

A MUSE OF FIRE

British Trench Warfare Munitions, their Invention, Manufacture and Tactical Employment on the Western Front, 1914–18

Submitted by Anthony James Saunders to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, September 2008.

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other university.

Anthony Saunders

The emergence of static warfare on the Western Front in late 1914 encouraged the reinvention of devices associated with siege warfare and the invention of hitherto unknown munitions. These munitions included hand and rifle grenades and trench mortars and their ammunition. At the outbreak of war, the British effectively possessed none of these devices and lacked an infrastructure by which they could be quickly designed, manufactured and supplied to the British Expeditionary Force (BEF). The British met this challenge with considerable success. The subsequent proliferation of trench warfare munitions had profound consequences for the evolution of British tactics on the Western Front.

This thesis examines the processes by which these devices were invented, developed into manufacturable devices and supplied to the BEF. It considers their novelty in respect to similar devices from the American Civil War and the Russo-Japanese War. It looks at how their technical evolution affected tactical developments. The thesis discusses the relationship between the technical characteristics of these devices and the evolution of their tactical employment. It also considers how the characteristics of certain munitions, such as the Stokes mortar and the Mills grenade, directly affected tactics. It argues that the tactical employment of these munitions was dependent upon their functionality, utility and reliability.

The present thesis provides a different model of trench warfare conducted by the British on the Western Front and, thereby, demonstrates the significance of the novel munitions under discussion and the role they played in changing infantry warfare. This thesis also provides a different view of the Ministry of Munitions from that usually offered. It argues that certain aspects of the Ministry's role in providing the BEF with munitions has been overstated in the standard interpretation of the Ministry's work; the Ministry deliberately underplayed the work of the War Office, while overlooking that conducted by the Royal Engineers in France. O! for a Muse of fire, that would ascend The brightest heaven of invention; A kingdom for a stage, princes to act And monarchs to behold the swelling scene. Then should the war-like Harry, like himself, Assume the port of Mars; and at his heels, Leash'd in like hounds, should famine, sword, and fire Crouch for employment.

William Shakespeare, The Life of Henry the Fifth, Prologue, lines 1-8

Abstract	2
List of figures	6
List of tables	
Acknowledgements	9
1 Object and Scope	11
Technicalities, invention and novelty	15
The politics of invention	19
A question of anticipation	21
Prior publications	22
Sources, breadth and limitations	27
Summary of objects	29
2 Trench Warfare Munitions before 1914	35
Hand grenades c. 1500–1860	36
Innovation in the American Civil War, 1861–5	38
The Russo-Japanese War, 1904–05	41
Innovation in Manchuria	44
Consequences of the Russo-Japanese War	46
Commercial drive, 1905–14	49
Looking forwards	55
3 The Bureaucracy of Invention	63
The problem of novel munitions	64
Inventing a new process – handling novelty	66
Invention and design	70
Evolutions and convolutions of organisation	74
Royal Engineers	78
Towards a common goal	83
4 A Question of Engineering	93
Demand versus supply	93
Evaluating novel munitions	94
Manufacture and inspection	100
A multi-functional approach	104
Output	108
Engineering solutions	112
5 Inventing Grenades	124
Addressing the technical-tactical relationship	125
Grenade types	127
Utility of purpose	129
Lethality	135
Functionality and reliability	138
The impracticalities of percussion-fuzed grenades	145
Technical evolutions	149

6 Inventing the Trench Mortar	160
Types of mortar	161
Ammunition and propellants	163
Utility of purpose	166
Lethality and destructiveness	169
Functionality	171
Second-generation developments	176
The problem of fuzing	177
Evolution	182
7 The Evolution of Grenade Warfare	192
Handling procedures	193
Shooting a rifle grenade	197
Throwing techniques	199
Learning the art of bombing	200
The tactics of grenade warfare	207
The rise and fall of grenade warfare	214
8 The Tactical Employment of Mortars	223
Organisation and Drill	224
Battery positions and emplacements	228
Gunnery	234
Tactical roles of mortars	236
Tactical employment of the Stokes mortar	237
Training	244
Tactical maturity and the light mortar	245
9 Conclusions – Invention, Firepower and Mobility	252
Asking the right question	252
The question of novelty	256
The role of manufacture	260
Organisation and management	262
Inventors and inventions	266
Tactics and technology	268
A new model of infantry warfare	270
Glossary and Abbreviations	276
Sources and Bibliography	283

