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Abstract

Examples of spatio-temporal data that can be represented as sets of points (called dot

patterns) are pervasive in many applications, for example when tracking herds of migrating

animals, ships in busy shipping channels and crowds of people in everyday life. The use of

this type of data extends beyond the standard remit of Geographic Information Science

(GISc), as classification and optimisation problems can often be visualised in the same

manner.

A common task within these fields is the assignment of a region (called a footprint) that is

representative of the underlying pattern. The ways in which this footprint can be generated

has been the subject of much research with many algorithms having been produced. Much

of this research has focused on the dot patterns and footprints as static entities, however

for many of the applications the data is prone to change.

This thesis proposes that the footprint need not necessarily be updated each time the

dot pattern changes; that the footprint can remain an appropriate representation of the

pattern if the amount of change is slight. To ascertain the appropriate times at which to

update the footprint, and when to leave it as it is, this thesis introduces the concept of

change identifiers as simple measures of change between two dot patterns. Underlying the

change identifiers is an in-depth examination of the data inherent in the dot pattern and

the creation of descriptors that represent this data.

The experimentation performed by this thesis shows that change identifiers are able to

distinguish between di↵erent types of change across dot patterns from di↵erent sources.

In doing so the change identifiers reduce the number of updates of the footprint while

maintaining a measurably good representation of the dot pattern.
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1. Introduction

1.1. Overview

Many phenomena, real and abstract, can be represented by sets of point locations. These

dot patterns occur in many fields including Geographic Information Systems (GISs), classi-

fication and optimisation. Dot patterns are a useful abstraction allowing for many types of

mathematical analysis to be performed e.g., using statistical analysis methods to see if the

spread of leukemia within the vicinity of a nuclear power station is significant. O’Sullivan

and Unwin [O’Sullivan and Unwin, 2002, ch. 5.1] detail such analysis while commenting

on the 1984 report by Sir Donald Black [Black, 1984].

Often a way of approximating the region that contains a pattern is required, and an areal or

volumetric object used for this approximation can be called a footprint of the dot pattern.

Footprints can be used to reduce the memory space taken up by the pattern, and in some

cases they can be interpreted in such a way as to increase the known information about the

phenomenon underlying the pattern. For example, consider the case of a location aware

application that wishes to identify the boundaries of a city by the locations of buildings

sampled from within it ([Moreira and Santos, 2007; Alani et al., 2001]); the boundary

locations are not present in the data but can be approximated by a footprint.

In theory any bounded region is a candidate footprint for a given dot pattern, however it

is intuitively obvious that some footprints are better than others. Just how appropriate

a footprint is for a dot pattern is a clearly context specific problem. However there are

some general distinctions that can be made. One of the goals of footprint creation is to

make clear the information that the pattern represents; a footprint that only serves to

(a) Minimum Isothetic Bounding Box (b) Non-convex Footprint

Figure 1.1. Footprint as a Representative
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1. Introduction

obfuscate is unlikely to be desirable. In Fig. 1.1 we can see two footprints (Fig. 1.1(a) and

Fig. 1.1(b)) for the same dot pattern. Fig. 1.1(a) may be a su�ciently ‘good’ representation

for the application context but Fig. 1.1(b) provides more information about the spread

of the pattern. In using clarity of salient information as a criterion we can state that

Fig. 1.1(b) is a ‘better’ representation than Fig. 1.1(a) of the dot pattern. We must be

aware, however, that there is generally an inverse relation between the information content

of the footprint and its computational complexity; this trade-o↵ is discussed in greater

detail in Chapter 4. Current work in the field of footprint generation has not focused

strongly on general methods for assessing the quality of a footprint. Most algorithm

authors provide a set of requirements on the types of shape they allow (e.g., the boundary

must form a jordan curve) but judge the quality of the footprint on human intuition

alone. Galton [Galton, 2008] presents an exploratory set of findings on a study designed

to find the mathematical properties which lead to one footprint being intuitively ‘better’

than another. The results show a strong tendency for people to attempt to optimise

the trade-o↵ between minimising the area and minimising the perimeter, but Galton also

posits that there may be other factors at play such as sinuosity and cultural cues (e.g.,

similarity to alphabet characters). Dupenois and Galton [Dupenois and Galton, 2009]

present a classification of footprints that is intended to be used to delineate algorithms by

the footprint types they produce. The classification does not itself make statements on

footprint quality but by delineating the footprints the user can choose the algorithm most

likely to produce the appropriate footprint types for their application. An extension and

discussion of this work is presented in Chapter 4.

The convex hull1 has existed as a mathematical construction for many years. However

one of the earliest papers in which it is used explicitly to find an appropriate region for

a point set was by Jarvis in 1973 [Jarvis, 1973]. While not the most e�cient algorithm,

Jarvis’ paper identified the need for such work in the field of pattern recognition. Ten years

after Jarvis’ work the much cited Edelsbrunner et al. [Edelsbrunner et al., 1983] presented

the ↵-shape as one of the first region approximations of a point set that could produce

concavities. For a set S the convex hull can be considered to be the intersection of all closed

half-planes that contain all the points of S. The ↵-hull is obtained by using closed discs

of radius 1/↵ instead of half-planes; the ↵-shape is derived from this in a straightforward

way. Edelsbrunner et al. were also working in the field of pattern recognition, one of

their given examples being character recognition from sampled images. Footprints have

expanded in use across several fields, being used in image processing (e.g., Edelsbrunner

et al. [Edelsbrunner et al., 1983; Edelsbrunner and Mücke, 1992; Edelsbrunner, 1992]),

pattern recognition (e.g., Gofman [Gofman, 1993]) and GIS (e.g., Alani et al. [Alani et al.,

2001]). The prolific nature of footprint use has given rise to a large, and increasing, number

of di↵erent algorithms approaching the problem from a variety of viewpoints: The �-hull

[Duckham et al., 2008], for example, uses the Delaunay triangulation of the dot pattern

and successively removes edges longer than a threshold length2, whereas the k-nearest

neighbours algorithm [Moreira and Santos, 2007] builds a footprint by, from some origin

dot, iteratively selecting the next dot on the hull from the set of k nearest dots. The

1Unless otherwise specified we use convex hull to mean minimum convex hull.
2Assuming removal does not invalidate any of the hull requirements stated by Duckham et al. .
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1. Introduction

two algorithms appear to operate from di↵erent base concepts, using ‘destructive’ and

‘constructive’ viewpoints respectively.

There is a distinction to be made between the concepts of a hull and a footprint. Footprint

is a general term for any candidate region that has been assigned to a dot pattern. Whereas

hull is more specific, Klette and Rosenfeld [Klette and Rosenfeld, 2004] define a hull with

three requirements, given a hull operator H and set of subsets S 3:

[H1] 8M 2 S M ✓ H(M)

[H2] 8M
1

,M
2

2 S M
1

✓ M
2

implies H(M
1

) ✓ H(M
2

)

[H3] 8M 2 S H(H(M)) ✓ H(M)

Klette and Rosenfeld note that [H1] and [H3] imply H(H(M)) = H(M) but they do not

replace [H3] with this equality as they define variations of the hull (pseudohull and near-

hull) that have di↵ering combinations of these requirements (along with a fourth). Many

of the footprint algorithms in the literature use hull as part of their naming convention

(convex-hull, ↵-hull, �-hull, etc.) and not all fit with Klette and Rosenfeld’s strict defi-

nition (for example the ↵-hull need not contain all the dots of a pattern). Further, there

tends to be an understanding of a hull as being minimal in some respect. A footprint can

extend beyond the the dot pattern, with no dot coinciding with its boundary. Although

we note that, in general, the more useful footprints tend to be minimal because, as was

mentioned earlier, it is wise to avoid footprints that only serve to make the information

the application is interested in less clear. For the purposes of this thesis, and to avoid con-

fusion in general, we will take all hulls as footprints but only use hull to describe footprints

created by the few algorithms that already use it as part of their naming convention.

The range of di↵erent algorithms that can produce footprints that are not the convex hull

tend to have some control parameter. Change in this parameter often leads to change in the

‘spikiness’ of the footprint; varying the concavity it presents. The parameter is a necessity

because the patterns can vary so greatly that no method without such a parameter can be

said to always produce an ‘appropriate’ footprint. With a control parameter the algorithms

can be adjusted until their output fits the context specific definition of correctness. This

parameterisation often leads to problems when using the algorithms. For many methods

the parameter is an abstract measurement; the best value for which is not immediately

obvious to a human user. The ↵-hull, for example, uses 1/↵ as a radius for discs as part

of its process; for a human to give a value of ↵ that will produce a context appropriate

footprint is largely trial and error. Even the algorithms with more apparent parameters

(e.g., length of edge to remove in �-hull) still often require some adjustment to find the

best region the algorithm can produce for the context. When the set of dots is no longer

static there is the added complexity that a parameter value that worked well at one

timestep may no longer provide a good fit region at a later timestep. Parameterisation is

an important factor when discussing footprint algorithms and in the examination of the

change identifiers this thesis introduces, consequently it will be revisited in the chapters

3where each element of S is a set of points
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dealing with these topics (Chapters 4 and 5 respectively).

While the footprints for static phenomena have been the centre of much research there

has been far less inquiry into how a region may be maintained over a changing collective

phenomenon (its members can move, be added or be removed). Examples in which the

phenomenon is subject to change are ubiquitous and cover a range of fields, e.g., track-

ing animals ([Laube and Purves, 2011]); identifying ship movements, to avoid collisions

and tra�c; understanding the behaviour of crowds in shopping centres ([Ali and Moulin,

2005]); and tracking the populations of optimisation problems across multiple generations.

Additional to these is the emergent field of using sensor networks to provide real-time up-

dates in emergency systems about the state of a current situation, for example the spread

of toxic gases, wildfires and floods ([Jiang and Worboys, 2008; Jiang et al., 2011]).

Existing dynamic footprint work has looked primarily at using the convex hull (e.g., [Over-

mars and Leeuwen, 1981; Chiang and Tamassia, 1992; Basch et al., 1997; Hershberger and

Suri, 2003; Guibas, 2004; Guibas et al., 2004]). The convex hull is a strictly defined math-

ematical construct and is uniquely defined for any single pattern. Footprints considered

more generally do not have this unique definition on a pattern. Neither do they often

have a short, simple mathematical definition; their construction being the product of their

algorithm and can not be reduced into a single statement. The non-uniqueness of the

algorithms arises from the parameter (as discussed above) that most algorithms have for

controlling some aspect of their formation. Current work uses the strong mathematical

properties of the convex hull (e.g.,[Chiang and Tamassia, 1992; Basch et al., 1997; Guibas,

2004; Guibas et al., 2004]) to create ‘certificates’ that can be checked at each time step

for failure. A certificate is a small, easily-computable property of the footprints relation

to the dots. In the event of a failure the footprint is updated, either locally at the point

of failure or globally. Footprints in general can not have certificates in the same fashion

as there are no definite properties to check4. However, fortuitously this vagueness allows

us to state that if a footprint is a suitable representation at a timestep ⌧
i

, under most

conditions of change it will still be appropriate at ⌧
i+1

. Instead of checking the footprint

in relation to the dots for suitability we can examine the pattern itself to see if su�cient

change has occurred such that the footprint must be updated. This checking requires

a method of measuring change on dot patterns that is computationally faster than the

footprint algorithm used and a way to assign an appropriate change threshold.

There is a body of work that concerns itself with describing change for spatial-temporal

entities like dot patterns and this is examined in Chapter 2. The intial di↵erence in our

approach to the existing research is in the definition we give the dot patterns. By taking

an individual pattern as a mathematical static abstraction its properties can be examined

without the complication of change. The di↵erences between these measurements for two

di↵erent patterns can be used as measures of how much change needs to occur in each

property for one pattern to match the other. Taken across a wide range of properties

these measurements provide a value for the total change a pattern must undergo to be

equivalent to another. Previous work has looked at dot patterns as part of a continuum

4When such properties exist they are prescribed by the context and as such can not be relied upon to
exist in all contexts, for example an application that requires all dots exist within the footprint.
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over which change must be measured. Both approaches lead to similar measurements (for

example both are likely to lead to a measure of change in location), however by looking

at the static properties first we are able to use measurements from di↵erent fields such as

statistical analysis and are able to draw distinctions between di↵erent measurement types

(see Chapter 5).

1.2. Terminology

The sheer scale of work that uses constructs similar in nature to dot patterns means that

there is a high probability of confusion when comparing work by di↵erent authors. Before

we present the definition of dot patterns that is used for this thesis it is important to

note that not all existing work treats dot patterns in the same way and we will clarify the

di↵erences when they are relevant.

Dot

A dot is an hid, locationi pair. It is a representative data point of any phenomenon that

can be assigned a location within a space (whether real-world or abstract). The pairwise

nature of a dot renders it very simple, since it is only when they are grouped and moving

does complexity arise. The term dot, over the more common point, is used for two reasons.

Firstly, a dot may have more data associated with it than just a location, i.e., an identifier.

Secondly, to draw a distinction between the dot as a member of a dot pattern and a point

within the dot pattern, for example the mean centre (centroid) of a pattern is a point that

may not coincide with a dot.

As an addendum to the definition of the dot it should be noted that the work presented

in this thesis does not make use of the identity attribute; this is to reduce the number of

assumptions made about the raw data and will be discussed in Chapter 3. It is included,

however, as a convenient way with which to describe di↵erences between the dot patterns,

e.g., a particular dot has moved to the left. Future work may involve the creation of

descriptors, and change identifiers, that use the dot identity for applications which can

guarantee its availability.

Dot Pattern

A set of dots is called a dot pattern. It is fully exhausted by these dots and is a mathe-

matical abstract. Its mathematical nature means it is incapable of change.

Dynamic Dot Pattern

As a dot pattern cannot undergo change we need a structure that uses dot patterns to

represent the change of the underlying phenomenon. The dynamic dot pattern is a function
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mapping from time to dot pattern, as shown in Fig. 1.2. The function maps such that

8 ⌧ 2 T , DP (⌧) is the dot pattern representative of the underlying phenomenon at time ⌧ .

Rather than use DP (⌧) to refer to a dot pattern at a specific time we use the nomenclature

phase (for which we borrow the wave notation of �). For example the pattern in Fig. 1.2

at timestep ⌧
0

is the first phase (�
0

) of the dynamic dot pattern and the pattern at ⌧
1

is

the second phase (�
1

).

n
τ

Τ

ττ
0 1

Figure 1.2. Time Domain (T )

The phenomenon that the dynamic dot pattern represents is likely to be changing in a

continuous fashion, however the phases are discrete steps. Thus the timesteps are used to

provide a discretised time domain for the dynamic dot pattern to map from. There will

almost certainly be di↵erences between the timesteps, and therefore between the phases,

but for the purposes of the work presented in this thesis we can ignore the ‘in-between’

dot patterns as we are assuming that the granularity of the arriving data is appropriate

to the application.

For clarity we reiterate that that this thesis is not interested in the change between pat-

terns. Preferring to treat the problem as the di↵erence between two dot patterns. However,

as mentioned above, many of the real world examples are of continuant phenomena which

do exhibit change. As a result there will be occasions in this thesis where the di↵erence

between patterns is discussed in terms of the change between them, conferring a continu-

ant identity on the pattern. This should be treated as a convenient way to visualise the

measures and the possible situations in which the di↵erences can occur. It should not be

taken as a confirmation that the measures in question can only be used when change has

occurred.

Collective

A collective is a grouping of objects with some attribute in common5. A dot pattern

is representative of the locations of the members of a collective at an instant in time.

Hence, a collective may have a continuant identity whereas a dot pattern’s identity is

given entirely by the locations of its dots and its time value. This means that a dynamic

dot pattern for which each phase comes from the same collective is representative of the

change the collective undergoes over the given time domain.

5Rather trivially (and tautologically) this attribute can be the fact that they have been grouped together
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Descriptor

Dot patterns have various mathematical properties that arise from the cardinality and

the locations of their member dots; for example the standard deviation from the mean

centre. There is an incalculable number of these dot pattern descriptors but many will

be measuring similar attributes of a pattern in di↵erent ways (e.g., bounding box and

standard deviation can both be said to be measures of the extent of the pattern). We

propose several classes of descriptor that are general headings for types of information

that can be retrieved from the pattern. Further to the mathematical descriptors these

classes can provide qualitative information (e.g., a pattern is large) and such information

may be advantageous to a user, particularly in application contexts where response time

is important. There are problems faced in using these qualitative statements, primarily as

they tend to be context specific, but they do not a↵ect the central preposition of this work

so discussion on qualitative assertions are left until the chapter concerning future work.

Change Identifier

The entities that are represented by individual dots in a dot pattern can only change in

a three ways: appearance, disappearance and translation6 ([Thériault et al., 1999; Huang

et al., 2008]). The dot pattern phases within a dynamic dot pattern can, therefore, only

di↵er in the location and the cardinality of their members. The di↵erences can be measured

using the descriptors of the dot patterns, and comparison of the extent of these di↵erences

is a measure of the change undergone between the phases. Simple entity changes can lead

to complex pattern di↵erences and, if change is to be measured in any formal sense, we

must be able to measure the di↵erence in such a way that none of the emergent complex

behaviours are ignored. Change within a descriptor class represents an emergent complex

behaviour from the collective. For example:

Two phases di↵er in standard deviation in that the deviation at the later

time step is greater than in the earlier. Standard deviation is within the class

of extent descriptors. We can therefore infer that the collective has undergone

the complex behaviour of expansion.

Further to the change identifiers based on descriptors, there are distance measures which

may be used to measure the di↵erence between dot patterns. For example, the distance

between the mean centres of two patterns.

1.3. Summary of Thesis

6The entities could undergo many other types of change, ageing for example, but for our abstraction only
the three given apply.
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And the Novelties it Presents

The background chapter presents an overview of the existing literature from the fields that

frame this thesis. It begins with a brief study on how dot patterns have been represented

in traditional Geographic Information Systems (GISs), including an examination of some

of the possible data structures that may be used to contain the patterns. The chapter

continues with discussions of the literature for the fields of spatio-temporal data, shape

description, footprints and footprint algorithms, and dynamic region maintenance.

After the literature review given in Chapter 2 further background is provided by the next

two chapters, which discuss dot patterns and footprints (Chapters 3 and 4 respectively).

The dot patterns represent the input and footprints the output of the change identifiers,

and before discussing change identifiers themselves it is necessary to understand the struc-

tures they use. Underpinning the change identifiers is the novel examination of the dot

patterns as mathematical abstracts removed from the collective that they represent, by

which the mathematical properties (descriptors) of the patterns which describe them can

be isolated. Chapter 3 presents a detailed discussion of these descriptors and how those

used within this thesis were selected. The descriptors provide a definition of a dot pattern

that allows us to examine the myriad types of pattern that exist and, more importantly,

compare them. It is this comparison which leads to the concept of change identifiers and

the generalised framework in which we use them to measure change across a dynamic dot

pattern. The footprints chapter presents a classification of footprint types (first published

in [Dupenois and Galton, 2009]) with a discussion on how the classification relates to

dynamic dot patterns. The classification is used to show that the footprint algorithms,

which tend to be created for generalised fields rather than specific applications, can be

paired with applications that best suit the footprint types they produce.

Chapter 5 builds on the foundations laid down by the previous chapters, particularly that

of Chapter 3, to formally define the change identifiers; distinguishing between two di↵erent

types of identifier: one that uses dot pattern descriptors and another that makes use of

standard distance measures. The chapter presents the core novelty of the thesis; detailing

how the change identifiers can be used as a method by which to measure change in a

collective of spatio-temporal entities represented by a dynamic dot pattern. The use of

multiple change identifiers is explored within this chapter and methods to combine their

measures fairly are discussed. Finally, the change identifiers chapter provides a method for

assessing the quality of a change identifier and a change identifier set using the trade-o↵

between time saved and how well the footprint is tracked.

Having given detailed descriptions of the input, output and process components (dot

patterns, footprints and change identifiers respectively) of the change identifier framework,

Chapter 6 (the methodology chapter) presents the system that combines them. The

chapter demonstrates the modular nature of the framework used for the results in this

thesis and how it can be employed for testing the identifiers and for real-world applications.

The methodology also describes the data structure used for storing the dot patterns and

the reasoning behind the choice of format that the dot patterns are expected to arrive
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in. The chapter finishes with an examination of some of the ways in which the di↵erence

between footprints can be measured, as such measures are important to the way in which

the quality of the change identifiers can be assessed.

Since the results span a large number of experiments they include many di↵erent (and often

large) graphs, consequently the results are separated into their own chapter (Chapter 7).

The chapter also provides an explanation for the selection of the dynamic dot patterns

and footprint algorithms that are used within the experiments. This di↵ers from the

discussion in Chapter 6 which describes the way in which the framework is constructed

and the methods by which to use it, whereas the results chapter details the sources used

within the experimentation.

The conclusions chapter reiterates the areas in which the change identifiers have performed

as expected, as well as those areas in which they can be improved. The conclusions drawn

lead to the final section of this thesis (§ 8.3), which concerns itself with the possible ways

in which the change identifiers can be taken forward. The future work section begins with

an examination on how dot pattern descriptors may be used to define di↵erent types of dot

pattern and shows some preliminary results using an agglomerative clustering technique

to partition the dot pattern classes. The dot pattern classification is followed by a con-

sideration of the use of change identifiers to indicate when the footprint type has changed

according to the classification given in Chapter 4. Further to the discussion of footprint

types the chapter proposes using change identifiers to dynamically alter the footprint algo-

rithm parameters based on the change the collective is undergoing (as represented by the

dynamic dot pattern). Finally the chapter, and the thesis, finishes with some ruminations

about where change identifiers may be used and whether or not they could return salient

qualitative information.
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2. Background

This thesis is situated within, and contributes to, the discussion of two complementary

fields. The first is the analysis of spatio-temporal data and the second is the assignment of

regions (footprints) to point-based data sets. There are large bodies of work for each and

the intersection of these fields has been used in Geographic Information Systems (GISs 1)

as a form of query filtering (e.g., DSAM [Arampatzis et al., 2006]). Most of this work has

dealt with data sets that are solely spatial or in which change is glacial in pace (regions

of forests, cities, etc.). This thesis focuses on forming a general framework with which to

maintain footprints across spatio-temporal data.

To situate this work in the associated research we will provide a quick overview of the

nature of dot patterns when considered within GISc and the strucures that may be used

to contain then, after which approaches to the classification and study of spatio-temporal

data will be examined. This will be followed by a general overview of shape descriptions

and footprint algorithms. Finally the existing research on dynamic tracking will be looked

at. This program of study will provide the necessary background required to further

discuss the themes of this thesis.

2.1. GIS and Dot Patterns

O’Sullivan and Unwin [O’Sullivan and Unwin, 2002, ch. 4] give a good description of the

treatement of dot patterns (called point patterns) from a geographic standpoint. The

chapter begins by noting that point patterns frequently occur in GISs and gives the ex-

amples of crime or death hot-spot analysis. The members of a point pattern are termed

events, and each event represents a single object of interest from the region being studied.

