rings of integers OL,OK respectively. Let p be a prime of OK . Write Kp for the
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completion of K with respect to the absolute value arising from p. Write Lp for the

Kp-algebra L⊗K Kp. Then there is a bijection between the primitive idempotents

of Lp and the primes of OL which lie above p. This induces a decomposition:

L⊗K Kp
∼=
∏
P|p

LP

where LP is the completion of L with respect to the absolute value arising from the

prime ideal P of OL. We also have an analogous decomposition at integral level:

OL,p = OL ⊗OK
OK,p

∼=
∏
P|p

OL,P.

Proof. See [FT91, Theorem 17].

Definition 2.1.16. A Galois algebra over a field K is a finite dimensional K-

algebra L together with a group G = G(L/K) of algebra automorphisms of L,

such that L ∼= K[G] as K[G]-modules. We call G the Galois group of L. If K is

the field of fractions of some Dedekind domain OK , and Kp is the completion of

K with respect to the valuation arising from a prime p of OK , then Lp = L⊗K Kp

has the structure of a Kp-Galois algebra, with G(Lp/Kp) ∼= G(L/K).

Example 2.1.17. Any Galois extension of fields L/K is a K-Galois algebra with

group G = Gal(L/K). If L/K is a Galois extension of number fields and p is a

prime of OK , then by (2.1.15)

L⊗K Kp
∼=
∏
P|p

LP

is a Kp-Galois algebra with group G = Gal(L/K). If P′ is a fixed prime ideal lying

above p, and Σ ⊆ G is a set of coset representatives for the decomposition group
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GP′ in G, then (2.1.14) yields

∏
P|p

LP =
∏
σ∈Σ

LσP′ .

This Galois algebra is clearly commutative and, since L/K is a separable extension,

it is also a separable Kp-algebra.

2.1.4 Idèles and Class Groups

It is often desirable to pass from local results to global ones. Suppose we have a

problem concerning a number field K, and that for each nonzero prime p of OK we

can solve the corresponding problem for the completion Kp of K with respect to the

absolute value arising from p. It is natural to ask to what extent this information

allows us to solve the original problem over K. In this section we introduce tools

which allow us to answer this question.

Definition 2.1.18. Let K be a number field. The (finite) idèle group J(K) of K

is defined to be the restricted topological product

J(K) =
∏

p/OK

′
K×p =

{
(xp)p | xp ∈ K×p , xp ∈ O×K,p for almost all p

}
with multiplication defined componentwise. We interpret “almost all” as “for all

but finitely many”. For each prime p of OK we have an inclusion K ↪→ Kp. These

allow us to define a diagonal embedding K× ↪→ J(K) by x 7→ (x)p; this is an idèle

since vp (x) = 0 for almost all primes p and so x ∈ O×K,p for almost all p. The image

of K× in J(K) is called the group of principal idèles. The group of unit idèles is

defined by

U(OK) =
∏

p/OK

O×K,p =
{

(xp)p ∈ J(K) | xp ∈ O×K,p for all p
}
.
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The introduction of idèles provides us with a new way to view the ideal class group

of a number field, and leads to a useful generalisation.

Proposition 2.1.19. Let I(K) and Cl (OK) denote the fractional ideal group and

ideal class group of K respectively. Define a surjective homomorphism

J(K)→ I(K)

by

(xp)p 7→
∏

p

pvp(xp).

Then this homomorphism induces an isomorphism

J(K)

K×U(OK)
∼= Cl (OK) .

Proof. See [Neu99, Chapter VI, §1, Definition (1.2) ff.].

Definition 2.1.20. Let m be an ideal of OK . Define a subgroup Um(OK) of U(OK)

by

Um(OK) = {(xp)p ∈ U(OK) | xp ∈ (1 + mOK,p) for all p} .

Define the ray class group mod m to be the quotient

Clm(OK) =
J(K)

K×Um(OK)
.

Using (2.1.19), we may interpret this as the group of those fractional ideals of OK

which are prime to m, modulo those principal fractional ideals for which there

exists a generator α satisfying α ≡ 1 (mod∗ m). (That is, vp (α− 1) ≥ vp (m) for

all p | m, but possibly α 6∈ OK .)

We now define the idèle group of a finite dimensional separable algebra over a

number field analogously to the definition of the idèle group of a number field in
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(2.1.18).

Definition 2.1.21. Let K be a number field, A a finite dimensional separable

K-algebra, and Λ an OK-order in A. For p a prime of OK , we write Ap = A⊗KKp

and Λp = Λ⊗OK
OK,p. We define the (finite) idèle group J(A) of A by

J(A) =
∏

p/OK

′
A×p =

{
(ap)p | ap ∈ A×p , ap ∈ Λ×p for almost all p

}
with multiplication defined componentwise. This definition does not depend upon

the choice of OK-order Λ in A, since if Γ is another order then Λp = Γp for all

but finitely many primes p of OK . The group of principal idèles is defined to be

the image of the diagonal embedding A× ↪→ J(A) by a 7→ (a)p. The group of unit

idèles of Λ is defined by

U(Λ) =
∏

p/OK

Λ×p =
{

(ap)p ∈ J(A) | ap ∈ Λ×p for all p
}
.

We now introduce the type of problem which we shall study using idèle groups -

the structure of a module for an order in a finite dimensional separable algebra

over a number field.

Definition 2.1.22. Let K be a number field, A a finite dimensional separable

K-algebra, and Λ an OK-order in A. Let X be a finitely generated (say left) Λ-

module. For p a prime of OK , write Λp = Λ ⊗OK
OK,p and Xp = X ⊗OK

OK,p.

Then Xp is a finitely generated Λp-module. The Λ-module X will be called locally

free if Xp is a free Λp-module for each prime p of OK .

Definition 2.1.23. Retain the notation of (2.1.22). The Grothendieck group K0(Λ)

of locally free Λ-modules is defined to be the abelian group with generators [X]

corresponding to Λ-isomorphism classes of locally free Λ-modules X and with rela-

tions [X⊕Y ] = [X]+[Y ]. We define a homomorphism N→ K0(Λ) by mapping n to
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the class [Λn] of the free Λ-module of rank n, and extend this to a homomorphism

Z→ K0(Λ). We then define the locally free class group Cl (Λ) to be the cokernel of

this map. We have the following defining exact sequence:

0→ Z→ K0(Λ)→ Cl (Λ)→ 1.

A locally free Λ-module X has trivial class in the locally free class group Cl (Λ) if

and only if it is a stably free Λ-module. That is, X⊕Λr is a free Λ-module for some

natural number r. However, we shall only be interested in the case where A is a

commutative algebra. In this case, A satisfies the Eichler condition relative to OK ,

and so we may apply the Jacobinksi Cancellation Theorem (see [CR81b, 51.24]),

and conclude that the order Λ has locally free cancellation. That is

X is a stably free Λ-module⇔ X is a free Λ-module.

We summarise the above in the following proposition:

Proposition 2.1.24. Let K be a number field, A a commutative finite dimensional

separable K-algebra, and Λ an OK-order in A. Suppose that X is an OK-module

which is a locally free Λ-module. Then X is a free Λ-module if and only if X has

trival class in the locally free class group Cl (Λ).

Proof. See [CR81b, §51].

In general, Fröhlich’s so-called Hom Description provides a description of Cl (Λ)

using the idèlic machinery defined in this section (see [Frö83]). Once again, we

shall only apply this result in the case that A is a commutative algebra, when it

reduces to the following:

Proposition 2.1.25. (Fröhlich) Let K be a number field, A a finite dimensional

separable commutative K-algebra, and Λ an OK-order in A. Then there is an
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isomorphism of groups

Cl (Λ) ∼=
J(A)

A×U(Λ)
.

Suppose that X is an OK-module which is a locally free Λ-module and that X⊗OK

K is a free A-module. Let Γ be a generator of X⊗OK
K over A, and for each prime

p of OK let γp be a generator of Xp over Λp. For each prime p of OK define ap ∈ Ap

by apΓ = γp. Then the class of X in Cl (Λ) corresponds to the class of the idèle

(ap)p in the quotient group above.

Proof. See [CR81b, (49.22)].

2.2 Galois Module Theory

The Hopf-Galois module theory which we shall study in this thesis has its roots

in classical Galois module theory. For field extensions, Galois theory provides the

following theorem:

Theorem 2.2.1. (The Normal Basis Theorem) Let L/K be a finite Galois

extension of fields with group G. Then there exists an element x ∈ L such that the

set {σ(x) | σ ∈ G} is a basis for L over K. Equivalently, L is a free K[G]-module

of rank one.

Proof. See [Lan99, VI, Theorem 13.1].

A question in Galois module theory is whether, in local fields or global fields,

analogous results hold at integral level - when is OL a free OK [G]-module? For local

fields, this question was answered by Noether using the notions of tame ramification

defined in (2.1.10) and (2.1.13).

Theorem 2.2.2. (Noether) Let L/K be a finite Galois extension of local fields

with group G and rings of integers OL,OK respectively. Then OL is free over

OK [G] if and only if L/K is at most tamely ramified.
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Proof. See [Frö83, Theorem 3].

This implies the corresponding result for number fields:

Corollary 2.2.3. Let L/K be a finite Galois extension of number fields with group

G and rings of integers OL,OK respectively. Then OL is Locally Free (cf. 2.1.22)

over OK [G] if and only if L/K is at most tamely ramified.

Proof. See [Frö83, Corollary 2 to Theorem 3].

It is natural to ask whether some generalisation of Noether’s theorem still holds

when L/K is wildly ramified. One approach to studying this problem is to replace

the integral group ring OK [G] with a larger OK-order in K[G], called the associated

order.

Definition 2.2.4. Let L/K be a finite Galois extension of local fields or global

fields with group G and rings of integers OL,OK respectively. Define the associated

order AK[G] ⊆ K[G] by

AK[G] = {α ∈ K[G] | α(x) ∈ OL for all x ∈ OL}.

The associated order is the largest order in K[G] for which OL is a module. If L/K

is wildly ramified then OK [G] ( AK[G], but we may investigate the structure of OL

as an AK[G]-module. The first result in this direction was due to Leopoldt [Leo59],

who showed that if L/Q is an abelian extension, then OL is a free AQ[G]-module.

This implies that for any prime number p, OL,p is free over AQp[G]. Lettl [Let98]

generalised the local version of this result to a relative extension L/K of p-adic

fields, assuming that L/Qp is abelian.

A motivation for the use of Hopf algebras in the context of Galois module theory is

the desire to study the structure of OL as an AK[G]-module in wildly ramified ex-
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tensions. In this thesis, however, we shall only be concerned with tamely ramified

extensions.

2.3 Hopf Algebras

Definition 2.3.1. Let R be a commutative ring with unity. An R-algebra A with

multiplication map µ : A⊗RA→ A and unit map ι : R→ A is called an R-bialgebra

if it has the following additional structure maps:

• An R-algebra homomorphism ∆ : A → A ⊗R A called the comultiplication

map

• An R-algebra homomorphism ε : A→ R called the counit map

such that the following diagrams commute:

• Coassociativity:

A

∆

��

∆ // A⊗R A

∆⊗1

��
A⊗R A

1⊗∆ // A⊗R A⊗R A

• Counitary:

A
∆ // A⊗R A

1⊗ε

��
A A⊗R Rmodule mult.oo

and

A
∆ // A⊗R A

ε⊗1

��
A R⊗R Amodule mult.oo
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Remark 2.3.2. An R-module which is not necessarily an R-algebra but does

possess counit and comultiplication maps as defined above is called an R-coalgebra.

Comparing the diagrams above to those in (2.1.1), we see that this definition is

“dual” to that of an R-algebra.

Example 2.3.3. Let K be a field and G a finite group. Then the group algebra

K[G] is a K-bialgebra, with comultiplication ∆ given by g 7→ g ⊗ g and counit ε

given by g 7→ 1 for all g ∈ G.

Definition 2.3.4. Let R be a commutative ring with unity. An R-bialgebra H

with multiplication map µ : H ⊗R H → H, unit map ι : R → H, comultiplication

map ∆ : H → H ⊗R H and counit map ε : H → R is called an R-Hopf algebra if

there is a map λ : H → H with the following properties:

• λ is an R-algebra antihomomorphism. That is, λ(hh′) = λ(h′)λ(h)

• λ is an R-coalgebra antihomomorphism. That is, if τ : H⊗RH → H denotes

the switch map, τ(h⊗ h′) = (h′ ⊗ h), then ∆λ(h) = (λ⊗ λ)τ∆(h)

• λ satisfies the antipode property: µ(1⊗ λ)∆ = ιε = µ(λ⊗ 1)∆

such a map is called the antipode map.

Definition 2.3.5. (Sweedler Notation) Let R be a commutative ring with unity

and H an R-Hopf algebra. For h ∈ H, we shall write

∆(h) =
∑
(h)

h(1) ⊗ h(2) ∈ H ⊗R H.

Definition 2.3.6. An R-Hopf Algebra H is called

• commutative if it is commutative as an R-algebra.

• cocommutative if τ∆ = ∆.
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• abelian if it is both commutative and cocommutative.

• finite if it is finitely generated and projective as an R-module.

Example 2.3.7. Let K be a field and G a finite group. The K-bialgebra K[G] is

a finite K-Hopf algebra, with antipode λ given by g 7→ g−1 for all g ∈ G. Since the

comultiplication ∆ is given by g 7→ g ⊗ g, it is a cocommutative Hopf Algebra.

Definition 2.3.8. Let R be a commutative ring with unity, and H a finite R-Hopf

algebra. Then the linear dual H∗ = HomR(H,R) is an R-Hopf algebra, and so will

be called the dual algebra to H.

Proposition 2.3.9. Let K be a field of characteristic zero, and let H be a finite

commutative K-Hopf algebra. Then H is a separable K-algebra.

Proof. Since H is a finite K-Hopf algebra, it is an Artinian ring. That is, every

decreasing chain of ideals terminates. Now by [Wat97, (11.4)], we have that H is

reduced. That is, ⋂
p/H

p = 0,

where the product is taken over all prime ideals p. Using [CR81a, (5.18)], we may

conclude that H is semisimple. Finally, since K has characteristic zero and H is

commutative, we may use [CR81a, (7.6)] to conclude that H is separable.

2.3.1 Hopf Orders

Definition 2.3.10. Let R be a Dedekind domain with field of fractions K of

characteristic zero. Let H be a finite K-Hopf algebra. An R-order in H is called a

Hopf order if it is an R-Hopf algebra with operations inherited from those on H.

Example 2.3.11. Let R be a Dedekind domain with field of fractions K of char-

acteristic zero. Let G be a finite group. Then the group ring R[G] is a Hopf order

in the group algebra K[G]. In fact it is minimal amongst all Hopf orders in K[G].

(See [Chi00, (5.2)]).
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Proposition 2.3.12. Let R be a Dedekind domain with field of fractions K of

characteristic zero. Let G be a finite group. Suppose that Λ is an OK-order in

the group algebra K[G]. If the comultiplication map ∆ : H → H ⊗ H satisfies

∆(Λ) ⊆ Λ⊗OK
Λ, then Λ is a Hopf order.

Proof. We need to show that the counit ε : K[G] → K and antipode λ : K[G] →

K[G] also restrict to Λ. Let ∆ : K[G]→ K[G]⊗K[G] be the comultiplication map

on K[G], and µ : K[G] ⊗K[G] → K[G] be the multiplication map on K[G]. We

define recursively

∆1 = ∆ : K[G]→ K[G]⊗K[G]

∆i = (idi−1 ⊗∆) ◦∆i−1 : K[G]→
i+1⊗

K[G]

and

µ1 = µ : K[G]⊗K[G]→ K[G]

µi = µi−1 ◦ (idi−1 ⊗ µ) :
i+1⊗

K[G]→ K[G]

Then for g ∈ G,

µi∆ig = gi+1

and so for z =
∑
g∈G

kgg ∈ K[G],

µ|G|−1∆|G|−1(z) =
∑
g∈G

kgg
|G| =

∑
g∈G

kg = ε(z),

and

µ|G|−2∆|G|−2(z) =
∑
g∈G

kgg
|G|−1 =

∑
g∈G

kgg
−1 = λ(z).

Now Λ ⊂ K[G] inherits the µi from K[G], and since by assumption ∆ restricts to Λ,

it also inherits the ∆i. So for all z ∈ Λ we have λ(z) ∈ Λ, and ε(z) ∈ K∩Λ = R.



CHAPTER 2. BACKGROUND 31

2.3.2 Integrals

Definition 2.3.13. Let R be a commutative ring with unity and H an R-Hopf

algebra. An element θ ∈ H is a left integral if for all x ∈ H, we have xθ = ε(x)θ.

An element θ ∈ H is a right integral if for all x ∈ H, we have θx = ε(x)θ.

Proposition 2.3.14. Let R be a commutative ring with unity and H an R-Hopf

algebra. Then the module of left integrals of H is a rank one projective R-module.

In particular, if R is a principal ideal domain, then the module of left integrals of

H is a free R-module of rank one.

Proof. See [Chi00, Corollary 3.4].

2.4 Hopf-Galois Structures

The notion of a Hopf-Galois structure is defined for certain extensions of commu-

tative rings. We shall be interested mainly in studying Hopf-Galois structures on

finite separable extensions of fields.

Definition 2.4.1. Let R be a commutative ring with unity. Let H be an R-Hopf

algebra and S an R-algebra which is also an H-module. Then S is said to be an

H-module algebra if, for all h ∈ H and s, t ∈ S, we have

h(st) =
∑
(h)

h(1)(s)h(2)(t)

h(1) = ε(h)1.

Definition 2.4.2. Let R be a commutative ring with unity. Let H be an R-Hopf

algebra, and let S ⊇ R be a commutative ring such that S is an H-module algebra.

We say that S is an H-Galois extension of R (H-Galois for short), or that H gives
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a Hopf-Galois structure on the extension if the R-linear map

j : S ⊗R H → EndR(S)

defined by

j(s⊗ h)(t) = sh(t) for s, t ∈ S, h ∈ H

is an R-module isomorphism.

Example 2.4.3. Let L/K be a finite Galois extension of fields with group G.

Then the Hopf algebra K[G] gives a Hopf-Galois structure on the extension; this

is called the classical structure. Any other Hopf-Galois structures admitted by the

extension are called nonclassical.

2.4.1 Greither and Pareigis’s Theorem

Given a finite separable extension of fields L/K, it is natural to ask how many

different Hopf-Galois structures are admitted by the extension. The theorem of

Greither and Pareigis provides an answer to this question, and also a theoretical

description of the Hopf algebras.

Definition 2.4.4. Let Perm(X) denote the group of permutations of a finite set

X. A subgroup N of Perm(X) is said to be regular if any two (and therefore all

three) of the following are satisfied:

• N and X have the same cardinality.

• N acts transitively on X.

• The stabilizer StabN(x) = {n ∈ N | nx = x} is trivial for all x ∈ X.

Definition 2.4.5. Let G be a group and suppose G′ is a subgroup of G. Let X be

the left coset space G/G′ of G′ in G, so X = {xG′ | x ∈ G}. We shall write x for
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the coset xG′. Define the left translation map

λ : G→ Perm(X)

by:

λ(g)(x) = gx for g ∈ G and x ∈ X.

Proposition 2.4.6. Let L/K be a finite separable extension of fields with Galois

closure E. Let G = Gal(E/K), G′ = Gal(E/L) and X = G/G′. Then the map λ

is an embedding of G into Perm(X).

Proof. See [Chi00, 6.6].

Remark 2.4.7. If X is a group (i.e. in the above L/K is a Galois extension with

group G and so G′ = {1G}) we may also define the right translation map

ρ : G→ Perm(X)

by:

ρ(g)(x) = xg−1 for g ∈ G and x ∈ X.

This is an embedding of G into Perm(X).

Definition 2.4.8. We define a left action of G on Perm(X) by conjugation via the

embedding λ. For g ∈ G and π ∈ Perm(X) we set

gπ = λ(g)πλ(g−1)

Theorem 2.4.9 (Greither and Pareigis). Let L/K be a finite separable ex-

tension of fields with Galois closure E. Let G = Gal(E/K), G′ = Gal(E/L) and

X = G/G′. Then there is a bijection between regular subgroups N of Perm(X)

normalised by λ(G) and Hopf-Galois structures on L/K. If N is such a subgroup,
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then G acts on the group algebra E[N ] by acting simultaneously on the coefficients

as the Galois group and on the group elements by conjugation via the embedding λ.

The Hopf algebra giving the Hopf-Galois structure corresponding to the subgroup

N is

H = E[N ]G = {z ∈ E[N ] | gz = z for all g ∈ G} .

Such a Hopf algebra then acts on the extension L/K as follows: if

(∑
n∈N

cnn

)
∈ H

(with cn ∈ E a priori), then

(∑
n∈N

cnn

)
.x =

∑
n∈N

cn(n−1(1G))x.

Proof. See [Chi00, 6.8].

Definition 2.4.10. If H is a Hopf algebra produced by (2.4.9), then we shall refer

to the isomorphism class of the group N as the type of the Hopf algebra.

Remark 2.4.11. We shall only apply (2.4.9) to extensions of fields of characteristic

zero, where separability is automatic. In fact, we shall mainly be concerned with

Galois extensions. In the notation of (2.4.9) we then have that G′ = {1G}, and so

the statement of the theorem is somewhat simpler.

Remark 2.4.12. Since all group algebras are cocommutative Hopf algebras (See

2.3.7), it follows that all of the Hopf algebras produced by (2.4.9) are cocommuta-

tive.

Remark 2.4.13. By (2.3.12) we have that in order to show that an order Λ in a

group algebra over a field of characteristic zero is a Hopf order, it is sufficient to

show that the comultiplication map ∆ restricts to Λ. Since Hopf algebras produced

by (2.4.9) inherit the Hopf algebra structure maps from group algebras, they also

have this property.
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2.4.2 Byott’s Translation

If we use Greither and Pareigis’s theorem directly to count Hopf-Galois structures

on a given finite separable extension L/K, then we seek to study certain regular

subgroups of Perm(X), a group of order [L : K]!. If [L : K] is large, this is a

difficult problem. A theorem of Byott, making precise an idea originally due to

Childs, reverses the relationship between G and N , facilitating easier calculations.