Fig. 1 British improvised hand grenade from the siege of Mafeking, 1899	37
Fig. 2 Parlour's hand grenade of <i>c</i> . 1834	38
Fig. 3 Ketchum hand grenades	39
Fig. 4 No. 19 hand grenade of 1917	39
Fig. 5 Drawings from Adams's US patent, US45806	41
Fig. 6 Three hand grenades improvised by the Russians at Port Arthur	42
Fig. 7 Japanese soldier in Manchuria with a percussion-fuzed hand grenade	43
Fig. 8 Japanese light mortar used at Port Arthur	45
Fig. 9 No. 1 hand grenade	48
Fig. 10 Detailed drawings of the No. 1	48
Fig. 11 Military and naval attachés pose with Marten Hale at the Faversham works	49
Fig. 12 Leaflet advertising Marten Hale's patented rifle grenade	51
Fig. 13 Marten Hale rifle grenade fitted with its rod	51
Fig. 14 Arming vane which was the cause of prematures	51
Fig. 15 Drawings from GB124837	98
Fig. 16 Engineering drawings of Newton Pippin hand grenade	105
Fig. 17 Captain Todhunter's sketch of three novel devices invented by Newton	105
Fig. 18 3.7-inch Newton mortar, cast from SAA cartridge cases	113
Fig. 19 Output v. demand and cost over time for the Nos 3, 20 & 24 rifle grenades	115
Fig. 20 Output v. demand and cost over time for No. 5 and No. 23 Mills grenades	115
Fig. 21 Percussion-fuzed grenades with short handles	128
Fig. 22 Large fragments from a US hand grenade	136
Fig. 23 X-ray of a grenade wound of the shoulder	136
Fig. 24 Cast-iron body of the Pitcher	136
Fig. 25 Roland hand grenade	139
Fig. 26 Drawings from Roland's Belgian patent of 1912	139
Fig. 27 Mills hand grenade as described in GB2468/15	140
Fig. 28 Differences between the No. 5 and No. 36 grenades	143
Fig. 29 Disassembled No. 5 and No. 36 grenades	143
Fig. 30 Cutaway of a No. 36 and its centrepiece	143
Fig. 31 Humphries, DG and Bellamy grenades	146
Fig. 32 Engineering drawings of experimental Bellamy egg grenade	148
Fig. 33 Evolution of the Hale type of rifle grenade	150
Fig. 34 Newton Pippin rifle grenade	150
Fig. 35 McClintock rifle grenade	151
Fig. 36 Engineering drawing of a stand for firing rifle grenades, 1915	151

Fig. 37 Woolwich 2-inch medium mortar	162
Fig. 38 9.45-inch heavy mortar	164
Fig. 39 6-inch Newton mortar with second-pattern guide rods	165
Fig. 40 3-inch Stokes mortar with second-pattern stand	167
Fig. 41 Bomb for the 3-inch Stokes mortar	174
Fig. 42 Striker and its relationship with the breech in 3-inch Stokes mortar	174
Fig. 43 Time fuze, adapted from the Mills mechanism, for 3-inch Stokes bombs	178
Fig. 44 No. 31 fuze	180
Fig. 45 No. 148 Mk I fuze	180
Fig. 46 No. 110 Mk II fuze derived from the No. 107 Newton fuze	180
Fig. 47 No. 107 fuze	181
Fig. 48 No. 146 fuze	181
Fig. 49 No. 105B fuze, a simple percussion mechanism	181
Fig. 50 No. 147 Vickery fuze with clip instead of tape	181
Fig. 51 Royal Engineer demonstrates correct position for firing cup discharger	198
Fig. 52 Correct stance for firing rodded Mills No. 23	198
Fig. 53 Correct stance for firing a rodded Mills from the shoulder	198
Fig. 54 Starting position for throwing a grenade	199
Fig. 55 Position after throwing a grenade from a deep trench	199
Fig. 56 Throwing a grenade from a kneeling position	199
Fig. 57 Throwing a grenade from a kneeling position	199
Fig. 58 Means of carrying grenades	202
Fig. 59 How to bomb along a trench as taught from early 1915	210
Fig. 60 Variations on the theme; how to negotiate an island traverse	210
Fig. 61 Trench block, 1917	210
Fig. 62 Improvement on the theme	210
Fig. 63 Attacking round traverses with rifle and bayonet	213
Fig. 64 Trench to trench attack, 1917	216
Fig. 65 Platoon tactics when attacking above ground to engage a strongpoint	216
Fig. 66 Australian Stokes mortar detachment demonstrating misfire drill	228
Fig. 67 Trench mortar battery positions	229
Fig. 68 2-inch mortar emplacement in the Middle East	230
Fig. 69 Double emplacement for medium mortars	230
Fig. 70 9.45-inch mortar emplacement	232
Fig. 71 Stokes mortar emplacement, June 1918	233
Fig. 72 Stokes mortar ammunition carriers, Ypres salient, August 1917	241
Fig. 73 Part of Stokes mortar detachment prepare ammunition for a shoot	241
Fig. 74 Stokes mortar detachment carrying the three elements of the mortar	246
Fig. 75 A Stokes mortar detachment ready to advance	246