O’Sullivan and Unwin also state that a set of events is only a point pattern if it conforms

to a number of criteria:

1. The pattern should be mapped on the plane.

2. The study area should be determined objectively.

3. The pattern should be an enumeration or census of the entities of interest, not a

sample.

1Occasionally there is some confusion as to whether GIS should stand for Geographic Information System
or Geographic Information Science. Within this thesis we will be using GIS when we refer to a system
and GISc for the science as a whole.
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4. There should be one-to-one correspondence between objects in the study area and

events in the pattern.

5. Event locations must be proper. They should not be, for example the centroids

of areal units chosen as representative . . . They really should represent the point

locations of entities that can be sensibly be considered points at the scale of the

study.

O’Sullivan and Unwin [O’Sullivan and Unwin, 2002, ch. 4]

Of the requirements only requirement 2 can be generally applied to dot patterns; the wide

array of fields in which dot patterns are used means that the other requirements are not

always satisfied. For example, requirement 4 assumes a direct mapping between dots and

a real-world object and 3 states that a the pattern should not be a sample, however a dot

pattern may represent a sampling from a region [Alani et al., 2001] or a set of classification

results. The requirements are given despite the di↵erences between dot patterns and point

patterns because much of the spatio-temporal literature comes from the GISc field, and

we should be aware of the assumptions that the work makes.

O’Sullivan and Unwin examine two approaches to point pattern analysis: point density and

point separation. Density measures can be used to show first-order e↵ects while separation

is indicative of second-order e↵ects. A first-order e↵ect occurs when the physical location

has correlation with the event, for example in a study of the locations of the swans in Hyde

Park it is likely that the clustering would occur around the bodies of water. A second-order

e↵ect occurs where an event a↵ects the incidence of other events, for example a study of

locations of a particular contagious disease would have areas of clustered points as the

probability of catching the disease increases with the number of events in the area. The

static way in which we examine dot patterns will not be able to draw a distinction between

the two types, however the change identifiers may be split along the same delineation. This

suggests that a possible avenue for future research is the classification of types of change

identifiers and how they can be used to inform a user of the more complex behaviours that

the collective is exhibiting; i.e. Is a collective’s change representative of a first or second

order e↵ect?

2.2. Data Structures

The data structure containing the pattern is important as it can greatly a↵ect the com-

plexity of change measures (e.g., can the extremal points be found in O(n)?). Worboys

and Duckham [Worboys and Duckham, 2004] provide a useful overview of some of the

common structures and their properties.

Grid-based structures are a simple starting point. The underlying concept is the bucket,

a contiguous memory location, that will contain only points that the grid deems to be
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related. The basic grid type is the fixed grid structure, in which the grid partitions

the region containing the pattern into equal sized cells and each cell constitutes its own

bucket. All points within a specific cell are held in the same place. The problem with this

formation occurs when the dot pattern is not uniformly distributed, consequently some

cells may be empty while others may be near overflowing. An extension to the fixed grid

is the grid file, in which the horizontal and vertical lines making up the cell divisions do

not have to be equally spaced. They are placed based on the dot distribution and cells

can be divided or amalgamated depending on the amount of free space they contain. The

major benefit of the grid file is the ability for it to be easily dynamically updated, however

using it to search for specific dots (extremal, median, etc) is not particularly fast. One of

the more common uses of grid layouts is in the quadtree, which divides the space up into

4 evenly sized quadrants (buckets) and iterates over each quadrant performing the same

space dissection. Fig. 2.1 demonstrates an example of this division and shows the tree

that would be used to locate the dot in the space. The quadtree requires both a minimum

size for its final quadrants and a bounded space to delineate.

3
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2

2

34

1 2

3
1

1
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Figure 2.1. An example quadtree division that shows the route taken to find a given dot

.

Tree structures are quick to both build and search and do not have to mimic the spatial

relationships of the dots, the data can be stored in any way that preserves those rela-

tionships. Knuth’s book on sorting and searching [Knuth, 2007, ch. 6.2.2-3] provides a

description of the various methods that can be used to store data in tree structures, the

most basic of which is the binary tree. A binary tree has nodes with at most two children

and stores the data so that searching on it performs a binary search. The binary tree

is fast to search but su↵ers from di�culties in insertion; it relies on the incoming data

to be suitably randomised otherwise it builds unbalanced trees. An unbalanced tree has

subtrees from the same node with unequal heights and can result in linear search com-

plexities. Examples of a balanced and unbalanced binary tree can be seen in Fig. 2.2(a)

and Fig. 2.2(b) respectively.

To prevent the creation of degenerate trees there have been a number of variations on the
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(b) Unbalanced Binary Tree.

Figure 2.2. Examples of the Binary Tree Data Structure

binary tree, further information on these can be found in Knuth [Knuth, 2007], Worboys

and Duckham [Worboys and Duckham, 2004], and Berg et al. [de Berg et al., 2008]. For

the purposes of this thesis we look at the 2-3 B-tree2 in which each node of the tree can

have, either one data object and two children, or two data objects and three children. This

tree is far easier to balance due to a simplified insertion, as demonstrated in Fig. 2.3. At

Fig. 2.3(b) the 10 node has space so accepts 15, however at Fig. 2.3(c) it is incapable of

accepting 17 so it moves it up to its parent node, as shown in Fig. 2.3(d); as this node now

has two elements it must have three children so the bottom-left node is split (Fig. 2.3(e)).

This insertion approach gives a self-balancing tree so the degenerate branches of a normal

binary tree can be avoided.

Guibas and Sedgewick [Guibas and Sedgewick, 1978] showed that the 2-3 B-tree can be

refactored into a binary tree called a red-black tree3. The ability to mimic the 3-node of a

2-3 B-tree is achieved by having two types of linking edge: red and black, often the nodes

will be referred to by the colour of edge that connects to them (i.e. red or black nodes).

The black edges are the same as a standard vertical node linking in a 2-3 tree. However,

2The source of the B in B-tree is somewhat of a mystery but is commonly attributed to either Bayer
(who, along with McCreight, created the B-tree [Bayer and McCreight, 1972]) or Boeing (where Bayer
and McCreight were working when they created it).

3They also show how B-trees of higher orders can be converted but for this thesis the description of the
2-3 is su�cient
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Figure 2.3. Examples of the 2-3 B-tree Data Structure

the red edges are horizontal links, that is to say they indicate a link between two nodes

that would be concatenated in an equivalent 2-3 structure.

The dot patterns we consider in the thesis are generally in a planar space and are therefore

described by two values. The tree structures given above currently only sort on one value,

and, while this may be su�cient for the needs of the change identifiers, it is wise to

consider ways in which we might better sort the data. Berg et al. [de Berg et al., 2008]

gives a good treatment of such structures, beginning with the kd-tree. The kd-tree sorts by

alternating dimensions, for example for a planar dot pattern the 2d-tree (sometimes called

a 2-dimensional kd-tree) splits alternately by the horizontal and the vertical. Fig. 2.4

shows an example in which a dot pattern has been organised into a 2d-tree, the numbers

1–4 represent splits and the letters a–e represent dots. The kd-tree is a useful structure

as it makes searches within rectangular regions in O(
p
n+ k) time where n is the number

of dots and k is the number of dots found in the query. Whether or not we will need to

be able to perform such a query with the change identifiers will not be known till we have

examined them further in Chapter 54.

The concept behind the general framework is that it remains applicable regardless of

application. This generality requires it to be free of too many assumptions about the

4Berg et al. also describe the range trees which are better suited to rectangular range queries when there
are many dots that will be found (i.e. when k is large)
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Figure 2.4. A Dot Pattern with Associated 2d-Tree.

data, in particular no assumptions can be made about the format in which the data

arrives. Some applications may simply give locations for all dots in each phase whereas

others may provide information about only the dots which have moved. Not knowing,

or being able to specify, the exact data format means that the data structure will likely

have to be rebuilt at each timestep. Some form of balanced tree-structure would make a

good preliminary choice as it would be quick to build and easy to search, however without

having looked at the possible change identifiers’ requirements it is impossible to know

which specific structure would be best. Consequently, this will be revisited in the chapter

detailing the methodology used for the experimentaion (Chapter 6).

2.3. Spatio-Temporal Data

The existing approaches to spatio-temporal data include both qualitative and quantitative

methods. The change identifiers are primarily a quantitative concept but by looking at

the qualititative as well as the quantitative we provide a better background for our own

research. It should be noted that this is by no means an exhaustive literature review as

the field of spatio-temporal research is both extensive and very much alive.

2.3.1. Qualitative Representation of Change [Hornsby and Egenhofer]

Hornsby and Egenhofer’s paper [Hornsby and Egenhofer, 1997] begins with a definition

of objects and a discussion on object identities; drawing attention to the fact that, when

the members of a collective can move and change, identity is not always easy to ascertain.

This identity ambiguity is of particular importantance to their work as the changes that

they consider are directly related to an object’s identity. The work provides a visual

representation for describing di↵erent change types as a product of identity operations on

objects and an extension of this to describe the change in object composites. Identity and

its relation to dot patterns will be addressed in Chapter 3; for now it su�ces to state that a

dot patterns identity is inextricable from its component dots and the timestep for which it

was created. The work in this thesis is primarily concerned with quantitative descriptions

of change in which distance is important, as opposed to the topological approach. One
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possible avenue for further research may be to look at using change identifiers to indicate

topological changes.

2.3.2. A Spatio-Temporal Taxonomy for the Representation of Spatial

Set Behaviours [Thériault et al. ]

Thériault et al. [Thériault et al., 1999] present a taxonomy for describing evolutions of sets

of geographical entities (SGEs). The authors make clear that there are two simplifications

on which their model rests: Firstly that a geographical entity exists in geographical space;

and secondly that the size and orientation of the entities is negligible compared to the

inter-entity relationships. These simplifications restrict the behaviours that they examine

to changes in a point-based framework. The point-nature of an SGE means that, for the

purposes of this thesis, we can treat it as largely identical to a dot pattern. Thériault et

al. are primarily concerned with the manner in which SGEs can change, and to do so they

need properties on which the change can be measured. It is these properties that we are

interested in examining as classifiers for describing patterns.

Before discussing the measurements that they propose we shall draw attention to an

interesting observation that the authors make. There are two di↵erent but complementary

method types for examining the evolution of entities.

1. Deductive methods; methods based on representations of the spatial entities and

their relationships. They note that these methods tend to be based on Euclidean

space and/or topological descriptions of space and time. Thus deductive methods

form a qualitative approach.

2. Inductive methods; methods based on data analysis often using spatial statistical

methods to study properties and distributions of the entities. In contrast to deduc-

tive, inductive methods are a quantitative approach.

While laying the groundwork for the taxonomy the authors reason about descriptions of

possible complex set behaviour arising from simple entity behaviours, however, like the

work presented in this thesis, the majority of Thériault et al. ’s paper takes a low-level

approach; one that is concerned with the measurable changes that take place in the set.

Further to the point-nature they use for the entities of the sets they assign an intensity

to each entity indicating the importance the point has within the given context. Such

properties have been avoided in the inquiry presented by this thesis for the fact that we

allow for dot patterns that arise from contexts in which intensity is not a meaningful

concept, for example, a graph of classification data where each data-point is a dot in our

pattern.

The taxonomy itself arises from the consideration that the entities can only exhibit very

simple changes: appearance, disappearance, translation and intensity change. These

changes are manifested within the set as four components of possible change types, al-

though they observe that these four do not necessarily constitute an exhaustive list. It is
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these components which bear such close resemblance to our descriptors.

1. Territorial/Spatial Extent

Thériault et al. use the phrase territorial extent; however, because of the above-

mentioned concerns about applications outside of GISc it makes more sense for this

thesis to refer to spatial extent. The extent of the SGE can change via expansion

or contraction. To measure the extent the authors suggest using the convex hull of

the set. This is assigning a footprint to the set and taking a measurement from that

footprint. This topic is re-visited when dot pattern descriptors are outlined, as using

a surrogate for the dot pattern has some interesting connotations for the types of

measurement that can be made. Extent is clearly a property that will need to be

accounted for within the set of descriptors.

2. Spatial Distribution

This component of Thériault et al.’s change types includes several sub-properties.

Of the four properties of spatial distribution all but the last have direct correlation

with some of the descriptors we introduce in Chapter 3.

a) Centre of Gravity (CG): Indicating the equilibrium point of the distribution.

The CG takes into account the intensity of their dots but aside from this dif-

ference such a measure is used within the framework presented by this thesis

as a descriptor of position.

b) The Standard Distance (SD): The standard deviation from the CG. Like centre

of gravity this quantitative measure has a descriptor counterpart; standard

deviation can be used as a measure of the extent of a dot pattern.

c) The Orientation: Using principal axis extraction the direction in which the set

can be said to face can be found. Orientation is one of the classes of descriptors

used by this thesis and the principal component’s (axis’) gradient is one of

the descriptors within the orientation class. Thériault et al. use both of the

returned vectors of the principal axis extraction5 to describe the maximum and

minimum dispersion of the set. These extrema are then used by the fourth and

final property of spatial distribution.

d) Ellipse of Dispersion: Defined by the two vectors given by the principal axis ex-

traction, this ellipse is used to monitor overall dispersion and density. Thériault

et al. note that this is an extent measure that, unlike the convex hull, is not

sensitive to outliers within the set.

3. Spatial Pattern

Spatial pattern refers to distinguishing between random, clustered and regular pat-

terns. How best to measure this is a topic that we will consider in Chapter 3, for

now it can be thought of in terms of degrees of homogenity across the pattern.

4. Spatial Autocorrelation

5Principal axis extraction, or Principal Component Analysis (PCA), in 2-dimensions returns two perpen-
dicular eigenvectors, the one with the highest eigenvalue is the principal axis
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The final component concerns the relationships between the entities of the set. It

is used to measure how likely entities are to have the same or similar attributes

to nearby neighbours. As the patterns we consider have no attributes beyond their

location this can be dealt with by the same kind of approach that might be performed

for clustering analysis.

The taxonomy presented by Thériault et al. shows a strong resemblance to the kind of

analysis we wish to perform on dot patterns and certainly has a bearing on the descriptors

we have chosen. However it is concerned with changes that can occur to the set and has

not been created to describe the pattern as it is at any timestep. Part of our research is

to see if other ways of identifying change arise from examining the properties inherent in

a static pattern. We have examined Thériault et al.’s paper in more detail than we have

done for many of the other works as it is so close in nature to the aspect that concerns

our research.

2.3.3. Granularity in Change Over Time [Stell]

Stell [Stell, 2003] examines the levels of detail at which entities undergoing change can

be modeled. Within this thesis it is assumed that the granularity of the phases of the

dynamic dot pattern is appropriate to the application context, and hence is not explored

further. However when considering granularity Stell defines the nature of the time domain

over which the data exists, and this is directly applicable to our work. A time domain is

a finite set T such that for ⌧, ⌧ 0, ⌧ 00 2 T :

⌧ � ⌧ 0 =
def

⌧ < ⌧ 0 ^ ¬9⌧ 00(⌧ < ⌧ 00 < ⌧ 0)

In e↵ect x � y asserts that x and y are adjacent and that x precedes y. We can use this

same requirement for the timesteps within the time domains used by our dynamic dot

patterns. As each timestep has an associated phase of the dynamic dot pattern it can be

stated that a phase �0 precedes a phase �00 (�0 � �00) i↵ the relationship is also true for

their associated timesteps.

�0 � �00 () ⌧ 0 � ⌧ 00

Note that we allow for a ‘live’ system, in which T may be an infinitely large set6. To clarify

what is meant by a ‘live’ system envision an application monitoring a herd of cows in real

time. The change identifier framework sits in an idle state awaiting herd data; processing

the dot patterns as they arrive.

Given a time domain T , Stell defines a dynamic set over T as a set of objects that evolve

over time. He uses dynamic sets to explore the concept of support amongst entities; if

entity a supports b then a exists/ed prior to b and the existence of a is necessary for

the existence of b. The support relation and the time domain allow Stell to produce

6Although, for obvious reasons, all our tests have a finite size and it is possible to make the argument
that no real world example is infinite. Despite this, when using the framework it is not known a priori
when, if ever, the data will cease to arrive, so assuming infinity leads to a more general framework.
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graphs to model the relations between entities over time, and simplify these graphs by the

almagamation of entities or by omission of time steps.

The overview given of Stell’s paper is by no means an exhaustive examination of its content.

It su�ces for this thesis to note the added formalisation it provides for the time domains

that support the dynamic dot patterns.

2.3.4. Finding REMO - detecting relative motion patterns in

geospatial lifelines [Laube et al. ]

Laube et al. [Laube et al., 2004] is one of the core works concerning motion analysis.

Laube et al. define the concept of geospatial lifelines as a series of observations on Moving

Point Objects (MPOs) that are a triple of hid, location, timei; an individual dot within

a specific phase of a dynamic dot pattern can be described by the same tuple. The main

research interest of this paper is identifying flocking behaviours (and other motion pat-

terns7) of MPOs by analysis of spatially constrained RElative MOtions (REMOs). These

movement patterns are the same complex behaviours that we have discussed previously

as the behaviours of the collective which the dynamic dot pattern represents. One of the

issues faced by REMO analysis is the complexity of some of the pattern identification

algorithms. It is possible that the change identifiers can provide information on when a

movement pattern type has occurred or changed thereby reducing the number of times

which the analysis needs to be run.

2.3.5. Event-oriented approaches to geographic phenomena [Worboys]

Worboys [Worboys, 2005] gives an alternative view of the concepts behind spatio-temporal

data analysis. Worboys states that instead of looking at entities at each timestep the

phenomena should be viewed as sets of events. The events in this context are ‘happenings’

unlike the events as objects described by O’Sullivan and Unwin [O’Sullivan and Unwin,

2002]. While this approach is outside the remit of this thesis it is worth noting that it is

only convention which sees us mapping the entities of a collective in our dot patterns.

Worboys, when discussing existing ways of looking at object change, gives a description

of the problems with dot pattern identity. Like Hornsby and Egenhofer [Hornsby and

Egenhofer, 1997], Worboys notes that identity is not necessarily a fixed concept. Both

Worboys and Hornsby & Egenhofer observe that there is an issue when assigning identity to

a dot pattern when the membership of the pattern is subject to change8. This uncertainty

is one of the reasons that the dot patterns, as proposed by this thesis, are independent

of a personal identity and why the change identifiers function whether or not identity

information is known for the dots.

7Note that a motion pattern is di↵erent to a dot pattern. To avoid confusion we shall endeavour to avoid
using pattern without an appropriate classifier.

8An analogy of the identity issue is provided by the philosophical problem presented in the Ship of Theseus
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2.3.6. Reporting Flock Patterns [Benkert et al. ]

Benkert et al. [Benkert et al., 2007] provide a set of algorithms for identifying movement

patterns of the same type defined by Laube et al. [Laube et al., 2004]. The algorithms

proposed make use of the skip-quadtree, a data structure that is an extension of a standard

region-quadtree9 but that only stores boxes/buckets as leaf nodes if they contain at least

one point. This reduces the space required to O(dn) (Where d is the dimensionality of the

space the data exists within) at a cost of increasing the time to check if a bucket is empty.

In particular Benkert et al. focus on identifying when a group of entities constitutes a

flock. They provide two flock definitions, both of which rely on being able to find an

encompassing disc of the entities; given that it is a region that represents a dot pattern,

we can consider this disc to be a footprint. The definitions di↵er in the granularity of

time intervals at which they require a disc to contain all points; the first requires a disc

to be found at all time points whereas the second only requires such a disc at the discrete

timesteps10. They present two algorithms using the skip-quadtree and these definitions in

concert to detect flocks. Within these algorithms they allow for an approximation in their

disc radius. There is a conceptual similarity with this thesis in the observation that the

footprint need not be exact. It should be noted that theirs is always an over-estimation;

Benkert et al.’s approximation is performed by adding a positive uncertainty to the radius

of the disc.

2.3.7. Designing visual analytics methods for massive collections of

movement data [Andrienko and Andrienko]

Andrienko and Andrienko’s 2007 paper [Andrienko and Andrienko, 2007] presents a set

of tools for the visual analysis of large amounts of movement data (so large that it ex-

ceeds available computational memory). Within discussion of this topic they raise certain

concerns which are pertinent to the research presented in this thesis. To begin with they

define movement data as a function that matches a tuple of hentity, time momenti to

a point in space (like Laube et al. [Laube et al., 2004]). Bearing a resemblance to the

approach within this thesis is Andrienko and Andrienko’s decision to examine the infor-

mation that can be gathered from a simplified starting point. They, however, forgo looking

at the static pattern and focus on what they call the derivative movement characteristics

(speed, duration, etc.). These derivative movement characteristics combined over time

lead to individual movement behaviours (IMBs) which are the more complex movement

types indicative of the underlying collective’s entity behaviours. These definitions lead to

the concept of momentary collective behaviours (MCBs) which are the movement char-

acteristics of the set of entities at a time moment. MCBs are close in nature to our

descriptors, looking at the spatial and statistical distributions of the entities and their

9The same as a standard quadtree but the hyphenated name is presumably to make the distinction
between skip and region clearer.

10They also demonstrate that, if the entities within a set move along straight line segments between
consecutive positions, then the flocks produced by both definitions are equivalent
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characteristics. Over time MCBs give rise to the dynamic collective behaviour (DCB); the

overall description of the set’s complex behaviour.

Andrienko and Andrienko focus more on the classification of these behaviours and how

to identify them than on an in-depth examination of the change the sets may undergo.

The reason such a detailed description of their definitions has been given is to provide

background to their observation of the influences that can a↵ect the behaviours. These

influences are not something that a↵ect the construction of the change identifiers but are

of absolute importance to any application that may use them:

• Properties of space (e.g., altitude, accesibility, function, etc.)

• Properties of time (e.g., temporal cycles, duration of daylight, holidays, etc.)

• Properties of entities (e.g., age, movement method, purpose, etc.)

• Various a↵ecting phenomena (e.g., climate, sport, culture, etc.)

Should an application’s users be fully aware of these factors it is likely that they will be

able to choose change identifiers that check for change in ways that are appropriate to the

context.

Further to their discussion on factors that can a↵ect the data, Andrienko and Andrienko

note that correlation of two types can a↵ect the DCBs; that by influence and that by

structure. Influence correlation is when one characteristic directly a↵ects another whereas

structure correlation occurs when two or more characteristics are combined to form a

new more complex characteristic. We examine how correlation a↵ects the dot pattern

descriptors (and therefore the change identifiers) in Chapter 3.

While visualisation is not the core of this thesis the change identifiers could add to An-

drienko and Andrienko’s work by providing a concrete examination of how the patterns

can be assessed.