Definition 2.4.14. Let N be a group. The holomorph of N , Hol(N), is the

normaliser of λ(N) in Perm(N):

Hol(N) = {σ ∈ Perm(N) | σ normalises N}.

Proposition 2.4.15. Since N is a group, the right translation map ρ : N →

Perm(N) is an embedding of N into Perm(N) (see (2.4.7)), and we have:

Hol(N) = ρ(N) o Aut(N).

Proof. See [Chi00, (7.2)]

Theorem 2.4.16. (Byott’s Translation) Let G′ ⊂ G be finite groups, let X =

G/G′ and let N be an abstract group of order |X|. Then there is a bijection

between the following two sets:

N = {α : N → Perm(X) | α an injective homomorphism such that α(N) is regular }

G = {β : G→ Perm(N) | β an injective homomorphism such that β(G′) = Stabβ(G)(1N)}

Under this bijection, if α, α′ ∈ N correspond to β, β′ ∈ G respectively, then:

• α(N) = α′(N) if and only if β(G) and β′(G) are conjugate by an element of

Aut(N).
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• α(N) is normalised by λ(G) ⊂ Perm(X) if and only if β(G) is contained in

Hol(N).

Proof. Originally [Byo96, Proposition 1]. This formulation [Chi00, (7.3)].

This theorem may be used to count Hopf-Galois structures on a given finite sepa-

rable extension of fields as follows:

Corollary 2.4.17. Let L/K be a finite separable extension of fields with Galois

closure E. Let G = Gal(E/K), G′ = Gal(E/L). Define

Aut(G,G′) = {σ ∈ Aut(G) | σ(G′) = G′}.

Let S be the set of isomorphism classes of groups N with |N | = |G/G′|. For each

[N ] ∈ S, define e′(G,G′, N) to be the number of subgroups G∗ of Hol(N) such that

there exists an isomorphism from G∗ to G taking the stabiliser in G∗ of 1N to G′.

Then the number of Hopf-Galois structures of type N on L/K is given by

e(G,G′, N) =
|Aut(G,G′)|
|Aut(N)|

e′(G,G′, N)

and the total number of Hopf-Galois structures admitted by the extension is given

by ∑
[N ]∈S

e(G,G′, N).

Proof. See [Chi00, (7.6)]

We shall only apply this corollary in the case that the extension L/K is a Galois

extension, when it reduces to the following:

Corollary 2.4.18. Let L/K be a Galois extension with group G. Then in the

above, G′ = {1G}, X = G and Aut(G,G′) = Aut(G). The quantity e′(G,N) =

e′(G,G′, N) therefore counts the number of regular subgroups of Hol(N) which are
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isomorphic to G, and we have

e(G,N) =
|Aut(G)|
|Aut(N)|

e′(G,N).

Thus the total number of Hopf-Galois structures admitted by the extension is given

by ∑
[N ]∈S

e(G,N).

2.5 Hopf-Galois Module Theory

Consider a finite separable extension of fields L/K. The following proposition

implies a generalisation of the Normal Basis Theorem (2.2.1) to an arbitrary Hopf-

Galois structure on the extension.

Proposition 2.5.1. Let R be a local ring and H an R-Hopf algebra. Suppose that

S is an H-Galois extension of R (see (2.4.2). Then S is a free H-module of rank

one.

Proof. See [Chi00, (2.16)].

Corollary 2.5.2. Let K be a field and H a K-Hopf algebra. Suppose that L is a

finite separable extension of K which is H-Galois. Then L is a free H-module of

rank one.

If L/K is an extension of local or global fields, it is natural to investigate analogous

results at integral level. If H is a Hopf algebra giving a nonclassical structure on

L/K, then there is no natural analogue in H to the integral group ring OK [G], the

minimal Hopf order in K[G]. Indeed, H need not contain any Hopf orders at all.

The notion of the associated order, however, generalises easily:

Definition 2.5.3. Let L/K be a finite, H-Galois extension of local fields or global

fields with rings of integers OL,OK respectively. Define the associated order AH ⊆
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H by

AH = {h ∈ H | h.x ∈ OL for all x ∈ OL}.

Analogously to (2.2.4), AH is the largest order in H for which OL is a module. In

fact it is the only order in H over which OL can possibly be a free module, as is

implied by the following proposition:

Proposition 2.5.4. Let R be a Dedekind domain with field of fractions K. Let

H be a K-Hopf algebra, and Λ an R-order in H. Let L be a K-algebra which is

an H-Galois extension of K, and S an R-order in L. Write

AS = {h ∈ H | h.x ∈ S for all x ∈ S}.

Suppose S is a free Λ-module of rank one. Then Λ = AS.

Proof. [Chi00, (12.5)]. Let t be a generator for S over Λ. Then t is a generator for

L over H. Let α ∈ AS. Then α.t ∈ S, so α.t = h.t for some h ∈ Λ. Since L is free

over H with generator t, we have α = h. Hence AS = Λ.

We shall be interested in determining conditions for OL to be a free (or locally

free) AH-module. The following results give sufficient conditions for this to hold in

the local case. We shall make use these in Chapter 3.

Proposition 2.5.5. Let K be a p-adic field and let A be a commutative separable

K-algebra. Let M be the unique maximal order in A. Let S be a finitely generated

projective OK-module which is also an M-module. Suppose that S⊗OK
K is a free

A-module of rank one. Then S is a free M-module of rank one.

Proof. By [CR81a, (26.12)], M is a hereditary order. That is, every one-sided ideal

of M is projective as an M-module. This implies that every finite OK-module

which is also an M-module is in fact a projective M-module. In particular, we

may conclude that S is M-projective. Using the assumptions that K is a p-adic
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field, A is commutative and S ⊗OK
K is a free A-module, we may conclude (see

[CR81a, (35), Exercise 9]) that S ∼= M as M-modules. Since M is obviously a free

M-module, the result follows.

Corollary 2.5.6. Let L/K be a finite separable extension of p-adic fields which is

Hopf-Galois for some commutative Hopf algebra H. If the associated order AH is

the unique maximal order in H, then OL is a free AH-module.

Theorem 2.5.7. (Childs) Let L/K be a finite H-Galois extension of local fields

with rings of integers OL,OK repectively. If the associated order AH is a Hopf

order in H, then OL is a free AH-module.

Proof. See [Chi00, (12.7)].

This striking result is proved in stages in chapter 3 of [Chi00]. We extract a defini-

tion and theorem which we shall use explicitly later. The former is a generalisation

of the notion of tameness; the latter a generalisation of Noether’s theorem appli-

cable Hopf-Galois extensions of Galois algebras.

Definition 2.5.8. Let R be a commutative ring with unity and H a finite co-

commutative R-Hopf algebra with module of left integrals I. Let S be a finitely

generated projective R algebra. Suppose that S is an H-module algebra such that

{s ∈ S | hs = ε(h)s for all h ∈ H} = R.

We say that S is a tame H-extension of R if

• rankR(S) = rankR(H).

• S is a faithful H-module.

• IS = R.
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Theorem 2.5.9. Let R be a local domain with quotient field K of characterstic

zero. Let H be a finite cocommutative R-Hopf algebra and S be a finitely generated

projective R-algebra. Suppose that S is a tame H-extension of R. Then S is a free

H-module of rank one.

Proof. See [Chi00, (13.4)].

If in addition to the hypotheses for this theorem we assume that H is a local R-

Hopf algebra then a theorem of Childs and Hurley provides an explicit generator

of S over H.

Theorem 2.5.10 (Childs and Hurley). Let R be a local ring with maximal

ideal m and H a local, cocommutative R-Hopf algebra with module of integrals

Rθ. Suppose S is an H-tame extension of R, and let t ∈ S satisfy θt = 1. Then

S = Ht.

Proof. See [Chi00, Theorem 14.7].

Remark 2.5.11. In fact it is shown in [Chi00, Theorem 14.7] that when H is a

local Hopf algebra over a local domain R, the following three conditions on an

H-module algebra S are equivalent:

• S is H-tame.

• S is H-free.

• S is H-Galois.



Chapter 3

Conditions for Freeness over the

Associated Order

3.1 Overview

In this chapter we prove the following two theorems regarding extensions of p-adic

fields:

Theorem 3.1.1. Let L/K be a finite unramified extension of p-adic fields, and

suppose that L/K is H-Galois for some Hopf algebra H. Let AH ⊆ H be the

associated order of OL. Then AH is a Hopf order in H and OL is a free AH-

module.

Theorem 3.1.2. Let L/K be a finite (not necessarily Galois) extension of p-adic

fields such that p - [L : K]. Suppose that L/K is H-Galois for some commutative

Hopf algebra H. Let AH ⊆ H be the associated order of OL. Then AH is the

unique maximal order in H and OL is a free AH-module.

We also prove two analogous theorems regarding extensions of number fields:

Theorem 3.1.3. Let L/K be a finite abelian extension of number fields, and

suppose that L/K is H-Galois for some Hopf algebra H. Let AH ⊆ H be the

41
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associated order of OL. Suppose p is a prime of OK which is unramified in OL.

Then AH,p is a Hopf order in Hp and OL,p is a free AH,p-module.

Theorem 3.1.4. Let L/K be a finite (not necessarily Galois) extension of number

fields, and suppose that L/K is H-Galois for some commutative Hopf algebra H.

Let AH ⊆ H be the associated order of OL. Suppose that p is a prime of OK lying

above a prime number which does not divide [L : K]. Then AH,p is the unique

maximal order in Hp and OL,p is a free AH,p-module.

Some immediate corollaries of these theorems follow:

Corollary 3.1.5. Let L/K be a finite abelian Galois extension of number fields,

and suppose that L/K is H-Galois for some Hopf algebra H. Then OL,p is free over

AH,p for all primes p of OK which are unramified in OL. Thus in order to determine

whether OL is a locally free AH-module, it is sufficient to consider the structure of

OL,p over AH,p for each of the (finitely many) primes p which are ramified in OL.

Proof. Almost all primes p of OK are unramified in OL. For each of these, we

apply (3.1.3), and conclude that OL,p is a free AH,p-module.

Remark 3.1.6. Recall from (2.1.13) that a Galois extension L/K of number fields

is called domestic if no prime of OK lying above a prime number dividing [L : K]

ramifies in OL.

Corollary 3.1.7. Let L/K be a finite domestic abelian Galois extension of number

fields. Suppose that L/K is H-Galois for some commutative Hopf algebra H. Then

OL is a locally free AH-module.

Proof. By (3.1.5), we have that OL,p is free over AH,p for any prime p of OK which

is unramified in OL. Suppose p is a prime of OK which is ramified in OL. Then p

lies above a prime number p, and since L/K is domestic, we must have p - [L : K].

We may therefore apply (3.1.4), and conclude that OL,p is a free AH,p-module.
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Corollary 3.1.8. Let L/K be a tamely ramified abelian Galois extension of num-

ber fields of prime power degree. Suppose that L/K is H-Galois for some commu-

tative Hopf algebra H. Then OL is a locally free AH-module.

Proof. By (3.1.7), it is sufficient to observe that since L/K has prime power degree,

the assumption that it is tamely ramified is equivalent to the assumption that it is

domestic.

3.2 The OK-order OE[N ]G

Let L/K be a finite extension of p-adic fields or number fields with Galois closure

E. Let G = Gal(E/K) and G′ = Gal(E/L). Let X be the left coset space G/G′ of

G′ in G. Suppose that L/K is H-Galois for some Hopf algebra H. By Greither and

Pareigis’s theorem (2.4.9), we have that H = E[N ]G for N some regular subgroup

of Perm(X) normalised by G. Within this algebra, we shall study the OK-order

OE[N ]G.

Proposition 3.2.1. Let L/K be a finite extension of p-adic fields or number fields

with Galois closure E, and suppose that L/K is H-Galois for the Hopf algebra

H = E[N ]G. Then OE[N ]G ⊆ AH .

Proof. Let z ∈ OE[N ]G. Then z ∈ OE[N ], so we may write

z =
∑
n∈N

cnn, with cn ∈ OE.

Since z ∈ H, the action of z on x ∈ L is given by

(∑
n∈N

cnn

)
.x =

∑
n∈N

cnn
−1(1G)x.

Now for each n ∈ N , any group element representing n−1(1G) is a Galois auto-

morphism of E, so if x ∈ OL then n−1(1G)x ∈ OE. Therefore for x ∈ OL we
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have

z.x =
∑
n∈N

cnn
−1(1G)x ∈ OE.

Since also z.x ∈ L, we have that z.x ∈ OE ∩ L = OL, whence z ∈ AH .

The proofs of the results in this chapter involve showing that under appropriate

conditions we have locally the reverse inclusion.

3.3 Unramified Extensions of p-adic Fields

Let L/K be a finite unramified extension of p-adic fields. Then L/K is automati-

cally Galois, with cyclic Galois group, say G. By Greither and Pareigis’s theorem

(2.4.9), a Hopf algebra H giving a Hopf-Galois structure on L/K is of the form

L[N ]G for N some regular subgroup of Perm(G) normalised by G. We shall show

that AH = OL[N ]G, and that this is a Hopf order in H, which by (2.5.7) is suffi-

cient to prove theorem (3.1.1). We begin with a technical result, which is essentially

taken from [Byo97, Lemma 4.5]:

Theorem 3.3.1. (Byott) Let L/K be a finite unramified extension of p-adic fields

with Galois group G. Let X be a G-set. Let OLX denote the free OL-module on

X, with G acting via both OL and X. Then

(OLX)G ⊗OK
OL = OLX.

Proof. We first show that we may reduce to the case where G acts regularly on X.

Since L/K is unramified, G is cyclic and therefore abelian, and so this is equivalent

to G acting faithfully and transitively. Let {X1, . . . , Xm} be the orbits of G in X.
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Then

(OLX)G ⊗OK
OL =

(
m⊕
r=1

OLXr

)G

⊗OK
OL

=
m⊕
r=1

(OLXr)
G ⊗OK

OL

Now let Hr / G be the kernel of the action of G on Xr. Let Fr be the fixed field of

Hr and let Γr = G/Hr
∼= Gal(Fr/K). Then Γr acts transitively and faithfully on

Xr and (OFrXr)
Γr = (OLXr)

G. Using the above decomposition for (OLX)G ⊗OK

OL, we have reduced to the case where G acts faithfully and transitively, and so

regularly, on X. In this case, let a1, . . . , an be a basis for OL over OK , and fix some

x ∈ X. Then the elements

bi =
∑
g∈G

g(ai)
gx

are a basis for (OLX)G over OK . They therefore also form a basis for (OLX)G⊗OK

OL over OL. Now {gx | g ∈ G} is a basis of OLX over OL, and so

[OLX : (OLX)G ⊗OK
OL]2OL

= det g(ai)
2

= Disc (OL/OK) ,

and this is trivial since L/K is unramified.

We now show that since L/K is unramified, we in fact have equality in the inclusion

established in (3.2.1) above:

Theorem 3.3.2. Let L/K be a finite unramified extension of p-adic fields, and

suppose that L/K is H-Galois for the Hopf algebra H = L[N ]G. Then AH =

OL[N ]G.

Proof. By (3.2.1), OL[N ]G ⊆ AH . On the other hand, since L/K is unramified, we

have that OL⊗OK
OL
∼= O

[L:K]
L , and this is the ring of integers of L⊗K L ∼= L[L:K].
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The L-algebra H⊗KL ∼= L[N ] acts on L⊗KL, with associated order OL[N ]. Since

AH ⊗OK
OL also acts on OL ⊗OK

OL, we conclude that

AH ⊗OK
OL ⊆ OL[N ].

So by (3.3.1) we have

AH ⊗OK
OL ⊆ OL[N ]G ⊗OK

OL,

and therefore

AH ⊆ OL[N ]G.

Hence AH = OL[N ]G.

We now use this explicit description of AH to show that AH is in fact a Hopf order.

By (2.4.13), it is sufficient to prove that the comultiplication on H restricts to AH .

Theorem 3.3.3. Let L/K be a finite unramified extension of p-adic fields, and

suppose that L/K is H-Galois for the Hopf algebra H = L[N ]G. Then AH is a

Hopf order in H.

Proof. By (3.3.2), AH = OL[N ]G. As in the proof of (3.3.1), we may reduce to the

case where G acts regularly on some orbit X - in general this is not a group, but

is still a finite G-set. In this case, it is sufficient to show that we have

∆
(

(OLX)G
)
⊆ (OLX)G ⊗ (OLX)G .

Let a1, . . . , an be a basis for OL over OK , and fix some x ∈ X. Then as in the

proof of (3.3.1), the elements

bi =
∑
g∈G

(gai)(
gx) i = 1, . . . , n
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are a basis for (OLX)G over OK . For each i = 1, . . . , n we require that ∆(bi) ∈

(OLX)G ⊗ (OLX)G . Since ∆ is L-linear, we have

∆(bi) =
∑
g∈G

g(ai)(
gx⊗gx) i = 1, . . . , n.

This is fixed under the action of G×G on LX ⊗L LX since bi ∈ H. Additionally,

since L/K is unramified we have det (g(ai)) ∈ O×K , so ∆(bi) ∈ OLX ⊗OL
OLX.

Thus ∆(bi) ∈ (OLX)G ⊗OK
(OLX)G.

We now restate and prove (3.1.1):

Corollary 3.3.4. Let L/K be a finite unramified extension of p-adic fields, and

suppose that L/K is Hopf-Galois for some Hopf algebra H. Let AH ⊆ H be the

associated order of OL. Then AH is a Hopf order in H and OL is a free AH-module.

Proof. By (3.3.3), AH is a Hopf order in H. Now apply (2.5.7).

3.4 Unramified Completions of Number Fields

Let L/K be a finite abelian Galois extension of number fields, and suppose that

L/K is Hopf-Galois for some Hopf algebra H = L[N ]G. Let p be a prime of OK

which is unramified in OL. In this section we prove (3.1.3) - that AH,p is a Hopf

order in Hp and OL,p is a free AH,p-module. Motivated by (3.3.2) we consider the

OK,p-order OL,p[N ]G in Hp.

Proposition 3.4.1. The OK,p-order OL,p[N ]G is a Hopf order in Hp.

Proof. This follows the proof of (3.3.3). Note that in this case we have explicitly

assumed thatG is abelian, so any faithful transitive action of a subgroup or quotient

group of G is regular.

We now restate and prove (3.1.3):
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Proposition 3.4.2. The OK,p-order OL,p[N ]G coincides with the completed asso-

ciated order AH,p and OL,p is a free OL,p[N ]G-module.

Proof. By (3.4.1), OL,p[N ]G is a Hopf order in Hp. We note that the trace element

θ =
∑
n∈N

n

is a left integral of OL,p[N ]G, and since p is unramified in OL there exists an element

t ∈ OL,p such that θ.t = 1. Thus OL,p is an OL,p[N ]G-tame extension of OK,p (see

(2.5.8)). Now by (2.5.9) we have that OL,p is a free OL,p[N ]G-module. Thus by

(2.5.4) we have AH,p = OL,p[N ]G.

3.5 Maximal Associated Orders

Let L/K be a finite extension of p-adic fields which is H-Galois for some commu-

tative Hopf algebra H. In this section we determine a sufficient condition for the

associated order AH to be the unique maximal order in H. When this occurs, it

follows by (2.5.5) that OL is a free AH-module, as asserted in (3.1.2). Let E be the

Galois closure of L/K with G = Gal(E/K), and let G′ = Gal(E/L). Let X be the

left coset space G/G′ of G′ in G. By Greither and Pareigis’s theorem (2.4.9) we

have that H = E[N ]G for some abelian regular subgroup N of Perm(X) normalised

by G. We begin by giving a sufficient condition for the integral group ring OE[N ]

to be the maximal order of the group algebra E[N ].

Proposition 3.5.1. Let E be a p-adic field with ring of integers OE and let N be

a finite group. Suppose that p - |N |. Then OE[N ] is a maximal order in E[N ]. In

particular, if N is abelian then OE[N ] is the unique maximal order in E[N ].

Proof. Since p - |N | we have |N | ∈ O×E and therefore OE[N ] is a maximal order in

E[N ] by (2.1.6). If N is abelian, then the maximal order is unique by (2.1.5).
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We now show that, in the situation described at the start of the section, if N is

abelian and OE[N ] is the unique maximal order in E[N ] then taking the fixed

points under the action by G preserves this maximality, so that OE[N ]G is the

unique maximal order in E[N ]G.

Proposition 3.5.2. Let E/K be a finite Galois extension of p-adic fields with

group G and rings of integers OE,OK respectively. Let N be a finite abelian group

which is a G-set, and suppose that p - |N |. Let G act on the group algebra E[N ]

by acting via both E and N . Then OE[N ]G is the unique maximal OK-order in

the K-algebra E[N ]G.

Proof. Since N is abelian, by (2.1.5), E[N ] has a unique maximal OE-order and

E[N ]G has a unique maximal OK-order. Since p - |N | we have p ∈ O×K ⊆ O×E and

so the maximal OE order in E[N ] is OE[N ] by (3.5.1). Denote by M the maximal

OK-order in E[N ]G, and let x ∈M. By (2.1.5) x is integral over OK in E[N ]G, so x

is integral over OE in E[N ], whence x ∈ OE[N ]. So x ∈ E[N ]G∩OE[N ] = OE[N ]G.

So OE[N ]G = M.

We now restate and prove (3.1.2):

Theorem 3.5.3. Let L/K be a finite (not necessarily Galois) extension of p-adic

fields such that p - [L : K]. Suppose that L/K is H-Galois for some commutative

Hopf algebra H. Let AH ⊆ H be the associated order of OL. Then AH is the

unique maximal order in H and OL is a free AH-module.

Proof. Write H = E[N ]G. By (3.5.2), OE[N ]G is the unique maximal order in H.

On the other hand, by (3.2.1) OE[N ]G ⊆ AH . So OE[N ]G = AH is the maximal

OK-order in H and therefore by (2.5.5), OL is a free AH-module.
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3.6 Locally Maximal Associated Orders

Let L/K be a finite extension of number fields with Galois closure E. Suppose

L/K is H-Galois for some commutative Hopf algebra H = E[N ]G. In this section

we prove (3.1.4) by generalising the results of the previous section.

Proposition 3.6.1. Let p be a prime of OK which lies above a prime number p

which does not divide [L : K]. Then AH,p is the unique maximal order in Hp and

OL,p is a free AH,p-module.