List of Tables

Table 1.	British patents relating to hand grenades, 1905-13	54
Table 2.	British patents relating to rifle grenades, 1905–14	54

This thesis has its origins in a chance discovery I made in 1978 when working as a Patent Officer in the Principal Directorate of Patents, MoD. While investigating a case concerning Crown use of intellectual property owned by a third-party, I searched the patent abridgements for Class 119, small arms, covering 1915–16. I was surprised to discover patents for grenades and other devices for trench warfare, including the first patents granted to William Mills for the grenade which came to be known as the Mills bomb. In 1997, I set about researching the field of novel munitions invented for trench warfare and, in 1999, *Weapons of the Trench War* was published by Sutton Publishing, followed by its companion, *Dominating the Enemy*, in 2000. My work made it apparent to me that this was an under-researched field and that I had only scratched the surface of the subject. The invention and widespread use of such devices led me to speculate on the nature of their effect on the conduct of trench warfare in the First World War. This ultimately led me to undertake the research which is the subject of this thesis.

Any project of this scale inevitably requires the assistance of others. I would like to thank everyone who has helped me with this project over the years.

Jonathan Falconer, my commissioning editor at Sutton Publishing in the late 1990s, acted as a referee when I applied to Exeter to undertake a PhD. My second referee was Mike Hibberd, formerly of the Firearms and Exhibits Department, Imperial War Museum, who had assisted me with my research for *Weapons of the Trench War* which subsequently formed a foundation for this thesis.

Norman Bonney has been tirelessly helpful. At the time of writing, Norman had recently retired as a lieutenant-colonel in the Royal Army Ordnance Corps, Territorial Army, in which capacity he is an acknowledged authority in the field of First World War munitions, especially grenades. His expertise has led to him assisting the Belgian Army, for example, in identifying unexploded British ordnance from 1914–18. He has an unrivalled collection of grenades and fuzes from the First World War and an impressive document archive, all of which he has acquired over three decades. I am grateful to him for providing me with copies of the papers concerning the court case brought against William Mills in 1917. He also read the drafts of this thesis and suggested amendments.

H A B Newton, the son of the late Henry Newton, was happy to talk to me about his father and his inventions. I was put in touch with him via his sister, a friend of whom told her about a letter I had written to the *Derby Gazette* about Henry Newton and his family. The Newton family came from Derbyshire and had an engineering business in the town at the time of the First World War. The Newton family gave me access to some of Henry's papers. Alas, many more of them had been lost in a house fire in the late 1970s. In connection with the Newton family, I would also like to thank Mrs Jan Baggaley for providing me with a letter

written by her father, Ralph Goodwin, in June 1976. Mr Goodwin had been an employee of Newton Brothers at the time of the First World War.

Professor Ian Beckett, Professor of History at the University of Northampton, very kindly read drafts of my thesis and offered me invaluable advice which I have endeavoured to heed.

Professor Jeremy Black, my supervisor in the Department of History in the School of Humanities and Social Sciences at the University of Exeter, has been a friend as well as my guide for which I am truly grateful. His enthusiasm, insight, knowledge of all things historical, as well as his unwavering faith in me as a researcher, have been expressed with a friendly forthrightness, an approach which is both refreshing and empowering.

I would like to thank the Belgian Patent Office for emailing me a pdf of Roland's original patent and I would like to thank the staff at Leeds City Library for emailing me pdf copies of several British patents. I obtained most of my copies of British patents in the late 1990s when undertaking research for *Weapons of the Trench War* and *Dominating the Enemy*; at that time, a complete set of patents and abridgements were held in the Science Reference Library in Southampton Buildings, Chancery Lane, London. Although somewhat belatedly, perhaps, I would like to thank the staff of that library who were always very helpful in giving me access to the vaults in which the patents were, then, stored. I would also like to thank Phillip Powell, Stock Control Manager in the Department of Printed Books of the Imperial War Museum, London, for photocopying a large number of Stationary Service documents for me. Lisa Anderson of the library of the University of Birmingham very kindly photocopied 'Mr Stokes and Educated Drainpipe' and posted it to me when I was unable to find a copy elsewhere. Finally, I would like to thank the interlibrary loan staff in the library at the University of Exeter for helping me track down copies of *The Sphere*.