2.3.8. Towards a Taxonomy of Movement Patterns [Dodge et al. ]

Dodge et al. [Dodge et al., 2008] provide a formalised approach to describing the move-

ment of patterns. The authors define the patterns for which they supply a taxonomy

as consisting of Moving Point Objects (MPOs), which are dimensionless entities, similar

to our dots but with movement data associated. They also provide a formalisation of

movement that uses three groups of primitive parameters and their derivatives. Dodge

et al.’s full classification is extensive and there is not the space to describe it here in

detail, instead we will discuss the fashion in which they have sectioned its levels. The

movement patterns are split into generic and behavioural patterns, generic being the most

widely applicable term for a movement type, for example periodicity is exhibited by any

MPOs that have periods of movement punctuated by periods of largely static behaviour.

Whereas behavioural patterns are far more specific movement types such as migration or

fighting. The generic patterns are split into compound and primitive types, primitive for
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patterns where only a single movement parameter changes and compound when more than

one change occurs. All the given pattern types can apply to individuals or groups. As

with previous work focusing on the complex movement behaviours, Dodge et al.’s work

does not directly a↵ect the change identifiers. It is important, however, to have a good

understanding of the behaviours that underly change so that we can be certain that no

particular form of change is missed by the identifiers.

2.3.9. Modelling Herds and Their Evolvements from Trajectory Data

[Huang et al. ]

Huang et al. [Huang et al., 2008] present a set of four evolutions that a herd can un-

dergo: expansion, joining, shrinking and leaving. These evolutions do little to describe

the pattern at any single time, however, instead describing the changes in state that the

herd has undergone. This is used, primarily, to provide a way to define the identity of a

changing herd. One comment they make that is of particular relevance is that quantitative

measures can become qualitative if a significant change has occurred. This leads to the

problems inherent in trying to describe where the boundaries of significant change are,

but may indicate a way in which change identifiers can be best used to provide qualitative

information.

2.3.10. A taxonomy of collective phenomena [Wood and Galton] and

Detecting and Identifying Collective Phenomena within

Movement Data [Wood]

Wood and Galton [Wood and Galton, 2009] build on previous taxonomies ([Andrienko

and Andrienko, 2007; Dodge et al., 2008]) so that the concepts behind a collective are

tightly defined. The definition of a collective they provide involves six observations, given

these observations they then have a concrete base from which to form the criteria for their

classification. Wood [Wood, 2011] extends and uses this classification to identify collectives

from within spatio-temporal data. Dynamic dot patterns can be seen as an abstraction of

a collective so, while the criteria do not directly apply to dot patterns, it seems prudent

to examine them so that we can be confident that no important information is left out by

our abstraction. Wood and Galton provide a set of considerations that are used by their

classification, but going over each in detail would be irrelevant for this thesis. Instead

only those spatial aspects which relate to dot patterns will be covered. Before looking at

these considerations we note that, like Worboys [Worboys, 2005] and Hornsby & Egenhofer

[Hornsby and Egenhofer, 1997], Wood and Galton discuss whether a collective maintains

identity if the cardinality or identity of its members changes.

Location

By convention the location of a dot pattern tends to be taken as a point, often the centroid

(mean position) of the pattern (the Centre of Gravity used by Thériault et al. [Thériault
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et al., 1999]). The collective definition presented by Wood and Galton is di↵erent in that

it treats the location as an area or volume. For example the location of a class can be said

to be the classroom and, from the level of granularity of the class itself, this constitutes a

real 3-dimensional space. They suggest that one way of finding this location could be by

aggregating the footprints of the collective at each timestep of its existence.

The location classifier is interested in distinguishing between collectives by the fashion in

which they change their location. This thesis is more concerned with being able to classify

between di↵erent types of dot pattern without necessarily knowing the methods by which

they might change.

Coherence

Coherence as it appears in [Wood and Galton, 2009] relates to the exhibited behaviour(s)

of a collective and can arise from two main sources: cause and purpose. Causes are split

into external and internal sets; the example given by Wood and Galton of an external

cause is of Earth’s gravity causing raindrops to fall as a collective, and the example they

provide of an internal cause is the mutual gravitational pull of a star cluster maintaining

the collective of stars. Purposive collectives maintain their collective nature via some goal,

again this can be an internal goal assigned by members of the collective or a purpose placed

on the collective by some external agent. Wood extends the discussion on coherence in

[Wood, 2011] by defining some coherence criteria, of which a group of individuals must

satisfy at least one to be considered a collective. It is these coherence criteria which allow

Wood to be able to identify spatial collectives from spatio-temporal data.

The change identifiers as used within this thesis are not concerned with the coherence of

the dynamic dot pattern. However further work could examine the elements of coherence

exhibited by dynamic dot patterns to see if new change identifiers are suggested.

As was defined in the introduction, neither a dot pattern nor a dynamic dot pattern is a

collective; the collective may be a pod of whales but the dot pattern representing this is

a snapshot of whale positions at an individual moment and the dynamic dot pattern is a

sequence of the dot patterns. The classification allows us to provide further distinction

between a collective and its representative pattern(s): The collective classification allows

for change within its description at di↵erent time steps; it can cover a broad time period

with complex definitions covering various phases in a collective’s life span. For a pattern

we are interested in describing it as it is (or was) at the time the information was recorded

and how it may di↵er in type from another pattern. This allows the question of identity

for a dynamic dot pattern to be avoided; it can be assumed that phases of a dynamic

dot pattern are from the same collective in that they are all in the collective for which

the dynamic dot pattern was created to represent. Tracking a constant collective identity

over real world entities is more complicated as issues of changing membership arise (also

discussed by [Hornsby and Egenhofer, 1997; Worboys, 2005]).

As with the taxonomies provided by Andrienko & Andrienko [Andrienko and Andrienko,
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2007] and Dodge et al. [Dodge et al., 2008], Wood and Galton’s classification describes

the high-level behaviours that may be exhibited by the entities that underly a dynamic

dot pattern. It is possible that our change identifiers will indicate these behaviours and

the changes between them. Even if this is not possible we would be remiss not to try

and understand the possible reasons for the change measured by the identifiers and such

analysis may also inform the creation of new identifier types.

2.3.11. A Graph Model for Spatio-temporal Evolution [Del Mondo et

al. ]

Del Mondo et al. [Del Mondo et al., 2010] discuss the shortcomings in using only space-

time paths to describe the events, processes and changes an entity can undergo. They

propose using a graph model to map the complex networks that can be formed. To this

end they note three relation types that must be modelled:

Spatial – Relation between two entities at the same time

Spatio-temporal – Relation between spaces occupied by entities at di↵ering times.

Filiation – How entities at distinct times relate to each other (i.e. descent or

transmission).

Such a model provides a view of a group of entities in a space that does not lose information

about their relationships and allows route tracking of entities through di↵erent states.

The work is interesting as an examination of visualising change and the collectives under-

lying dynamic dot patterns can certainly be drawn in such network graphs. The change

identifiers may provide information about salient timesteps at which the network graph

could (or should) be updated so that for large, and long, dynamic dot patterns the network

graph would remain a manageable size.

2.3.12. How fast is a cow? Cross-Scale Analysis of Movement Data

[Laube and Purves]

Laube and Purves [Laube and Purves, 2011] is an unusual paper. Whereas the other

works by Laube mentioned here are examples of movement analysis, this paper looks at

the concepts and problems inherent in analysing movement data, akin to the influences

in Andrienko and Andrienko’s paper [Andrienko and Andrienko, 2007]. Most of the con-

cerns they raise are not directly related to the general framework we propose as they are

application-dependent. However, some are relevant to the test data used for this thesis

and some will apply to any application that uses the change identifiers. While there is not

the space to discuss each point in detail, a general overview will be given of their concerns

(leaving the amusingly alliterative appelations applied by Laube and Purves intact).

Granularity Grief: Any measured parameter (like change identifiers) will be greatly
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a↵ected by the granularity of the time domain. The sampling rate at which the

data is provided can result in lost or misleading information. This point is similar

to Andrienko and Andrienko’s properties of time influence. It also bears a relation

to Stell’s consideration of granularity modelling [Stell, 2003].

Slippery Spaces: The space in which the entities exist may not be unconstrained

Euclidean space, for example a city has paths, roads, buildings and pre-determined

crossing points. This point is similar to Andrienko and Andrienko’s properties of

space influence.

Delusive Dwarfs: Scaling and sampling may provide faulty data. While computation-

ally easier to process, small data sets do not necessarily indicate the behaviours of

larger sets. This is something that must be considered when drawing any conclusions

from the real-world test data and the generated test patterns used in this thesis.

Ba✏ing Bias: The data source may be biased. For example some types of people are

more likely to allow themselves to be tracked than others. Such people may have

movement patterns dissimilar to others. Bias bears a similarity to Andrienko and

Andrienko’s properties of entities influence and their a↵ecting phenomena; specifi-

cally their observation about di↵ering cultures.

Cast-o↵ Context: Often work in the spatio-temporal and GISc fields looks only at the

entities in relation to each other and ignores the geographical context in which they

are positioned.

Sinful Simulations: When making test data sets it can be di�cult to find the appropri-

ate balance between randomness and realistic movement. This is obviously a concern

for us within this thesis and we look at the source of the dynamic dot patterns used

for testing in the chapters on dot patterns and change identifiers (Chapters 3 and 5

respectively).

2.3.13. Others

There was much work that focuses on spatio-temporal data that was read as background

for this thesis has not been detailed above, as it did not add greatly to the discussion

of change identifiers. However, any work read will certainly have a↵ected our approach,

so should reader wish to pursue further reading they could start with: [Egenhofer and

Franzosa, 1991; Bogaert et al., 2006; Bennett et al., 2008; Delafontaine et al., 2011; Laube

et al., 2011].

2.4. Shape

To find descriptors for a pattern we must accept that the pattern is an entity, possessing

properties emerging from its component dots but not inherent within any individual dot.
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Intuitively this can be done by considering a region as a surrogate for the pattern, and this

assumption brings with it methods for measuring the descriptors (e.g., area as a measure

of extent). We consider any region that describes a dot pattern as a footprint of the

pattern. The fact that assigning a region or footprint is so intuitive is almost certainly

due to Gestalt perception but it does lead to the question: Is any region more ‘correct’

than another if they are equally intuitive? Before looking at the footprints, some of the

ways in which shape itself has been considered are explored. Not only will this provide a

good background on how footprint analysis might be approached when change identifier

assessment is discussed (Chapters 5 and 6) but some of the methods may apply to dot

patterns without the need for a region assignment.

2.4.1. Qualitative Spatial Change [Galton]

Galton [Galton, 2000, ch. 4.7.3] provides a comprehensive overview of the possible at-

tributes and relations of spatial regions; specifically: dimension, connectivity, position,

location, orientation, size and shape (concerning spatial attributes like sinuosity).

Dimension

Galton splits dimension into two types: strict and apparent. Strict dimension is the

classical approach in which an object classified as d-dimensional has no extension into

any dimension greater than d. Apparent dimension is a product of having di↵ering levels

of granularity with which examine the object. A road is generally considered to be a 1-

dimensional line on most maps, a 2-dimensional surface for most users and a 3-dimensional

object for a road builder who has to be concerned with the depth as well as breadth and

length. Dimensionality of a dot pattern works best when considered as apparent because

it is always possible to draw a 1-dimensional curve through the dots. In 2-dimensions, for

example, it may be of interest how collinear the arrangement of the dots is.

Connectivity

Connectivity is not a directly applicable term to dot patterns as the dots are, by their

nature, disconnected. However it is certainly true that sometimes the dot patterns have

areas that appear distinct from others. Fig. 2.5 shows a dot pattern in which part a is

separated from part b by a distance that is substantial compared to the inter-dot di↵erences

within each part (we call each part a component of the dot pattern). Such dot patterns

could be said to be disconnected and identifying such separations is intuitively important.

Position

Position is perhaps the most immediately obvious facet of information that can be gained

from a dot pattern, as a pattern is represented within spatial dimensions. Galton notes that
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Figure 2.5. A single dot pattern showing disconnected components.

the problem with position is choosing the region of space from which to base the location

reference system. As such position is split into two parts: location and orientation. For

the purposes of this paper however this is not a relevant concern and Galton’s definition of

location will not be described in detail; su�ce to say it discusses using di↵erent reference

systems from which to find a ‘target’ object.

Orientation

Orientation is the direction in which the object can be said to face, or point. Galton

describes using a directed line as a ‘reference axis’ such that the orientation can be found

by the direction the axis points. With an axis from which to find the direction the

di�culty becomes one of ascertaining how best to specify the direction; for which the book

provides several approaches, both quantitative and qualitative. The quantitative methods

are variations on units for measuring the line angle and are, as a result, straightforward.

The qualitative methods are somewhat more interesting as they can be envisioned in

two ways. Firstly by describing the direction in which the axis points to (e.g., north,

south, east, west, up, down, left, right, back, forward). And secondly by describing

the direction as an observer looking at the object by which sections of the object are

visible (the di↵erent faces of a cube is the example given in the book). As previously

mentioned, this thesis does not focus on the qualitative description of dot patterns, but

Galton’s quantitative methods will be looked at in greater detail when we discuss descriptor

measurement methods (Chapter 3).

Size

Size is a cognitively obvious description of shape. However the fashion in which it is

measured is a topic worthy of discussion. Area and volume, for example, are com-

monly used and often sensible measures but, as Galton points out, they reduce a 2-

dimensional and 3-dimensional quantity respectively to a single value. This single value

means that information is immediately lost as two di↵erent objects of di↵ering dimensions

(height/width/breadth) can produce the same result.
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The book also describes angular extent as a measure of size but as this requires an observer

it does not apply to the context in which we are examining dot patterns.

Shape

Galton uses this section to discuss various ways in which shape can be described including

discussions on convex and concave, curvature, symmetry, and the use of natural language.

None of these are applicable to the description of a dot pattern but may have use in describ-

ing footprints; one of the suggested areas for further work is to produce a more extensive

taxonomy for footprint classification so that they may be compared more accurately.

2.4.2. Others

Galton’s book is not the only text that details the properties of shape and more quanti-

tative treatements can be found in the field of computer vision such as the work by Žunić

and Rosin (e.g., [Rosin, 2000; Žunić and Rosin, 2002, 2003]). However much of this quanti-

tative work requires knowledge of the shapes’ boundaries and angles, which is information

that requires the footprint to have been computed. Galton’s work su�ces to give a general

overview of the properties of shape that we can use to examine the properties of a dot

pattern.

2.5. Footprints

There is a fairly large body of work about the generation of footprints, publications from

as early as 1973 ([Jarvis, 1973]) presenting a variety of di↵erent algorithms to create

representational shapes from dot patterns. Amongst this work there are surprisingly few

that examine the footprints created in a comparative fashion. Also conspicuous by its

absence is a systematic approach to determining the quality of the produced footprint.

Galton [Galton, 2008] makes significant inroads in to both determining how ‘good’ a

footprint is and why this is di�cult to judge.

A discussion of the footprint algorithms should probably begin with one of the first to

give an e�cient algorithm for its computation in 1973. Jarvis [Jarvis, 1973] presented an

algorithm, since called the ‘Jarvis March’, to generate the convex hull of a dot pattern.

The convex hull is almost a base level of footprint, its algorithms are generally easily

computable and it has distinct mathematical properties. Importantly the convex hull is

unique for any particular dot pattern.

The convex hull is not without its problems as a representation.

The point set given in Fig. 2.6(a) could reasonably be interpreted as forming a ‘C’ shape.

The cavity that dictates this shape may be important for the application context (e.g.,

reconstructing text from samples of a document image) and is lost when the footprint is
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(a) Point set (b) Convex Hull (c) Non-Convex Footprint

Figure 2.6. When a convex hull is inappropriate

the convex hull Fig. 2.6(b). For the given application Fig. 2.6(c) is a better approximation

of the underlying data. An algorithm capable of reaching a better fit representation is a

non-trivial problem and one of the earliest, and much-referenced, papers on the subject

is by Edelsbrunner et al. [Edelsbrunner et al., 1983]. The method produces straight-line

graphs called ↵-shapes, obtained from a generalisation of the convex hull. For a pattern

DP the convex hull can be considered to be the intersection of all closed half-planes that

contain all the dots of DP . Taking a half-plane to be a closed disc of infinite radius, an

↵-hull can be defined as the intersection of all closed discs with radius 1/↵ that contain

all the points of DP . Using a radius of 1/↵ allows the convex hull to be produced when

the arcs are su�ciently straight. If we assume that if ↵ = 0 then 1/↵ = 1 11 and that an

arc with an infinite length radius is a line, we can guarantee production of the convex hull

when ↵ = 0. These assumptions are integrated into the description of the ↵-hull using

the idea of a generalized disc. A generalized disc of radius 1/↵ is defined as a disc of

radius 1/↵ if ↵ > 0, a halfplane if ↵ = 0 and the complement of a disc of radius �1/↵

if ↵ < 0, the ↵-hull, then, is the intersection of all closed generalized discs of radius 1/↵

that contain all the points of DP .

Before the ↵-shape can be defined some properties of the hulls need to be noted. A dot d

from the pattern DP is ↵-extreme if there exists a closed generalized disc of radius 1/↵

such that d lies on its boundary and it contains all the points of DP . If two ↵-extreme

points can share the same generalized disc then they are said to be ↵-neighbours. The

↵-hull is the intersection of these discs (Fig. 2.7(a)). The ↵-shape is the straight line graph

with vertices at ↵-extreme points and edges connecting the ↵-neighbours (Fig. 2.7(b)).

The positive ↵-shape (where ↵ > 0) is clearly a footprint, notable in that it tends to

look like an approximation of convex hull save that it is possible for it to not contain all

the points Fig. 2.7(b). However the negative ↵-shape (where ↵ < 0) produces far more

interesting results as shown in Fig. 2.8(b).

This is one of the earliest steps toward an algorithm that is cognitively more ‘appropriate’

for the dot pattern than the convex hull. There is one more facet introduced by this

paper that is of general interest when considering footprints. They make note that as ↵

changes there are only a finite number di↵erent ↵-shapes that can appear12. These finite

shapes are bounded by the convex hull at one extreme and the ‘null’ footprint in which

11
↵ ! 0, 1/↵ ! 1

12Although there can be infinite ↵-hulls with di↵ering curvature, the ↵-shapes have straight lines joining
the vertices
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(a) ↵-hull (b) ↵-shape

Figure 2.7. Images show the di↵erence between ↵-hull and ↵-shape. Image from [Edelsbrunner
et al., 1983]

(a) ↵-hull (b) ↵-shape

Figure 2.8. Negative ↵-hull and ↵-shape. Image from [Edelsbrunner et al., 1983]

no dots are connected13. This range of shapes is called the shape spectrum (SP (DP )),

and by generalising their algorithm the SP (DP ) can be found in O(n log n) time. The

examination of the literature in this section will concentrate on this type of analysis,

however, aside from the papers presented here, it should be noted that such discussion on

the nature of the footprints is uncommon. Edelsbrunner et al. do not comment on how

the inherent properties of the dot pattern a↵ect the shape produced, nor do they present

any discussion on how to choose ↵ to produce a specific shape from the shape spectrum.

Since this landmark paper much use has been made of ↵-shapes, in [Edelsbrunner and

Mücke, 1992] Edelsbrunner and Mücke make note of two of the most interesting appli-

cations, namely molecular structure mapping and reconstructing a surface from sampled

point data. The paper presents an extension of ↵-shapes into 3-dimensions, but they

have also been extended to take into account any intrinsic weighting of the point set in

[Edelsbrunner, 1992].

↵-shapes require a parameter from which to be formed, as discussed in the introduction this

is common amongst all the non-convex footprint algorithms. This parameter is required

because the idea of the footprint is vaguely defined; any shape that can be said to represent

the underlying dot pattern is a valid footprint. The reason that ‘a footprint’ as a concept

remains vague is that users of the algorithms have di↵erent requirements on the type

of shape they need. The parameterization allows control over the detail captured/lost

within the footprint therefore allowing for di↵erent footprints to be created for di↵erent

applications.

There are many possible algorithms besides the ↵-shape that we could examine, however

rather than listing them (for a larger study of existing algorithms see [Dupenois and

Galton, 2009]) the rest of this section will look for novelties within the literature.

13This footprint type will appear in Chapter 4 but we call it the identity footprint
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Melkemi [Melkemi, 1997] suggested an alternative approach to a single value parameter,

such as ↵ used by the ↵-shape, for their A -shape14 algorithm: the parameter A is a

set of dots. The footprint is then constructed from the Voronoi Diagram of the union

of the original dot pattern and A ; the footprint is defined by the outer borders of the

cells containing the original dots. The process for choosing A is not expanded on until

[Melkemi and Djebali, 2000] in which it is defined as sampled from the union of two sets:

1. The centres of the Delaunay circles associated with the Delaunay triangulation of

the original pattern having radii higher than a threshold t � 0.

2. For each edge �!pq of the convex hull of the original pattern, consider the point not

belonging to the convex hull of DP and which is the centre of the circle passing

through p and q and having su�ciently big radii.

What is meant by ‘su�ciently big’ in the second constraint is not elaborated on; given

the nature of the work we can assume it relates to the same threshold as in the first

constraint. Melkemi and Djebali [Melkemi and Djebali, 2001] introduce the idea of the

weighted A -shape, this allows the algorithm to deal with dot patterns containing areas of

di↵erent densities. Each point is given a weight based on the distance between it and its

closest neighbour. The set of points A is found using what they call ‘the power diagram’

of the original pattern, su�ce to say that it too uses a threshold value much the same as

the unweighted version.

Alani et al. [Alani et al., 2001] also use a point set as their input parameter but their paper

di↵ers from others in the field in that it is one of the few where the application has directly

led to the development of the algorithm. There exist gazetteers (or geographical thesauri)

which combine place name data with limited locational information. These systems are

used for queries such as requests for all the hotels in a specific area. After noting some

of the current constraints on such systems (limited bandwith, di↵ering search terms to

index terms, imprecise or precise matching, etc.) they introduce the Dynamic Spatial

Approximation Method or DSAM. Much the same as the work performed by Melkemi and

Djebali, it uses the union of the original dot pattern and another set of dots to construct

the Voronoi Diagram, the footprint being the union of cells containing the original pattern.

Unlike the A -shape, the external points are already in the database as points known not

to exist within the query location. In this instance, as the data has already been obtained,

there is no need to add the further complexity of sampling. The aim of DSAM is to

approximate a known area, the previous algorithms covered are not so specific, and this

allows Alani et al. to ‘score’ the footprints that DSAM generated. They give three methods

with which to evaluate their approximation:

• Total areal error – Gives a basic approximation error.