Proof. Let M denote the unique maximal OK-order in H, so that Mp is the unique

maximal OK,p-order in Hp. Let x ∈Mp. Then x ∈ Ep[N ]G, so x ∈ Ep[N ]. Recall

from (2.1.15) the isomorphism

Ep
∼=
∏
P|p

EP,

where the P are the primes of OE which lie above p. This induces an isomorphism

Ep[N ] ∼=
∏
P|p

EP[N ],

where each factor on the right is a group algebra over a p-adic field whose residue

characteristic is coprime to |N |. Now x is integral over OK,p in Hp, so x lies in the

set of elements of Ep[N ] which are integral over OK,p. The image of this set under

the isomorphism above is contained in the product

∏
P|p

MEP[N ],

where each MEP[N ] is the unique maximal order in the group algebra EP[N ]. Since

p lies above a prime number which does not divide [L : K] = |N |, by (2.1.6) we
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have that MEP[N ] = OE,P[N ] for each P | p. Thus

∏
P|p

MEP[N ] =
∏
P|p

OE,P[N ] ∼= OE,p[N ],

and so x ∈ OE,p[N ] ∩ Ep[N ]G = OE,p[N ]G. Therefore Mp = OE,p[N ]G and so

AH,p = Mp. Finally, by (2.5.5) we have that OL,p is a free AH,p-module.



Chapter 4

Tamely Ramified Cp × Cp

Extensions

For the remainder of this thesis, we shall study a tamely ramified Galois extension

L/K of number fields with group isomorphic to Cp×Cp, where p is a prime number.

We shall assume that K contains a primitive pth root of unity ζ; such extensions

then have the form L = K(α, β), with αp = a ∈ K×/K×p and βp = b ∈ K×/K×p.

In this chapter we derive congruence conditions on a and b which are equivalent

to L/K being tamely ramified. For each prime p of OK , we also calculate explicit

integral bases for OL,p over OK,p. We begin by classifying extensions of p-adic fields

having degree p.

4.1 Local Extensions of Degree p

Theorem 4.1.1. Let p be a prime number and let L/K be a Galois extension of

p-adic fields with group G ∼= Cp. Let ζ be a primitive pth root of unity in K. Write

L = K(α), with αp = a ∈ OK . Set e = vK(p), e′ = e/(p − 1) = vK(ζ − 1). Let π

be a uniformiser for K. Then we may choose α so that one of the following holds

for some u ∈ O×K :

52
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(i) αp = uπ.

(ii) αp = 1 + uπk, with 1 ≤ k = pq + r < pe′ and 0 < r ≤ p− 1.

(iii) αp = 1 + uπpe
′
.

Proof. [Chi00, (24.2)]. Suppose first that L = K(β) with βp = uπd. If p - d then

we can find an s such that sd = 1 + pq, and taking α = βs/πq yields αp = usπ.

We still have L = K(α), and so this is case (i). If p | d then write d = pt and set

α = β/πt. Then αp = u ∈ O×K . We can thus reduce to this case. Suppose that

L = K(β) with βp = u ∈ O×K . Then since OK/πOK is a finite field of characteristic

p, there exists some v ∈ O×K such that vp ≡ u−1 (mod πOK). Set α1 = vβ. Then

αp1 = uvp ≡ 1 (mod πOK). So now suppose that αp1 = 1 + uπpq+r, where u ∈ O×K

and 0 < pq + r, 0 ≤ r ≤ p − 1. Suppose r = 0. Set c = 1 + vπq where q 6= 0 and

vp ≡ −u (mod πOK). Let α2 = cα1. Then

αp2 = (α1c)
p

= (1 + uπpq)(1 + vπq)p

= (1 + uπpq)

(
1 +

p−1∑
k=1

(
p

k

)
vkπqk + vqπpq

)
= 1 + (u+ vp)πpq + uvpπ2pq + pπqw

for some w ∈ OK . If pq < (p− 1)e′+ q (i.e. q < e′), then vK(αp2− 1) > vK(αp1− 1).

We may repeat this construction as needed, and so find α such that L = K(α) and

αp = 1 + uπpq+r with u ∈ O×K and either 1 ≤ r ≤ p− 1 (case (ii)) or pq + r ≥ pe′.

If we have equality here then this is case (iii). Otherwise a = αp is a pth power in

K by Hensel’s lemma, whence α ∈ K since ζ ∈ K, and we do not have a proper

extension.

We now examine the ramification in each of the cases (i)-(iii) in the proposition

above:
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Proposition 4.1.2. If L = K(α) with αp = uπ for some u ∈ O×K , then L/K is

totally ramified and OL = OK [α].

Proof. The polynomial xp − uπ is an Eisenstein polynomial and is satisfied by α,

so L/K is totally ramified and α is a uniformizer for OL over OK . See [FT91,

Theorem 24]

Proposition 4.1.3. If L = K(α) with αp = 1 +uπpe
′

for some u ∈ O×K , then L/K

is unramified, and OL = OK

[
α−1
ζ−1

]
.

Proof. [Chi00, (24.4)] Let λ = ζ − 1 and x = α−1
λ

. Then α = 1 + λx, and so

1 + uπpe
′
= αp =

p−1∑
k=0

(
p

k

)
λkxk + λpxp.

Now note that vK(λ) = e′, so vK(λp) = pvK(λ) = pe′. So subtracting 1 from each

side of the equation above and dividing by λp we obtain

u
πpe

′

λp
= xp +

p−1∑
k=1

1

p

(
p

k

)
pλkxk

λp
,

implying that x satisfies a monic polynomial in OK [t], whence OK [x] ⊆ OL. Now

let σ be a generator for G satisfying σ(α) = ζα. Then

σ

(
α− 1

λ

)
=
ζα− 1

λ
=

(ζ − 1)α

λ
+
α− 1

λ
,

so σ(x) = α + x. Since α is a unit of OK [x], the inertia group

G0 = {τ ∈ G | τ(x) ≡ x (mod m) for all maximal ideals m of OK [x]}

is trivial, which is equivalent to OK [x] being unramified over OK . (See [Chi00,

(2.5)]). Therefore Disc (OK [x]) = OK . But since OK [x] ⊆ OL, Disc (OK [x]) ⊆

Disc (OL) ⊆ OK . So Disc (OL) = OK and therefore OK [x] = OL and L/K is
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unramified.

Proposition 4.1.4. If L = K(α) with αp = 1 + uπk for some u ∈ O×K and

k = pq + 1 < pe′, then L/K is totally ramified and OL = OK

[
α−1
πq

]
.

Proof. See [Chi00, Corollary 24.8].

4.2 Tame Cp × Cp Extensions of Number Fields

Throughout, let p be a prime number and let K be a number field containing a

primitive pth root of unity ζ. The Galois extensions of K with group G ∼= Cp ×Cp

are then of the form L = K(α, β), with αp = a and βp = b linearly independent

elements of the Fp-vector space K×/K×
p
.

Proposition 4.2.1. Let L = K(α, β). Then L/K is tamely ramified if and only if

both K(α)/K and K(β)/K are tamely ramified.

Proof. Since [L : K] = p2, the extension L/K is tamely ramified if and only if

no prime p of OK lying above p is ramified. A prime p of OK is ramified in OL

if and only if it divides the discriminant Disc (L/K). Since L is the composi-

tum of K(α) and K(β), a prime p divides Disc (L/K) if and only if it divides

Disc (K(α)/K) Disc (K(β)/K) (See [Mol99, Theorem 4.67]). Therefore p divides

Disc (L/K) if and only if it divides either Disc (K(α)/K) or Disc (K(β)/K), i.e.

L/K is tamely ramified if and only if both K(α)/K and K(β)/K are tamely ram-

ified.

For each prime p of OK which lies above p, we write ep = vp (p). Since ζ ∈ OK , we

have ep = (p − 1)e′p where e′p = vp (ζ − 1). Where there is no danger of confusion

we shall write simply e and e′.

Proposition 4.2.2. The extension K(α)/K is tamely ramified if and only if a = αp

can be chosen to satisfy a ≡ 1 (mod∗ (ζ − 1)p). (That is, vp (α− 1) ≥ vp ((ζ − 1)p)

for all p | (ζ − 1)OK , but possibly α 6∈ OK .)
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Proof. Since [K(α) : K] = p, the extension is tamely ramified if and only if no

prime p lying above p ramifies. That is, for such a prime, each prime P of OK(α)

lying above p the completion K(α)P/Kp is of the form given in case (iii) of (4.1.1),

and therefore unramified by (4.1.3). So the extension is tamely ramified if and only

if we can choose a = αp such that for each p | pOK , we have a = 1 + uπpe
′

p ∈ OK,p

for some u ∈ O×K,p. If we can choose a in this way for each prime p lying above p

then by the Chinese Remainder Theorem (see [FT91, Theorem 4]) we can choose

a such that the condition is satisfied for all such p simultaneously. Finally, we note

that for each such prime vp ((ζ − 1)p) = pe′, giving the congruence condition in the

proposition.

Proposition 4.2.3. If the extension K(α)/K is tamely ramified then without loss

of generality we may assume that a = αp ∈ OK .

Proof. By the Chinese Remainder Theorem (see [FT91, Theorem 4]) we may pick

an element l ∈ OK satisfying the following conditions:

• l ≡ 1 (mod (ζ − 1)p) for p | pOK .

• vp (l) ≥ vp (a) for p - pOK .

This is a finite list of conditions since vp (a) = 0 for almost all primes p. Then we

can write a = l/m, where m = l/a. Then m ∈ OK , for m ≡ 1 (mod∗ (ζ − 1)p),

and if p - pOK then vp (m) = vp (l)− vp (a) ≥ 0. So we have a = lmp−1/mp, and if

we define a′ = mpa and (α′)p = a′ then we have

• a′ ∈ OK

• a′ ≡ 1 (mod (ζ − 1)p)

• K(α′) = K(α).

hence we may replace a with a′.
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Corollary 4.2.4. Let L = K(α, β). Then L/K is tamely ramified if and only if

a = αp and b = βp can be chosen to satisfy a ≡ b ≡ 1 (mod (ζ − 1)p).

Proof. This is clear upon combining (4.2.1), (4.2.2) and (4.2.3).

4.3 Local Integral Bases

Definition 4.3.1. For x ∈ K× and p a prime of OK , define rp(x) by

rp(x) =

⌊
vp (x)

p

⌋
= max

{
n ∈ Z | n ≤ vp (x)

p

}
.

Proposition 4.3.2. Let L = K(α, β) with αp = a, βp = b and a, b ∈ OK/O
p
K .

Suppose a and b satisfy the congruence conditions of (4.2.4), so that L/K is tamely

ramified. Let p be a prime of OK which does not lie above p. Then the following

is an OK,p basis of OL,p.

{
αiβj

π
rp(aibj)
p

| 0 ≤ i, j ≤ p− 1

}

Proof. Consider first the subextension K(α)/K, with Gal(K(α)/K) ∼= Cp. Let σ

be a generator of Gal(K(α)/K) satisfying σ(α) = ζα. Let

ω =

{
αi

π
rp(ai)
p

| 0 ≤ i ≤ p− 1

}
.

Suppose first that vp (a) ≡ 0 (mod p). Then

Disc (ω) = det

(
σs

(
αi

π
rp(ai)
p

))2

=

(
p−1∏
i=0

π
−2rp(ai)
p

)
det
(
σs
(
αi
))2
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We examine the two terms separately. Firstly we have

det
(
σs
(
αi
))2

= det
(
ζ isαi

)2

= α
2p(p−1)

2 det
(
ζ is
)2
.

Now,

det
(
ζ is
)

=
∏

0≤i<s≤p−1

(
ζs − ζ i

)
=

∏
0≤i<s≤p−1

ζ i
(
ζs−i − 1

)
=

∏
0≤i<s≤p−1

ζ i
∏

0≤i<s≤p−1

(
ζs−i − 1

)
The first term of this is a global unit, and the second is divisible only by primes

lying above p. Therefore,

det
(
σs
(
αi
))2 ∼ a(p−1).

On the other hand, we have

vp

(
p−1∏
i=0

π
−2rp(ai)
p

)
= −2

p−1∑
i=0

rp(a
i)

= −2

p

p−1∑
i=0

vp

(
ai
)

= −2

p
vp (a)

p−1∑
i=0

i

= −2

p

p(p− 1)

2
vp (a)

= −(p− 1)vp (a)

= −vp

(
a(p−1)

)
.

So Disc (ω) = OK,p, and so ω is an integral basis for OK(α),p over OK,p.
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Suppose now that gcd (vp (a) , p) = 1. Then p is ramified in K(α)/K, and so

pOK(α) = Pp for some prime ideal P of OK(α). Then

pvp (a) = vP (a) = vP (αp) = pvP (α) ,

and so

vP (α) = vp (a) .

We therefore have

vP

(
αi

π
rp(ai)
p

)
= vP

(
αi
)
− vP

(
π
rp(ai)
p

)
= vP

(
αi
)
− pvp

(
π
rp(ai)
p

)
= vP

(
αi
)
− prp(a

i)

= vp

(
ai
)
− prp(a

i)

≡ ivp (a) (mod p),

and since gcd (vp (a) , p) = 1, this ranges over all residues modulo p as i varies. So

ω contains a basis element of P-valuation k for each 0 ≤ k ≤ p − 1, and so ω

is an integral basis of OK(α),p over OK,p. Analogous results for the subextension

K(β)/K follow by symmetry. If we consider L = K(α, β), there are three possible

cases:

i) If vp (a) ≡ vp (b) ≡ 0 (mod p), then

Disc
(
OK(α),p/OK,p

)
= Disc

(
OK(β),p/OK,p

)
= OK,p,

and the extensions are arithmetically disjoint at p (see [FT91, III, (2.13)]),

whence OL,p = OK(α),pOK(β),p.
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ii) If exactly one of vp (a) ≡ 0 (mod p) and vp (b) ≡ 0 (mod p) holds, then

gcd
(
Disc

(
OK(α),p/OK,p

)
,Disc

(
OK(β),p/OK,p

))
= OK,p,

and again the extensions are arithmetically disjoint at p, whence OL,p =

OK(α),pOK(β),p.

iii) If both vp (a) 6≡ 0 (mod p) and vp (b) 6≡ 0 (mod p), then there exist integers

m,n such that

mvp (a) + nvp (b) ≡ 0 (mod p).

If we consider the elements

(
αi

π
rp(ai)
p

)
,

(
αmjβnj

π
rp(amjbnj)
p

)
0 ≤ i, j ≤ p− 1,

then we are again in case (ii).

All of these cases yield the description of OL,p given in the proposition.

Proposition 4.3.3. Let L = K(α, β) with αp = a, βp = b and a, b ∈ O×K/O
×
K
p
.

Suppose a and b satisfy the congruence conditions of (4.2.4), so that L/K is tamely

ramified. Let p be a prime of OK which lies above p. Let vp (p) = e = (p − 1)e′.

Then the following is an OK,p-basis of OL,p.

{(
α− 1

πe′p

)i(
β − 1

πe′p

)j
| 0 ≤ i, j ≤ p− 1

}
.

Proof. Consider first the subextension K(α)/K. By (4.1.3) we have that an OK,p

basis of OK(α),p is {(
α− 1

πe′p

)i
| 0 ≤ i ≤ p− 1

}
,

and the local extension K(α)p/Kp is unramified, so Disc
(
OK(α),p/OK,p

)
= OK,p.

Analogous results for the subextension K(β)/K follow by symmetry. Since both
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the subextensions K(α)p and K(β)p are unramified, they are arithmetically disjoint

at p, and so we obtain

OL,p = OK(α),pOK(β),p,

which yields the description of OL,p in the proposition.

Remark 4.3.4. Let p be a prime of OK and consider the subextension K(α)/K

of L/K. Let σ be a generator for G = Gal(K(α)/K) such that σ(α) = ζα. If p is

split in K(α)/K, then locally we have, by (2.1.14),

K(α)p
∼=
∏
P|p

K(α)P,

where for each P | p, we have K(α)P
∼= Kp, and so locally α ∈ Kp. If now we fix

some prime P | p, then we have

K(α)p
∼=

p−1∏
r=0

K(α)σr(P).

Under this isomorphism we have

α 7→
(
α, σα, . . . , σp−1α

)
=

(
α, ζα, . . . , ζp−1α

)
,

so we must interpret α as a tuple of elements of Kp. We shall often tacitly make

use of this convention in what follows.



Chapter 5

Hopf-Galois Structures on Cp × Cp

Extensions

Let p be a prime number. We continue to denote by K a number field containing

a primitive pth root of unity ζ, and by L/K a tame Galois extension with group

G ∼= Cp × Cp. In order to study the Hopf-Galois module structure of OL, we

shall need information about the Hopf-Galois structures admitted by the extension.

Here we reproduce results from [Byo96] where it is shown that there are precisely

p2 structures. For odd p they all have type Cp × Cp, whilst for p = 2 the classical

structure has type C2 × C2 and the nonclassical structures all have type C4. A

description of the Hopf algebras is given in [Byo02]. We extend this by determining

idempotents giving the Wedderburn decompositions of the Hopf algebras. Since all

the Hopf algebras are commutative, each Wedderburn component is an extension

field of K. These decompositions also yield a description of the unique maximal

OK-order in each Hopf algebra. Finally, we derive formulae for the action of each

Hopf algebra on the extension L/K.

62
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5.1 Counting the Hopf-Galois Structures

Since the extension L/K is Galois, we use a corollary (2.4.18) to Byott’s Translation

Theorem (2.4.16) to count the Hopf-Galois structures admitted by the extension.

For each of N = Cp2 and N = Cp ×Cp, we shall need count the number of regular

subgroups of Hol(N) which are isomorphic to Cp × Cp.

Proposition 5.1.1. Let N be a cyclic group of order p2 and let M = Hol(N).

i) If p is odd then M contains exactly one elementary abelian subgroup of order

p2, and this is not regular on N .

ii) If p = 2 then M contains exactly 2 elementary abelian subgroups of order 4,

and exactly one of these is regular on N .

Proof. [Byo96, Lemma 1, parts (i) and (iii)]. We identify N with the additive

group Z/p2Z and Aut(N) with (Z/p2Z)
×

. Then

M = Hol(N) = {θa,t | a ∈ Z/p2Z, t ∈
(
Z/p2Z

)×},
where

θa,t(x) = a+ tx for all x ∈ N.

Recalling the decomposition Hol(N) = N o Aut(N), we identify N with {θa,1 | a ∈

Z/p2Z} and Aut(N) with {θ0,t | t ∈ (Z/p2Z)
×}. For t 6≡ 1 (mod p2) we may show

by induction that for all x ∈ N we have

θka,t(x) = a

(
tk − 1

t− 1

)
+ tkx.

i) If p is odd then (Z/p2Z)
×

is cyclic of order φ(p2) = p(p − 1). We seek to

determine when θa,t has order dividing p. Suppose first that t ≡ 1 (mod p2).

Then θa,1(x) = a+ x for all x ∈ N , and θa,1 has order dividing p if and only
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if a has order dividing p in N , i.e. if and only if a = pA for some A ∈ Z/pZ.

Now suppose t 6≡ 1 (mod p2). Then

θpa,t(x) ≡ x (mod p2) ∀x ∈ N

⇔ a

(
tp − 1

t− 1

)
+ tpx ≡ x (mod p2) ∀x ∈ N

⇔ a

(
tp − 1

t− 1

)
≡ (1− tp)x (mod p2) ∀x ∈ N

and this holds if and only if tp − 1 ≡ 0 (mod p2) and a
(
tp−1
t−1

)
≡ 0 (mod p2).

So in fact

θpa,t(x) ≡ x (mod p2) ∀x ∈ N ⇔ tp ≡ 1 (mod p2) and a ≡ 0 (mod p).

Write a = pA and t = 1 + pT , where A and T are determined mod p. Then

for x ∈ N ,

θa,t(x) = a+ tx

= pA+ (1 + pT )x

= p(A+ Tx) + x

6= x ∀x unless A = T = 0.

So θa,t has order p unless A = T = 0, when θa,t = θ0,1 = id. We therefore

have p2 distinct elements of order 1 or p, which can be shown to commute,

and therefore generate a unique elementary abelian subgroup of Hol(N) of

order p2. This subgroup is not regular on N , since for example if a = 0 then

θ0,t(0) = 0 + t0 = 0 regardless of the value of t, whence Stab(0) 6= {id}.

ii) If p = 2 then M ∼= D8, the dihedral group of order 8. This has two elementary
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abelian subgroups of order 4, which we may present as

H1 = {id, θ0,3, θ2,1, θ2,3}

H2 = {id, θ3,3, θ2,1, θ1,3}

The subgroup H1 is not regular on N since Stab(0) = {id, θ0,3}. The subgroup

H2 is regular on N .

Proposition 5.1.2. Let N be an elementary abelian group of order p2 and let

M = Hol(N).

i) If p is odd then M contains exactly p2 + p+ 1 elementary abelian subgroups

of order p2, of which exactly p2 are regular on N .

ii) If p = 2 then M contains exactly 4 elementary abelian subgroups of order 4,

of which exactly 1 is regular on N .

Proof. [Byo96, Lemma 2] We identify N with F2
p and Aut(N) with GL2(Fp). Then

M = Hol(N) = {θA,C | A ∈ GL2(Fp), C ∈ F2
p},

where θA,C(V ) = C + AV for all V ∈ N . Recalling the decomposition Hol(N) =

N oAut(N), we may identify N with {θ1,C | C ∈ F2
p} and Aut(N) with {θA,0 | A ∈

GL2(Fp)}. Inductively we have

θkA,C(V ) = (Ak−1 + Ak−2 + . . .+ A+ I)C + AkV

for all V ∈ N . Consider an elementary abelian subgroup H of M of order p2. We

have |Aut(N)| = |GL2(Fp)| = p(p2 − 1)(p− 1), which is not divisible by p2, so the

image of H in GL2(Fp) ∼= Hol(N)/N is either trivial or of order p. If it is trivial
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then H = N . In the latter case, H ∩ N has order p and H is generated by θA,C

and θI,D, where A ∈ GL2(Fp) has order p and C,D ∈ F2
p with D 6= 0. We require

that AD = D for the generators to commute. By Sylow’s theorems, there are p+ 1

subgroups of order p in GL2(Fp), and they are all conjugate. One such subgroup

consists of all unipotent upper triangular matrices. We will count the possibilities

for H when A lies in this subgroup, and then use the conjugacy of such subgroups

to obtain a full count. Recall that H = 〈θA,C , θI,D〉. Replacing θA,C and θI,D by

suitable powers, we may assume that

A =

 1 1

0 1

 , D =

 1

0

 .

i) If p is odd then

(
Ap−1 + . . .+ I

)
=

 p
(
p
2

)
0 p

 ≡ 0 (mod p)

and so any choice of C will give a subgroup of the required type. We may

replace θA,C by θrI,DθA,C for any r ∈ Z without altering H, so H determines

C only up to a multiple of D. There are therefore p groups H with A upper

triangular. There are therefore p(p+ 1) subgroups H satisfying |H ∩N | = p,

and 1 satisfying H = N , giving a total of p2 + p + 1 elementary abelian

subgroups of order p2 in M . In the case considered in detail above, we find

that H is regular on N if and only if C is not a multiple of D. This gives

p − 1 regular subgroups H. Arguing by conjugation, we find that there are

exactly p2 − 1 regular subgroups H with A upper triangular, and so in total

exactly p2 of the elementary abelian subgroups of N of order p2 are regular

on N .

ii) If p = 2 then we must insist that (A+I)C = 0 in order for θA,C to have order
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2. We may adjust C by a multiple of D if necessary, and therefore assume

C = 0. We therefore have only one group H with A upper triangular, and

p + 1 = 3 elementary abelian subgroups H of M of order 4 and such that

|H∩N | = 2. Including the case H = N , we have exactly 4 elementary abelian

subgroups of order 4 in M . Among these, the only one which is regular on

N is H = N , since otherwise we have, for example,

θI,DθA,C

 0

1

 =

 1

0

+

 1 1

0 1


 0

1

 =

 1

0

+

 1

1

 =

 0

1

 ,

whence the stabiliser of this element of F2
p is nontrivial. (Arguing again by

conjugation, we find that the remaining 3 elementary abelian subgroups of

M of order 4 are not regular on N .)

Theorem 5.1.3 (Byott). Let L/K be an elementary abelian Galois extension of

fields of degree p2. Then L/K admits precisely p2 Hopf-Galois Structures.

Proof. [Byo96, Corollary to Lemmas 1 and 2, part (iii)] We use (2.4.18). Since there

are only two isomorphism classes of groups of order p2, the number of Hopf-Galois

structures on the extension is given by

|Aut(Cp × Cp)|
|Aut(Cp2)|

e′(Cp × Cp, Cp2) +
|Aut(Cp × Cp)|
|Aut(Cp × Cp)|

e′(Cp × Cp, Cp × Cp),

where for a group N , e′(Cp × Cp, N) denotes the number of regular subgroups

of Hol(N) isomorphic to Cp × Cp. Suppose first that p is odd. Then by (5.1.1),

e′(Cp × Cp, Cp2) = 0, and by (5.1.2), e′(Cp × Cp, Cp × Cp) = p2. Thus the number

of Hopf-Galois structures is

p(p2 − 1)(p− 1)

p(p− 1)
0 + p2 = p2.
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Now suppose that p = 2. Then e′(C2 × C2, C4) = 1, and e′(C2 × C2, C2 × C2) = 1,

so the number of Hopf-Galois structures is

2(4− 1)

2
+ 1 = 4 = p2.

5.2 Determining the Hopf-Galois Structures

We now describe explicitly the p2 regular subgroups of Perm(G) which are nor-

malised by λ(G).

Theorem 5.2.1 (Byott). Let L/K be a Galois extension of fields with group

G ∼= Cp × Cp. Let T ≤ G have order p, let d ∈ {0, 1, . . . , p − 1}, and fix σ, τ ∈ G

satisfying:

T = 〈τ〉, σp = 1, G = 〈σ, τ〉.

There are well defined elements ρ, η ∈ Perm(G) determined by:

ρ(σkτ l) = σkτ l−1

η(σkτ l) = σk−1τ l+(k−1)d for k, l ∈ Z.

We have ρη = ηρ and

ρp = 1, ηp =

 ρ if p = 2, d = 1

1 otherwise.

Now set N = NT,d = 〈ρ, η〉. Then N is a subgroup of Perm(G) of order p2, and

N ∼= G unless p = 2, d = 1, when N is cyclic. In all cases, N is regular on G, and

is normalised by λ(G). Thus N gives rise to a Hopf-Galois structure on L/K, with

Hopf Algebra H = HT,d = L[NT,d]
G. If d = 0 then N = λ(G), giving the classical



CHAPTER 5. HOPF-GALOIS STRUCTURES ON Cp × Cp EXTENSIONS 69

structure regardless of the choice of d. If d 6= 0 then the p− 1 possible choices of d,

together with the p+ 1 possible choices of T , yield p2 − 1 distinct groups N , each

giving rise to a non-classical structure on L/K.

Proof. See [Byo02, Theorem 2.5]

5.3 Describing the Hopf Algebras

Since ζ ∈ K, the group algebra K[ρ] has a basis of mutually orthogonal idempo-

tents:

es =
1

p

p−1∑
k=0

ζ−ksρk for 0 ≤ s ≤ p− 1,

satisfying

ρes = ζses.

Let M = LT be the subfield of L fixed by T = 〈τ〉. Thus M/K is cyclic of degree

p. Fix v ∈M× satisfying

σ(v) = ζ−dv.

Write vp = V ∈ K, and set

av =

p−1∑
s=0

vses ∈M [ρ].

Proposition 5.3.1 (Byott). With the above notation, for d 6= 0, we have HT,d =

K[ρ, avη].

Proof. [Byo02, Lemma 2.10]. Let H = HT,d. By (2.4.9), H = L[N ]G for some

regular subgroup N of Perm(G) which is normalised by λ(G), and where G acts

on L as the Galois group and on N by conjugation via λ. In particular H has
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dimension p2 as a K-algebra. Since ρp = 1N and

(avη)p =

p−1∑
s=0

vpsesη
p =

p−1∑
s=0

vpses ∈ K[ρ],

we have that K[ρ, avη] is also a K-subalgebra of L[N ] of dimension p2. It will

therefore suffice to show that K[ρ, avη] is fixed elementwise by G. We see easily

that gρ = ρ for all g ∈ G, and so every element of K[ρ] is fixed by G. In particular

this implies that the idempotents es ∈ K[ρ] are fixed by G. Now K[avη, ρ] is

generated over K[ρ] by avη, so it remains only to show that avη is fixed by G. We

calculate τη = η,ση = ρdη and recall that v ∈ LT = L〈τ〉. Then:

τ (avη) =

p−1∑
s=0

τ(v)s(τ (esη))

=

p−1∑
s=0

vsesη

= avη

and

σ(avη) =

p−1∑
s=0

σ(v)s(σ(esη))

=

p−1∑
s=0

σ(v)sesρ
dη

=

p−1∑
s=0

ζ−dsvsesζ
dsη

= avη

This completes the proof.

Since for all choices of T and d the Hopf algebra HT,d is commutative, it has a

unique maximal OK-order. In what follows, it will often be useful to have an

explicit description of this maximal order. We determine idempotents giving the
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Wedderburn decomposition of each HT,d into a product of extension fields of K.

We then obtain a description of the maximal order in HT,d as the preimage of the

product of rings of algebraic integers of the extension fields.

Proposition 5.3.2. With the above notation we have, for d 6= 0 and any choice

of T , the following isomorphisms of K-algebras.

HT,d
∼=

 K2 ×K(w) if p = 2

Kp ×K(v)p−1 otherwise

where w is defined by w2 = −v2 = −V .

Proof. Let d 6= 0. Take a basis of HT,d = K[ρ, avη]:

ω = {ρs(avη)t | 0 ≤ s, t ≤ p− 1}.

The set {ρs | 0 ≤ s ≤ p − 1} has K−span isomorphic to K[ρ]. We make the

following change of generators of HT,d:

ρs(avη)t 7→ es(avη)t for 0 ≤ s, t ≤ p− 1

This is easily shown to be a change of basis, for since K is a field we have the

explicit inversion formulae

ρk(avη)t =

p−1∑
s=0

ζkses(avη)t.

We shall write

ω′ = {es(avη)t | 0 ≤ s, t ≤ p− 1},

and examine properties of the basis ω′. Clearly

(es(avη)t)(es′(avη)t
′
) = 0
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whenever s 6= s′. We examine first the properties of elements of the form e0(avη)t.

e0(avη)t = (e0avη)t

= (e0η)t

= e0η
t

So

e0HT,d
∼= K[η].

Clearly by forming orthogonal idempotents within K[η] we have K[η] ∼= Kp. The

corresponding base change in e0HT,d is

e0(avη)t 7→ 1

p

p−1∑
k=0

ζkdte0(avη)k.

Now suppose s 6= 0 and examine elements of the form es(avη)t. For p = 2 we

calculate

(e1(avη))2 = (e1vη)2

= e1(vη)2

= e1V η
2

= e1V ρ (since N is cyclic)

= −e1V (by definition of e1)

Recall the definition of w from the statement of the proposition. If we make the

identifications

e1 7→ 1

e1(avη) 7→ w,
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we see that e1HT,d
∼= K(w). This gives, for p = 2,

HT,d
∼= K2 ×K(w).

For p 6= 2, we have

(es(avη))p = (esavη)p

= (esv
sη)p

= es(v
sη)p

= (V )ses.

So, making the identifications

es 7→ 1

es(avη) 7→ vs

for s = 1, . . . , p− 1, we see that esHt,d
∼= K(vs) ∼= K(v). Thus for p 6= 2 we have

HT,d
∼= Kp ×K(v)p−1.

Definition 5.3.3. For r = 0, . . . , p − 1, we shall adopt the following notation for

the idempotents defined in the proof of (5.3.2):

Er =
1

p

p−1∑
k=0

ζkdre0(avη)k.

Corollary 5.3.4. We have the following description of the unique maximal OK-
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order MT,d in HT,d.

MT,d
∼=

 O2
K ×OK(w) if p = 2

Op
K ×Op−1

K(v) otherwise.

Remark 5.3.5. It is possible to choose the element v such that in the notation of

(4.2.4) we have v = αiβj for some nonnegative integers i, j, and we shall always

assume that we have done so. Choosing v in this way we have vp ≡ 1 (mod (ζ −

1)pe
′
), which allows us to use (4.1.1), (4.3.2)and (4.3.3) to describe locally the

unique maximal OK-order MT,d.

Corollary 5.3.6. If p is a prime of OK which does not lie above p, then we may

use (4.3.2) to obtain an explicit OK,p basis of MT,d,p, valid for both p = 2 and odd

p.

{Er | 0 ≤ r ≤ p− 1} ∪

{
es(avη)t

π
rp(V st)
p

| 1 ≤ s ≤ p− 1, 0 ≤ t ≤ p− 1

}
.

Corollary 5.3.7. If p is odd and p is a prime of OK which lies above p, then we

may use (4.3.3) to obtain an explicit description of MT,d,p. We observe that since

V = vp ≡ 1 (mod (ζ − 1)p), we also have (vs)p ≡ 1 (mod (ζ − 1)p), and so an

OK,p-basis of OK(vs),p is

{(
vs − 1

πe′p

)t
| 0 ≤ t ≤ p− 1

}
,

which implies that an OK,p-basis of MT,d,p is

{Er | 0 ≤ r ≤ p− 1} ∪

{(
es(avη)− es

πe′p

)t
| 1 ≤ s ≤ p− 1, 0 ≤ t ≤ p− 1

}
.

If p = 2 then H ∼= K2 ×K(w), where w2 = −V , and so it is possible that K(w) is

wildly ramified at primes lying above 2. In order to obtain a description of MT,d,p

in this case, we first obtain a description of OK(w):
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Proposition 5.3.8. Let p = 2 and p be a prime of OK which lies above 2, and

write 2OK,p = uπep ∈ OK,p, so e = vp (2). Then there exists e/2 ≤ qp ≤ e and

cp ∈ O×K,p such that the following is an OK,p-basis of OK(w),p.

{
1,

(
cpw − 1

π
qp
p

)}

Proof. We omit the subscript p and write simply c and q. Recall that w2 = W =

−V and that V ≡ 1 (mod∗ 4OK). So V = 1 + u1π
m
p for some u1 ∈ O×K,p and

m ≥ 2e. Then

W = −1− u1π
m
p

= 1− 2− u1π
m
p

= 1− uπep − u1π
m
p

= 1 + u2π
e
p

for some u2 ∈ O×K,p. We follow the proof of (4.1.1), case (ii). There exist some

c, uc ∈ O×K,p such that (cw)2 = 1 + ucπ
Q
p with either Q < 2e and Q ≡ 1 (mod 2) or

Q ≥ 2e. In the first case K(w)p/Kp is totally wildly ramified. We write Q = 2q+1

(so in particular q < e) and apply (4.1.4), which implies that the following is an

OK,p-basis of OK(w),p: {
1,

(
cw − 1

πqp

)}
.

In the second case K(w)p/Kp is either unramified (Q = 2e) or not a proper ex-

tension (Q > 2e). We use (4.3.4) to handle these two cases together. (4.1.3) then

implies that the following is an OK,p basis of OK(w),p:

{
1,

(
cw − 1

πep

)}
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Corollary 5.3.9. Let p = 2 and p be a prime of OK lying above 2. Then for c = cp

and q = qp as defined above, the following is an OK,p-basis of MT,d,p:

{
E0, E1, e1,

ce1(avη)− e1

πqp

}
.

5.4 Action of the Hopf Algebras on L/K

In addition to the notation established in the previous sections, we now fix an

element x ∈ (O
〈σ〉
L )× satisfying τ(x) = ζx. As in (5.3.5), it is possible to choose

the element x such that in the notation of (4.2.4) we have x = αiβj for some

nonnegative integers i, j, and we shall always assume that we have done so. We

shall write xp = X, and we have have xp ≡ 1 (mod (ζ − 1)pe
′
). Then

L = K(x, v),

so to determine the action of the Hopf algebra H on L/K, we need only consider

the action of each K-basis element of H on an arbitrary product xivj. Recall that

H has K-basis

{Er | 0 ≤ r ≤ p− 1} ∪
{
es(avη)t | 1 ≤ s ≤ p− 1, 0 ≤ t ≤ p− 1

}
.

By Greither and Parigeis theory (2.4.9), the action of H on L is given by

(∑
n∈N

cnn

)
.x =

∑
n∈N

cnn
−1(1G)x.
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We calculate:

ρrηt(σkτ l) = ηt(σkτ l−r)

= σk−tτ l−r+dtk−(dt(t+1))/2

= 1G if and only if k = t and l = r − dt(t− 1)

2

and so

(ρrηt)−1(1G) = σtτ r−(dt(t−1))/2 (5.1)

In particular,

(ρr)−1(1G) = τ r.

Proposition 5.4.1. For s = 0, . . . , p− 1 we have

es(x
ivj) =

 xivj if s = i

0 otherwise

Proof. Each es ∈ H, so we use equation (5.1) to calculate es(x
ivj).

es(x
ivj) =

1

p

p−1∑
k=0

ζ−ksρkxivj

=
1

p

p−1∑
k=0

ζ−ksτ k(xivj)

=
1

p

p−1∑
k=0

ζ−ksζkixivj

=
xivj

p

p−1∑
k=0

ζk(i−s)

=

 xivj if s = i

0 otherwise
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Proposition 5.4.2. For t = 0, . . . , p− 1 we have

(avη)t(xivj) = ζ−dtjζ−dit(t−1)/2xivj+it.

Proof. First we observe that

(avη)t =

(
p−1∑
s=0

vsesη

)t

=

p−1∑
s=0

vstesη
t

since the es are orthogonal idempotents. Now each (avη)t ∈ H, so we use equation

(5.1) to calculate (avη)t(xivj).

(avη)t(xivj) =

p−1∑
s=0

vstesη
t(xivj)

=
1

p

p−1∑
s=0

p−1∑
k=0

vstζ−ksρkηt(xivj)

=
1

p

p−1∑
s=0

p−1∑
k=0

vstζ−ksσtτ k−dt(t−1)/2(xivj)

=
1

p

p−1∑
s=0

p−1∑
k=0

vstζ−ksζ−dtjζki−dit(t−1)/2xivj

=
ζ−dtjζ−dit(t−1)/2xivj

p

p−1∑
s=0

p−1∑
k=0

ζk(i−s)vst

= ζ−dtjζ−dit(t−1)/2xivj+it.

Proposition 5.4.3. For s = 0, . . . , p− 1 and t = 0, . . . , p− 1, we have

es(avη)t(xivj) =

 ζ−dtjζ−dit(t−1)/2xivj+it if i = s

0 otherwise.
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Proof. By (5.4.2),

(avη)t(xivj) = ζ−dtjζ−dit(t−1)/2xivj+it.

Then by (5.4.1),

es(ζ
−dtjζ−dit(t−1)/2xivj+it) =

 ζ−dtjζ−dit(t−1)/2xivj+it if i = s

0 otherwise.

Proposition 5.4.4. For r = 0, . . . , p− 1, we have

Er(x
ivj) =

 vr if i = 0, j = r

0 otherwise

Proof. Recall that

Er =
1

p

p−1∑
k=0

ζkdre0(avη)k.

By (5.4.3),

e0(avη)k(xivj) =

 ζ−dkjvj if i = 0

0 otherwise

Now

Er(x
ivj) =

1

p

p−1∑
k=0

ζkdre0(avη)k(xivj),
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So it is clear from (5.4.3) that Er(x
ivj) = 0 unless i = 0. So we consider

Er(v
j) =

1

p

p−1∑
k=0

ζkdre0(avη)k(vj)

=
1

p

p−1∑
k=0

ζkdrζ−kdjvj

=
vj

p

p−1∑
k=0

ζkd(j−r)

=

 vr if j = r

0 otherwise.



Chapter 6

Local Generators and Local Units

We retain the notation of the previous chapter: p is a prime number, K is a num-

ber field containing a primitive pth root of unity ζ, and L/K is a tamely ramfied

Galois extension with group G ∼= Cp × Cp. An arbitrary nonclassical Hopf-Galois

structure H = HT,d on L/K has the form HT,d = L[NT,d]
G for some regular sub-

group N = NT,d of Perm(G) normalised by G. We have fixed generators σ, τ , and

so subgroups S = 〈σ〉 and T = 〈τ〉 of G, and a value of d ∈ {1, . . . , p − 1}. We

have also fixed elements x ∈ OS
L and v ∈ OT

L satisfying τ(x) = ζx, σ(v) = ζ−dv,

xp ≡ vp ≡ 1 (mod (ζ − 1)p) and L = K(x, v).

By the results of chapter 3 we have that OL is a locally free AH-module in all

of the Hopf-Galois structures admitted by L/K. This immediately leads us to

ask under what conditions OL is a free AH-module. In later chapters we shall

use Fröhlich’s Hom Description of the locally free class group Cl (AH) (see section

(2.1.4)) to address this question. In order to do this we shall need detailed local

information, which we collect in this chapter. We provide explicit generators of

OL,p over AH,p for each prime p of OK . We also study the idèle group J(H), and

in particular the group of unit idèles U(AH).

81
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6.1 Explicit Local Generators

Theorem 6.1.1. Let H = L[N ]G be a Hopf algebra giving a Hopf-Galois structure

on L/K, and let AH ⊆ H be the associated order. Then:

i) The ring of integers OL is a locally free AH-module.

ii) If p does not lie above p, then AH,p = OL,p[N ]G and this is the unique maximal

order in Hp.

iii) If p lies above p, then AH,p = OL,p[N ]G and this is a Hopf order in Hp.

Proof. We use results from chapter 3:

i) This follows immediately from (3.1.8).

ii) Since p does not lie above p, we may apply (3.1.4).

iii) Since L/K is tamely ramified of degree p2 and p lies above p, we must have

that p is unramified in OL. We may therefore apply (3.1.3).

Having established that OL is a locally free AH-module, we now seek conditions

for global freeness. OL defines a class in the locally free class group Cl (AH), and,

since H is commutative, OL is a free AH-module precisely when this class is trivial

(see (2.1.24)). We shall use the isomorphism in (2.1.25) to determine when this

occurs.

Cl (AH) ∼=
J(H)

H×U(AH)
.

Recall from (2.1.25) that the class of OL corresponds to the class of the idèle

(hp)p ∈ J(H), where for some fixed generator Γ of L over H, the element hp ∈ Hp

is defined by hpΓ = γp, where γp is a generator of OL,p over AH,p. We seek first to

determine these local generators.
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Proposition 6.1.2. Let p be a prime of OK which does not lie above p. Define

0 ≤ jp ≤ p− 1 as follows:

 jp = 0 if vp (X) ≡ 0 (mod p) or vp (V ) ≡ 0 (mod p)

vp (XV jp) ≡ 0 (mod p) otherwise.

Then the following element γp ∈ OL,p is a generator for OL,p as an AH,p-module:

γp =

p−1∑
j=0

vj

π
rp(V j)
p

+

p−1∑
s=1

xsvsjp

π
rp(XsV sjp )
p

.

Proof. Since OL,p and AH,p are both free OK,p-modules of rank p2, it suffices to

show that the images of γp under the OK,p-basis elements of AH,p form an OK,p-

basis of OL,p. We note that for each s = 0, . . . , p − 1 we have esOL,p ⊂ OL,p, and

in fact OL,p =
∑p−1

s=0 esOL,p. Recall from (4.3.2) that an OK,p-basis of OL,p is given

by {
xivj

π
rp(XiV j)
p

| 0 ≤ i, j ≤ p− 1

}
.

In particular, for s = 0, . . . , p− 1 an OK,p-basis of esOL,p is given by

{
xsvj

π
rp(XsV j)
p

| 0 ≤ j ≤ p− 1

}
.

Recall also from (3.1.2) that OL,p admits the maximal order MH,p, which by (5.3.4)

has OK,p-basis

{Er | 0 ≤ r ≤ p− 1} ∪

{
es(avη)t

π
rp(V st)
p

| 1 ≤ s ≤ p− 1, 0 ≤ t ≤ p− 1

}
.