• Visual error – Gives a measure of how di↵erent the shapes are. If we take the false

negative error as the areas left out of the approximation and the false positive error

to be the areas in the approximation not in the expected area then the visual error

14In [Melkemi, 1997] it is referred to as the A-shape but in [Melkemi and Djebali, 2000] and [Melkemi and
Djebali, 2001] it is called A -shape, so we use the most common notation
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can be measured as:

V =
A

pp

+A
np

A
o

100%

Where V is the visual error, A
pp

is the false positive error, A
np

is the false nega-

tive error and A
o

is the original (known) area. A similar technique is used in this

thesis; the quality of the change identifiers is assessed by the di↵erence between the

footprints created when using them and the footprints created when not.

• Quality of the spatial relationships – Preservation of important spatial relationships

of the actual with the approximated area e.g., if a data point is within the actual is

it within the approximation.

Interestingly the first two are quantitative measures while the third is qualitative as de-

scribed, although it is possible to see how it could be made quantitative by defining all

the required spatial relationships and finding the percentage that are inconsistent between

the approximate and the actual areas. This level of reasoned assessment is notably absent

from much of the literature. Although this is undoubtedly because Alani et al. have an

expected shape to measure against, it seems strange that little has been done to give any

form of general scoring to the footprints produced.

↵-shape, A -shape and DSAM are all of complexity O(n log n). This is common amongst

the footprint algorithms, at least in part because they tend to be generalisations or modifi-

cations of existing O(n log n) algorithms (e.g., Delaunay triangulations, Voronoi diagrams

and Jarvis March). Aware of this, Chaudhuri et al. [Chaudhuri et al., 1997] propose two

methods for extracting the ‘perceptual border’ of a dot pattern that have O(n) complexity;

the s-shape and the r-shape. The s-shape is generated by laying a grid over the isothetic

(axis-aligned) bounding rectangle of the dot pattern. The union of all the grid cells that

contain at least one dot gives the s-shape, s being the length of the grid cell sides. Chaud-

huri et al. note that choosing s is not a simple task and the interesting component of the

method is the fashion in which they deal with this problem. First they note that there are

a finite number of di↵erent s-shapes that can be created for any dot pattern, by defining

the sequence hsi as:

s =

r
A(W )

n
NB:

15

s
i

= s when i = 1

s
i

=

r
A(H(s

i�1

))

n
when i > 1

W : The minimum isothetic bounding box

A(x): The area of the footprint x

H(s): The footprint (hull) when the grid length is s

15If the distribution of the dot pattern was completely uniform this would give an optimal value of s.

46



2. Background

hsi finishes when each grid cell of the footprint contains only one point. This sequence

gives rise to the ‘s-shape spectrum’ of the dot pattern (similar to the work by Edelsbrunner

for ↵-shapes) and can be performed in O(n) time. To choose an appropriate s value from

the spectrum they introduce the parameter " as a measure of disparity within the dot

pattern, essentially how uniform the density is across the pattern. s is now chosen from

the spectrum by:

s = max

⇢
s
k

;

����
s
k�1

� s
k+1

s
k

����  ", s
k�1

✏hsi
�

For the majority of patterns they found that an " value of 0.3-0.5 was su�cient to achieve

a suitable representation. It should be noted that they give little discussion on how

the representation is measured and do point out that the ‘perceptual structure’ is not

necessarily unique. The s-shape is staircase like and may be considered somewhat crude,

whereas the r-shape is a much ‘smoother’ representation. The r-shape algorithm involves

placing a disc of radius r over each dot and then joining edges between dots whose discs

share a point on the boundary of the union of all of the discs. Like the s-shape it su↵ers

from the di�culty of selecting a suitable value of r. Chaudhuri et al. observe this di�culty

and proceed to show that, using the s-shape algorithm, a value can be retrieved for r

where r =
p
2s

i

, combined with the "-measure of dispersion this gives a O(n) method for

producing a footprint with a single parameter and suggested " value of 0.4. Chaudhuri et

al. appear to have covered all the major issues (visual salience, complexity and parameter

choice) in footprint generation but they do not make clear why they consider any r-shape

is more suitable than any other or if it can be judged by anything other than human

intervention.

There seems to be a division in types of footprint algorithms appearing, the ↵-shape,

A -shape and DSAM are all mathematically derived algorithms, they arise from the im-

plementation of easily expressible concepts:

• ↵-shape – The intersection of all closed discs with radius 1/↵ that contain all the

points of DP .

• A -shape – The union of the cells containing dots of DP from the Voronoi Diagram

of A [DP .

• DSAM – The union of the cells containing dots of DP from the Voronoi Diagram of

E [DP where E is a set of dots known to be external to the query area.

However s-shape and r-shape are somewhat di↵erent; the basic description of the s-shape

seem to be of the same type i.e.

• s-shape – The union of the grid cells of length s containing dots of the pattern.

But the s-shape algorithm, when the iterations used to generate the s-shape spectrum are

included, consists of many more steps than this, in fact to properly describe the s-shape is

to describe each of the steps taken within its algorithm. The same is true for the r-shape,

particularly when taken with the s-shape as a precursor. While this thesis is not meant

to be a detailed analysis of the types of algorithms available, it is interesting that there
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should be delineating characteristics between the algorithms. Further work in this field

could entail examining which type of algorithms can be used to produce which types of

footprint.

One of the few works to formally analyse the footprints created by their algorithms is

the paper “What is the Region Occupied by a Set of Points?” by Galton and Duckham

[Galton and Duckham, 2006]. Galton and Duckham approach the concept of finding an

appropriate footprint for a dot pattern by first looking at what is meant by the concept of

‘appropriate’. Before examining the footprint criteria they point out that visual salience

is problematic in that human intuition can play a great part in the shapes we see when

we look at dot patterns, they note that the notion of gestalt perception almost certainly

comes into play. Before describing their criteria for analysis they make one last caveat

in that the specific application must decide the relevance of the footprint, by this they

mean that whether or not the footprint is a suitable representation is dependent on the

application. The nine general criteria they provide are, in fact, questions for which a

specific algorithm should give answers in order to be compared to other algorithms to

assess suitability for use in a specific application. These criteria are as follows (in which

foot(DP ) is the footprint producing function foot over the pattern DP ):

1. Should every member of DP fall within foot(DP ) or are outliers permitted?

2. Should any points of DP be allowed to fall on the boundary of foot(DP ) or must

they all lie within its interior?

3. Should foot(DP ) be topologically regular or can it contain exposed point or line

elements?

4. Should foot(DP ) be connected or can it have more than one component?

5. Should foot(DP ) be polygonal or can its boundary be curved?

6. Should foot(DP ) be simple, i.e., its boundary is a Jordan curve or can it have point

connections?

7. How big is the largest circular (or other specified) subregion of foot(DP ) that con-

tains no elements of DP?

8. How easily can the method used be generalised to three (or more) dimensions?

9. What is the computational complexity of the algorithm?

The authors note that the criteria can be split into four categories. The questions (1) and

(2) focus on the relationship between the footprint and the dot pattern. (3)–(6) describe

the nature of the footprint itself. (7) is, in some respect, an indicator of the quality

of the footprint, in that reducing the amount of ‘free’ space is important for a visually

salient (this is exapanded on by Galton in [Galton, 2008]). (8) and (9) are both questions

about the nature of the algorithm. They use these criteria to compare three algorithms

and the general class of convex hull algorithms. The questions can be split into two

categories, questions (1)–(7) are concerned with the state of the footprint whereas (8) and
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(9) describe aspects of the algorithm’s nature. We note this as any convex hull algorithm

will give identical answers to questions (1)–(7) di↵ering only on (8) and (9). The three

algorithms compared are the Swinging Arm, Close Pairs and a Delaunay triangulation

based method.

The Delaunay triangulation method is extended into the �-hull in [Duckham et al., 2008]

and is examined in greater detail later in this section. The Swinging Arm method gen-

eralises the ‘gift-wrap’ algorithm for constructing convex hulls16, which is constructed by

taking an extremal dot d
0

of DP and a half-line l, l is swung in a clockwise direction about

d
0

till it collides with another point of DP , d
1

. l is swung successively from d
i

to d
i+1

till

d
i+1

= d
0

. The Swinging Arm is identical save that instead of a half-line a line segment of

length r is used. Interestingly this change allows that an anti-clockwise direction of spin

can change the footprint produced.

The Close Pairs method considers simply joining all point-pairs whose distance is less than

or equal to r, then taking the union of all the closed polygons as the footprint. With regard

to how Swinging Arm and Close Pairs compare, the authors note that in most cases they

are identical, save for criteria (8) and (9). So similiar that their produced footprints are

identical save for the dot patterns for which the Swinging Arm would generate di↵erent

results if the direction was changed.

The extension into three dimensions is not particularly obvious for the Swinging Arm, the

arm can easily be conceptually thought of as a ‘flap’, but the edge about which to rotate

the flap is not pre-determined and would need to be decided on. Close Pairs generalises

relatively easily; after including any polygon formed from the joins, any polyhedrons with

said polygons for borders are included.

The complexity of both of the algorithms is at least O(n2) with a worst case of O(n3)

for Swinging Arm and an unknown worst case for Close Pairs. This kind of systematic

comparison does not appear prior to this paper and will be looked at in greater detail in

Chapter 4. For the moment we note that being able to compare the footprint types and

their algorithms can be useful in the assessment of suitability for any specific application.

The final algorithm that will be examined in this section is the �-hull by Duckham et

al. [Duckham et al., 2008] (expanding on the Delaunay method presented in Galton and

Duckham [Galton and Duckham, 2006]). This paper includes a discussion of the foot-

print’s properties, and how these are directly tied to the method by which it is created.

The method itself is simple to understand; starting with the Delaunay triangulation and

successively removing the longest external edge, subject to constraints of maintaining con-

nectedness and regularity, until either some predetermined minimum length is reached, or

no more edges can be removed. The authors note that there can be no uniquely ‘optimal’

footprint when the application context is considered to be general, however, like Chaudhuri

et al. , examine the parameter choice and its e↵ect. There are practical limits on the minu-

mum length l for any triangulation, if it is too large then no lines will be removed and if it

is too small too many will be removed, and consequently l can be normalised. Duckham

16The ‘gift-wrap’ method is a renaming of the Jarvis March mentioned earlier.
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et al. propose using this normalised parameter, �p, to find a starting value which should

achieve what they call a characteristic shape for many, if not all, dot patterns. While they

conclude that there is no �p that always produces a ‘good’ characterization, the fact that

they spend time considering this is further proof of the desirability of a non-parameterised

algorithm.

As previously mentioned, within the field of footprint algorithm generation there is little

in the way of hard analysis of the footprints, the algorithms in relation to each other or the

patterns. Clearly such work is relevant to the field and much of what has been done has

only been performed recently. In 2008 Galton wrote a paper [Galton, 2008], searching for

objective criteria for evaluating the acceptability of any proposed footprint in relation to

the ‘perceived’ shape of a dot pattern. The paper notes that in most of the published work,

“while lip-service is generally paid to the fact that there is no objective definition of such

a ‘perceived shape’, little is said about how to verify this, or indeed, about exactly what it

means”. Restricting attention to footprints in the form of polygonal hulls, simple polygons

having vertices selected from the dot pattern, all the other dots being within the interior,

the paper presents evidence that while a dot pattern may have several equally acceptable

perceived shapes, they all represent optimal or near-optimal compromises between the

conflicting goals of simultaneously minimising both the area and the perimeter of the hull.

This work was followed by a paper by this author and Galton [Dupenois and Galton, 2009],

suggesting a method for classifying the footprints. Unlike Galton [Galton, 2008] it does

not look at their ‘fitness’ but approaches the subject from a desire to be able to describe

algorithms by the types of footprints they can create. The paper notes that the context

in which the algorithm is being used determines the type of footprint that is satisfactory.

With this in mind it proposes a method of using the application specific knowledge to limit

the choice of algorithms for any particular user requirement. The classification bears some

similarity to the set of criteria proposed by Galton and Duckham [Galton and Duckham,

2006] for evaluating the footprints produced by di↵erent algorithms and will be detailed

in Chapter 4

2.6. Dynamics

The focus of this thesis is not an examination of footprints or the underlying dot patterns

but how the change of the phenomena can be suitably measured. It is therefore prudent

to devote some attention to examining the existing approaches to dynamic updates.

The Kinetic Data Structures (KDS), proposed by Basch et al. [Basch et al., 1997], are

a particularly appropriate starting point because one of the applications they use is that

of maintaining convex hulls under movement. The KDS is not a single algorithm, rather

it is a system to describe how to create dynamic algorithms. A set of conditions, called

certificates, are defined. These certificates are geometric relations that describe the shape

to be maintained such that if a certificate is not true (has failed) then the desired shape

cannot exist. We can therefore ascertain whether or not the convex hull needs to be
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redrawn based purely on whether or not these certificates have failed. Obviously a KDS

is only useful if the cost involved in discovering and processing certificate failure is small.

They state that the cost is small if it asymptotically of the order of O(Polylog(n)), or

O(n✏), for some small ✏ > 0. A KDS with such small costs is deemed responsive. Futher

to this a KDS is e�cient if there are very few internal events compared to external

events17, compact if it has a near linear number of certificates and local if no object

participates in too many certificates. The change identifiers can be treated as certificates

on the dot pattern, and a framework using them as a form of a KDS. A change identifier

KDS should be responsive and, ideally, compact. The terms e�ciency and local have no

obvious counterpart in a change identifier based KDS as they are specific to certificates

on the footprint.

The KDS uses short term motion plans for the objects, these are used to sort the events

into queues such that the most likely certificate failures (events) are looked at first. An

example on convex hulls is given where it is shown that by checking a set of certificates,

all using the rule ccw(a, b, c) in which a, b and c are points and the relation is true if they

form a counter-clockwise triangle, any events whereby the convex hull is no longer valid

for the dot pattern can be found. Further to this they provide a more robust method using

the dualities of the convex hull and focusing only on the upper envelope. All of this gives

an excellent base from which to work but it may not be a directly transferrable approach

for footprints. This is because, unlike convex hulls and as discussed earlier, footprints are

vaguely defined. Hence, choosing the certificates is no longer a trivial task. We will look

at possible requirements that can be made on footprints in Chapter 4.

Hershberger and Suri [Hershberger and Suri, 2003] have a very di↵erent idea to Basch et

al. using a technique called adaptive sampling. By using an approximation of the extrema

from the dot set they find a convex hull that approximates the ‘true’ convex hull, with

triangles of uncertainty (see Fig. ??) over each line segment. The area of uncertainty is

given by the supporting line perpendicular to the direction in which the point was found.

Figure 2.9. Example of Uncertainty Triangles. Image from [Hershberger and Suri, 2003]

While sampling is not a new concept Hershberger and Suri suggest that uniform sampling

produces poor quality approximations in low curvature regions. As such they propose an

adaptive sampling scheme.

17
External Event : Changes the shape. Internal Event : Shape stays the same, certificates change.
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The method is performed by first uniformly sampling extrema in directions 2⇡j

r

for j =

0, ..., r � 1 then adding up to r more extrema using their adaptive technique. Given an

edge e, ⇥(e) is defined as the minimum angle between the directions the endpoints e were

sampled in. ⇥(e) and the proportion of the perimeter that the length of e represents are

used to provide a sample weight w(e) for e. If w(e) is greater than one then the edge is

refined; the extreme point is found in the direction that bisects the angular range defined

by e’s endpoints. If the point found is not an endpoint of e then e is replaced by the two

new edges of the vertices of e and the newly found point. This greatly reduces the error

in the approximation. As has previously been discussed, the approximation of a footprint

is central to the concept of the use of change identifiers.

Chiang and Tamassia [Chiang and Tamassia, 1992] present a general review of the field.

While it is a little dated (1992) it serves as a good presentation of methods still in use.

Unlike Basch et al. or Hershberger and Suri, Chiang and Tamassia look at the ways in

which the data structure holding the dynamic dot pattern and the footprint is maintained.

Chiang and Tamassia examine various forms of binary trees and fractional cascading. Us-

ing these data structures they approach some general dynamic methods. The examination

is quite extensive so we have picked some terms which may be considered when choosing

the data structure(s) used to contain the dot patterns.

• Local rebuilding / Balancing This is a technique applied to search trees so that

they maintain logarithmic height.

• Partial rebuilding This rebuilds entire subtrees when they become out of balance.

• Global Rebuilding Periodically reconstructs an entire tree, often used with ‘weak’

updates (like lazy deletion).

• Lazy Deletion Does not remove deleted item but marks it as deleted to be dealt

with during the reconstruction.

• Decomposable A search problem is decomposable ’if for any partition (S0, S00) of

S the answer to a query on S can be obtained in constant time from the answers to

queries in S0 and S00.

Further to the discussion on general dynamic methods considerations Chiang and Tamassia

give a list of things we can reasonably expect from any dynamic algorithm for convex hulls:

• find if a given point of DP is on the convex hull foot
convex

of DP ;

• find if a query point is internal or external to the convex hull foot
convex

of S;

• find the tangents to the convex hull foot
convex

of DP from an external query point;

• find the intersection of the convex hull foot
convex

of DP with a given query line;

• report the points on the convex hull foot
convex

of DP .

They note that the set of points DP is updated only by insertions and deletions, so any
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point movement should be treated as being removed then added as a new point, which is

a concern that we will have to bear in mind when we consider how the data may enter

the change identifier framework. Chiang and Tamassia describe a method by Preparata

with update and query time of O(log v) and a report-query time of O(v), where v is the

number of vertices currently in the convex hull foot
convex

of DP . The method only deals

with insertions and is therefore not entirely applicable to change identifiers but it does

introduce the concept of splitting the footprint into an upper and lower hull, the methods

used for the upper are transferable to the lower. This concept seems common, appearing

in the next algorithm and in the KDS example.

Overmars and Leeuwen [Overmars and Leeuwen, 1981] present an algorithm for processing

what they call fully dynamic hulls which can handle both insertion and deletion. Again

this considers splitting the hull into two sets, one for left and one for right. Splitting the

hull is a useful technique for speeding up computation but it requires that the two sides are

comparable. Footprints considered more generally than the convex hull do not necessarily

have the strict mathematical definition that allows us to make such a split.

As with all the work described in this chapter the above discussion of dynamics is not

a complete listing. There is, for example, the work performed by Gold [Gold, 2005]

examining the nature of multiple dimensions for dynamic data structures. The field is

extensive but is not exhaustively detailed here as the other works do not directly impact

on this thesis.

2.7. Summary

The papers we have examined here are by no means the sum of all the papers in the

fields represented. We have instead intended to give an overview that shows the related

materials and, most importantly, the methods that have been used to analyse dynamic

dot patterns, footprints and dynamic footprint assignment.

With regard to the originality of our work, there has been much work on the field of

spatio-temporal data and dynamic updates of convex hull. None of the papers that were

found in researching for this thesis has presented any idea that is close in nature to our

change identifiers. While the change identifiers do have similarities with some existing

ideas, the examination of the spatial properties of the dot pattern as a static abstraction

combined with the allowance for some ‘error’ when updating footprints (considering any

footprint can be seen as an approximation of some abstract ‘true’ or ‘best’ region for the

dot pattern) makes them a unique concept.
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The previous chapter was an examination of existing literature that included work that has

constructs with the same or related structures to that of dots, dot patterns and dynamic

dot patterns. The definitions of the structures that this thesis uses were given in the

introduction and this chapter will expand upon these definitions in light of the existing

work. In particular we examine the descriptors that can arise from looking at the dot

pattern as a static representation.

3.1. Change and Dot Patterns

The abstraction provided by considering the entities as dots means that change as it relates

to a dot can only occur in three ways: movement, disappearing or appearing [Thériault

et al., 1999; Huang et al., 2008]. These simple actions can lead to complex emergent

behaviour in the dynamic dot pattern; for example expansion, dispersion, rotation, etc.

These behaviours can be measured by looking at the change in the properties of the

patterns between two adjacent (as defined by Stell [Stell, 2003]) phases of a dynamic dot

pattern. Expansion, for example, is a measure of increase in extent between two phases

and can be determined by the positive change in the standard deviation from the centroid.

There is more than one method by which to measure extent (standard deviation, bounding

box area, etc.) and change in any of these properties indicates a value for the complex

behaviour of expansion (negative or positive). As mentioned in the introduction, these

di↵erent properties are descriptors of a pattern while a general property characterisation

such as ‘extent’ is a class of descriptor. Using this reasoning, a definition of change for

collectives represented by dynamic dot patterns can be given by the di↵erence between

two phases in one or more descriptor classes measured by descriptor methods from those

classes.

3.2. Descriptor Classes

For the measurements of change to be useful across any given dynamic pattern we need

to be able to state, with some confidence, that any of the complex behaviours a collec-

tive represented by a dynamic pattern can exhibit will be ‘caught’. The framework this

thesis presents should not have a list of exception cases in which it cannot accurately

identify change, e.g., ‘the change identifiers will not correctly cause a footprint update

if the dynamic dot pattern rotates’. There are numerous, possibly incalculable, di↵erent
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descriptors for a dot pattern; any statistical, geometric or otherwise calculated value that

can be assigned to a pattern is a valid descriptor. Using all possible descriptors is not only

a Sisyphean task, it will also probably involve repeated measurements within the same

descriptor classes. It follows that we should instead focus on having a descriptor method

from each class.

The classes are not, however, a strictly delineating classification – some descriptors straddle

the boundaries of multiple classes and some classes are clearly dependent on others; as

such the class divisions should be used as a guide rather than a set of requirements.

Choosing the classes is not a simple task, there are multiple aspects of the dots which can

be measured and the classes selected must be those that could be considered both broad

and descriptive. To deduce the appropriate classes from first principles the most basic

information of the pattern is investigated, the exploration increases in complexity until we

have covered a su�cient range of aspects. The cardinality of a dot pattern is, perhaps, the

most immediately apparent datum of information that can be attained. However, there

are no alternative methods to counting with which to find the cardinality of a pattern,

and cardinality is therefore not so much a class as it is a descriptor.

Figure 3.1. Dynamic dot pattern changing in position.

The dots are little more than a location and it seems sensible that the first aspect of

a pattern we would need to be able to describe is its position (Fig. 3.1). Position can

be measured in multiple ways but will tend to return a vector as its value, usually a

coordinate location. This observation is important as such multi-part values can lead

to issues when normalising. Normalisation will be further discussed later, for now we

note that if a pattern with an areal coverage of 1000 units2 moves by 1 unit very little

change has occurred, if however the areal coverage is only 4 units2 such a change is quite

large (an example of this is shown in Fig. 3.21). Thus, a description of change should be

proportionate to to the pattern, and for the location change to be proportionate we need

to have some value by which to make it so. As position is so greatly a↵ected by areal

coverage it has indicated our next class to consider: the size of the pattern. So as not to

be confused with the cardinality we shall name this class extent (Fig. 3.3).