Now for each r = 0, . . . , p− 1, we have by (5.4.4) that

Erγp =
vr

π
rp(V r)
p

,
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giving an OK,p-basis of e0OL,p. For s 6= 0 and t = 0, . . . , p− 1, we have by (5.4.3)

that

es(avη)t

π
rp(V st)
p

γp =
es(avη)t

π
rp(V st)
p

xsvsjp

π
rp(XsV sjp )
p

∼ vst

π
rp(V st)
p

xsvsjp

π
rp(XsV sjp )
p

=
xsvsjp+st

π
rp(XsV sjp+st)
p

,

the final equality holding since by the choice of jp we have

rp(X
sV sjp) + rp(V

st) = rp(X
sV sjp+st).

For each s 6= 0, these generate an OK,p-basis of esOL,p as t varies. Together with

the basis of e0OL,p, we have an OK,p-basis of OL,p.

Remark 6.1.3. We note that jp 6= 0 if and only if (vp (X) , p) = (vp (V ) , p) = 1,

that is, if and only if p is ramified in both of the subextensions K(x)/K and

K(v)/K.

If p is a prime lying above p, then p is unramified in OL since L/K is tamely

ramified of degree p2. We then have by (3.4.1) that OL,p[N ]G is a Hopf order in

Hp and by (3.4.2) that AH,p = OL,p[N ]G. We shall use the theorem of Childs

and Hurley (2.5.10) to determine an explicit local generator of OL,p over AH,p for

these primes. We shall need to show that OL,p[N ]G is a local ring. The following

proposition provides a criterion for this.

Proposition 6.1.4. Let R be a complete discrete valuation ring with maximal

ideal m, and A a commutative R-algebra which is finitely generated as an R-

module. Then A is a local ring if and only if A contains no nontrivial idempotents.

Proof. Suppose first that A is a local ring. If A contains a nontrivial idempotent

e then 1 − e is also a nontrivial idempotent and so eA, (1 − e)A are two distinct
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maximal ideals of A, a contradiction. Conversely, supppose that A contains no

nontrivial idempotents. Let rad(A) denote the Jacobson radical of A:

rad(A) =
⋂

a, where a ranges over all maximal ideals of A,

and let A = A/rad(A). Then A is semisimple by [CR81a, (5.22)], and by [CR81a,

(5.21)], A is local if and only if A is a field. Suppose that A is not a field. Then it

has at least one proper ideal, and by semisimplicity this ideal is a direct summand of

A, whence A contains a nontrivial idempotent ε. Since R is complete with respect

to the m-adic topology, A is complete with respect to the rad(A)-adic topology, and

therefore by [CR81a, (6.7)] we may lift idempotents from A to A. So ε corresponds

to a nontrivial idempotent e ∈ A. This contradicts the assumption that A contains

no nontrivial idempotents. So A is a field, and therefore A is a local ring.

Proposition 6.1.5. Let p be a prime number, and R a discrete valuation ring

with maximal ideal m and residue field k = R/m having characteristic p. Let G be

a group of p-power order. Then the group ring R[G] is a local ring.

Proof. See [CR81a, (5.25)].

Proposition 6.1.6. Suppose L/K is a Galois extension of number fields of p-power

degree which is at most tamely ramified, and that p is a prime of OK lying above

p. Suppose that L/K is H-Galois for a commutative Hopf algebra H = L[N ]G.

Then OL,p[N ]G is a local ring.

Proof. We note first that OL,p[N ]G is finitely generated as an OK,p-module, so by

(6.1.4) it is sufficient to show that OL,p[N ]G contains no nontrivial idempotents.

Recall from (2.1.15) the isomorphism

OL,p
∼=
∏
P|p

OL,P.
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This induces an isomorphism

OL,p[N ] ∼=
∏
P|p

OL,P[N ],

and the G-action on each side yields

OL,p[N ]G ∼=

∏
P|p

OL,P[N ]

G

.

Now each OL,P is a discrete valuation ring with residue field of characteristic p, so

each OL,P[N ] is a local ring, and therefore has no nontrivial idempotents by (6.1.4).

Now suppose that x ∈ OL,p[N ]G is an idempotent. Then x is also an idempotent

of OL,p[N ], and so the image (x1, . . . , xg) of x is an idempotent in
∏

P|p OL,P[N ].

Since each OL,P[N ] has no nontrivial idempotents, each xi is either equal to 1 or

0. If xi = 0 for all i then x = 0, and if xi = 1 for all i then x = 1. In all other

cases, since by (2.1.14) G permutes transitively the primes P | p, there exists some

σ ∈ G such that σ(x1, . . . , xg) 6= (x1, . . . , xg). This contradicts the assumption that

x ∈ OL,p[N ]G. So OL,p[N ]G contains no nontrivial idempotents and is therefore a

local ring.

Proposition 6.1.7. Let p be a prime of OK which lies above p. Then the following

element γp ∈ OL,p is a generator for OL,p as an AH,p-module:

γp =
1

p2

p−1∑
i=0

p−1∑
j=0

xivj

Proof. By (3.4.2), we have AH,p = OL,p[N ]G. By (3.4.1), this is an OK,p-Hopf

algebra, and by (6.1.6) it is local. The trace element

θ =
∑
n∈N

n
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lies in OL,p[N ] and is clearly fixed by G. It is a generator for the module of integrals

of OL,p[N ]G. By (2.5.10), it suffices to prove that γp ∈ OL,p and that θ(γp) = 1.

To show that γp ∈ OL,p, we observe first that

γp =

(
1

p

p−1∑
i=0

xi

)(
1

p

p−1∑
j=0

vj

)
.

So it is sufficient to show that

(
1

p

p−1∑
i=0

xi

)
∈ OL,p

since then, arguing by symmetry, we may conclude that γp ∈ OL,p. Recall from

(4.3.3) that an OK,p-basis of OL,p is given by

{(
x− 1

πe′p

)i(
v − 1

πe′p

)j
|0 ≤ i, j ≤ p− 1

}
,

where vp (p) = e = (p− 1)e′. In particular, the element

(
x− 1

πe′p

)p−1

∼ 1

p

p−1∑
k=0

(
p− 1

k

)
(−1)kxk

lies in OL,p. But for k = 0, . . . , p− 1 we have

(
p− 1

k

)
=

(p− 1) . . . (p− k)

1 . . . k

≡ (−1) . . . (−1)︸ ︷︷ ︸
k

(mod p)

≡ (−1)k (mod p)

Therefore
p−1∑
k=0

(
p− 1

k

)
(−1)kxk ≡

p−1∑
k=0

xk (mod p),
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and so (
1

p

p−1∑
i=0

xi

)
∈ OL,p,

whence γp ∈ OL,p. To show that θ(γp) = 1, we calculate:

θ(γp) =
1

p2

∑
g∈G

g

(
p−1∑
i,j=0

xivj

)

=
1

p2

p−1∑
s,t=0

σsτ t

(
p−1∑
i,j=0

xivj

)

=
1

p2

p−1∑
i,j=0

p−1∑
s,t=0

σsτ t(xivj)

=
1

p2

p−1∑
i,j=0

p−1∑
s,t=0

ζ itζ−dsjxivj

=
1

p2

p−1∑
i,j=0

xivj
p−1∑
s,t=0

ζ it−dsj

Now
p−1∑
s,t=0

ζ it−dsj =

 p2 if i = j = 0

0 otherwise

so θγp = 1.

6.2 Local Units of the Associated Order

We now seek a more explicit description of the group

J(H)

H×U(AH)
.
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From (5.3.2) we have

H× ∼=

 (K×)2 ×K(w)× if p = 2

(K×)p × (K(v)×)p−1 otherwise

and

J(H) ∼=

 J(K)2 × J(K(w)) if p = 2

J(K)p × J(K(v))p−1 otherwise.

So it remains to describe the group

U(AH) =
{

(hp)p ∈ J(H) | hp ∈ A×H,p for all p
}

=
∏

p/OK

A×H,p.

By (3.4.2) and (3.6.1), we have

A×H,p =


(
OL,p[N ]G

)×
if p | pOK

M×
H,p otherwise

and by (5.3.4) we have

M×
H,p
∼=

 (O×K,p)
2 ×O×K(w),p if p = 2

(O×K,p)
p × (O×K(v),p)

p−1 otherwise.

So it remains, for p | pOK , to describe the group A×H,p =
(
OL,p[N ]G

)×
.

Proposition 6.2.1. Let p be a prime of OK lying above p. For 0 ≤ i ≤ p− 1 and

1 ≤ t ≤ p− 1 define

ωi,t = pπ−ie
′

p

i∑
s=0

(
i

s

)
(−1)i−ses(avη)t.
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Then an OK,p-basis for AH,p = OL,p[N ]G is given by

{ρk | 0 ≤ k ≤ p− 1} ∪ {ωi,t | 0 ≤ i ≤ p− 1, 1 ≤ t ≤ p− 1}.

Proof. Let N = 〈ρ, η〉 be the regular subgroup of Perm(G) which determines H.

Since p is unramified in OL, we have by (3.3.1) that OL,p[N ] = OL,p[N ]G⊗OK,p
OL,p,

so an OK,p-basis of OL,p[N ]G is precisely an OL,p-basis of OL,p[N ] which is fixed

elementwise by G. As in the proof of (3.3.1), we decompose N into its G-orbits.

Since G acts on N by conjugation, {1N} is an orbit, so G does not act transitively

on N , and therefore N may be decomposed into orbits of lengths 1 and p. We

recall from (5.3.1) that gρ = ρ for all g ∈ G and τη = η,ση = ρdη. The orbits of G

in N of length 1 are therefore

{ρk} for 0 ≤ k ≤ p− 1,

and the orbits of G in N of length p are

{ρkηt | 0 ≤ k ≤ p− 1} for 1 ≤ t ≤ p− 1.

Since the set {ρkηt | 0 ≤ k, t ≤ p − 1} is an OL,p-basis for OL,p[N ], it remains to

show that for each t 6= 0, the set {ωi,t | 0 ≤ i ≤ p− 1} has the same OL,p-span as

the set {ρkηt | 0 ≤ k ≤ p− 1}. For a fixed 1 ≤ t ≤ p− 1 we calculate

es(avη)t = esv
stηt =

1

p

p−1∑
k=0

ζ−ksρkvstηt,
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and so

ωi,t = pπ−ie
′

p

i∑
s=0

(
i

s

)
(−1)i−ses(avη)t

= π−ie
′

p

i∑
s=0

(
i

s

)
(−1)i−s

p−1∑
k=0

ζ−ksρkvstηt

=

p−1∑
k=0

(
π−ie

′

p

i∑
s=0

(
i

s

)
(−1)i−sζ−ksvst

)
ρkηt

=

p−1∑
k=0

(
ζ−kvt − 1

πe′p

)i
ρkηt.

In the “t -part” of the OL,p-order OL,p[N ], the matrix giving the change of gener-

ators ρkηt 7→ ωi,t has (i, k)th element

(
ζ−kvt − 1

πe′p

)i
.

It is a Vandermonde matrix, and therefore has determinant

∏
0≤j<k≤p−1

(
ζ−jvt − 1

πe′p
− ζ−kvt − 1

πe′p

)
=

∏
0≤j<k≤p−1

(
(ζ−j − ζ−k)vt

πe′p

)
∼

∏
0≤j<k≤p−1

ζ−k
(
ζk−j − 1

πe′p

)
vt.

Now since vp

(
ζk−j − 1

)
= e′ for all choices of j 6= k, every factor in the product

lies in O×L,p, so this is indeed a change of basis. That the stated basis is fixed

elementwise by G follows from (5.3.1).

We also include the formulae for inverting the above, i.e. expressing es(avη)t in

terms of the ωi,t for each t 6= 0.

Proposition 6.2.2. Fix 1 ≤ t ≤ p− 1. Then for 0 ≤ j ≤ p− 1 we have

ej(avη)t =
1

p

j∑
i=0

(
j

i

)
πie
′

p ωi,t
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Proof. We calculate:

1

p

j∑
i=0

(
j

i

)
πie
′

p ωi,t =
1

p

j∑
i=0

(
j

i

)
πie
′

p pπ−ie
′

p

i∑
s=0

(
i

s

)
(−1)i−ses(avη)t

=

j∑
i=0

i∑
s=0

(
j

i

)(
i

s

)
(−1)i−ses(avη)t.

The coefficient of a given es(avη)t is

j∑
i=s

(
j

i

)(
i

s

)
(−1)i−s.

Now

(
j

i

)(
i

s

)
=

j!

i!(j − i)!
i!

s!(i− s)!

=
j!

s!(j − s)!
(j − s)!

(j − i)!(i− s)!

=

(
j

s

)(
j − s
i− s

)

So, setting k = i− s, we obtain

j∑
i=s

(
j

i

)(
i

s

)
(−1)i−s =

(
j

s

) j∑
i=s

(
j − s
i− s

)
(−1)i−s

=

(
j

s

) j−s∑
k=0

(
j − s
k

)
(−1)k

=

 1 if s = j

0 otherwise.

So

1

p

j∑
i=0

(
j

i

)
πie
′

p ωi,t = ej(avη)t.

Proposition 6.2.3. Let p be a prime of OK lying above p. Let I = pOL,p[N ] +
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ker ε /OL,p[N ]. Then IG is the maximal ideal of OL,p[N ]G.

Proof. For z ∈ OL,p[N ]G, let [z] denote the class of z in OL,p[N ]G/IG. Now

OL,p[N ]G

IG
↪→ OL,p[N ]

I
∼=
∏
P|p

OL,P

POL,P

by

[z] = z + IG 7→ z + I,

so z corresponds to

(Z1, . . . , Zg) ∈
∏
P|p

OL,P

and

(Z1, . . . , Zg)
x = (Z1, . . . , Zg) ∀x ∈ G

so in fact Z1, . . . , Zg ∈ OK,p and

Z1 = . . . = Zg ∈
OK,p

p
.

So z = c+ IG for some c ∈ OK,p, and

OL,p[N ]G

IG
∼=

OK,p

p
,

which is a field. Therefore IG is a maximal ideal of OL,p[N ]G, and is unique since

the latter is a local ring.

Corollary 6.2.4. Let p be a prime of OK lying above p, and let z ∈ OL,p[N ]G.

Then z ∈ (OL,p[N ]G)× if and only if ε(z) ∈ O×K,p.



Chapter 7

Hopf-Galois Module Structure:

p = 2

We recall from (5.3.2) that for p = 2 we have the following isomorphism of K-

algebras:

H ∼= K2 ×K(w),

where w2 = W = −V , and so the following description of the unique maximal

OK-order in H:

MH
∼= O2

K ×OK(w).

Furthermore, from (5.3.6) and (5.3.9) we have that for p a prime of OK , and for c

and q as in (5.3.8), an OK,p-basis of MH,p is given by



{
E0, E1, e1,

ce1(avη)−e1
πq

p

}
if p | 2

{
E0, E1, e1,

e1(avη)

π
rp(W )
p

}
otherwise

94
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7.1 Sandwiching Cl (AH)

Proposition 7.1.1. Let p be a prime of OK lying above 2, and write 2 = uπep ∈

OK,p, with u ∈ O×K,p. Let z ∈MH,p and write

z = a0E0 + a1E1 + a1,0e1 + a1,1
ce1(avη)− e1

πqp

with a0, a1, a1,0, a1,1 ∈ OK,p and c, q as in (5.3.8). Then z ∈ A×H,p if and only if

i) a1,1 ≡ 0 (mod πqp)

ii) a0 − a1 + 2π−qp ca1,1 ≡ 0 (mod 4)

iii) a0 + a1 − 2a1,0 + 2π−qp a1,1 ≡ 0 (mod 4)

iv) a0 + a1 + 2a1,0 − 2π−qp a1,1 ≡ 0 (mod 4)

v) a0 ∈ O×K,p

Proof. We rewrite z in terms of the basis elements of OL,p[N ]G given in (6.2.1). By

(6.2.4), we then have that z ∈
(
OL,p[N ]G

)×
if and only if the coefficients of these

basis elements lie in OK,p and ε(z) ∈ O×K,p. We calculate:

z = a0
1

2
(e0 + e0(avη)) + a1

1

2
(e0 − e0(avη)) + a1,0e1 + a1,1π

−q
p ce1(avη)− a1,1π

−q
p e1

=
1

2
(a0 + a1) e0 + a1,0e1 − π−qp a1,1e1 +

1

2
(a0 − a1) e0(avη) + π−qp a1,1ce1(avη)

=
1

2
(a0 + a1)

1

2
(1 + ρ) + a1,0

1

2
(1− ρ)− π−qp a1,1

1

2
(1− ρ) +

1

2
(a0 − a1)

1

2
ω0,1

+π−qp a1,1c
(ω0,1

2
+ u−1ω1,1

)
=

1

4

(
a0 + a1 + 2a1,0 − 2π−qp a1,1

)
+

1

4

(
a0 + a1 − 2a1,0 + 2π−qp a1,1

)
ρ

+
1

4

(
a0 − a1 + 2π−qp a1,1c

)
ω0,1 + π−qp a1,1cu

−1ω1,1

Considering the coefficients of ω1,1, ω0,1, ρ and 1 in turn now yields the congruence
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conditions in parts (i)-(iv) of the proposition. Finally, we observe that

ε(z) = a0ε(E0) + a1ε(E1) +
(
a1,0 − π−qp a1,1

)
ε(e1) +

(
π−qp ca1,1

)
ε(e1(avη)).

Now

ε(es(avη)t) =

 1 if s = 0

0 if s = 1

and

ε(Er) =
1

2
(ε(e0) + (−1)rε(e0(avη)))

=

 1 if r = 0

0 if r = 1

so ε(z) = a0 and, assuming z ∈ OL,p[N ]G, we have z ∈
(
OL,p[N ]G

)×
if and only if

a0 ∈ O×K,p.

We now seek necessary and sufficient conditions for z ∈
(
OL,p[N ]G

)×
. These will

be in terms of higher unit groups of OK,p and OK(w),p.

Definition 7.1.2. Define an isomorphism

Θ : (K×)2 ×K(w)× ∼= H×

by composing the automorphism of (K×)2 ×K(w)× defined by

(z0, z1, y1) 7→ (z0, z0z1, z0y1)

with the isomorphism K2 × K(w) ∼= H defined in (5.3.2). We shall also write Θ

for the induced isomorphism (K×p )2 × (K(w)p)
× ∼= H×p , where p is a prime of OK ,

and the isomorphism J(K)2 × J(K(w)) ∼= J(H).
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Proposition 7.1.3. Let p be a prime of OK lying above 2. Then

Θ
(
O×K,p × (1 + 4OK,p)× (1 + 4OK(w),p)

)
⊆ A×H,p

Proof. The image under Θ of an element of

O×K,p × (1 + 4OK,p)× (1 + 4OK(w),p)

has the form

z = a0E0 + a1E1 + a1,0e1 + a1,1
ce1(avη)− e1

πqp

with a0, a1, a1,0, a1,1 ∈ OK,p and

a) a0 ∈ O×K,p

b) a1 ≡ a0 (mod 4OK,p)

c) a1,0 ≡ a0 (mod 4OK,p)

d) a1,1 ≡ 0 (mod 4OK,p)

We recall the conditions of (7.1.1):

i) a1,1 ≡ 0 (mod πqp)

ii) a0 − a1 + 2π−qp ca1,1 ≡ 0 (mod 4)

iii) a0 + a1 − 2a1,0 + 2π−qp a1,1 ≡ 0 (mod 4)

iv) a0 + a1 + 2a1,0 − 2π−qp a1,1 ≡ 0 (mod 4)

v) a0 ∈ O×K,p

and show that z satisfies these conditions.

i) Since a1,1 ≡ 0 (mod 4) and q ≤ e, we clearly have a1,1 ≡ 0 (mod πqp).
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ii) We have a1 − a0 ≡ 0 (mod 4) and a1,1 ≡ 0 (mod 4). Since q ≤ e, we have

πe−qp a1,1 ≡ 0 (mod 4), and so the congruence holds.

iii) Since a0 ≡ a1 ≡ a1,0 (mod 4), we have a0 + a1 − 2a1,0 ≡ 0 (mod 4). Since

πe−qp a1,1 ≡ 0 (mod 4), the congruence holds.

iv) This is essentially the same as (iii)

v) We have that a0 ∈ O×K,p by (a).

Proposition 7.1.4. Let p be a prime of OK lying above 2. Then

Θ−1
(
A×H,p

)
⊆ O×K,p × (1 + 2OK,p)× (1 + π

d ep
2 e

p OK(w),p)

Proof. Let

z = a0E0 + a1E1 + a1,0e1 + a1,1
ce1(avη)− e1

πqp

with a0, a1, a1,0, a1,1 ∈ OK,p, and suppose that z ∈ A×H,p. In particular, a0, a1, a1,0

and a1,1 satisfy the conditions of (7.1.1):

i) a1,1 ≡ 0 (mod πqp)

ii) a0 − a1 + 2π−qp ca1,1 ≡ 0 (mod 4)

iii) a0 + a1 − 2a1,0 + 2π−qp a1,1 ≡ 0 (mod 4)

iv) a0 + a1 + 2a1,0 − 2π−qp a1,1 ≡ 0 (mod 4)

v) a0 ∈ O×K,p.

We shall show that this implies

Θ−1(z) ∈ O×K,p × (1 + 2OK,p)× (1 + π
d ep

2 e
p OK(w),p).
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Adding (iii) and (iv) yields 2a0 + 2a1 ≡ 0 (mod 4), which implies that a0 ≡ a1

(mod 2). Adding (ii) and (iii) yields

2a0 − 2a1,0 + 2(c+ 1)π−qp ≡ 0 (mod 4),

which implies that

a0 − a1,0 + (c+ 1)π−qp a1,1 ≡ 0 (mod 2).

Now π−qp a1,1 ∈ OK,p, and vp (c+ 1) ≥
⌈ ep

2

⌉
, so we obtain a1,0 ≡ a0 (mod π

d ep
2 e

p ).

Since we also have from (i) that a1,1 ≡ 0 (mod πqp) and from (v) that a0 ∈ O×K,p,

the result follows.

Proposition 7.1.5. Define an ideal e of OK by

e =
∏

p|2OK

pd
ep
2 e,

where ep = vp (2). Then there are injections:

U(OK) × U4(OK)

��

× U4(OK(w))

U(AH)

��
U(OK) × U2(OK) × Ue(OK(w))



CHAPTER 7. HOPF-GALOIS MODULE STRUCTURE: p = 2 100

and therefore surjections:

Cl (OK) × Cl4(OK)

��

× Cl4(OK(w))

Cl (AH)

��
Cl (OK) × Cl2(OK) × Cle(OK(w))

Proof. Recall from (2.1.21) that

U(AH) =
∏

p/OK

A×H,p =
{

(ap)p ∈ J(H) | ap ∈ A×H,p for all p
}
.

By (6.1.1) and (5.3.4) we have that if p is a prime of OK which does not lie above

2 then

A×H,p = M×
H,p
∼=
(
O×K,p

)2 ×O×K(w),p.

From (7.1.4) and (7.1.3) we have that if p is a prime of OK which lies above 2 then

there are injections:

O×K,p × (1 + 4OK,p)×
(
1 + 4OK(w),p

)
��

A×H,p

��

O×K,p × (1 + 2OK,p)×
(

1 + π
d ep

2 e
p OK(w),p

)
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where ep = vp (2). Recalling definition (2.1.20), this implies that there are injections

U(OK) × U4(OK)

��

× U4(OK(w))

U(AH)

��
U(OK) × U2(OK) × Ue(OK(w)).

The existence of the surjections asserted by the proposition then follows from the

isomorphism (see (2.1.25))

Cl (AH) ∼=
J(H)

H×U(AH)
.

7.2 The Class Representing OL

Proposition 7.2.1. The class of OL in the locally free class group

Cl (AH) ∼=
J(H)

H×U(AH)

corresponds to the class of the idèle (hp)p, where hp is defined by

hp =


E0 + E1 + e1 + e1(avη) p | 2OK

E0 + π
−rp(V )
p E1 + π

−rp(XV jp )
p e1(avη)jp p | XVOK

1 otherwise

and where (see (6.1.2)):

jp =

 1 if vp (X) ≡ vp (V ) ≡ 1 (mod 2)

0 otherwise.



CHAPTER 7. HOPF-GALOIS MODULE STRUCTURE: p = 2 102

Proof. Define

Γ =
1

4
(1 + v + x) .

Using the formulae for the action of the K-basis elements of H on those of L in

(5.4.3) and (5.4.4), we see that Γ is a generator of L over H. By (2.1.25), to

show that the class of OL in Cl (AH) corresponds to the class of the idèle (hp)p in

J(H)/H×U(AH) we must show that for each prime p of OK , the element hpΓ is a

generator of OL,p over AH,p. We recall the local generators γp given in (6.1.2) and

(6.1.7):

γp =


1

4
(1 + x+ v + xv) if p | 2OK

1 + π
−rp(V )
p v + π

−rp(XV jp )
p xvjp otherwise

Suppose first that p - 2XVOK . Then hp = 1 and so

hpΓ =
1

4
(1 + v + x) ,

whereas

γp = 1 + v + x.

We note that p - 2OK and so 4 ∈ O×K,p. Therefore we have that hpΓ and γp differ

only by an element of O×K,p, and so hpΓ is a generator of OL,p over AH,p. Next

suppose that p | XVOK . Then

hpΓ = E0Γ + π
−rp(V )
p E1Γ + π

−rp(XV jp )
p e1(avη)jpΓ

=
1

4

(
1 + π

−rp(V )
p v + π

−rp(XV jp )
p xvjp

)

whereas

γp = 1 + π
−rp(V )
p v + π

−rp(XV jp )
p xvjp .

Again, since p - 2OK we have that 4 ∈ O×K,p. Therefore hpΓ and γp differ only by

an element of O×K,p, and so hpΓ is a generator of OL,p over AH,p. Finally suppose
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that p | 2OK . Then

hpΓ = E0Γ + E1Γ + e1Γ + e1(avη)Γ

=
1

4
(1 + v + x+ xv)

= γp

So in this case hpΓ coincides with the generator of OL,p over AH,p given in (6.1.7).

This completes the proof.

Remark 7.2.2. By (5.2.1), a nonclassical Hopf-Galois structure on L/K is de-

termined by a choice of subgroup T of G = Gal(L/K) of order 2. This choice

also determines the field K(w) appearing in the isomorphism of K-algebras H ∼=

K2 ×K(w). In (5.2.1) we chose an element τ ∈ G such that T = 〈τ〉 and an ele-

ment σ ∈ G such that G = 〈σ, τ〉. Making a different choice of this element σ will

result in a different description of the field L and Hopf algebra H, but it will not

affect the class of OL in Cl (AH) because this does not depend on the descriptions

of the objects involved. In this case, if we denote by σ′ a different group element

satisfying 〈σ′, τ〉 = G, then since |G| = 4 we must have that σ′ = στ . Making this

choice would lead to a change of K-basis of L:

v 7→ v

x 7→ x′ = xv

and a change of K-basis of H:

Er 7→ Er for r = 0, 1

e1(avη)t 7→ (−1)te1(avη)t for t = 0, 1.
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Definition 7.2.3. For y ∈ K, define the fractional ideal

Iy =
∏

p|yOK

prp(y).

Proposition 7.2.4. Under the composition of maps

J(H)→ J(K)2 × J(K(w))→ Cl (OK)2 × Cl
(
OK(w)

)
,

the idèle (hp)p is mapped to the triple of classes of fractional ideals

OK , I
−1
W ,

I−1
X

∏
P|(1+w)

P-2OK(w)

P−vP(1+w)
∏

vp(W )≡1 (mod 2)
vp(X)≡1 (mod 2)

P−1


 .

Proof. Under the isomorphism

J(H) ∼= J(K)2 × J(K(w))

the idèle (hp)p is mapped to the triple of idèles

(
(1)p ,

(
π
−rp(W )
p

)
p
, (yp)p

)
,

where

yp =


1 + w p | 2OK

π
−rp(XW )
p w vp (X) ≡ vp (W ) ≡ 1 (mod 2)

π
−rp(X)
p otherwise.

since by (6.1.3) we have jp = 1 if vp (X) ≡ vp (W ) ≡ 1 (mod 2) and jp = 0

otherwise. If p is a prime of OK then we use the isomorphism in (2.1.17) to obtain

from yp elements yP ∈ K(w)P for each prime P of OK(w) lying above p as follows:

If P is the only prime of OK(w) lying above p then yP = yp. If two primes of OK(w)
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lie above p then yP = yp and yσP = σyp, where σ is a generator for the Galois

group of K(w)/K. Thus the idèle (hp)p corresponds to the triple of idèles

(
(1)p ,

(
π
−rp(W )
p

)
p
,
(
(1 + w)y′P

)
P

)
,

where

y′P =



1 P | 2OK(w)

(1 + w)−1π
−rp(X)
p P | (1 + w)OK(w),P - 2OK(w)

π
−rp(XW )
p w vp (X) ≡ vp (W ) ≡ 1 (mod 2) and P | p

π
−rp(X)
p otherwise

Since (1 + w) ∈ K(w)×, this triple of idèles has the same class in the product

Cl (OK)2 × Cl
(
OK(w)

)
as the triple of idèles

(
(1)p ,

(
π
−rp(W )
p

)
p
,
(
y′P
)

P

)
.

We use the homomorphism defined in (2.1.19), applied to each component, to map

this triple of idèles to a triple of fractional ideals. We see immediately that the

first component corresponds to the trivial ideal, and that the second component

corresponds to the fractional ideal I−1
W . In the third component we calculate:

vP

(
y′P
)

=



0 P | 2OK(w)

−vP (1 + w)− vP

(
π
rp(X)
p

)
P | (1 + w)OK(w),P - 2OK(w)

−vP

(
π
rp(X)
p

)
− 1 vp (X) ≡ vp (W ) ≡ 1 (mod 2) and B | p

−vP

(
π
rp(X)
p

)
otherwise
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and so this component corresponds to the fractional ideal

I−1
X

∏
P|(1+w)OK(w)

P-2OK(w)

P−vP(1+w)
∏

vp(W )≡1 (mod 2)
vp(X)≡1 (mod 2)

P−1

 .

7.3 Conditions for Global Freeness

Proposition 7.3.1. A sufficient condition for OL to be free over AH is that the

triple of fractional ideals given in (7.2.4) has trival class in the product of ray class

groups

Cl (OK)× Cl4(OK)× Cl4(OK(w)).

A necessary condition is that the same triple has trivial class in the product of ray

class groups

Cl (OK)× Cl2(OK)× Cle(OK(w)).

Proof. By (7.2.1), the class of OL in Cl (AH) corresponds to the class of the idèle

(hp)p in J(H)/H×U(AH). Recalling the surjections of (7.1.5), the result follows.

Proposition 7.3.2. Let K be a number field such that h4(K) is odd. Define an

ideal t of OK by

t =
∏

p|2OK

p.

Then

Cl4(OK) ∼= Clt(OK).

Proof. This proposition differs only slightly from [BS05, Lemma 4.1]. There is a

natural surjection

φ : Cl4(OK)→ Clt(OK).
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with kernel

kerφ =
K×Ut(OK)

K×U4(OK)
.

Let

Et(OK) = K× ∩ Ut(OK).

Then

kerφ ∼=
Ut(OK)

Et(OK)U4(OK)
,

so kerφ is isomorphic to a quotient of Ut(OK)/U4(OK), a group of 2-power or-

der. But also kerφ is a subgroup of Cl4(OK), which has odd order by hypothesis.

Therefore kerφ is trivial and φ is an isomorphism.

Proposition 7.3.3. Suppose that h4(K) and h4(K(w)) are both odd. Then

Cl (AH) ∼= Cl (OK)× Cl2(OK)× Cle(OK(w)),

and so OL is free over AH if and only if the triple of fractional ideals given in (7.2.4)

has trival class in this product of ray class groups.

Proof. By (7.3.2), we have both

Cl4(OK) ∼= Clt(OK)

and

Cl4(OK(w)) ∼= Clt(OK(w)).

Therefore the surjections given in (7.1.5) are in fact isomorphisms, and the result

follows.
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7.4 Tame Biquadratic Extensions of Q

In this section we take K = Q. By (4.2.4), a tame biquadratic extension L of Q

has the form L = Q(α, β), where α2 = a, β2 = b and a, b are squarefree integers

both congruent to 1 modulo 4. By (5.1.3), such an extension admits precisely 3

nonclassical Hopf-Galois structures, and by (5.2.1), each structure is determined

by a choice of subgroup T of G = Gal(L/Q) of order 2. We have fixed a generator

τ of T and an element σ ∈ G such that G = 〈σ, τ〉. We have also fixed elements

x ∈ OS
L and v ∈ OT

L satisfying τ(x) = −x, σ(v) = −v and L = K(x, v). We are free

to replace the element x by xv/ gcd (X, V ) (corresponding to replacing the element

σ ∈ G by στ); by (7.2.2) this does not affect the class of OL in Cl (AH). We may

assume without loss of generality that x2 = X and v2 = V are squarefree integers.

By (5.3.2) we have the following isomorphism of Q-algebras:

H ∼= Q2 ×Q(w),

where w2 = W = −V . We shall write F = Q(w). Since V ≡ 1 (mod 4), we have

W ≡ −1 (mod 4). Thus Disc (F ) = 4W , and so F/Q is wildly ramified at 2. Also

OF = Z[w].

Proposition 7.4.1. The ring of integers OL is free over AH if and only if there

exist integers m0,m1 satisfying

m2
0 + V m2

1 = ±2 gcd(X, V ) (7.1)

Proof. Recall from (7.2.3) that for y ∈ Q we define the fractional ideal Iy by

Iy =
∏
p|y

prp(y).
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Since X, V are squarefree integers we have vp(X) ≡ vp(V ) ≡ 1 (mod 2) if and only

if p | gcd (X, V ), and so by (7.3.1), a sufficient condition for OL to be free over AH

is that the triple of fractional ideals

Z, I−1
W ,

I−1
X

∏
P|(1+w)OF

P-2OF

P−vP(1+w)
∏

p|gcd(X,V )
P|pOF

P−1




has trivial class in the product of ray class groups

Cl (Z)× Cl4(Z)× Cl4(OF ).

We show first that this is equivalent to the fractional ideal

J =
∏

P|(1+w)OF

P-2OF

P−vP(1+w)
∏

p|gcd(X,V )
P|pOF

P−1

having trivial class in the ray class group Cl4(OF ). We note that since X and W are

squarefree, we have rp (W ) = rp (X) = 0 for all prime numbers p. So IW = IX = Z,

and therefore the first two terms of the triple of ideals above automatically have

trivial class in Cl (Z)×Cl4(Z), and the third term has trivial class in Cl4(OF ) if and

only if the ideal J has trivial class in Cl4(OF ). Next we show that J is a principal

fractional ideal if and only if the equation (7.1) has a solution in integers. We recall

from above that 2 is ramified in F , and write 2OF = P2
2. Then P2 || (1 + w)OF ,

since 2 || NF/Q(1 + w) in Z. Also we have

gcd(X, V )OF =

 ∏
p|gcd(X,V )

P|pOF

P


2

,
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and so we have

(1 + w) gcd(X, V )JOF = P2

∏
p|gcd(X,V )

P|pOF

P.

Therefore J = λF for some λ ∈ F if and only if there exists some element µ =

(1 + w) gcd(X, V )λ ∈ OF such that

2 gcd(X, V )OF = (µOF )2 .

Taking norms, this is equivalent to the existence of an element µ = m0 +m1w ∈ OF

satisfying

NF/Q(µ)2 = (2 gcd(X, V ))2

i.e.

m2
0 + V m2

1 = ±2 gcd(X, V )

Finally we show that if J is a principal fractional ideal, then it has trivial class

in Cl4(OF ), i.e. it has a generator congruent to 1 (mod∗ 4OF ). Suppose J is

principal and let λ, µ be as above. Then certainly m0,m1 are odd integers, and

replacing mi by −mi if necessary we may assume that mi ≡ 1 (mod 4) for i = 0, 1.

So µ ≡ (1 +w) (mod 4OF ). Recall that P2 is the unique prime of OF lying above

2 and that vP2 (2) = 2. Then

µ = (1 + w) gcd(X, V )λ ⇒ vP2 ((1 + w) gcd(X, V )λ− (1 + w)) ≥ 4

⇒ vP2 (1 + w) + vP2 (gcd(X, V )λ− 1) ≥ 4

⇒ vP2 (gcd(X, V )λ− 1) ≥ 3

⇒ gcd(X, V )λ ≡ 1 (mod∗ 2OF )

⇒ ±λ ≡ 1 (mod∗ 4OF )

So, since λ is a generator for J , there exists a generator of J congruent to 1 (mod∗ 4OF ).
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7.5 Examples

If L/Q is a tame biquadratic extension, then by Leopoldt’s theorem ([Leo59]) OL

is free over the associated order AQ[G] = Z[G] in the classical Hopf-Galois structure

Q[G]. In this section we show that the analogous result does not hold for the 3

nonclassical Hopf-Galois structure admitted by the extension. We give examples

of classes of extension where OL is free over AH in 0, 1 and 2 of the nonclassical

structures, and show that OL cannot be free over AH in all 3 nonclassical structures

simultaneously.

Example 7.5.1. Let p, q be prime numbers satisfiying p ≡ q ≡ 1 (mod 4). Let

L = Q(
√
p,
√
q). Then OL is not free over AH in any of the three nonclassical

Hopf-Galois structures admitted by the extension.

Proof. Each of the three nonclassical strutures admitted by L/Q corresponds to a

choice of element v ∈ OL, which appears in equation (7.1). By (7.2.2) we have some

freedom in each case to make a convenient choice of the element x without affecting

the class of OL in Cl (AH). We consider the following 3 cases, each corresponding

to the freeness of OL over AH in one of the nonclassical Hopf-Galois structures

admitted by L/Q:

i) The choices v =
√
p, x =

√
q lead us to consider the equation m2

0 + pm2
1 =

±2. This has no solutions in integers since a solution (m0,m1) would satisfy

|m2
0 + pm2

1| = 2, which is impossible.

ii) The choices v =
√
q, x =

√
p lead us to consider the equation m2

0 +qm2
1 = ±2.

This has no solutions in integers for similar reasons as equation (i).

iii) The choices v =
√
pq, x =

√
p lead us to consider the equation m2

0 + pqm2
1 =

±2p. Suppose that (m0,m1) is an integer solution of this equation. Then
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m2
0 = ±2p−pqm2

1, which implies that p | m2
0, and so p | m0. Write m0 = pm2.

Then (m1,m2) is an integer solution of the equation pm2
2 + qm2

1 = ±2. This

implies that |pm2
2 + qm2

1| = 2 which is impossible.

Thus OL is not free over AH in any of the Hopf-Galois structures admitted by the

extension.

Example 7.5.2. Let p, q be prime numbers satisfying p ≡ q ≡ −1 (mod 4). Let

L = Q(
√
−p,
√
−q). Then OL is free over AH in precisely two of the three nonclas-

sical Hopf-Galois structures admitted by the extension.

Proof. Each of the three nonclassical strutures admitted by L/Q corresponds to

a choice of element v ∈ OL, which appears in equation (7.1). By (7.2.2) we have

some freedom in each case to make a convenient choice of the element x without

affecting the class of OL in Cl (AH). We show first that OL is not free over AH

in the Hopf-Galois structure corresponding to the choices v =
√
pq, x =

√
−p. For

this would imply that there exist integers m0,m1 satisfying

m2
0 + pqm2

1 = ±2p,

which would imply that there exist integers m1,m2 satisfying

|pm2
2 + qm2

1| = 2,

which is impossible. We now show that OL is free over AH in the Hopf-Galois

structure corresponding to the choices v =
√
−p, x =

√
−q. The argument for the

choices v =
√
−q, x =

√
−p is analogous. Let F = Q(

√
p). By (7.4.1) freeness is

equivalent to the existence of a principal ideal of OF of norm±2. Since Disc (OF ) =

4p we have that 2 is ramified, and in fact 2OF = I2, where I = 2OF +(1+
√
p)OF .

So I is an ideal of norm 2, and it will suffice to show that I is principal. To do this,

it suffices to show that |Cl (OF ) | is odd. We use [FT91, Theorem 39, Corollary 1].
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Since F is real, we need to establish whether the fundamental unit η has norm 1

or −1. We write η = x+ y
√
p and consider

NF/Q(η) = x2 − py2.

Since p ≡ −1 (mod 4) we have that −1 is not a quadratic residue mod p, so

NF/Q(η) = −1 is impossible, and so the fundamental unit must have norm 1. Now

by [FT91, Theorem 39, Corollary 1] the 2-part of Cl (OF ) has order 2g−2, where

g is the number of distinct prime divisors of Disc (OF ). Since Disc (OF ) = 4p, we

have g = 2 and so conclude that |Cl (OF ) | is odd. Therefore I is a principal ideal

of norm ±2 and OL is free over AH in the Hopf-Galois structure corresponding

to the choice v =
√
−p. Thus OL is free over AH in precisely two of the three

nonclassical Hopf-Galois strcture admitted by the extension.

Example 7.5.3. Let p, q be prime numbers satisfying p ≡ q ≡ −1 (mod 4) and

let r be a prime number satisfying r ≡ 1 (mod 8). Let L = Q(
√
−p,
√
−qr). Then

OL is free over AH in precisely one of the three nonclassical Hopf-Galois structures

admitted by the extension.

Proof. Each of the three nonclassical structures admitted by L/Q corresponds to a

choice of element v ∈ OL, which appears in equation (7.1). By (7.2.2) we have some

freedom in each case to make a convenient choice of the element x without affecting

the class of OL in Cl (AH). By the argument presented above, OL is free over AH

in the Hopf-Galois structure corresponding to the choices v =
√
−p, x =

√
−qr. If

OL were free over AH in the Hopf-Galois structure corresponding to the choices

v =
√
pqr, x =

√
−p then there would exist integers m0,m1 satisfying

m2
0 + pqrm2

1 = ±2p,
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which would imply that there exist integers m1,m2 satisfying

pm2
2 + qrm2

1 = ±2,

which is impossible. Finally we show that OL is not free over AH in the Hopf-

Galois structure corresponding to the choices v =
√
−qr, x =

√
−p. This would

imply that there exist integers m0,m1 satisfying

m2
0 − qrm2

1 = ±2.

If we reduce this equation modulo r then we have a solution to

m2
0 ≡ ±2 (mod r).

But r ≡ 1 (mod 8), so neither of ±2 is a quadratic residue modulo r, and so this

is impossible. Thus OL is free over AH in precisely one of the three nonclassical

Hopf-Galois structures admitted by the extension.

Example 7.5.4. Let L/Q be a tame biquadratic extension. Then OL is not si-

multaneously free over AH in all three of the nonclassical Hopf-Galois structures

admitted by the extension.

Proof. Write L = Q(
√
a,
√
b) with a, b ∈ Z/Z2 and a ≡ b ≡ 1 (mod 4). By (7.2.2)

we have some freedom in each case to make a convenient choice of the element x

without affecting the class of OL in Cl (AH). If a > 0 then OL is not free over AH

in the Hopf-Galois structure corresponding to the choices v =
√
a, x =

√
b, and if

b > 0 then OL is not free over AH in the Hopf-Galois structure corresponding to the

choices v =
√
b, x =

√
a. But if a < 0 and b < 0 then ab > 0 and OL is not free over

AH in the Hopf-Galois structure corresponding to the choices v =
√
ab, x =

√
a.



Chapter 8

Hopf-Galois Module Structure:

Odd p

For an odd prime number p we have from (5.3.2) the following isomorphism of

K-algebras:

H ∼= Kp ×K(v)(p−1),

and so the following description of the unique maximal OK-order:

MH
∼= Op

K ×O
(p−1)
K(v) .

We also have from (5.3.6) and (5.3.7) that if p is a prime of OK , then an OK,p-basis

of MH,p is given by


{Er | 0 ≤ r ≤ p− 1} ∪

{(
es(avη)−es

πe′
p

)t
| 1 ≤ s ≤ p− 1, 0 ≤ t ≤ p− 1

}
if p | pOK

{Er | 0 ≤ r ≤ p− 1} ∪
{
es(avη)t

π
rp(V st)
p

| 1 ≤ s ≤ p− 1, 0 ≤ t ≤ p− 1

}
otherwise.