A pattern’s location and extent allow measurements of change by translation and scaling

respectively, if we require that we must be able to measure change in at least all the

standard a�ne transformations (i.e., translation, scaling rotation and shearing), and that

1Although the areal coverage value for the larger pattern is far less than 1000 because of image space
constraints.
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Figure 3.2. Demonstrating the relative di↵erence in position change of two patterns of di↵erent
extents.

Figure 3.3. Dynamic dot pattern changing in extent.

rotation can occur without change in extent or location, then the third class should be

orientation (Fig. 3.5). Shearing a pattern will change the orientation of a pattern so does

not need to be directly measured; this can be seen demonstrated in Fig. 3.4.

Figure 3.4. Dynamic dot pattern shearing. The arrow represents the pattern’s orientation (as
found by Ordinary Least Squares regression).
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Figure 3.5. Dynamic dot pattern changing in orientation.

The three classes described above (position, extent and orientation) treat the pattern as

a region with its own properties, as opposed to a set with no properties beyond its mem-

bership. Further traits a region can have are given by the shape descriptions in Galton

[Galton, 2000] that were detailed in the background chapter. The two which have not

yet been considered are connectedness and dimension. As was previously noted, Galton’s

shape descriptions of connectedness makes little sense when applied to dot patterns; the

dots are, by their nature, disconnected. However it is often the case that patterns can

appear to have areas of di↵ering densities, which could easily be seen as disconnected com-

ponents of a pattern (Fig. 3.6). Measuring connectedness in this fashion is not straightfor-

ward; do we consider the degree of connectedness or do we measure the number of distinct

components? If we measure the number of components how do we place a threshold on

when we consider a disconnection to have occurred? Connectedness cannot be ignored as

too problematic a class, as it is indicative of complex underlying behaviour of the type

described by Huang et al. [Huang et al., 2008] (merge and split) and we will look at how

it may be measured when methods for the descriptors are introduced.

Figure 3.6. Dynamic dot pattern changing in connectedness.

Figure 3.7. Dynamic dot pattern changing in dimension.
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As discussed by Galton [Galton, 2000, ch. 4.7.3] Dimension is split into two approaches;

strict and apparent. As was mentioned in the background (Chapter 2), strict dimension

is not particularly useful for describing dot patterns; it is always possible to draw a curve

through all the dots in a pattern and thereby call it 1-dimensional. We are more interested

in apparent dimension; the idea that a 2-d pattern can be close enough to linear as to, at

a coarse enough granularity, appear 1-dimensional (Fig. 3.7). Change in dimension may

not be picked up by identifiers for the previously described classes; thus dimension is the

next identifier class. Like connectedness, dimensionality requires a choice between either

stating to what degree a pattern is in the dimensions of the space in which it is embedded

or measuring the integer value for which dimension appears to represent it. This can be

solved by having multiple descriptors; measuring the degree of dimensionality for each

dimension the pattern can exhibit and comparing their values. For patterns in a planar

space this is not necessary because the pattern can only exhibit apparent dimensionality

in 0 or 1 dimensions. An apparent dimensionality of 0 (the pattern is densely clustered

around a single point) will be identified by extent descriptors; leaving only a measure of

apparent dimensionality 1, or collinearity, to be implemented.

If measures of change of extent, orientation, position, connectedness and dimensionality

are implemented, change in the a�ne transformations and in the herd evolvements of

Huang et al. [Huang et al., 2008] can be tracked. The current classes all treat the pattern

as if it had a surrogate region, so changes which may a↵ect the footprint arising from its

collective nature should also be considered. As an example of the distinction consider the

two dot patterns shown in Fig. 3.8.

(a) Pattern DP

x

(b) Pattern DP

y

Figure 3.8. Two dot patterns with the same extent, position, orientation, connectedness and
dimensionality

Depending on the methods used as descriptors bothDP
x

(Fig. 3.8(a)) andDP
y

(Fig. 3.8(b))can

have the same extent, position, orientation, connectedness and dimensionality. However

DP
y

has large empty spaces. Measuring cardinality would prevent this but we have already

discussed why it is not su�cient as a class of descriptor. Instead we track the distribution

of the dots within the pattern, this allows descriptors that measure homogeneity, global

density and cardinality to be tracked, all of which are likely to show di↵erent measures

for DP
x

and DP
y

.

This section has presented list of descriptor classes that cover the aspects of change that
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a dynamic dot pattern can undergo. Consequently we can be confident that, if we have

a descriptor for each class and a change identifier using each descriptor, we will be able

to identify the significant changes in a dynamic dot pattern and use this to inform the

update of a footprint representing the dynamic dot pattern.

3.3. Descriptors

With the classes identified we can begin to examine the actual descriptors. Those described

below are by no means a complete list but instead give an overview of the descriptors used

within this thesis.

3.3.1. Position

To compute a value for position requires a point or space relative to which we can measure

it. Even with a clear origin or frame of reference there are a range of di↵erent units of

measurement for position, either with numerical or with qualitative values; e.g., polar

or Cartesian coordinates and compass positions respectively. It makes intuitive sense to

use the frame of reference in which the dots themselves are positioned and to use the

same unit. However it is not clear how change would be measured for qualitative units

without defining quantitative thresholds on them. To avoid the complication of further

thresholding we will focus on the numerical measures.

Example Methods:

• Centroid – The mean location of all the dots within the pattern.

• Isothetic Bounding Box Centre – The centre point of the axis-aligned (isothetic)

minimum bounding box of the pattern.

• Bounding Box Centre – The centre point of the minimum bounding box of the

pattern (non-axis aligned).

• Minimum Disc Centre – The centre point of the minimum bounding disc of the

pattern.

It is apparent that there is a di↵erence between the first and the last three given descriptors.

The former descriptor treats the pattern as a set of points and the latter all apply a

surrogate footprint to the pattern. Many of the classes have descriptors of each type. The

minimum disc and the minimum bounding box (not axis aligned) are more computationally

complex than the isothetic minimum bounding box and as a result may be unusable as

change identifiers; it not being clear if they actually provide a su�ciently ‘better’ (more

accurate) centre than any other measure for the greater computation time they take.
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3.3.2. Extent

Unlike position, extent measures tend to be represented by a single value, but this value

is not always of the same unit. Some descriptors are linear (e.g., pattern diameter) and

others are of the order of the space the pattern inhabits (e.g., area of the bounding box).

As we are currently only concerned with measuring the properties of the pattern, the

relevance of unit type di↵erence is not yet obvious, however when change identifiers are

examined in Chapter 5 the unit type will a↵ect how the values of change are normalised.

Example Methods:

• Variance from Centroid – The variance from the mean centroid. We use variance

so as to avoid the square roots required by the standard deviation.

• Bounding Box Area – The area of the isothetic minimum bounding box.

• Diameter – The diameter of the pattern is the distance between the two furthest

dots.

The diameter of the pattern is found by locating all the external dots i.e., all the dots

that are vertices on the convex hull of the pattern. This may make it too complex to be

used when change identifiers are considered, despite its conceptual simplicity. However an

approximation can be found by considering the mean between the lengths of the diagonal

of the isothetic minimum bounding box2 and the longest edge of the isothetic bounding

box3. Alternatively a less accurate estimation can be attained using the greatest distance

between the dots in the extremal axis aligned dimensions (for a Cartesian planar embedded

pattern this would be the dots with the greatest and least x and y values). The bounding

box of a pattern requires the extremal dots to be found before computing the vertices of

its corners and will therefore take longer to compute than the less accurate estimation.

This thesis makes use of the axis-aligned extremal dots distance as its estimated diameter

to provide a very computationally fast extent descriptor. To further increase its speed it

uses the squared distance instead of the actual distance, preventing the computationally

di�cult task of the square root. Of note is that all three measurements return a squared

unit and this should be considered when comparing them to other descriptors.

3.3.3. Orientation

Orientation is the direction in which the pattern is facing. As the dots do not have an

associated direction, unlike position, this cannot be an aggregrate of individual values. In

fact given the information inherent within the dot pattern a true orientation is impossible

as even the ‘line of best fit’ will not tell you in which direction along the line that the

pattern points. From a change identifier point of view this is irrelevant, as all we need

is a measure which will change as the orientation changes; the measure does not need to

describe the orientation exactly, as long as it is linked to it.

2Guaranteed to be no less than the length of the diameter
3Guaranteed to be no greater than the length of the diameter
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Example Methods:

• Gradient of Line of best fit – There are multiple ways of measuring the line

of best fit; however, the ordinary least squares (OLS) method is perhaps the least

complex. OLS is a linear regression approach from the field of statistical analysis

that minimises the squared vertical distance between a dot from the pattern and

the line of best fit. As OLS is a statistical analysis technique it has some properties

which do not apply directly to the use of spatial data. Within statistical analysis one

of the variables would be expected to be an observed result dependent on another.

For example when measuring the growth of children between the ages of 10 and 14,

the height is observed data that is dependent on the age. Within a dot pattern all

the variables4 are independent and, as a result, we do not to take into account error

in the observation. With no errors to concern us we can use the simplest form of

OLS estimation to find the line y = ↵+ �x in which:
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� ȳ)P
n

i=1

(x
i

� x̄)2
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• Gradient of the Principal Component – Found by Principal Component Anal-

ysis (PCA). PCA finds the dimensions (components) with the highest variability

within the pattern and is commonly used as a dimensionality reduction technique.

Formally it transforms the coordinate system the data resides so that, when the

data is projected onto it, the distribution across first coordinate has the greatest

variance, the second coordinate has the second greatest, etc. To find the Principal

Component we find the eigenvector corresponding to the largest eigenvalue of the

covariance matrix of the data.

We note that the principal component is not always in the same direction as the line of

best fit, as the OLS method minimises only the distance in the y-axis (Fig. 3.9). Both

PCA and the OLS linear regression technique are explained in more detail in [Bishop,

2007].

3.3.4. Connectedness

Connectedness is actually a form of distribution measure as its measurements are per-

formed by comparing inter-dot di↵erences. It is, however, one that appears salient enough

to warrant its own class. The patterns can often appear to split into separate groups

and identifying the change in these groupings is similar to the behavioural evolvements

of Huang [Huang et al., 2008] (herd splitting and joining). Connectedness in this fashion

can be a discrete measure or a continuous value: the number of distinct groups and how

connected the pattern is respectively. The continuous value approach, perhaps, fits better

in the distribution class. Thus for the connectedness class we look only at the approach

4For a pattern in a Cartesian planar space these would be the x and y coordinates
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Figure 3.9. OLS (Solid line) VS. PCA (Dashed Line)

that provides an integer value for the number of clusters.

Example Methods:

• Greatest Jump Agglomerative Clustering – This is an extension of the ag-

glomerative clustering approach to give a possible value for the number of intuitively

identifiable clusters. The extension appears to be novel to this thesis but is an ob-

vious enough technique that we are sure it must have a previous use elsewhere. By

running an agglomerative clustering method using, Euclidean distance as its metric,

a hierarchy of possible clusterings can be created. Agglomerative clustering itera-

tively concatenates the dots into clusters by finding the closest distance between any

two clusters. Fig. 3.10 shows an example of the agglomerative clustering process.

We take note of the first unusually large jump in distance across the run of the

clustering. If the jump is greater (by, for example, a multiplication of 2) than the

average distance jump then the clustering preceding this jump is likely to contain

a saliently identifiable set of clusters. In the example in Fig. 3.10 this would be

the jump from step 6 to step 7 (Fig. 3.10(c) to Fig. 3.10(d)). This method is slow

but e↵ective at finding the parts of the pattern that we may identify as individual

components.

• K-Means Clustering – An alternative to the hierarchical approach given by the

agglomerative clustering method is the K-Means approach. Given a number of

clusters K this minimises the squared distance between each dot and its closest

cluster centroid. A full description of this method can be found in [Bishop, 2007]

but we assert that it is impractical to use it as a descriptor. While faster than an

agglomerative approach it too must use an iterative process to find the best fit K
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(a) Step 1. (b) Step 3.

(c) Step 6. (d) Step 7.

(e) Step 8.

Figure 3.10. Agglomerative Clustering Method

(although there are also a number of di↵erent seeding algorithms). have found the

results to be less than satisfactory.

The agglomerative clustering method has to perform a large number of computations as it

requires the nearest neighbours for each dot to be found (not estimated nearest neighbours

as we will consider later) and involves an iterative process comparing cluster distances.

As a result it may be infeasible to use as the basis for a change identifier.

3.3.5. Dimensionality

Measuring the appropriate dimensionality can be performed in several ways and, like

connectedness, we can envision both discrete and continuous measures: measuring the
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apparent dimension the pattern is in and measuring the degree to which a pattern fits a

given dimension respectively. Within this work all these measures are assuming a planar

space so the dimensionality measures are focused on identifying how linear a pattern

is. However most of these are directly extensible into further dimensions. There is also

the scope for measures that allow for 1-dimensional non-linear patterns (e.g. a S-shaped

configuration), and indeed we suggest in future work that extending the set of descriptors

would be a useful endeavour.

Example Methods:

• Correlation Co-e�cient – Measuring how closely the pattern conforms to its

linear estimator the pattern is. The correlation co-e�cient can be found using the

Pearson co-e�cient correlation equation, if cov(X,Y ) is the covariance of X and Y

and �
X

is the standard deviation then the Pearson co-e�cient correlation is:

cov(X,Y )

�
X

�
Y

If we are using PCA to find the gradient then we already have the covariance matrix

for X and Y so may be able to save processing time by using them in conjunction.

• Principal Component Eigenvalue Di↵erence – Taking the pattern’s eigenvalues

and finding how weighted one is over the other. In 2-dimensions we can measure

how linear the pattern is by the di↵erence between the principal eigenvalue and the

orthogonal eigenvalue divided by their sum. The closer to 1 this value returns the

more 1-dimensional the pattern.

3.3.6. Dispersion

This is possibly the most far-reaching of the classes in that it attempts to describe the

layout of the pattern: How dense is it? How homogenous is its density? etc. As a result it

has a large number of potential descriptors with a range of di↵erent complexities. It may

be the case that multiple descriptors from this class are required to accurately measure

change. If this is the case the class may need to be split into separate sub-classes5.

Example Methods:

• Cardinality – Simply the number of dots in the pattern.

• Global Density – The global density of the pattern: Cardinality divided by an

extent measure, usually the bounding box area but variance is an equally valid

option.

• Estimated Nearest Neighbour Distance Variance – This is a method that

returns a value for how clustered a pattern is, and is computed as the variance in

distances between estimated nearest neighbours. To avoid the high computational

5This relies on such classes being identifiable
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complexities su↵ered when finding nearest neighbours we use the nearest neighbour

in the plane aligned dimensions. If the patterns are stored in a data structure

that is sorted by all dimensions of the space the pattern is embedded in (e.g., in

a Cartesian space a structure sorted by x and y) then this can be estimated in

O(log n) time (assuming a O(log n) search time). It is not possible to be sure that

the actual nearest neighbour has been found, as is demonstrated in Fig. 3.11. Using

the estimated nearest neighbour di↵erence, b would be identified as the nearest dot

to O while a is its actual closest dot; the dots that surround O in the cardinal

directions are closer in x or y coordinates than a and would therefore be adjacent

to O in the data structure. For large dot patterns such exceptions will not greatly

change the nearest neighbour distance variance so we can accept the estimation that

this method produces.

o

a

b

Figure 3.11. The case when the x and y ordered trees will not locate the nearest neighbour. ~oa is
5 units in length while ~ob is 6.1 units.

• Skewness – Skewness is a measure of the how uneven the distribution of a pattern

is from the mean, often thought of as how much the histogram of the data slants to

the left or right. It is given by:

s =
µ
3

�3

where µ
3

= E[(X � E[X])3]

In which � is the standard deviation and E[X] is the expected value of X, for the

purposes of a dot pattern this is equivalent to X̄.

• Kurtosis – Kurtosis is the measure of how even the distribution of the pattern is,

often thought of as how flat its histogram would be. Kurtosis makes use of the fourth

moment about the mean6 and is therefore related to skewness which uses the third.

It has the equation:

k =
µ
4

�4

where µ
4

= E[(X � E[X])4]

6Moments about the mean are values used to describe probability distributions and have the general form
µ

k

= E[(X � E[X])k] for the k

th moment about the mean, for example the second moment about the
mean is the variance.
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3.4. Descriptor Analysis

The descriptors range from simple measures to comparatively complex statistical analysis.

For the purposes of this thesis it is necessary for the descriptors, when used within a

change identifier framework, to be computable within a reasonably short time. At this

point we must clarify that the descriptors are not algorithms, although descriptors often

suggest an algorithm. For example, Kurtosis is strictly defined by a mathematical formula

but there are numerous ways to implement the formula. It is possible that the more

complex descriptors will fail to meet this time constraint (e.g., greatest jump agglomerative

clustering), particularly considering that multiple descriptors will likely need to be used

to fully explain each pattern. However, it is also known that many of the descriptors will

operate within the same classes and, as described above, therefore only a subset of the

descriptors may be required. The task is to decide upon a set of descriptors for which each

descriptor provides unique information while minimising the time it takes to run the set.

To assess information redundancy a method is required to identify the similarities between

the descriptors; using heat maps [Sneath, 1957] of a correlation matrix provides a visu-

alisation of the relationships between descriptors. A heat map is a graph for which each

mapped point is shown as a colour from a spectrum, with high values at one end and low

values at the other. The heat map shown below uses the standard approach of ‘cold to hot’

colouring, with low negative values being blue and high positive values being red. Given

that the map is overlaying a correlation matrix, red indicates a strong positive correlation

and blue indicates a strong negative correlation. Before creating the correlation matrix a

set of dot patterns on which to run the descriptors is required. For a dynamic dot pattern

based on a collective each pattern is related to the others within the set; usually as the

dots have a concurrent identity, representing the same entities. This relation means that

a correlation matrix of descriptors over a dynamic dot pattern will likely show false cor-

relation. For example if the dynamic dot pattern represents a migrating herd: The herd

is traversing a particularly wide and long stretch of their route leaving themselves open

to predation. As a result the herd’s extent decreases as the animals huddle together for

safety, nevertheless some of the members are caught and devoured. Such a dynamic dot

pattern will show strong correlation between cardinality and bounding box area. While

these descriptors may well be correlated there is no way of knowing if the correlation is

indicative of the behaviour of the underlying collective or the relation between the descrip-

tors. To make sure that such possible false assumptions are avoided an automated method

is used to generate sets of unrelated and randomly shaped patterns (while remaining aware

of the pitfalls of assumptions based on test data described by Laube [Laube and Purves,

2011] and discussed in the background chapter Chapter 2). The randomly generated pat-

terns can contain obvious concavities and can di↵er in extent, cardinality, connectedness,

dimensionality, distribution and orientation. An example of some of the patterns that can

be produced by this method is shown in Fig. 3.12

We must be careful, however, not to assume classhood solely on the basis of a correlation

of heat map values. For example the first heat maps produced showed a correlation

between the variance of nearest neighbour distance and the area of the bounding box.
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Figure 3.12. Examples of dot patterns produced using the random generation method

This is a logical result as the smaller the area in which the dots are situated the more

likely they are to lie close to each other. However this correlation is not one that shows

redundant information as the aim of the nearest neighbour distance variance is to describe

the dispersion of the pattern whereas the area intends to show extent. Instead of finding

a correlation indicating concurrent classhood instead a flaw has been found in the nearest

neighbour distance variance. To remove this false concurrency the nearest neighbourhood

variance needs to be scaled by an extent measure; the important information is not the

variance of the distance but the variance in what proportion of the available distance is

taken up by a dot and its nearest neighbour. The heat maps, therefore, do not show just

which descriptors are superfluous but also those which need to be modified before use.

Position is not included within the heatmap as it is, for patterns in a cartesian planar space,

a pair of values and as such cannot be used within the correlation matrix. However even

if we could include position within the heatmap it is unlikely to provide any correlations

outside its class; all the descriptors that use dot locations7, apart from the eigenvalue,

di↵erence are relative to the centroid.

Fig. 3.13 shows a map for all the descriptors together. We are primarily interested in

uniqueness within each class but by graphing them all together we may find unexpected

correlations. The descriptors have been grouped by their respective classes:

Orientation: Principal component vector gradient and gradient of ‘Line of best-fit’

found via the linear regression method of Ordinary Least Squares.

Connectedness: The number of clusters with in an agglomerative clustering heirar-

chy that is found at the stage before the greatest jump in distance when joining the

clusters together.

Extent: Area of the bounding box, the estimated diameter squared of the pattern

7Of the descriptors we provide, only cardinality does not make use of dot position data.
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Figure 3.13. Correlation Heat Map: All Descriptors

and the variance from centroid.

Dispersion: The variance in distance between nearest neighbours, the cardinality

of the pattern, the density of the pattern within its bounding box, the excess kurtosis

and skewness.

Dimensionality: The absolute sample coe�cient correlation, the absolute Pearson

coe�cient correlation and the absolute di↵erence between the eigenvalues divided

by their sum.

While above it was shown that the orientation methods can produce very di↵erent results

(Fig. 3.9) the heatmap demonstrates that they increase and decrease in their values con-

currently; leaving the choice of the most appropriate descriptor to be based on which can

be performed in the fastest time.

As the agglomerative clustering identification method is currently the only one of its type,

and is without strong correlation to any other descriptor there seems little need for further
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discussion on its behaviour for the moment.

As might be expected, the descriptors within extent all correlate strongly with each other,

so choosing the best extent descriptor will simply be a matter of finding the one that can be

computed in the fastest time. Of particular interest in the extent descriptors correlations

is the fact that the estimation of the diameter correlates so strongly with the other extent

measures – justifying its use as a measure of extent.

The dispersion methods are a ‘mixed bag’, encompassing a large range of descriptors which

can provide information about the layout of a pattern, but do not necessarily fit in the

more strictly defined classes. Thus, it is not surprising that there is little correlation within

this class. The two descriptors that show correlation are density and kurtosis. These also

show strong correlation with the extent measures and, with a cursory examination, the

fashion in which they are related is revealed. Excess kurtosis is a measure of how flat

the distribution is (not strongly clustered around a single point), a pattern with a large

extent is less likely to be strongly clustered8 as there is more space in which the dots

can exist. The density is inversely proportional to the extent because it is the cardinality

divided by the area of the bounding box. Consequently, the relationship between kurtosis

and density is made clear; they are linked by their relationship to extent. The nearest

neighbour descriptor shows a weak negative correlation with the dimensionality descriptors

because the estimated nearest neighbour distance variance measures the uniformity of the

patterns distribution, and the closer to collinearity a pattern is the less the variance of the

distance between nearest neighbours is likely to be (Fig. 3.14(a)). However we can easily

conceive of situations in which the nearest neighbour variance is high and the collinearity

is high (Fig. 3.14(b)) or alternatively in which both are low (Fig. 3.14(c)). The exception

case for high collinearity and high nearest neighbour variance is probably quite rare in

real-world situations, however we suspect that the low nearest neighbour variance and low

collinearity situation is not. Hence we do not remove the nearest neighbour variance in

favour of a dimensionality measure or vice-versa. This does highlight a possible flaw in

using heat maps in that they can show correlation that is only indicative of a trend in

the test patterns, and as a result we tend to ignore any correlations that are only weakly

negative or positive.