115
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8.1 Sandwiching Cl (AH)

Proposition 8.1.1. Let p be a prime of OK lying above p. Let z ∈ MH,p and

write

z =

p−1∑
r=0

arEr +

p−1∑
s=1

p−1∑
t=0

as,t

(
es(avη)− es

πe′p

)t
es

with ar, as,t ∈ OK,p for r, t = 0, . . . , p − 1 and s = 1, . . . , p − 1. Then z ∈(
OL,p[N ]G

)×
if and only if

i)

p−1∑
s=i

p−1∑
t=j

(
s

i

)(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod pπ−ie
′

p ) for 1 ≤ i, j ≤ p− 1,

ii)

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p2) for 1 ≤ j ≤ p− 1,

iii)

p−1∑
r=0

ar + p

p−1∑
s=1

p−1∑
t=0

ζ−ks(−1)tπ−te
′

p as,t ≡ 0 (mod p2) for 0 ≤ k ≤ p− 1,

iv) a0 ∈ O×K,p.

Proof. We rewrite z in terms of the basis elements of OL,p[N ]G given in (6.2.1). By

(6.2.4), we then have that z ∈
(
OL,p[N ]G

)×
if and only if the coefficients of these

basis elements lie in OK,p and ε(z) ∈ O×K,p. Using the binomial expansion, we have

z =

p−1∑
r=0

arEr +

p−1∑
s=1

p−1∑
t=0

t∑
j=0

(
t

j

)
(−1)t−jπ−te

′

p as,tes(avη)j

=

p−1∑
r=0

arEr +

p−1∑
s=1

as,0es +

p−1∑
s=1

p−1∑
t=1

t∑
j=0

(
t

j

)
(−1)t−jπ−te

′

p as,tes(avη)j

=

p−1∑
r=0

arEr +

p−1∑
s=1

as,0es +

p−1∑
s=1

p−1∑
t=1

(−1)tπ−te
′

p as,tes

+

p−1∑
s=1

p−1∑
t=1

t∑
j=1

(
t

j

)
(−1)t−jπ−te

′

p as,tes(avη)j

=

p−1∑
r=0

arEr +

p−1∑
s=1

p−1∑
t=0

(−1)tπ−te
′

p as,tes +

p−1∑
s=1

p−1∑
t=1

t∑
j=1

(
t

j

)
(−1)t−jπ−te

′

p as,tes(avη)j.

(8.1)
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We consider the final term first, and use (6.2.2)

p−1∑
s=1

p−1∑
t=1

t∑
j=1

(
t

j

)
(−1)t−jπ−te

′

p as,tes(avη)j

=

p−1∑
s=1

p−1∑
t=1

t∑
j=1

(
t

j

)
(−1)t−jπ−te

′

p as,t
1

p

s∑
i=0

(
s

i

)
πie
′

p ωi,j

=

p−1∑
s=1

p−1∑
t=1

π−te
′

p as,t

t∑
j=1

(
t

j

)
(−1)t−j

1

p
ω0,j

+

p−1∑
s=1

p−1∑
t=1

t∑
j=1

(
t

j

)
(−1)t−jπ−te

′

p as,t
1

p

s∑
i=1

(
s

i

)
πie
′

p ωi,j

For 0 ≤ i ≤ p− 1 and 1 ≤ j ≤ p− 1, let Ai,j denote the coefficient of ωi,j in z. The

from the above we see that for 1 ≤ i, j ≤ p− 1 we have

Ai,j =
1

p
πie
′

p

p−1∑
s=i

p−1∑
t=j

(
s

i

)(
t

j

)
(−1)t−jπ−te

′

p as,t.

We have that Ai,j ∈ OK,p if and only if the congruence condition in (i) holds.

Next we seek, for each 1 ≤ j ≤ p− 1, the coefficient of ω0,j in z. We use again the

formula given in (6.2.2).The final term of equation (8.1) contains a contribution:

1

p

p−1∑
s=1

p−1∑
t=1

π−te
′

p as,t

t∑
j=1

(
t

j

)
(−1)t−jω0,j.

The other terms involving ω0,j are the idempotents Er defined in (5.3.3). We

calculate

p−1∑
r=0

arEr =

p−1∑
r=0

ar
1

p

p−1∑
j=0

ζjdre0(avη)j

=
1

p

p−1∑
r=0

are0 +
1

p2

p−1∑
j=1

p−1∑
r=0

ζjdrarω0,j
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So the total coefficient of ω0,j is

A0,j =
1

p2

p−1∑
r=0

ζjdrar +
1

p

p−1∑
s=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t.

We have that A0,j ∈ OK,p if and only if the congruence condition in (ii) holds.

Collecting the remaining terms together will allow us to examine the coefficients of

the ρk for 0 ≤ k ≤ p− 1. We have

1

p

p−1∑
r=0

are0 +

p−1∑
s=1

p−1∑
t=0

(−1)tπ−te
′

p as,tes

=
1

p

p−1∑
r=0

ar
1

p

p−1∑
k=0

ρk +

p−1∑
s=1

p−1∑
t=0

(−1)tπ−te
′

p as,t
1

p

p−1∑
k=0

ζ−ksρk

=

p−1∑
k=0

(
1

p2

p−1∑
r=0

ar +
1

p

p−1∑
s=1

p−1∑
t=0

ζ−ks(−1)tπ−te
′

p as,t

)
ρk.

So for each 0 ≤ k ≤ p− 1, the coefficient of ρk is

1

p2

p−1∑
r=0

ar +
1

p

p−1∑
s=1

p−1∑
t=0

ζ−ks(−1)tπ−te
′

p as,t,

and each of these lies in OK,p if and only if the corresponding congruence condition

in (iii) holds.

Finally, we observe that

ε(z) =

p−1∑
r=0

arε(Er) +

p−1∑
s=1

p−1∑
t=0

t∑
j=0

(
t

j

)
(−1)t−jπ−te

′

p as,tε(es(avη)j).

Now

ε(es(avη)j) =

 1 if s = 0

0 otherwise.
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and

ε(Er) =
1

p

p−1∑
k=0

ζkdrε(e0(avη)k)

=

 1 if r = 0

0 otherwise

So ε(z) = a0 and, assuming z ∈ OL,p[N ]G, we have z ∈
(
OL,p[N ]G

)×
if and only if

a0 ∈ O×K,p.

We now seek necessary and sufficient conditions for z ∈
(
OL,p[N ]G

)×
. These will

be in terms of higher unit groups of OK,p and OK(v),p.

Definition 8.1.2. Define an isomorphism

Θ : (K×)p × (K(v)×)(p−1) ∼= H×

by composing the automorphism of (K×)p × (K(v)×)(p−1) defined by

(z0, z1, . . . , zp−1, y1, . . . yp−1) 7→ (z0, z0z1, . . . , z0zp−1, z0y1, . . . , z0yp−1)

with the isomorphism Kp ×K(v)(p−1) ∼= H defined in (5.3.2). We shall also write

Θ for the induced isomorphism (K×p )p × (K(v)×p )(p−1) ∼= H×p , where p a prime of

OK , and the isomorphism J(K)p × J(K(v))(p−1) ∼= J(H).

Proposition 8.1.3. Let p be a prime of OK lying above p. Then

Θ
(
O×K,p × (1 + p2OK,p)

(p−1) × (1 + p2OK(v),p)
(p−1)

)
⊆ A×H,p.

Proof. The image under Θ of an element of

O×K,p × (1 + p2OK,p)
(p−1) × (1 + p2OK(v),p)

(p−1)
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has the form

z =

p−1∑
r=0

arEr +

p−1∑
s=1

p−1∑
t=0

as,t

(
es(avη)− es

πe′p

)t
es

with ar, as,t ∈ OK,p for r, t = 0, . . . , p− 1 and s = 1, . . . , p− 1, and

a) a0 ∈ O×K,p.

b) ar ≡ a0 (mod p2) for 1 ≤ r ≤ p− 1.

c) as,0 ≡ a0 (mod p2) for 1 ≤ s ≤ p− 1.

d) as,t ≡ 0 (mod p2) for 1 ≤ s, t ≤ p− 1.

We show that z satisfies the conditions of (8.1.1).

i) By (d) we have π−te
′

p as,t ≡ 0 (mod p) for 1 ≤ s, t ≤ p− 1. So

p−1∑
s=i

p−1∑
t=j

(
s

i

)(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p),

which is sufficient to ensure that condition (i) of (8.1.1) holds.

ii) By (b) and (d) we have, for 1 ≤ j ≤ p− 1, that

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

p−1∑
j=1

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡
p−1∑
r=0

ζjdra0 (mod p2)

≡ a0

p−1∑
r=0

ζjdr (mod p2)

≡ 0 (mod p2)

so condition (ii) of (8.1.1) holds.
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iii) For 0 ≤ k ≤ p− 1 we have by (b),(c) and (d) that

p−1∑
r=0

ar + p

p−1∑
s=1

p−1∑
t=0

ζ−ks(−1)tπ−te
′

p as,t ≡
p−1∑
r=0

a0 + p

p−1∑
s=1

ζ−ksas,0 (mod p2)

≡ pa0 + p

p−1∑
s=1

ζ−ksa0 (mod p2)

≡ pa0

p−1∑
s=0

ζ−ks (mod p2)

≡ 0 (mod p2)

so condition (iii) of (8.1.1) holds.

iv) Condition (iv) of (8.1.1) holds by (a).

Proposition 8.1.4. Let p be a prime of OK lying above p. Then

Θ−1(A×H,p) ⊆ O×K,p × (1 + (ζ − 1)OK,p)
(p−1) ×

(
1 + (ζ − 1)OK(v),p

)(p−1)
.

Proof. Let

z =

p−1∑
r=0

arEr +

p−1∑
s=1

p−1∑
t=0

as,t

(
es(avη)− es

πe′p

)t
es ∈MH,p

with ar, as,t ∈ OK,p for r, t = 0, . . . , p − 1 and s = 1, . . . , p − 1, and suppose that

z ∈
(
OL,p[N ]G

)×
. Then the ar and as,t satisify the conditions of (8.1.1) and, in

particular, a0 ∈ O×K,p. We shall show that this implies

Θ−1(z) ∈ O×K,p × (1 + (ζ − 1)OK,p)
(p−1) ×

(
1 + (ζ − 1)OK(v),p

)(p−1)
.

It is sufficient to prove that

i) ar ≡ a0 (mod (ζ − 1)) for 0 ≤ r ≤ p− 1.
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ii) as,0 ≡ a0 (mod (ζ − 1)) for 1 ≤ s ≤ p− 1.

iii) as,t ≡ 0 (mod (ζ − 1)) for 1 ≤ s, t ≤ p− 1.

Recall from (8.1.1) that for 0 ≤ i ≤ p− 1 and 1 ≤ j ≤ p− 1 we denote by Ai,j the

coefficient of ωi,j in z, and that for 1 ≤ i, j ≤ p− 1 we have

Ai,j =
1

p
πie
′

p

p−1∑
s=i

p−1∑
t=j

(
s

i

)(
t

j

)
(−1)t−jπ−te

′

p as,t.

For 1 ≤ i, t ≤ p− 1 define

Bi,t =

p−1∑
s=i

(
s

i

)
as,t.

Then for 1 ≤ i, j ≤ p− 1 we have

Ai,j =
1

p
πie
′

p

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p Bi,t. (8.2)

In particular, for 1 ≤ i ≤ p− 1 we have

Ai,p−1 ∼
1

p2
πie
′

p Bi,p−1,

and so

Bi,p−1 ≡ 0 (mod p2π−ie
′

p ).

Inducting backwards on j in (8.2), we find that for 1 ≤ i, t ≤ p− 1 we have

Bi,t ≡ 0 (mod pπ
(t−i)e′
p ),

and inducting backwards on i in the definition of Bi,t we find that for 1 ≤ s, t ≤ p−1

we have

as,t ≡ 0 (mod πte
′

p ).

This is sufficient to prove claim (iii) of the proposition.
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Next recall the congruences in case (ii) of (8.1.1):

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p2) for 1 ≤ j ≤ p− 1

and the k = 0 case of the congruences in case (iii) of (8.1.1):

p−1∑
r=0

ar + p

p−1∑
s=1

p−1∑
t=0

(−1)tπ−te
′

p as,t ≡ 0 (mod p2)

Summing these over j with appropriate coefficients yields, for each 0 ≤ l ≤ p− 1:

p−1∑
j=0

ζ−jdl
p−1∑
r=0

ζjdrar + p

p−1∑
j=0

ζ−jdl
p−1∑
s=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p2)

⇒
p−1∑
r=0

(
p−1∑
j=0

ζ(r−l)jd

)
ar + p

p−1∑
s=1

p−1∑
j=0

ζ−jdl
p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p2)

⇒ pal + p

p−1∑
s=1

p−1∑
j=0

ζ−jdl
p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p2)

⇒ al +

p−1∑
s=1

p−1∑
j=0

ζ−jdl
p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p).

The coefficient of a given π−te
′

p as,t in the second term is

t∑
j=0

(
t

j

)
ζ−jdl(−1)t−j = (ζ−dl − 1)t,

so for 0 ≤ l ≤ p− 1 we have

al +

p−1∑
s=1

p−1∑
t=0

(
ζ−dl − 1

)t
as,t ≡ 0 (mod p).

This implies that

al ≡ −
p−1∑
s=1

as,0 (mod πe
′

p ),
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and so al ≡ a0 (mod πe
′

p ) for 1 ≤ l ≤ p− 1, as claimed in (i).

Finally, to show (ii), we recall from (8.1.1) part (i) that for 1 ≤ i, j ≤ p − 1

we have

Ai,j =
1

p
πie
′

p

p−1∑
s=i

p−1∑
t=j

(
s

i

)(
t

j

)
(−1)t−jπ−te

′

p as,t ∈ OK,p

Therefore for 1 ≤ i ≤ p− 1 we have

p−1∑
j=1

Ai,j =
1

p
πie
′

p

p−1∑
s=i

(
s

i

) p−1∑
j=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ∈ OK,p.

For each 1 ≤ s, t ≤ p − 1, we have π−te
′

p as,t ∈ OK,p by part (i) of this proposition.

The coefficient of a given π−te
′

p as,t in the above is

1

p
πie
′

p

t∑
j=1

(
t

j

)
(−1)t−j =

1

p
πie
′

p

t∑
j=0

(
t

j

)
(−1)t−j − (−1)t

=
1

p
πie
′

p

(
0 + (−1)t−1

)
so we have

p−1∑
j=1

Ai,j =
1

p
πie
′

p

p−1∑
s=i

(
s

i

) p−1∑
t=1

(−1)t−1π−te
′

p as,t ∈ OK,p.

For 1 ≤ s ≤ p− 1 we define

αs =

p−1∑
t=1

(−1)tπ−te
′

p as,t.

Then we have

1

p
πie
′

p

p−1∑
s=i

(
s

i

)
αs ∈ OK,p.

Now fix some 1 ≤ k ≤ p− 1. Then vp

(
ζ−k − 1

)
= e′, so for 1 ≤ i ≤ p− 1 we have

1

p
(ζ−k − 1)i

p−1∑
s=i

(
s

i

)
αs ∈ OK,p,
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and summing these over i we obtain

p−1∑
i=1

1

p

p−1∑
s=i

(
s

i

)
(ζ−k − 1)iαs ∈ OK,p.

The coefficient of a given αs in this sum is

1

p

s∑
i=1

(
s

i

)
(ζ−k − 1)i =

1

p

(
s∑
i=0

(
s

i

)
(ζ−k − 1)i − 1

)
=

1

p

(
((ζ−k − 1) + 1)s − 1

)
=

1

p

(
ζ−ks − 1

)
.

So for 1 ≤ k ≤ p− 1 we have

1

p

p−1∑
s=1

(ζ−ks − 1)αs ∈ OK,p.

i.e.
p−1∑
s=1

(ζ−ks − 1)

p−1∑
t=1

(−1)tπ−te
′

p as,t ≡ 0 (mod p). (8.3)

Next recall the congruences in part (ii) of (8.1.1):

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p2) for 1 ≤ j ≤ p− 1.

Summing these over j, we obtain:

p−1∑
j=1

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

p−1∑
j=1

p−1∑
t=j

(
t

j

)
(−1)t−jπ−te

′

p as,t ≡ 0 (mod p2).
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The coefficient of a given π−te
′

p as,t in this sum is

p

t∑
j=1

(
t

j

)
(−1)t−j = p

(
t∑

j=0

(
t

j

)
(−1)t−j − (−1)t

)
= p

(
0− (−1)t

)
So we have

p−1∑
j=1

p−1∑
r=0

ζjdrar − p
p−1∑
s=1

p−1∑
t=1

(−1)tπ−te
′

p as,t ≡ 0 (mod p2). (8.4)

Now recall from (8.1.1)(iii) that for 0 ≤ k ≤ p− 1 we have

p−1∑
r=0

ar + p

p−1∑
s=1

p−1∑
t=0

ζ−ks(−1)tπ−te
′

p as,t ≡ 0 (mod p2). (8.5)

Adding (8.4) to (8.5) yields:

p−1∑
j=0

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

ζ−ksas,0 + p

p−1∑
s=1

p−1∑
t=1

(
ζ−ks − 1

)
(−1)tπ−te

′

p as,t ≡ 0 (mod p2).

Using congruence (8.3) we then have

p−1∑
j=0

p−1∑
r=0

ζjdrar + p

p−1∑
s=1

ζ−ksas,0 ≡ 0 (mod p2)

⇒ pa0 + p

p−1∑
s=1

ζ−ksas,0 ≡ 0 (mod p2)

⇒ a0 +

p−1∑
s=1

ζ−ksas,0 ≡ 0 (mod p)

Now write a0,0 = a0. Then for 0 ≤ k ≤ p− 1 we have

p−1∑
s=0

ζ−ksas,0 ≡ 0 (mod p),
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so for some Ck ∈ OK,p we have

p−1∑
s=0

ζ−ksas,0 = pCk.

Then we have

as,0 =

p−1∑
k=0

ζksCk,

and for s 6= s′ we have

as,0 − as′,0 =

p−1∑
k=0

(
ζks − ζks′

)
Ck ≡ 0 (mod (ζ − 1))

So for each 1 ≤ s ≤ p− 1, we have as,0 ≡ a0 (mod (ζ − 1)), as claimed in (i). This

completes the proof.

Proposition 8.1.5. There are injections:

U(OK)× Up2(OK)(p−1) × Up2(OK(v))
(p−1)

��
U(AH)

��
U(OK)× U(ζ−1)(OK)(p−1) × U(ζ−1)(OK(v))

(p−1)

and therefore surjections:

Cl (OK)× Clp2(OK)(p−1) × Clp2(OK(v))
(p−1)

��
Cl (AH)

��
Cl (OK)× Cl(ζ−1)(OK)(p−1) × Cl(ζ−1)(OK(v))

(p−1).
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Proof. Recall from (2.1.21) that

U(AH) =
∏

p/OK

A×H,p =
{

(ap)p ∈ J(H) | ap ∈ A×H,p for all p
}
.

By (6.1.1) and (5.3.4) we have that if p is a prime of OK which does not lie above

p then

A×H,p = M×
H,p
∼=
(
O×K,p

)p × (O×K(w),p

)p−1

.

From (8.1.4) and (8.1.3) we have that if p is a prime of OK which lies above p then

there are injections:

O×K,p × (1 + p2OK,p)
(p−1) ×

(
1 + p2OK(v),p

)(p−1)

��
A×H,p

��

O×K,p × (1 + (ζ − 1)OK,p)
(p−1) ×

(
1 + (ζ − 1)OK(w),p

)(p−1)

Recalling definition (2.1.20), this implies that there are injections

U(OK)× Up2(OK)(p−1) × Up2(OK(w))
(p−1)

��
U(AH)

��
U(OK)× U(ζ−1)(OK)(p−1) × U(ζ−1)(OK(w))

(p−1).

The existence of the surjections asserted by the proposition then follows from the

isomorphism (see (2.1.25))

Cl (AH) ∼=
J(H)

H×U(AH)
.
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8.2 The Class Representing OL

Proposition 8.2.1. The class of OL in the locally free class group

Cl (A) ∼=
J(H)

H×U(AH)
,

corresponds to the class of the idèle (hp)p, where

hp =



p−1∑
r=0

Er +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2v−pqs,tes(avη)t p|pOK

p−1∑
r=0

π
−rp(V r)
p Er +

p−1∑
s=1

π
−rp(XsV sjp )
p es(avη)jp p|XVOK

1 otherwise.

Here qs,t =
⌊
st
p

⌋
and (see (6.1.2)) 0 ≤ jp ≤ p− 1 is defined as follows:

 jp = 0 if vp (X) ≡ 0 (mod p) or vp (V ) ≡ 0 (mod p)

vp (XV jp) ≡ 0 (mod p) otherwise.

Proof. Define

Γ =
1

p2

(
p−1∑
j=0

vj +

p−1∑
s=1

xs

)
∈ L×

Using the formulae for the action of the K-basis elements of H on those of L in

(5.4.3) and (5.4.4), we see that Γ is a generator of L over H. By (2.1.25), to

show that the class of OL in Cl (AH) corresponds to the class of the idèle (hp)p in

J(H)/H×U(AH) we must show that for each prime p of OK , the element hpΓ is a

generator of OL,p over AH,p. We recall the local generators γp given in (6.1.2) and
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(6.1.7):

γp =


1

p2

p−1∑
i=0

p−1∑
j=0

xivj if p | pOK

p−1∑
j=0

π
−rp(V j)
p vj +

p−1∑
s=1

π
−rp(XsV sjp )
p xsvsjp otherwise

Suppose first that p - pXVOK . Then jp = 0 and so

hpΓ =
1

p2

(
p−1∑
j=0

vj +

p−1∑
s=1

xs

)

whereas

γp =

p−1∑
j=0

vj +

p−1∑
s=1

xs.

We note that p - pOK and so p2 ∈ O×K,p. Therefore hpΓ and γp differ only by an

element of O×K,p, and so hpΓ is a generator of OL,p over AH,p. Next suppose that

p | XVOK . Then

hpΓ =

p−1∑
r=0

π
−rp(V r)
p ErΓ +

p−1∑
s=1

π
−rp(XsV sjp )
p es(avη)jpΓ

=
1

p2

p−1∑
r=0

π
−rp(V r)
p vr +

1

p2

p−1∑
s=1

ζsjpd(jp−1)/2π
−rp(XsV sjp )
p xsvsjp

whereas

γp =

p−1∑
j=0

π
−rp(V j)
p vj +

p−1∑
s=1

π
−rp(XsV sjp )
p xsvsjp .

Comparing these two, we see that

p2

(
p−1∑
r=0

Er +

p−1∑
s=1

ζ−sjpd(jp−1)/2es

)
(hpΓ) = γp.

Since the first factor lies in A×H,p, we have that hpΓ is a generator of OL,p over AH,p.
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Finally suppose that p | pOK . Let ¯ denote reduction to least positive residue mod

p. Then

hpΓ =

p−1∑
r=0

ErΓ +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2v−pqs,tes(avη)tΓ

=
1

p2

(
p−1∑
r=0

vr +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2v−pqs,tes(avη)txs

)

=
1

p2

(
p−1∑
r=0

vr +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2v−pqs,tζ−std(t−1)/2vstxs

)

=
1

p2

(
p−1∑
r=0

vr +

p−1∑
s=1

p−1∑
t=0

vstxs

)
= γp

So in this case hpΓ coincides with the generator of OL,p over AH,p given in (6.1.7).

This completes the proof.

Remark 8.2.2. By (5.2.1), a nonclassical Hopf-Galois structure on L/K is de-

termined by a choice of subgroup T of G = Gal(L/K) of order p and a choice of

d ∈ {1, . . . , p − 1}. These choices also determine the field K(v) appearing in the

isomorphism of K-algebras H ∼= Kp × K(v)p−1. We chose in (5.2.1) an element

τ ∈ G such that T = 〈τ〉 and an element σ ∈ G such that G = 〈σ, τ〉. Making

a different choice of these elements τ, σ will result in a different description of the

field L and Hopf algebra H, but it will not affect the class of OL in Cl (AH) because

this does not depend on the descriptions of the objects involved. If we denote by

τ ′ a different choice of generator for the subgroup T and by σ′ a different choice of

group element satisfying 〈σ′, τ ′〉 = G then we have three possibilities. Throughout,

let ¯ denote reduction to least positive residue modulo p.

i) If τ ′ = τm for some 1 ≤ m ≤ p − 1 then let 0 ≤ n ≤ p − 1 satisfy mn ≡ 1
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(mod p). We have the following change of K-basis of L:

v 7→ v

x 7→ x′ = xn

and the following change of K-basis of H:

Er 7→ Er for r = 0, . . . , p− 1

es(avη)t 7→ ens(avη)t for s = 1, . . . , p− 1 and t = 0, . . . , p− 1.

ii) If σ′ = σm for some 1 ≤ m ≤ p − 1 then let 0 ≤ n ≤ p − 1 satisfy mn ≡ 1

(mod p). We have the following change of K-basis of L:

v 7→ v′ = vn

x 7→ x

and the following change of K-basis of H:

Er 7→ Enr for r = 0, . . . , p− 1

es(avη)t 7→ es(avη)nt for s = 1, . . . , p− 1 and t = 0, . . . , p− 1.

iii) If σ′ = στm for some 1 ≤ m ≤ p−1 then let 0 ≤ n ≤ p−1 satisfy m−dn ≡ 1

(mod p). We have the following change of K-basis of L:

v 7→ v

x 7→ x′ = xvn
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and the following change of K-basis of H:

Er 7→ Er for r = 0, . . . , p− 1

es(avη)t 7→ ζ−dnstes(avη)t for s = 1, . . . , p− 1 and t = 0, . . . , p− 1.

Definition 8.2.3. For each s = 1, . . . , p− 1 define Us ∈ K(v)× by

Us =

p−1∑
t=0

ζstd(t−1)/2V −qs,tvst ∈ K(v)×.

Proposition 8.2.4. Under the composition of maps

J(H)→ J(K)p × J(K(v))(p−1) → Cl (OK)p × Cl
(
OK(v)

)(p−1)
,

the idèle (hp)p defined in (8.2.1) corresponds to the class of the tuple of fractional

ideals (
OK , I

−1
V , . . . , I−1

V (p−1) , J1, . . . , J(p−1)

)
,

where for s = 1, . . . , (p− 1) the fractional ideal Js is defined by

Js =

I−1
Xs

∏
P-pOK(v)

P−vP(Us)
∏

P|VOK(v)

Pvp(V sjp)−prp(V sjp )−p


Proof. Under the isomorphism

J(H)→ J(K)p × J(K(v))(p−1)

the idèle (hp)p is mapped to the tuple of idèles

(
(1)p,

(
π
−rp(V )
p

)
p
, . . . ,

(
π
−rp(V (p−1))
p

)
p
, (y1,P)P, . . . , (y(p−1),P)P

)
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where for s = 1, . . . , p− 1, the element ys,P ∈ K(v)P is defined by

ys,P =



p−1∑
t=0

ζstd(t−1)/2v−pqs,tvst P | pOK(v)

π
−rp(XsV sjp )
p vsjp P | XVOK(v)

1 otherwise

Now for each s = 1, . . . , p− 1 we define an idèle (y′s,P)P ∈ J(K(v)) by

y′s,P = U−1
s ys,P =

 1 P | pOK(v)

U−1
s π

−rp(XsV sjp )
p vsjp otherwise

Then the tuple of idèles

(
(1)p,

(
π
−rp(V )
p

)
p
, . . . ,

(
π
−rp(V (p−1))
p

)
p
, (y1,P)P, . . . , (y(p−1),P)P

)

has the same class in the product Cl (OK)p ×Cl
(
OK(v)

)(p−1)
as the tuple of idèles

(
(1)p,

(
π
−rp(V )
p

)
p
, . . . ,

(
π
−rp(V (p−1))
p

)
p
, (y′1,P)P, . . . , (y

′
(p−1),P)P

)
.

We use the homomorphism defined in (2.1.19), applied to each component, to map

this tuple of idèles to a tuple of fractional ideals. We see immediately that the

first component is mapped to the trivial ideal, and that for r = 2, . . . , p, the rth

component is mapped to the fractional ideal

I−1
V r−1 =

∏
p|V

p−rp(V r−1).

To determine the images of the remaining components we calculate, for each s 6= 0
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and P a prime of OK(v), the valuation vP

(
y′s,P

)
. We have:

vP

(
y′s,P

)
=

 0 P | pOK(v)

−vP (Us)− vP

(
π
rp(XsV sjp )
p vsjp

)
otherwise.

We now make the following observations regarding jp:

i) By (6.1.3) we have jp 6= 0 only if the prime p of OK is ramified in the extension

K(v)/K.

ii) If jp 6= 0 then by the definition of jp in (6.1.2) we have

rp(X
sV sjp) = rp(X

s) + rp(V
sjp) + 1.

iii) If jp 6= 0 then since p is ramified in K(v)/K we have

pvp (V ) = vP (V ) = vP (vp) = pvP (v) ,

and so vP (v) = vp (V ).

Using these observations we see that if p is a prime of OK such that jp 6= 0 and P

is a prime of OK(v) lying above p then we have

vP

(
π
−rp(XsV sjp )
p vsjp

)
= −vP

(
π
rp(Xs)
p

)
− vP

(
π
rp(V sjp )+1
p

)
+ vP

(
vsjp
)

= −vP

(
π
rp(Xs)
p

)
− prp(V

sjp)− p+ vp

(
V sjp

)
.

On the other hand, if p is a prime of OK such that jp = 0 and P is a prime of

OK(v) lying above p then we have

vP

(
π
−rp(XsV sjp )
p vsjp

)
= vP

(
π
−rp(Xs)
p

)
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So we see that the idèle (y′s,P)P corresponds to the fractional ideal

Js =

I−1
Xs

∏
P-pOK(v)

P−vP(Us)
∏

P|VOK(v)

Pvp(V sjp)−prp(V sjp )−p

 ,

and so the tuple of idèles

(
(1)p,

(
π
−rp(V )
p

)
p
, . . . ,

(
π
−rp(V (p−1))
p

)
p
, (y′1,P)P, . . . , (y

′
(p−1),P)P

)

corresponds to the tuple of fractional ideals

(
OK , I

−1
V , . . . , I−1

V (p−1) , J1, . . . , J(p−1)

)
.

8.3 Conditions for Global Freeness

Proposition 8.3.1. A sufficient condition for OL to be free over AH is that the

tuple of ideals given in (8.2.4) has trival class in the product of ray class groups

Cl (OK)× Clp2(OK)(p−1) × Clp2(OK(v))
(p−1).

A necessary condition is that the same triple has trivial class in the product of ray

class groups

Cl (OK)× Cl(ζ−1)(OK)(p−1) × Cl(ζ−1)(OK(v))
(p−1).

Proof. By (8.2.1), the class of OL in Cl (AH) corresponds to the class of the idèle

(hp)p in J(H)/H×U(AH). Recalling the surjections of (8.1.5), the result follows.
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8.4 Comparing Structures

By (5.2.1), a Hopf algebra giving a nonclassical Hopf-Galois structure on L/K is

determined by a choice of subgroup T of Gal(L/K) of order p and a choice of the

integer d ∈ {1, . . . , p − 1}. In this section we prove a partial result relating the

structure of OL over the associated order in the Hopf algebra H = HT,d and its

structure over the associated order in the Hopf algebra H ′ = HT,d′ . Throughout,

let¯denote reduction to least positive residue modulo p.

Let d, d′ ∈ {1, . . . , p − 1} and suppose that d 6= d′. Let c ∈ {1, . . . , p − 1} satisfy

cd ≡ d′ (mod p). In section (5.3) we associated with H elements v ∈ OT
L, x ∈ OS

L

satisfying σ(v) = ζ−dv, τ(x) = ζx. Let v′, x′ denote the analogous elements associ-

ated with H ′. We have

σ(vc) = ζ−cdvc

= ζ−d
′
vc

and so we may take v′ = vc. We shall also take x′ = xc; by (8.2.2) this choice does

not affect the class of OL in Cl (AH′). We fix the following K-basis for H, as in

(5.3.2)

{Er | 0 ≤ r ≤ p− 1} ∪
{
es(avη)t | 1 ≤ s ≤ p− 1, 0 ≤ t ≤ p− 1

}
and the following analogous K-basis for H ′:

{E ′r | 0 ≤ r ≤ p− 1} ∪
{
e′s(av′η

′)t | 1 ≤ s ≤ p− 1, 0 ≤ t ≤ p− 1
}
.
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Proposition 8.4.1. Define a K-linear map Φ : H ′ → H by

Φ(E ′r) = Ecr for r = 0, . . . , p− 1

Φ(e′s(av′η
′)t) = V b

cs
p ctecs(avη)t for s = 1, . . . , p− 1 and t = 0, . . . , p− 1.

Then Φ is an isomorphism of K-algebras.

Proof. For r = 0, . . . , p − 1 the elements Er and E ′r are idempotents, and so we

have:

Φ((E ′r)
2) = Φ(E ′r) = Ecr = E2

cr = Φ(E ′r)
2.

For s = 1, . . . , p− 1 we have on the one hand:

Φ(e′s(av′η
′)p) = Φ((v′)spe′s)

= V csΦ(e′s)

= V csecs

and on the other:

Φ(e′s(av′η
′))p = V b

cs
p cpecs(avη)p

= V b
cs
p cpV csecs

= V csecs

the final equality holding since cs = p
⌊
cs
p

⌋
+cs. Since these two calculations agree,

the result follows.

Remark 8.4.2. As with the isomorphism Θ defined in (8.1.2), we shall also write Φ

for the induced isomorphism H ′p
∼= Hp, where p a prime of OK , and the isomorphism

J(H ′) ∼= J(H).
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Definition 8.4.3. Recall from (8.1.2) the isomorphism

Θ : J(K)p × J(K(v))(p−1) ∼= J(H).

Let Θ′ denote the corresponding isomorphism

Θ′ : J(K)p × J(K(v))(p−1) ∼= J(H ′).

Define a subgroup B′ of J(H ′) as follows:

B′ = Θ′
(
U(OK)× Up2(OK)(p−1) × Up2(OK(v))

(p−1)
)
≤ J(H ′)

Proposition 8.4.4. Suppose that V ≡ 1 (mod p2(ζ − 1)). Then under the iso-

morphism Φ : J(H ′) ∼= J(H) we have

Φ
(
(H ′)×

)
= H×

and

Φ (B′) ⊆ U(AH).

Proof. Since the isomorphism Φ : J(H ′) ∼= J(H) is induced from an isomorphism

H ′ ∼= H we have that

Φ ((h)p) = (Φ(h))p for h ∈ H ′,

which establishes the first part of the proposition. For the second part, let (z′p)p ∈

B′. Then

a) z′p ∈ (M′
H,p)

× for all p - pOK .

b) z′p ∈ Θ′
(
O×K,p × (1 + p2OK,p)

(p−1) × (1 + p2OK(v),p)
(p−1)

)
for all p | pOK .
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By (5.3.6) and (8.1.3), sufficient conditions for an idèle (zp)p ∈ J(H) to lie in U(AH)

are

i) zp ∈ (M×
H,p) for all p - pOK .

ii) zp ∈ Θ
(
O×K,p × (1 + p2OK,p)

(p−1) × (1 + p2OK(v),p)
(p−1)

)
for all p | pOK .

Suppose first that p - pOK . Then by (5.3.6) we may write

z′p =

p−1∑
r=0

a′rE
′
r +

p−1∑
s=1

p−1∑
t=0

a′s,t
e′s(av′η

′)t

π
rp(V cst)
p

,

with a′r ∈ O×K,p, a
′
s,t ∈ OK,p and e′szp ∈

(
e′sM

′
H,p

)× ∼= O×K(v),p. We calculate:

Φ(z′p) =

p−1∑
r=0

a′rEcr +

p−1∑
s=1

p−1∑
t=0

a′s,tV
b cs

p ct ecs(avη)t

π
rp(V cst)
p

.

This implies that Φ(zp) ∈M×
H,p since for each s = 1, . . . , p−1 the following diagram

commutes:

e′sH
′
p

��

Φ // ecsHp

��
K(v)p K(v)p.

Now suppose that p | pOK . Then by (5.3.7) we may write

z′p =

p−1∑
r=0

a′rE
′
r +

p−1∑
s=1

p−1∑
t=0

a′s,t

(
e′s(av′η

′)− e′s
πe′p

)t
e′s,

with a′r, a
′
s,t ∈ OK,p. Using the binomial expansion we have

z′p =

p−1∑
r=0

a′rE
′
r +

p−1∑
s=1

p−1∑
t=0

t∑
j=0

(
t

j

)
(−1)t−jπ−je

′

p a′s,te
′
s(av′η

′)j,
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and so

Φ
(
z′p
)

=

p−1∑
r=0

a′rEcr +

p−1∑
s=1

p−1∑
t=0

t∑
j=0

(
t

j

)
(−1)t−jπ−je

′

p a′s,tV
b cs

p cjecs(avη)j.

From (6.2.1) we see that p2MH,p ⊆ AH,p, so using the assumption that V ≡ 1

(mod p2(ζ − 1)) we have

Φ
(
z′p
)
≡

p−1∑
r=0

a′rEcr +

p−1∑
s=1

p−1∑
t=0

t∑
j=0

(
t

j

)
(−1)t−jπ−je

′

p a′s,tecs(avη)j (mod πe
′

p AH,p)

≡
p−1∑
r=0

a′rEcr +

p−1∑
s=1

p−1∑
t=0

a′s,t

(
ecs(avη)− ecs

πe′p

)t
(mod πe

′

p AH,p).

This satisfies (ii) since z′p satisfies (b). So Φ
(
z′p
)
∈ A×H,p. This completes the

proof.

Corollary 8.4.5. Suppose that V ≡ 1 (mod p2(ζ − 1)), and that the idèle (z′p)p ∈

J(H ′) has trivial class in the quotient group

J(H ′)

(H ′)×B′
.

Then the idèle Φ
(
(z′p)p

)
∈ J(H) has trivial class in the quotient group

J(H)

H×U(AH)

Proposition 8.4.6. Suppose V ≡ 1 (mod p2(ζ−1)). Let (h′p)p, (hp)p be the idèles

in J(H ′), J(H) respectively which correspond to the class of OL in Cl (AH′) ,Cl (AH)

according to (8.2.1). Then Φ((h′p)p) has the same class in the quotient group

J(H)/H×U(AH) as (hp)p.

Proof. We shall show that the idèle (hp)p ∈ J(H) and the idèle Φ
(
h′p
)

p
∈ J(H)
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differ only by an element of H×U(AH). Recall that qs,t =
⌊
st
p

⌋
. We have:

hp =



p−1∑
r=0

Er +

p−1∑
s=1

p−1∑
t=0

ζstd(t−1)/2v−pqs,tes(avη)t p|pOK

p−1∑
r=0

π
−rp(V r)
p Er +

p−1∑
s=1

π
−rp(XsV sjp )
p es(avη)jp p|XVOK

1 otherwise

where 0 ≤ jp ≤ p− 1 is defined by

 jp = 0 if vp (X) ≡ 0 (mod p) or vp (V ) ≡ 0 (mod p)

vp (XV jp) ≡ 0 (mod p) otherwise

and

h′p =



p−1∑
r=0

E ′r +

p−1∑
s=1

p−1∑
t=0

ζstd
′(t−1)/2(v′)−pqs,te′s(av′η

′)t p|pOK

p−1∑
r=0

π
−rp((V ′)r)
p E ′r +

p−1∑
s=1

π
−rp((X′)s(V ′)sj′p )
p e′s(av′η

′)j
′
p p|XVOK

1 otherwise

where 0 ≤ j′p ≤ p− 1 is defined by

 j′p = 0 if vp (Xc) ≡ 0 (mod p) or vp (V c) ≡ 0 (mod p)

vp

(
XcV cj′p

)
≡ 0 (mod p) otherwise

We note that we have j′p = jp for all primes p - pOK . If p - pXVOK then we have

Φ(h′p) = hp and there is nothing to prove. Suppose that p | XVOK , and write
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X = uxπ
vp(X)
p , V = uvπ

vp(V )
p with ux, uv ∈ O×K,p. Then

Φ(h′p) =

p−1∑
r=0

π
−rp(V cr)
p Ecr +

p−1∑
s=1

π
−rp(XcsV csjp )
p V b

cs
p cjpecs(avη)jp

=

p−1∑
r=0

π
−vp

(
V b cr

p c
)

p π
−rp(V cr)
p Ecr

+

p−1∑
s=1

π
−vp

(
Xb cs

p c
)

p π
−vp

(
V b cs

p cjp

)
p V b

cs
p cjpπ−rp(XcsV csjp )

p ecs(avη)jp ,

and so we have

Φ(h′p) =

(
p−1∑
r=0

u
b cr

p c
v V −b

cr
p cEcr +

p−1∑
s=1

u
b cs

p c
x X−b

cs
p cub

cs
p cjp

v ecs

)
hp

=

(
p−1∑
r=0

u
b cr

p c
v Ecr +

p−1∑
s=1

u
b cs

p c
x u

b cs
p cjp

v ecs

)(
p−1∑
r=0

V −b
cr
p cEcr +

p−1∑
s=1

X−b
cs
p cecs

)
hp.

The first term of this lies in M×
H,p and the second term lies in H×. Finally suppose

that p | pOK . Then

Φ(h′p) =

p−1∑
r=0

Ecr +

p−1∑
s=1

p−1∑
t=0

ζcstd(t−1)/2v−pcqs,tV b
cs
p ctecs(avη)t.

We may write

hp =

p−1∑
r=0

Ecr +

p−1∑
s=1

p−1∑
t=0

ζcstd(t−1)/2v−pqcs,tecs(avη)t.

We shall show that

hp

Φ(h′p)
∈ A×H,p.
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By (8.1.3) it is sufficient to show that for each s = 1, . . . , p− 1 we have

ecshp

ecsΦ(h′p)
∈ (1 + p2MH,p).

For each s = 1, . . . , p− 1 we have

ecshp = ecsΦ(h′p) +

p−1∑
t=0

(
v−pqcs,t − v−pcqs,tV b

cs
p ct
)
ecs(avη)t

and so

ecshp

ecsΦ(h′p)
= 1 +

p−1∑
t=0

(
v−pqcs,t − v−pcqs,tV b

cs
p ct
)
ecs(avη)t

ecsΦ(h′p)
.

Since we are assuming that V ≡ 1 (mod p2(ζ − 1)), it now suffices to show that

ecsΦ(h′p) ∈ (ζ − 1)M×
H,p. Let

µcs =
ecs(avη)− ecs

πe′p
.

Then

ecs(avη) = πe
′

p µcs + ecs,

and using the binomial expansion we have

ecsΦ(h′p) =

p−1∑
t=0

ζcstd(t−1)/2v−pqcs,tV b
cs
p ct

t∑
j=0

(
t

j

)
πje

′

p µjcs.

The coefficient Cj of a given µjcs is given by

Cj =

p−1∑
t=j

ζcstd(t−1)/2

(
t

j

)
v−pqcs,tV b

cs
p ctπje′p

≡ πje
′

p

p−1∑
t=j

ζcstd(t−1)/2

(
t

j

)
(mod p2(ζ − 1)MH,p)
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So

π−je
′

p Cj ≡
p−1∑
t=k

(
t

j

)
(mod (ζ − 1)MH,p)

≡
(

p

j + 1

)
(mod (ζ − 1)MH,p)

≡ 0 (mod (ζ − 1)MH,p)

and so, by considering C0, we see that

ecsΦ(h′p) ∈ (ζ − 1)M×
H,p.

This completes the proof.

Proposition 8.4.7. Suppose that V ≡ 1 (mod p2(ζ − 1)). If the idèle (h′p) has

trivial class in the quotient group J(H ′)/(H ′)×B′ then the idèle hp has trivial class

in the quotient group J(H)/H×U(AH).

Proof. By (8.4.5) Φ((h′p)p) has trivial class in J(H)/H×U(AH) if (h′p)p has trivial

class in J(H ′)/(H ′)×B′, and by (8.4.6) Φ((h′p)p) has the same class in J(H)/H×U(AH)

as (hp)p.

Corollary 8.4.8. Suppose that V ≡ 1 (mod p2(ζ − 1)). Fix a choice of subgroup

T of Gal(L/K) of order p. If for some choice of d ∈ {1, . . . , p − 1} the tuple of

fractional ideals defined in (8.2.4) has trivial class in the product of ray class groups

Cl (OK)× Clp2(OK)(p−1) × Clp2(OK(v))
(p−1)

then OL is free over AHT,d
for all choices of d ∈ {1, . . . , p− 1}.
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