(a) Low nearest neighbour
variance and high collinear-
ity

(b) High nearest neighbour
variance and high collinear-
ity

(c) Low nearest neighbour
variance and low collinearity

Figure 3.14. Examples of di↵erent values for estimated nearest neighbour variance and collinearity

8Although it is possible to conceive of a pattern with a high proportion of the dots in the centre and a
few outliers increasing the extent.
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The dimensionality descriptors all show strong correlation as might be expected. It should

be noted that we are using the absolute values for the coe�cient correlations and return-

ing a value of 1 when the pattern is completely horizontal or vertical. Without these

amendments the coe�cient methods can return negative values relating to the slope of

the pattern and will return a NaN (Not a Number) value for linear horizontal or vertical

patterns. In fact if these amendments are not made then the sample and Pearson de-

scriptors both show correlation with the orientation methods. The eigenvalue di↵erence

measure, however, will show how ‘linear’ the pattern is regardless of its orientation.

The kind of analysis performed with the heat map shows the correlation between two

descriptors, which is similar to the influence correlation considered by Andrienko and

Andrienko [Andrienko and Andrienko, 2007]. However it does not provide information

similar to the structure correlation in which two descriptors would have to interact and

correlate with a third. For example, descriptor desc
1

does not correlate with desc
2

or desc
3

but does with desc
2

[desc
3

. This kind of correlation is not easy to identify but we examine

how the selection of change identifiers, and thereby their descriptors, in Chapter 7.

Figure 3.15. Time taken (nanoseconds) per dynamic dot pattern phase: All Descriptors

With sets of descriptors that do not contain correlated measures the computation time for

each set must be examined. Fig. 3.15 is a plot of the time taken in nano-seconds for each

descriptor to compute a value for each phase in a randomised dynamic dot pattern set

of length 3000 and a maximum pattern cardinality of ⇡ 500 dots. For clarity the graphs

have been plotted every 10 phases and then linearly interpolated.

There are three distinct ‘bands’ that are apparent in Fig. 3.15. Band 1 is the singleton
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containing just the agglomerative clustering descriptor, by far the most computationally

expensive of the descriptors as it has a long iterative process. Even so the average com-

pletion time for the agglomerative clustering for each timestep is only around five seconds.

Five seconds is probably too long a time for it to be used as a change identifier but for a

pattern of approximately five hundred dots this is not an unreasonable time in which to

find clusters given the computational complexity of the task.

The second band contains the descriptors for average nearest neighbour distance, the

sample co-e�cient correlation, the variance of the distance from the centroid and the

skewness. All of the measures require more than one pass through the pattern: the first

to find the mean, standard deviation, etc.; the second to use the values from the first pass.

This may account for their taking longer than those in the third band despite many of the

third having the same theoretical complexities.

The third band contains the rest of the descriptors. It should be noted that some of these

descriptors share information and therefore we cannot say that any descriptor within a

band necessarily outperforms another within that same band as their values may depend

partially on the order in which they are processed.

The three-part banding indicates the fastest descriptors but the correlations show that

some measure the same aspects of the pattern. The ‘best’ descriptor set to use will have

the fastest descriptors with no correlations. The following graphs are plots of time taken

against timestep for each of the descriptor classes so that we may find the fastest in each:

Extent: Fig. 3.16.

Orientation: Fig. 3.17.

Connectedness: No figure required as it is a class containing just the agglomerative

clustering descriptor.

Dimensionality: Fig. 3.18.

Dispersion: Fig. 3.19.

As has already been discussed, dispersion shows little in the way of correlation apart from

the negative correlation of excess kurtosis with the bounding box density, but it has been

included for completeness.

Fig. 3.20 shows the average time taken for each class against time steps. This is provided to

give a sense of how similar the classes are in computation, apart from the class containing

the agglomerative clustering descriptor.

With the information about the class speeds known we can create a set of the fastest

completing descriptors from each class. This should give a good base set of descriptors on

which we can construct change identifiers; completing in a minimum time while avoiding

correlating, and therefore surplus, measures. Fig. 3.21 shows two sets using the fastest

descriptors both with and without agglomerative clustering. For the change identifiers
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Figure 3.16. Time taken (nanoseconds) per dynamic dot pattern phase: Descriptors of extent

Figure 3.17. Time taken (nanoseconds) per dynamic dot pattern phase: Descriptors of orientation
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Figure 3.18. Time taken (nanoseconds) per dynamic dot pattern phase: Descriptors of dimension-
ality

Figure 3.19. Time taken (nanoseconds) per dynamic dot pattern phase: Descriptors of dispersion
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Figure 3.20. Average time taken (nanoseconds) per dynamic dot pattern phase: All classes

we will use only the set without the agglomerative clustering to avoid its high processing

time.

3.5. Summary

This chapter has provided a list of descriptor classes and a set of non-correlated descriptors

with a representative for each class. The descriptors have been timed and the fastest

performing have been identified. It should be noted that speed is not the only indicator

of quality for the descriptors. How fast they are to compute does not indicate the level at

which they will be able to successfully identify change. To accurately measure this change

indication ability requires us to use the descriptors in the change identifier framework.

We will examine this in Chapter 5 and show results of experimentation in Chapter 7. We

content ourselves here with measuring the facets of the descriptors that exist regardless

of change.
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Figure 3.21. Time taken (nanoseconds) per dynamic dot pattern phase: Fastest non-correlated
Descriptors
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The example use of change identifiers provided by this thesis is in the reduction of the

number of updates of a footprint over a dynamic dot pattern. The previous chapter

examined dot patterns and so, before discussing change identifiers, we must be sure we

have a clear understanding of the nature of footprints.

The sheer number of algorithms described in the background chapter gives a good indica-

tion of the myriad applications in which footprints are required. These applications range

from mapping molecular structure [Edelsbrunner and Mücke, 1992] to region approxima-

tion for geographic gazetteers [Alani et al., 2001]. Some of the papers make no mention

of a specific application; indicating that their algorithm is intended to be applicable to a

range of di↵erent problems (e.g., Jarvis March [Jarvis, 1973] and �-hull [Duckham et al.,

2008]). Given this ‘broad strokes’ approach taken across the field it is perhaps not sur-

prising that there is a dearth of material that assesses why a footprint may be a ‘good’

footprint for any given application. This chapter provides a discussion on what a footprint

is and a classification of the types of footprint that appear in the literature.

4.1. What is a footprint?

The previous chapters in this thesis have avoided formally defining a set of axioms to

describe what is and, perhaps more importantly, what is not a footprint. This wariness

has arisen from the desire to not exclude any of the shapes created by existing footprint

algorithms. However without a clear distinction between footprints and any other entity

with which to describe a dot pattern it will be di�cult to select a measure of error when

considering how well the footprint has been maintained over a dynamic dot pattern.

Di�culties arise from the large number of applications in which spatio-temporal patterns

are used as the base on which to generate characterisations of application-interest. With

so many di↵erent possible requirements how can it be claimed that any interpretation, no

matter how unusual, is invalid as a footprint? When considering this question we should

bear in mind the driving problem for this thesis: To be able to identify when it would

be most appropriate to update a footprint by looking at the di↵erences between two dot

patterns. For this to be possible the footprint definition must relate the di↵erence between

two dot patterns to the di↵erence between their footprints. It should be noted that for the

following discussion, when footprint di↵erence and dot pattern di↵erence, are discussed

we assume the existence of some ‘perfect’ di↵erence measure that captures all aspects of
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di↵erence. This is so that the examination of the relation of dot pattern di↵erences to

footprint di↵erence does not get mired in an analysis of di↵erence measures.

Obvious constraints that can be examined are that of monotonicity and that of continuity

of di↵erence values for the dot patterns leading to continuity in the di↵erences between

the footprints.

By monotonicity we mean that the footprint di↵erence should be strictly monotonically

increasing with the dot pattern di↵erence, and at first glance such a requirement seems

sensible; giving assurance to the validity of the use of change identifiers to indicate when

to update a footprint. However even this simple specification falls prey to the nebulous

nature of the footprint. Consider a convex hull algorithm, should a dot pattern change

such that its extremal points in the plane remain unchanged then the convex hull will

also remain the same (see Fig. 4.1). Given the number of examples of such algorithms

within the literature, and their obvious usefulness in describing the region inhabited by a

dot pattern, it cannot be said that convex hull algorithms are not footprint algorithms,

therefore we cannot require that the footprint di↵erence is monotonic to the dot pattern

di↵erence.

(a) �

i

(b) �

i+1

Figure 4.1. Example of the convex hull remaining the same despite di↵erences between the dot
patterns.

Since the footprint and dot pattern di↵erence does not increase strictly monotonically a

relaxed version of the requirement can be examined: That the di↵erence should never vary

inversely. Despite the apparent simplicity of this requirement we can envision a situation in

which three subsequent dot patterns decrease in di↵erence while their respective footprints

show an increase. An example of this inverse change in di↵erence can be seen in Fig. 4.2.

Having shown that we can not require that footprint and dot pattern di↵erence be mono-

tonic we can instead consider continuity. Continuity is a desirable property because if two

adjacent phases of a dynamic dot pattern exhibit only small di↵erence but their footprints

exhibit a large one then the change identifiers may not be able to indicate that a footprint

update is required. Considering that a dynamic dot pattern consists of discrete phases

there is no way to be sure of continuity in dot pattern di↵erence, the closest that can

be achieved is consistent small di↵erences relative to the pattern extent. For most of the
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(a) �

i

(b) �

i+1: Dot pattern is
very di↵erent from �1; the
footprint has changed only
slightly.

(c) �

i+2: Dot pattern dif-
ference between �

i+1 and
�

i+2 has decreased from
di↵erence between �

i

and
�

i+1; the footprint di↵er-
ence has increased

Figure 4.2. Example of pattern di↵erence decreasing while footprint di↵erence increases.

examples considered within this thesis the dynamic dot patterns show only these small

di↵erences. However the footprint di↵erences need not be similarly small, the Swinging

Arm algorithm [Galton and Duckham, 2006], for example, can create footprints that di↵er

greatly between timesteps when the dot patterns di↵er only slightly (see Fig. 4.3).

Line Length

(a) �

i

Line Length

(b) �

i+1

Figure 4.3. Example of small di↵erence between dot patterns leading to large di↵erence between
footprints created by the Swinging Arm algorithm. The red dot is further to the left in �

i+1 and,
as such, the line length is no longer long enough to reach it.

A recurrent problem is that di↵erent footprint algorithms are sensitive to varying aspects

of di↵erence between the footprints. For example a convex hull algorithm is sensitive

to di↵erences in pattern extent but ignores the internal dots, whereas the �-hull can be

entirely altered by internal di↵erences. In fact there appears to be a loose hierarchy

of footprint types: di↵erences that change a non-convex footprint can leave the convex

hull intact, and di↵erences that change a convex-hull can leave the bounding box intact.

However if a footprint is allowed outliers (dots outside of the footprint region(s)) then both

the bounding box (and therefore the convex hull) can di↵er while leaving the footprint

with outliers unaltered.

So far the discussion has looked at the requirements that can be made on the footprint

algorithms against the cumulative di↵erences of the patterns. An alternative approach is

use the individual aspects of the patterns to relate a dot pattern to its footprint

78



4. Footprints

• Scale: If the dot pattern is magnified then the footprint is magnified by the same

factor.

• Translation: If the dot pattern is shifted then the footprint is shifted by the same

vector.

Unfortunately similar statements cannot be made for rotation or reflection as some of the

algorithms are not invariant with respect to these translations when applied to the dot

patterns. For example the Swinging Arm algorithm can produce two di↵erent footprints

for the dot patterns DP and DP 0 where DP 0 is a reflection of DP .

4.1.1. A Troublesome Example

There is a type of footprint algorithm which disrupts any attempt at a strict footprint def-

inition. Consider a footprint algorithm that uses the dot pattern as a seed to a stochastic

process1. The footprints produced by such an algorithm will vary wildly for small di↵er-

ences between the dot patterns. We can even place restrictions on the algorithm such that

the footprints it produces remain in a fixed position relative to the dot pattern and that

its convex hull is proportional to the convex hull of the dot pattern. The algorithm now

produces footprints which fit our loose requirements for scale and translation but can still

produce vastly di↵erent footprints for patterns that di↵er only slightly. Algorithms such

as the above are valid footprint algorithms in the respect that our requirements do not

discount them but are clearly not particularly useful characterisations of the dot pattern.

It appears that the question of the validity of any particular footprint is fated to rely on

a specification that can be only either too stringent or too relaxed.

As mentioned earlier, there are myriad applications in which footprint algorithms are

used, and it is only the intention of the users of these algorithms for the result to be a

representation of the pattern that makes them footprint algorithms. We would expect

that any algorithm could be considered a footprint algorithm if the intention behind its

use is to produce an output that provides a ‘useful’ (for that application) description of

the dot pattern. However such reasoning becomes dangerously vague; treading close to a

tautology and defining a footprint as an entity which is being used as a footprint.

If intention of use is so important to the definition of a footprint algorithm then we may

be able to tighten the boundaries of a footprint definition by considering the requirements

that need to be in place for this thesis to produce experimental results. We shall state

that, for this thesis, footprints are bounded regions; with the caveat that these bounded

regions may contain degeneracies. Degeneracies are sections of the footprint with no area

(line segments or points) that can take the form of separate components of the footprint

or as branches o↵ of a region (see Fig. 4.4)

It may seem strange to allow degeneracies when a ‘pure’ bounded region seems like a more

useful requirement. However there are dot patterns, like that shown in Fig. 4.4, for which

1This example was suggested by Richard Everson.
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A

Figure 4.4. Example of a dot pattern in which a degenerate line may be desirable.

a degenerate line may be part of an accurate characterisation of the dot pattern. In such

cases algorithms like the Swinging Arm algorithm and the ↵-shape [Edelsbrunner et al.,

1983] can (depending on the parameter used) identify dot A as being close enough to its

neighbours so as to be qualitatively di↵erent from the outliers, while being far enough from

the connected region for the restriction on line length to preclude it making up a part of

that region. For an application trying to identify collectives (e.g. movements of groups

of people through a shopping centre) such dots may well be important. Arising from this

region restriction is the fact that we can ignore internal partitions of the footprint2, for

example the Delaunay triangulation is not a footprint but the region enclosed within the

union of its cells is.

We will also state that, for the change identifiers to be e↵ective, we are looking at only

the class of footprint algorithms that produce footprints for which the di↵erences are

globally monotonic with the dot pattern di↵erence. Globally monotonic allows for small

‘departures’ from monotonicity if the majority of the di↵erences are monotonic. This is a

slightly vague term but a threshold cannot be placed on the proportion of allowed depar-

tures without it being entirely arbitrary. In essence, the more monotonically increasing

the di↵erence for the footprint is with the dot pattern di↵erence the better.

Further to restricting the footprint to a bounded region we also note that the existing liter-

ature has a strong tendency to use footprints that are planar, and it would be tendentious

to start going too far beyond that which is required by the current applications.

Such a set of considerations, while not particularly strict, allows us to make some as-

sumptions about the type of footprints that will be produced in the experimentation and

therefore the analysis that can be performed on them.

4.1.2. Unique Footprints

There are some footprint types for a pattern which are distinctive. Any footprint with a

specification that is unique on a particular dot pattern is, at least intuitively, di↵erent to

a general footprint. Perhaps this is easier understood by the observation that there are

2Although not its cavities.
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FootprintsDot Patterns

b

a

Footprint
Algorithm

Figure 4.5. Figure showing that a footprint algorithm is not injective, both dot patterns a and b
map to the same footprint.

some footprints which are named and the name uniquely defines them for a pattern, for

example the convex hull, the minimum bounding disc and the minimum bounding rectan-

gle. We add the identity footprint to these as the footprint for which each dot is a distinct

component of the footprint with no extent; in e↵ect the dot pattern itself3. It may be

that such footprints are only unique in that they fit with some human understanding, for

example why are they any di↵erent from a footprint named “The ↵-hull for an ↵ value of

0.1”? Indeed, if we rename such a footprint the 0.1-hull we see that there is no real math-

ematical distinction. However the 0.1-hull is not an obviously useful footprint, whereas

the others commonly appear in the literature (e.g. the convex hull) or are intuitively

di↵erent (e.g. the identity footprint). Hence human intuition appears to be the key factor

in distinguishing between unique and non-unique footprints. Although we also note that

the unique footprints we give as examples are all minimally bounding with respect to the

dots and that this may play an important part in why we consider them as qualitatively

di↵erent from the 0.1-hull.

4.1.3. Information Content

As a representation of the pattern the information content of the footprint is a measure

of how well it defines that pattern. Note that this says nothing about the quality of the

footprint which, as discussed, is di�cult to judge, but is more an indication of how well the

dot pattern could be re-created given just the footprint. We draw a distinction between

the information content of the footprint and that of the dot pattern; while the footprint

is created from the pattern, the mappings implied by the footprint algorithms are not

injective (Fig. 4.5). There is a loss of information in that, even given the algorithm (and

parameter if required) which created it, no footprint uniquely defines a pattern (except

3While a region-less footprint may not be particularly practical it is a useful conception to discuss some
footprint properties.
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the identity footprint). However, given a specific algorithm with determined parameters

a pattern uniquely defines one footprint. Importantly it should noted that the loss of

information is not the same as having less information. The number of bits of data

required to draw the footprint is not representative of the ability to retrieve the dot

pattern from the footprint and can be greater than that required to draw the dot pattern.

Yet, for most sensible examples4, how well the dot pattern information can be estimated

from a footprint is often related to the number of bits required to draw it. For example

a sample of points within the footprint of Fig. 4.6(c) has a better chance of being similar

to the actual dot pattern than a sample of points within the footprint of Fig. 4.6(a).

While we have been careful to show examples where a footprint specification may require

greater memory space than a dot pattern, for dot patterns with areas of high density the

data content of the footprint is unlikely to be greater than that of the dots; as the density

increases so does the likelihood that fewer dots are on the boundary of the footprint. Some

footprint algorithms (e.g., DSAM [Alani et al., 2001]) are created explicitly to produce

a representation with a lower memory requirement than the dot pattern. Therefore for

most real-world applications in which footprints may need to be found it is likely that

footprints with less data content than that of the dot pattern is preferred. Fig. 4.6 shows

the di↵erences in information content that di↵erent footprints on the same pattern can

have.

The complexity of a footprint algorithm is loosely tied to the information in the footprint it

produces; as the amount of information in the footprint increases there will be a tendency

for the computational complexity of the algorithm to increase. Largely this is due to the

need for iterative processes and validity checks. For example the �-hull is more computa-

tionally complex than the Jarvis March/Gift-Wrapping algorithm which is, in turn, more

computationally complex than an algorithm for defining the isothetic minimum bounding

box. This is not a true relation but a tendency of the algorithms in the literature; some

algorithms have low information content but a high complexity, for example an algorithm

to find the minimum bounding disc. An algorithm to reproduce a dot pattern need only

record the location for each dot, and as such, footprint algorithms are generally far more

complex. While it is possible to come up with footprint algorithms less computationally

complex than a dot pattern recreation algorithm, this tends to involve having a footprint

algorithm ignore the dot pattern (e.g. it simply draws a square with a set length with its

top left corner being the first dot it encounters), or by adding wasteful steps to the dot

pattern algorithm. As a final point on information and how it applies to footprints, we

note that an algorithm to define the identity footprint produces a footprint with identical

information to that of the dot pattern (Fig. 4.6(f)) with a computational complexity of

O(n); it simply needs to record each dot location. Such an algorithm is bijective (as a dot

pattern has only one identity footprint and an identity footprint has only one dot pattern)

and therefore unusual amongst the footprint algorithms found in the literature.

4It is easy to add extra information to a footprint without increasing the ability to retrieve the dot pattern
by adding lines that render the footprint a worse representation
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(a) The convex hull. (b) The footprint has a greater informa-
tion content than the convex hull and
more closely represents the pattern.

(c) Depending on how the footprint is
stored, this footprint can use more mem-
ory than the dot pattern.

(d) The footprint is still a single compo-
nent but it is no longer a jordan curve.

(e) Dots are joined by degenerate lines;
the footprint has no area.

(f) Each dot is a component. The infor-
mation content of the footprint and the
dot pattern are identical as the footprint
is the identity footprint.

Figure 4.6. Changes in information content for a footprint over a small dot pattern

4.2. Footprint Classification

In the background chapter a summary was given of work performed by Galton and Duck-

ham [Galton and Duckham, 2006] and Galton [Galton, 2008]. These papers provide an

insight into some of the aspects that need to be addressed when assessing the quality of

an algorithm. Building on the work by Galton and Duckham, this author and Galton pro-

duced a classification [Dupenois and Galton, 2009] by which to draw distinctions between

di↵erent footprint types. The footprints are delineated into classes with the aim of being

able to provide reasons why they might, or might not, be suited to a specific application.

This section of this chapter will discuss and extend the footprint classification.

The classifications have been split into two sections: intrinsic, concerning the footprint

independent of the dots, and relational, examining the relationship between the dots and

the footprint. When the footprint is expected to change, the delineation between intrinsic

and relational classifiers becomes more distinct. A change in any of the intrinsic values

would indicate a complete change of footprint type. Any relational change is minor and to

be expected when using change identifiers, for example whether or not all dots are within

the boundary of the footprint is almost certain to change when using a dynamic dot
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pattern. It should be noted that the classification is not an exhaustive taxonomy of shape

but showcases the features drawn from the common di↵erences between the footprints

created by the algorithms in the existing literature.

4.2.1. Intrinsic footprint criteria

[C] Connected: The footprint consists of a single connected component.

Figure 4.7 shows examples of connected and disconnected footprints for the same dot

pattern. Some algorithms will always generate a single connected component, implicitly

assuming that any clustering has been done beforehand, with the algorithm being applied

to individual clusters (e.g., Concave Hull [Moreira and Santos, 2007], �-shape [Duckham

et al., 2008]); others can yield footprints with multiple components (e.g., Swinging Arm

[Galton and Duckham, 2006]). The desirability or otherwise of multiple components is

application-dependent, e.g., if only connected footprints are appropriate, use an algorithm

guaranteed to produce such components.

(a) Connected [C] (b) Multiple Components [¬C]

Figure 4.7. Connectedness examples

[R] Regular: The footprint is topologically regular.

Assuming the footprint is topologically closed, this criterion tells us whether or not the

footprint contains boundary elements that do not bound the footprint’s interior, such as

the linear ‘spike’ in Fig. 4.8(c) or the isolated linear component in Fig. 4.8(b).

(a) Regular (b) Irregular and disconnected
[¬R ^ ¬C]

(c) Irregular [¬R]

Figure 4.8. Regular

[P] Polygonal: The boundary of the footprint is made up of only straight lines.

For a polygonal footprint the boundary is made up entirely of straight line-segments as

opposed to curves. (Fig. 4.9).
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(a) Polygonal [P] (b) Curvilinear [¬P]

Figure 4.9. Polygonal

[JC] Jordan Components: Each component of the footprint has a Jordan boundary.

A Jordan boundary is a boundary which is a Jordan curve, i.e., homeomorphic to a circle.

Such a boundary does not meet itself, so it is possible to traverse the entire boundary

passing through each of its points only once. (Fig. 4.10(a)). In Fig. 4.10(b) the component

with a non-Jordan boundary is represented as a ‘bow tie’ shape; of course this is not the

only way the Jordan property can fail.5

(a) All Jordan Components [JC] (b) Not all Jordan Components
[¬JC]

Figure 4.10. Jordan Boundary

(a) Simply Connected
[SCC]

(b) With Cavity [¬SCC]

Figure 4.11. Simply Connected

[SCC] Simply Connected Components: Each component of the footprint is simply con-

nected.

A component that is not simply connected contains a ‘hole’ (Fig. 4.11(b)). In two dimen-

sions this means that the boundary is disconnected, with one of the boundary components

facing the ‘outside’, and each other component bounding an internal cavity.6

5In relation to the ‘bow-tie’ configuration, if the footprint is formed by tracing out its boundary, then
the constriction point may be either a self-intersection, where the boundary actually crosses itself, or
a pinch point, where the boundary touches itself without crossing. An intersection or pinch-point may
or may not occur on one of the dots; examination of the algorithms suggests that a self-intersection is
more likely to occur away from a dot, whereas the opposite is true for a pinch point.

6In three dimensions there are more varieties of connectivity to consider, e.g., the distinction between
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4.2.2. Relational footprint criteria

[CED] Curvature Extrema at Dots: All curvature extrema of the footprint boundary co-

incide with dots.

Very often a footprint is constructed by tracing its boundary through some or (more rarely)

all the dots of the dot pattern. In such cases it is typical for the dots to mark curvature

extrema of the outline; this is the normal situation when the outline is polygonal, with

the dots at its vertices (Fig. 4.12(a)), and is always found in the case of the convex hull.

Note that this criterion is independent of whether all, some, or none of the dots occur on

the boundary (which is given by criteria [ADB] and [NDB] introduced next), as shown by

Fig. 4.12, where each value for one criterion can co-occur with each value of the other.

However, [CED] ^ [NDB] (all curvature extrema are dots and all dots are o↵ the boundary)

can only be true if the footprint is circular, in which case there are no curvature extrema,

so [CED] is true by default.

ADB ¬ ADB ^ ¬ NDB NDB

CED

¬CED

Figure 4.12. Curvature Extrema and Dots On/O↵ Boundary

[ADB] All Dots on Boundary: All of the dots lie on the boundary of the footprint.

In general we would not expect footprints to satisfy this criterion, but in some applications

the dots are specifically intended to represent boundary points, and in such cases this

criterion is appropriate. As mentioned above [ADB] is linked to, but distinct from, whether

or not the curvature extrema coincide with dots (Fig. 4.12).

[NDB] No Dots on Boundary: None of the dots lie on the boundary of the footprint.

Criteria [ADB] and [NDB] cannot be simultaneously satisfied, thus they are not indepen-

dent. As with [ADB], [NDB] is linked to, but distinct from, whether or not the curvature

extrema coincide with dots (Fig. 4.12) as both [NDB] and [CED] can only be true for a

circular footprint. Some algorithms (e.g., the Voronoi-based method of [Alani et al., 2001])

create footprints by amalgamating ‘areas of influence’ surrounding the dots. In such cases

the dots typically all lie in the interior of the footprint, and hence o↵ the boundary.

[FC] Full Coverage: All of the dots are included in the closure of the footprint. It is

an internal cavity and a perforation. For simplicity (and because the majority of algorithms are in
2-dimensions) we do not discuss these extensions here.
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(a) No Outliers [FC] (b) Some Outliers [¬FC]

Figure 4.13. Full Coverage

possible that a footprint algorithm may be able to distinguish certain dots from the pattern

as ‘noise’, and as such it may wish to exclude them from the footprint. We call such dots

outliers (Fig. 4.13).

4.3. Using the Footprint Classification

With a set of criteria by which to classify the footprints a nomenclature can be created to

easily distinguish between individual footprints. When classifying a footprint the values

can be written in the form presented below:

T
x

: Footprint Type (intrinsic) x

F
⌧

: Footprint at time ⌧

I(v, x): Value of intrinsic classifier v for type x

R(v, ⌧): Value of relational classifier v at time ⌧

Note that we are using F to denote a footprint instead of foot to draw a distinction

between the footprint classification and the footprint function.

As discussed earlier, the intrinsic classifiers are the more ‘concrete’ classifiers and the

relational are more prone to change with time. This distinction can be used to produce a

listing to describe the footprint at a given time:

T
1

= {I(C, 1), I(R, 1), I(P, 1), I(JC, 1), I(SCC, 1)}

F
⌧

= {T
1

, R(CED, 1), R(ADB, 0), R(NDB, 0), R(FC, 1)}

A shorthand representation can be created by requiring that the intrinsic and relational

classifiers always appear in the given order {C,R,P,JC,SCC} and {CED,ADB,NDB,FC}
respectively:

T
1

= {1, 1, 1, 1, 1}

F
⌧

x

= {T
1

, 1, 0, 0, 1}
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The nomenclature allows the tracking of the footprint type over a dynamic dot pattern

and an example of this is shown in Fig. 4.14. If T
1

= {1, 1, 1, 1, 1} then at dot pattern

phase �
0

(Fig. 4.14(a)) the footprint is of type {T
1

, 1, 0, 0, 1}. The full tracking of the

footprint classifications of Fig. 4.14 are shown in Table 4.1.

Intrinsic Type Classification
T
1

{1, 1, 1, 1, 1}
T
2

{0, 1, 1, 1, 1}

Fig. Ref. Phase Classification
Fig. 4.14(a) �

0

{T
1

, 1, 0, 0, 1}
Fig. 4.14(b) �

1

{T
1

, 0, 0, 0, 0}
Fig. 4.14(c) �

2

{T
2

, 1, 0, 0, 1}

Table 4.1. Table showing classification of Fig. 4.14

(a) Dot pattern phase �0 (b) Dot pattern phase �1 (c) Dot pattern phase �2

Figure 4.14. Footprint type tracking example.

Before further examining the application of the classification to dynamic dot patterns we

look at what is perhaps a more generally useful aspect of the classification. As previously

mentioned, there are a large number of algorithms for multiple applications. The algo-

rithms, by virtue of their construction, are limited in the footprints they can produce for

any given dot pattern7. We can, at least in part, classify the footprint algorithms by the

footprints they produce8. Instead of the true/false value, used by the footprint classifica-

tion, the algorithms require a ternary system where �1, 0 and 1 indicate that classifier

never holds true, sometimes holds true and always holds true respectively. We introduce

the shorthand of [algorithm] is [property] to indicate that the footprints produced by that

algorithm have that property. For example the Swinging Arm algorithm ([Galton and

Duckham, 2006]) is always regular (I(R, 1) in the above nomenclature). More accurately

the Swinging Arm algorithm is regular except when the dots of the pattern are collinear;

the correct value, then, should be 0. Other algorithms have similar changes in value for

particular pattern arrangements and the value system becomes worthless if all the values

are 0 so we add two special case values: �1+ if the classifier is never true for ‘almost all’

patterns, where ‘almost all’ excludes specific and unlikely to occur pattern arrangements

(e.g., collinearity, the null pattern9 and a pattern with only one dot); and 1� for when the

classifier is always true for ‘almost all’ patterns. Some examples of this nomenclature can

7Some algorithms can produce an infinite number of footprints for a given dot pattern (e.g., ↵-shapes
[Edelsbrunner et al., 1983]), however they cannot necessarily produce all possible footprints.

8A full classification would describe their complexities, pre-processing requirements and perhaps some
description of their running process.

9An empty pattern.
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be found in Table 4.210.

Algorithm Examples C R P JC SCC CED ADB NDB FC
Jarvis March [Jarvis, 1973] 1 1� 1 1� 1 1 0 �1 1
Swing. Arm [Galton and Duckham, 2006] 0 1� 1 1� 1 1 0 �1 1
Close Pairs [Galton and Duckham, 2006] 0 1� 1 1� 1 1 0 �1 1
↵-shape [Edelsbrunner et al., 1983] 0 1� 1 1� 0 1 0 �1 0
↵-hull [Edelsbrunner et al., 1983] 0 1� 0 1� 0 1 0 �1 0
A -shape [Melkemi and Djebali, 2001] 1 1 1 1 0 �1 �1 1 1
DSAM [Alani et al., 2001] 1 1 1 1 1 �1 �1 1 1
�-hull [Duckham et al., 2008] 1 1� 1 1� 1 1 0 �1 1
s-shape [Chaudhuri et al., 1997] 0 1 1 1 0 0 0 0 1
r-shape [Chaudhuri et al., 1997] 0 1� 1 1� 0 1 0 �1 1

Table 4.2. Algorithm Classification Examples

Table 4.2 gives a good indication of the range of di↵erent approaches taken by footprint

algorithms within the literature. The only two algorithms with identical classifications be-

ing the Swinging Arm and Close Pairs algorithms, both of which were created by the same

people for the same paper. Of particular interest is the fact that all of the algorithms tend

to avoid degeneracies (i.e. are regular) except in extremal cases (such as collinear dots).

When we consider the ways in which footprint di↵erence can be measured (Chapter ??)

this will be a useful observation.

In classifying the footprints we have given an indication of the range of possible footprint

types that can be created. The type of footprint on a dynamic dot pattern can be tracked

using the nomenclature provided. While many of the relational criteria would be expected

to change (for example, in Fig. 4.14(b) the dots have moved from inside to outside the

footprint), if an intrinsic classifier value changes it is an indication that a large change

has occurred in the dynamic dot pattern (for example, in Fig. 4.14(c) the footprint is

no longer a single connected component). As discussed in Chapter 2, many footprint

algorithms require an external parameter (e.g., ↵ in ↵-shapes [Edelsbrunner and Mücke,

1992], line length in the swinging arm algorithm [Galton and Duckham, 2006], etc.). Most

of the papers describing these algorithms come to the conclusion that for their algorithm

there is no generally systematic method that can choose an appropriate parameter. Those

that do provide such a method involve an iterative construction of the footprint changing

the parameter each time until it satisfies some constraints (for example Chaudhuri et al.’s

s and r-shapes [Chaudhuri et al., 1997]). In a dynamic dot pattern the changes in the

pattern will likely mean that the parameter, even if suitable at the first time step, will

need to be changed and this is almost certain if the change has been great enough that

the footprint has changed in intrinsic type. We will look at the cost and potential benefit

of identifying the change in intrinsic footprint type further in the future work chapter.

10In which the 1� on regularity and Jordan components refers to patterns with collinear dots.
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4.4. Summary

This chapter has provided a detailed look at footprints and how they can be classified. It

has discussed the possible uses that such a classification may have and how it can be applied

to dynamic dot patterns. Importantly the investigation of footprints, in conjunction with

the examination of dot patterns, gives the forthcoming examination of change identifiers

a solid foundation. This chapter and Chapter 3 have discussed the outputs and inputs

respectively of the framework within which the change identifiers will be expected to

operate.
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The thesis has now covered the requisite background information for the change identifiers

to be formally introduced and examined. This chapter will present, in greater detail

than previously given, the reasoning behind and within the construction of the change

identifiers.

5.1. What is a Change Identifier?

Changes in collectives will correspond to changes in the geometric (and statistical) prop-

erties of its representative dynamic dot pattern. As discussed earlier it is possible that the

change in a dynamic dot pattern between two timesteps is small or even non-existent, for

example the phases shown in Fig. 5.1. For such small changes re-computing the footprint

at each timestep is unnecessary computation. In the background chapter it was observed

that there is current research into the use of spatio-temporal data techniques in emergency

situations (wild fires, chemical spills, etc. [Jiang and Worboys, 2008; Jiang et al., 2011]).

These emergency situations require a fast and appropriate response, but even when used in

non-emergency based applications (such as herd tracking) a fast and appropriate response

is desired. If the footprint algorithm takes longer to run than the speed at which the dot

patterns arrive then the representation falls behind the actual state of the phenomenon.

Table 5.1 shows an example of this when the footprint takes twice as long to run as the

time taken for a dot pattern to arrive. The first column is the current time step, the sec-

ond is the time step that the current footprint is a representation of and the third column

shows how far behind the current state the footprint is.

(a) Initial positions for
phase �0

(b) Dot pattern has
moved slightly for
phase �1

Figure 5.1. Has the dot pattern at �1 changed su�ciently for the footprint to be updated?

The figure Fig. 5.2 shows how this lag would appear following the same pattern as that

given in Table 5.1.
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Time Step Representation Lag
1 - -
2 1 1
3 1 2
4 2 2
5 2 3
6 3 3

Table 5.1. The patterns arriving at twice the speed it takes a footprint to be computed.

(a) Time step 1: The footprint has not yet
been created

(b) Time step 2: The footprint has been cre-
ated and is representative of the dot pattern
at time step 1

(c) Time step 3: The footprint is still repre-
sentative of the dot pattern at time step 1

(d) Time step 4: The footprint is now rep-
resentative of the dot pattern at time step
2

Figure 5.2. Figure showing increasing lag in footprint representation

In any application, when the representation falls behind in this fashion it hinders the user’s

ability to make decisions about the data. By reducing the number of required footprint

updates the change identifiers allow the system to produce accurate footprints faster. For

the user, this means that at any given timestep the displayed footprint can be trusted as

an acceptable representation.

Often the requirements of an application are not limited to just visualising the region of

interest but to use this visualisation to make decisions about how the events underlying

the dynamic dot pattern are changing. For example if tracking the spread of a crowd in a

shopping centre the user may want to know when clusters are forming. The change identi-

fiers can provide this information without the user having to interpret it from the footprint.

We will discuss this further when we consider possible future work (Chapter 8 § 8.3).

Once the method by which to calculate the identifiers has been decided upon, we must

provide a cognitively salient way for a threshold to be set. Salience and its importance has

previously arisen within Chapter 2 when footprint algorithms and their parameters were
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discussed; the user has to set a parameter for both change identifiers and the footprint

algorithms. The di�culty that arises comes from the generality of the expected uses

for footprint algorithms and change identifiers; di↵erent applications will have di↵erent

requirements. Parameters are necessary to allow for these di↵erent requirements, however

they add a layer of complication for a user. For example, given a dot pattern of 1000 dots,

ascertaining the correct value of ↵ to use to produce the ideal ↵-hull for an application

trying to find the boundary of a city is not an easy task. In practice such parameters tend

to be decided on by trial and error. With change identifiers there is the understanding that

time is a constraint, and therefore such trial and error approaches are probably infeasible.

By making the threshold setting as cognitively salient as possible the di�culty in choosing

an appropriate threshold can be greatly reduced. Ideally the change identifiers should be

able to have a threshold set in a way that is intuitive regardless of the application that

they are being used in.

The threshold is di�cult to set because of the inherent problem in using the di↵erence

in property values (i.e. the di↵erence in descriptor values) as the measurement returned

by the identifier. This can be demonstrated with a change identifier that measures the

area di↵erence of the bounding box. Fig. 5.3 shows two phases (�
1

and �
2

) from two

1 DDP2

φ

φ

2

1

DDP

Figure 5.3. Di↵erence in bounding box area for two dynamic dot patterns.

dynamic dot patterns (DDP
1

and DDP
2

). The area change from �
1

to �
2

is the same

for both (an increase of 16 units2), however DDP
1

has doubled in size whereas DDP
2

has only increased by 50% of its original size. It would not be unfair to state that the

change in DDP
1

has a greater impact than the change in DDP
2

. A threshold is required

to signal the framework that the footprint must be updated when su�cient change has

occurred. Should the threshold be ‘concrete’ (i.e. it is a fixed value and not relative to

the dot pattern) then the identifier is not tracking the impact that the change is having
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on the dynamic dot pattern. For example, if using the bounding box area, crossing a

concrete threshold will represent di↵erent impact levels of change because the size of the

dot pattern at each phase changes.

The thresholding concern can be satisfied if the requirement that all identifiers return a

proportional value is introduced; a value that represents proportional change in the prop-

erty the identifier measures since the last timestep at which the footprint was updated.

The threshold now becomes a percentage value and is, therefore, more cognitively iden-

tifiable than a concrete value. For example, in the bounding box example (Fig. 5.3) the

user could specify that the footprint is updated when the bounding box area has changed

by 100%; triggering an update in DDP
1

but not in DDP
2

. While this still relies on user

input we feel that it represents less of a mental leap than intuitively ‘knowing’ by how

many units2 a pattern’s bounding box area will need to change before its footprint is no

longer a suitable representation. The definition of an identifier can now be formalised as:

Definition:

A change identifier is a measurement that compares two phases of a dynamic dot

pattern (�
1

and �
2

) and returns the di↵erence in a descriptor of the dot patterns

expressed as a proportion of the value of that descriptor on the dot pattern �
1

.

For the purposes of this thesis we can add the requirement that the change identifier

must be computable in less time than it takes to recompute the footprint. In practice the

identifier should ideally have a complexity such that its value can be found in less time

than a footprint algorithm with complexity O(n log v)1 takes to produce a footprint, this

being the optimal time complexity yet found for a convex hull algorithm. The convex hull

time is used as the maximal allowed time taken for computation for an identifier as it is

fast compared to the majority of footprint algorithms but not so fast that it is infeasible

to compute a change identifier measurement in less time (as opposed to, for example, an

isothetic bounding box algorithm).

5.2. Distance Change Identifiers

When considering potential change identifiers one of the most immediately obvious can-

didates that will need to be measured is change in location. While location maybe an

intuitive starting point it has two unique aspects, primarily because we can use it to up-

date the footprint without recomputation; translating the footprint along the same vector

that the dynamic dot pattern has moved. The other standard transformations (scaling,

rotation and shearing) can also be directly applied to the footprint in a computationally

fast time, however identifying change in these transformations is less easy and none of

them are as simple to apply to the footprint as the change in location. The other interest-

ing aspect of a location change identifier is that it shows a complication in the use of the

1Here n is the number of dots and v is the number of dots at the vertices of the footprint.
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di↵erence in descriptor values as the change measure. Location is a measurable property

of a dot pattern but, instead of a single real-number, it is a vector of dimension equal to

the space the pattern resides in. The vector adds complexity as scaling it and checking

it against a threshold cannot be done in the same fashion that is provided in the original

change identifier definition for two reasons. Firstly it would require the use of a vector

as a threshold, as mentioned above we wish to make the choice of thresholds as simple as

possible and having thresholds of di↵ering types runs counter to this aim. Secondly, and

more importantly, it makes no sense to make the change in position proportional to the

value of the position at the earlier phase as this has no bearing on how much the dynamic

pattern has changed between the phases. This can be generalised with the statement that

any change identifier should be invariant under a change of coordinate system. Taking the

(a) Small pattern before movement.

5

(b) Small pattern after movement of
5 units

(c) Larger pattern before movement.

5

(d) Larger pattern after movement of
5 units

Figure 5.4. Figure showing change in e↵ect for a change in position for two di↵erent sized patterns

distance between two locations would be a sensible way to reduce it two a scalar value but

doing so loses information about the direction in which the dynamic pattern has moved.

A further consideration about the distance measure is that, previously, we have defined a

change identifier as returning a value proportional to the value of the property it measures

at the earlier of the two dot patterns that it is passed. The distance between the locations

of two patterns cannot be scaled in such a way as there is no distance value for any single

pattern. Distance can, however, be made proportional to the size of the pattern. Fig. 5.4

shows two dynamic dot patterns at two time steps. Both dynamic patterns move by the

same distance but the larger pattern (Fig. 5.4(d)) is still partially within its original foot-
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print; the impact the change has on how suitable its footprint is less than that of the

smaller pattern (Fig. 5.4(b)). The movement vector could also be made proportional to

the extent of the pattern, but it is still a multi-dimensional value. There are several ways

in which to approach thresholding the vector:

1. A separate identifier can be created for each of the spatial dimensions.

2. The identifier can return the multi-dimensional value scaled by extent and the frame-

work will check each of the elements of the vector to see if they have exceeded a single

value threshold.

3. The framework is set up so that multi-dimensional thresholds are allowed.

(2) and (3) both involve extensions to the framework. Such extension is not necessarily

a negative, however both also add complexity when considering combining change values.

We will discuss how the identifiers can be combined and why they would be in the section

on change identifer sets (§ 5.3). (1) is an approach that avoids the problems of extending

the framework or having to change the thresholding methods but it does add an extra

identifier for each dimension possibly making it a slower approach. Since both the dis-

tance and the vector methods scale by extent neither fit the above definition for a change

identifier. To represent this split, we call our original identifier type (identifiers that mea-

sure the di↵erence between two descriptors that can be scaled by the measurement of that

descriptor) descriptor change identifiers. Naming this alternative type of change identifier

is a little more di�cult, the Euclidean distance is a metric but and therefore calling these

measures metric change identifiers seems sensible. However we do not wish to invalidate

any of the possible measures of di↵erence between two dot patterns and can therefore not

assume that all of the axioms of a metric are always obeyed. The only two axioms that it

is probably safe to require are that of non-negativity and relaxed version of coincidence:

dist(x, y) � 0

dist(x, x) = 0 instead of dist(x, y) = 0 () x = y

Where dist is the distance measure in question. Measures that conform to these axioms

are sometimes called premetrics but this is not a standard term and as such we shall avoid

it. Instead we will name change identifiers using a more complicated measure than the

di↵erence between two descriptor values distance change identifiers.

Definition:

A distance change identifier is a measurement that compares two phases of a dynamic

dot pattern (�
1

and �
2

) and returns, for some given distance measure, the distance

between the patterns expressed as a proportion of some property measure of �
1

such

that the change identifier returns a value indicative of the impact the change has

had on the suitability of the footprint.
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The descriptor change identifiers can be seen as a special case of distance change identifiers

in which the distance measure is the absolute di↵erence between the descriptor values.

However they are suitably interesting in their own right that they remain as a distinct

type for the examination presented by this thesis.

5.3. Change Identifier Sets

We have previously mentioned that it is unlikely that a single change identifier will be able

to ‘catch’ all forms of change. Unless it is known that a dynamic dot pattern will only

change in one aspect it is likely that more than one identifier will have to be used. For

example, a herd of prey fleeing a predator will change in location, extent, dimensionality

and connectivity (Fig. 5.5). At the time step that the connectivity and extent changes

(Fig. 5.5(b)), the location and dimensionality may not have changed appreciably. To make

sure that the framework does not miss any timesteps at which it should cause a footprint

update, identifiers checking for change in all four aspects would be preferable.

(a) Prey have not yet
noticed predator

(b) Prey have noticed preda-
tor and have started to flee;
showing change in connectivity
and extent (the overall location
may well be the same)

(c) Prey have formed two separate
components; showing change in con-
nectivity, extent, position and dimen-
sionality

Figure 5.5. Simplification of prey being chased by a predator

The change identifier concept allows for multiple identifiers to be used. No identifier

relies on the value returned by any other and as a result they can be run concurrently2.

Alternatively the identifiers can be ordered by importance and run consecutively. It should

be noted that increasing the number of identifiers when running consecutively results in an

increase in processing time, while reducing the number of identifiers reduces the amount

of change types being checked for. This is not an entirely linear relation as some identifiers

may be ‘better’ at checking and/or take longer to compute3.

When combining multiple identifiers we must address the issue that arises from having to

assign a sensible threshold for multiple types of change. As discussed earlier, this must be

done in such a way that it is obvious to a user what the threshold represents and that the

generality of the change identifiers has not been lost. Ideally the user should also be able

to indicate that some identifiers are ‘worth’ more than others, i.e., that change in some

identifiers is more important to the application than others.

2Although in running experiments using Java it was found that starting a new thread for concurrent
identifiers often took longer than any individual identifier took to run.

3When using a single processor the same trade-o↵ relation applies to concurrently run change identifiers.
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To allow for flexibility we define a change identifier set as a container for multiple identifiers

with properties dictating its operation. The change identifier set is a very flexible entity

with properties that allow it to be fit to multiple applications. The sets used within this

thesis are specified by an XML document that dictates the identifiers and the properties

used (Listing 5.1).

1 <c h a n g e i d e n t i f i e r s e t name= ‘ ‘ [ set�name ] ’ ’ ver = ‘ ‘ [ version ] ’ ’>

2 <d e s c r i p t i o n> [ De s c r ip t i on o f the s e t ]</ d e s c r i p t i o n>

3 <th r e sho ld> [ Total th r e sho ld (%) ]</ th r e sho ld>

4 <maxFails> [ Proport ion o f i d e n t i f i e r s a l lowed to breach t h e i r th r e sho ld ]</

maxFails>

5 <concurrent> [ Whether or not to run i d e n t i f i e r s concur r en t ly ]</ concurrent>

6 <c h a n g e i d e n t i f i e r>

7 < i d e n t i f i e r> [ Change I d e n t i f i e r Name ]</ i d e n t i f i e r>

8 <p r i o r i t y> [ Ordering , lower number = higher p r i o r i t y ]</ p r i o r i t y>

9 <th r e sho ld> [ I d e n t i f i e r th r e sho ld (%) ]</ th r e sho ld>

10 <mu l t i p l i e r> [ Custom user de f in ed norma l i s a t i on value ]</ mu l t i p l i e r>

11 <updateOnFail> [ Whether or not to update i f t h i s

12 i d e n t i f i e r exceeds i t s th r e sho ld ]</updateOnFail>

13 </ c h an g e i d e n t i f i e r>

14 </ c h a n g e i d e n t i f i e r s e t>

Listing 5.1 Change Identifier Set

Each set has associated meta-information (name, version and description). This informa-

tion is not important to the running of the set but exists to make its identification, and

therefore use, simpler. Rather than step through each XML tag, explaining its use and

range of values, we will describe some possible user requirements then show an example

of how the XML specification would be set up.

In the first example (Listing 5.2), our user has three identifiers (change
1

, change
2

, change
3

)

that they need to run in order. If the change
1

exceeds a change of 10% the footprint needs

to be updated. If change
1

does not exceed that threshold then only if both change
2

and

change
3

exceed their thresholds of 10% each should an update occur.

1 <c h a n g e i d e n t i f i e r s e t name= ‘ ‘ use�case�1 ’ ’ ver = ‘ ‘0 .1b ’ ’>

2 <d e s c r i p t i o n>Consecut ive run o f three i d e n t i f i e r s</ d e s c r i p t i o n>

3 <maxFails>0 .66</maxFails>

4 <concurrent> f a l s e</ concurrent>

5 <c h a n g e i d e n t i f i e r>

6 < i d e n t i f i e r>change1</ i d e n t i f i e r>

7 <p r i o r i t y>0</ p r i o r i t y>

8 <th r e sho ld>0 .1</ th r e sho ld>

9 <updateOnFail>t rue</updateOnFail>

10 </ c h an g e i d e n t i f i e r>

11 <c h a n g e i d e n t i f i e r>

12 < i d e n t i f i e r>change2</ i d e n t i f i e r>

13 <p r i o r i t y>1</ p r i o r i t y>

14 <th r e sho ld>0 .1</ th r e sho ld>

15 <updateOnFail> f a l s e</updateOnFail>

16 </ c h an g e i d e n t i f i e r>

17 <c h a n g e i d e n t i f i e r>

18 < i d e n t i f i e r>change3</ i d e n t i f i e r>
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19 <p r i o r i t y>1</ p r i o r i t y>

20 <th r e sho ld>0 .1</ th r e sho ld>

21 <updateOnFail> f a l s e</updateOnFail>

22 </ c h an g e i d e n t i f i e r>

23 </ c h a n g e i d e n t i f i e r s e t>

Listing 5.2 Change Identifier Set Example 1

User number two (Listing 5.3) has twenty identifiers but has no preference about their

running order. The sheer number of identifiers and the unspecified ordering make it

preferable that they run concurrently. This user has no thresholds for any individual

identifier but needs an update to occur if the total change exceeds 50%.

1 <c h a n g e i d e n t i f i e r s e t name= ‘ ‘ use�case�2 ’ ’ ver = ‘ ‘0 .1b ’ ’>

2 <d e s c r i p t i o n>Concurrent run o f twenty i d e n t i f i e r s</ d e s c r i p t i o n>

3 <th r e sho ld>0 .5</ th r e sho ld>

4 <concurrent>t rue</ concurrent>

5 <c h a n g e i d e n t i f i e r>

6 < i d e n t i f i e r>change1</ i d e n t i f i e r>

7 <updateOnFail> f a l s e</updateOnFail>

8 </ c h an g e i d e n t i f i e r>

9 <c h a n g e i d e n t i f i e r>

10 < i d e n t i f i e r>change2</ i d e n t i f i e r>

11 <updateOnFail> f a l s e</updateOnFail>

12 </ c h an g e i d e n t i f i e r>

13 . . .

14 <c h a n g e i d e n t i f i e r>

15 < i d e n t i f i e r>change20</ i d e n t i f i e r>

16 <updateOnFail> f a l s e</updateOnFail>

17 </ c h an g e i d e n t i f i e r>

18 </ c h a n g e i d e n t i f i e r s e t>

Listing 5.3 Change Identifier Set Example 2

The requirement given by the second user that the total change not exceed 50% is worth

further examination. Each identifier returns a value that can be seen as a representative of

part of the total change that a dynamic dot pattern is undergoing. To produce a value for

total change a method with which to combine these values is required. The combination

needs to be done in such a way that we fully justify the value and are not merely creating

numbers with no real-world counterpart. The concerns that we have to address when

using any combination operator are:

1. Are the values combined in a way that mixes data types or scales?

2. Is undue weighting added to any value?

3. What information is lost when reducing many values to one?

The values are already normalised to percentages, as required by the change identifier

definitions; so we may safely ignore (1). (2) raises a little more di�culty, if two identifiers

both use descriptors from the same class then change in that class will be represented

twice. For example, an identifier which measures the change in the variance from the
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centroid and an identifier which measures change in the area of the minimum bounding

box will both indicate change if the dynamic dot pattern grows in extent. To alleviate

some of this concern we have also allowed for a multiplier to be attached to each identifier.

The user can mitigate (or increase) the e↵ect of any particular identifier on the total

change value by setting this property. However we strongly suspect that the multiplier

would require trial and error to adjust so that the results suit the user’s expectations. As

discussed earlier in this chapter, this type of variable ‘tweaking’ is impractical even when

the data is static, so with dynamic data it is likely infeasible. Instead we have looked at

the measurement types (see descriptor definitions in Chapter 3) in such a way that the

identifier selection process can be informed, and thereby overlapping measurements can be

avoided. (2) a↵ects any combination operator, assuming the application has cause enough

to require a total threshold value then this will have to be taken into account by the user

and not the framework. Question (3) is answered comparatively simply: The information

lost is the manner in which change has occurred but, as for (2), if the application requires

a single total value then this loss must be accepted. The simplest operator, and perhaps

the most intuitive, is addition of the percentages. The three questions raise no specific

objections to the use of addition, and it is likely that any more complex method will add

further confusion about what the value represents as well as increasing the processing time

of the change identifier set. Hence, addition is the operator used within this thesis.

5.4. Constructing Change Identifiers

With a formal description in place the construction of some example change identifiers can

be considered. We begin by providing the mathematical formula for a change identifier;

this is simply the formalisation of its definition.

Descriptor Change Identifier
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Where x is the descriptor index mapping to an element of the set of all descriptors,
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x
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, ⌧, u) is the change identifier value for the change identifier over dy-

namic dot pattern i at time ⌧ when the last update time was u and desc
x

(�
⌧

) is the

descriptor value for descriptor x on the phase from dynamic dot pattern i at time ⌧ .

Distance Change Identifier
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Where x is the index mapping to an element of the set of all possible distance

measures, dist
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) is the distance between the phases from dynamic dot pattern
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i at times ⌧ and u for the distance measure x and desc
s(x)

is a suitable descriptor

for metric x by which to normalise the value.

The list of identifiers presented is by no means complete but is su�cient to provide com-

parison between di↵erent types of identifier and showcase some of their more interesting

aspects. We will begin by listing descriptor identifiers as they are often simpler than the

metric type. The identifiers are uniquely named and are formatted in small caps (i.e.,

ChangeIdentifier) so as to be easily referenceable.

The descriptor for a descriptor identifier must be computed for two di↵erent phases: The

current phase and the phase at the timestep at which the footprint was last updated.

However, the calculation at the update time has already taken place (when it was the

current timestep) for all timesteps except the second (the first will always be an update

time so there is no point running the change identifiers). Therefore the complexity and

time taken of any descriptor identifier are equivalent to those of its descriptor.

5.4.1. Descriptor Identifiers

Cardinality

Simple to implement and run, a change identifier that measures change in cardinality is

a good initial identifier. Given that this can be found while building the data structure

that contains the dot pattern, we can say that, for an identifier to use it, it need not be

computed and can be found in constant time.

The rest of the descriptor identifiers will be ordered as they appear in Chapter 3 apart from

position which is a distance identifier. As many of the descriptors were already detailed

in that chapter they will only be briefly discussed here.

Extent

VarianceFromCentroid

The centroid is the mean position of all the dots within the pattern and as such can be

found in O(n) time.

centroid(�
⌧

) = d 2 �
⌧

P
n

i=1

d
i

n

variance(�
⌧

) = d 2 �
⌧

P
n

i=1

(d
i

� centroid(�
⌧

))2

n

Where d
i

is a dot from the dynamic dot pattern phase �
⌧

. Variance has a computational

complexity of O(n) and, thus, so does the identifier VarianceFromCentroid.

BoundingBoxArea

When the descriptors were examined in Chapter 3 it was noted that this identifier ascribes

a surrogate region to the dot pattern: the isothetic minimum bounding box. The bounding

box can be found, even on an unordered list, within O(n) time as all that is required is
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the extremal points in the cardinal directions of the pattern. The area for the bounding

box can be found in constant time so the identifier BoundingBoxArea can also be run

in O(n) time. Should a tree structure be used, such as was detailed in the background

chapter, then the time to find extremal points becomes O(log n).

DiameterSq

The diameter is the distance between the two furthest apart dots in a pattern, and the

fastest methods found in the literature to retrieve it check the vertices of the pattern’s

convex hull. The high complexity renders this identifier impractical to use so the approx-

imation introduced in Chapter 3 is used (the greatest distance between the minimum and

maximum dots in the plane). This identifier has a linear computation time if the data

structure is an unordered list and a O(log n) time if the dots are stored in an ordered tree.

Orientation

OLSGradient

The gradient of the line found by the Ordinary Least Squares (OLS) method described in

Chapter 3. OLS can be computed in linear time and is therefore well within the change

identifier time requirements.

PCVectorGradient

The gradient of the vector found by Principal Component Analysis (PCA). As explained

in Chapter 3, to find the Principal Component the eigenvector corresponding to the largest

eigenvalue of the covariance matrix of the data must be found. Finding the eigenvalue for

any given matrix is generally a complex task. However the experiments in this thesis, and

the majority of the examples in the footprint algorithm and spatio-temporal literature,

are planar. The eigenvalues of a matrix are the values of k that satisfy the equation

det(A � kI) = 0 (the characteristic equation). For a 2x2 matrix the eigenvalues can be

found using the quadratic formula of the characteristic equation and can therefore be

found in constant time. Finding the covariance matrix has a linear time complexity, and

its construction for a dot pattern in Cartesian planar space is:

cov(x, y) =

" P
n

i=1(x�x̄)

2

n

P
n

i=1(x�x̄)(y�ȳ)

nP
n

i=1(x�x̄)(y�ȳ)

n

P
n

i=1(y�ȳ)

2

n

#

Dimensionality

EigenValueDiff

The greater the di↵erence between the eigenvalues of the covariance matrix the greater

the variance in the principal component compared to any other. In e↵ect the greater the

eigenvalue di↵erence the closer to collinear the dots of the pattern are. Like PCVector-

Gradient, this identifier has a linear time complexity.

PearsonCorrCoeff

Pearson correlation coe�cient can be found in linear time. This provides a measures
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for the interrelation between the coordinates of the dots in the dot pattern; i.e., as x

increases to what degree does y change in accordance. The stronger this relation is the

closer the dots are to being collinear. If the pattern is collinear and aligned to the axes

then, despite the collinearity, there is no correlation between the coordinates. Fortunately

PearsonCorrCoeff providea a result of NaN (Not a Number) for axis-aligned patterns,

therefore allowing them to be identified as distinct from patterns with a low correlation

due to low collinearity.

Dispersion

Density

This is the global density of the pattern as defined by the isothetic bounding box. The

complexity of finding the isothetic bounding box, as shown above, is at most O(n), and,

considering that the cardinality should already be known, this is the maximum complexity

of the Density identifier.

NearestNeighbourDistVariance

The variance of the distances between each dot and its estimated nearest neighbour (es-

timated for the reasons given when we examined the nearest neighbour descriptor in

Chapter 3). This identifier relies on a sorted data structure to be found in a time less than

O(n2). With such a data structure we can find the estimated nearest neighbour for each

dot in O(log n) time, so the total time to find the variance is O(n log n). The variance

of the nearest neighbour distances indicates uniformity of the spacing of the pattern, so

change within it points to a change in the behaviour of the collective, for example a crowd

going from calm and well spaced to panicking. The complexity is above the norm for a

change identifier but it computes fast because of the limited number of computational

steps required for each iteration.

Skewness

Skewness measures the tendency for the dots to be in one direction from the mean. The

equation for its computation was given Chapter 3 but is repeated here for clarity:

µ
3

= E[(�� E[�])3]

s =
µ
3

�3

Where � is the standard deviation and E[�] is the expected value of any dot from �, for

the purposes of a dot pattern this is equivalent to �̄. As it requires only the mean and the

standard deviation Skewness can be computed in linear time.

Kurtosis

Kurtosis measures the tendency for the dots to be close to the mean. It is related to

Skewness as a moment about the mean and they both require only the mean and the

standard deviation to be computed from iterations over the pattern, so Kurtosis can also

be found in linear time.
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Miscellaneous

TimeStepCount

Timestep count is the first identifier of this thesis not to have a counterpart within the

dot pattern descriptors. The identifier counts the number of timesteps since the footprint

was last updated and once this exceeds a set limit signifies that its threshold is broken. It

functions as somewhat of a control; its purpose is to indicate whether just reducing the

number of updates without any thought of measuring change is better than updating at

each timestep. It serves a second role in that should it perform better than another change

identifier it is likely that the ‘beaten’ change identifier is not measuring a useful property.

To function, it ‘cheats’ and looks ahead to see how many phases are in the dynamic dot

pattern4. The threshold is the percentage of phases which are allowed to occur before it

forces an update of the footprint.

5.4.2. Distance Identifiers

Centroid

This identifier takes the squared distance between the centroids of the current phase of

the pattern (�
c

) and the phase at which the footprint was last updated (�
u

) and divides

this di↵erence by the variance of the pattern at phase �
u

. Despite being a very simple

identifier there is an interesting point to be made about the units it uses. The variance

is the square of the standard deviation whereas the distance is a linear value. To main-

tain consistency of units either distance squared and variance, or distance and standard

deviation should be used. Given that the process of finding the standard deviation and

the distance involves first finding the variance and the distance squared, and that finding

the square root is a computationally expensive operation (compared to a multiplication,

for example), then using variance and distance squared makes more sense than standard

deviation and distance.

BoundingBoxCentre

Bounding box centre is similar to the Centroid identifier, however it takes the distance

squared between the centres of the isothetic bounding box of the current phase (�
c

) and

the phase at which the footprint was last updated (�
u

) and divides this value by the

bounding box area at �
u

. As has been discussed above, the time to find the bounding box

is between O(log n) and n, depending on the data structure, so BoundingBoxCentre

is at least as fast as Centroid, if not faster. Like with the Centroid identifier the units

have been kept consistent (they are both square).

BoundingBoxSymmetricAreaDiff

This identifier takes the symmetric area di↵erence between the isothetic bounding boxes

of the current phase (�
c

) and the phase at which the footprint was last updated (�
u

),

and divides this di↵erence by the area of the bounding box at �
c

. The symmetric area

di↵erence between two bounding boxes is demonstrated in Fig. 5.6, in which c is the

4This would not be possible in a live system as the data arrives with no indication of when it will end
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overlap of the boxes a and b. The sum of the areas of a and b minus the twice the area

of c gives the area of the symmetric area di↵erence, shown as the shaded regions of the

figure. The isothetic bounding box is used for the fast time in which it can be found,

as described above, and also because it reduces the complexity of finding the symmetric

area di↵erence; there are only 4 vertices per box to be checked for containment within the

other. Symmetric area di↵erence is looked at in greater detail in the methodology chapter

Chapter 6.

c

a

b

Figure 5.6. Symmetric area di↵erence between boxes a and b. The shaded area is the di↵erence

Identifier Complexity Complexity using sorted data struct.
Cardinality O(c) O(c)
VarianceFromCentroid O(n) O(n)
BoundingBoxArea O(n) O(log n)
DiameterSq O(n) O(log n)
OLSGradient O(n) O(n)
PCVectorGradient O(n) O(n)
EigenValueDiff O(n) O(n)
PearsonCorrCoeff O(n) O(n)
Density O(n) O(n)
NearestNeighbourDistVariance O(n2) O(n log n)
Skewness O(n) O(n)
Kurtosis O(n) O(n)
TimeStepCount O(c) O(c)
Centroid O(n) O(n)
BoundingBoxCentre O(n) O(log n)
BoundingBoxSymmetricAreaDiff O(n) O(log n)

Table 5.2. Table showing change identifier complexities.

5.5. Performance Analysis

To establish the fitness of change identifiers for their purpose, we need to be able to measure

the ‘quality’ of the footprint. It should be stressed that we are not commenting on how

well the footprint algorithm can create a footprint that represents the pattern; we assume

that the algorithm used was chosen for its suitability to the application, possibly using
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the footprint classification in Chapter 4. The ‘quality’ we measure is how close the stored

footprint is to the footprint which would result if it were recomputed from the current dot

pattern using the chosen algorithm at any given step. The overall quality for a sequence

of dot patterns is obtained by combining the quality values for each step. Our goal is

to maximise the quality while minimising the computation time. These are conflicting

objectives: to maximise quality is to minimise the di↵erence between the stored and true

footprints and this can only be achieved by updating the footprint at every timestep,

resulting in a maximal value for the computation time. Conversely, the computation time

would be minimised by never updating the footprint, typically resulting in catastrophic

loss of quality. We therefore need to seek a middle course which optimises the trade-o↵

between the objectives.

In order to compute the total time taken, we will need to make use of the following

quantities:

• t
foot

(i) is the time taken to compute the footprint from the dot pattern at step i.

• t
change

(i) is the time taken to evaluate the change identifier(s) at step i.

• r(i) is a Boolean variable, set to 1 if the change identifier(s) evaluated at step i

exceed(s) the pre-set threshold, and 0 otherwise.

The footprint has to be computed at least once, namely at the first timestep (i = 0). At

subsequent timesteps it is only recomputed if the change identifiers return a value above

threshold. The total computation time over a run of p dot patterns is thus

T
change

= t
foot

(0) +
pX

i=1

(t
change

(i) + r(i)t
foot

(i)).

The value of T
change

is minimum when the change identifier threshold is set so high that

the footprint is never recomputed after the start of the sequence (so r(i) = 0 for 1  i  p):

T
min

= t
foot

(0) +
pX

i=1

t
change

(i).

It is maximum when the change identifier threshold is set so low that the footprint is

recomputed at every time step (so r(i) = 1 for all i):

T
max

= t
foot

(0) +
pX

i=1

(t
change

(i) + t
foot

(i)).

If change identifiers are not used at all, and the footprint is recomputed at every timestep,

then the total time taken is:

T
NCI

=
pX

i=1

t
foot

(i) = t
foot

(0) + T
max

� T
min

.

If it is assumed that always t
change

(i) < t
foot

(i) (for if not, there would be little point
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Figure 5.7. Total computation time against aggregate footprint error

in using change identifiers) then T
min

< T
NCI

< T
max

, so the relative size of T
change

and

T
NCI

— which provides a measure of the time advantage, if any, gained by using change

identifiers — depends on the threshold settings.

It will be convenient in the following chapters to consider an inverse form of the quality

measure, which we shall refer to as error. Our goal is therefore to seek to minimise

both time and error. To measure error, we need a way of quantifying the extent of the

mismatch between the stored footprint and the true footprint. The di↵erence between two

footprints can be measured in various ways, (e.g., using Hausdor↵ distance, or symmetric

area di↵erence) and these are discussed in Chapter 6 when the di↵erence measure used in

this thesis is explained.

If the footprint is recomputed every time, corresponding to total computation time T
max

,

we have a footprint for every phase, somismatch = 0. At the other extreme, the maximum

value of mismatch is obtained when the footprint is never recomputed, corresponding to

T
min

. There is thus a trade-o↵ between mismatch and computation time, as indicated

in Fig. 5.7, where di↵erent choices of change identifier thresholds correspond to di↵erent

positions on the curve. The optimal setting for the change identifier threshold depends on

the relative importance attached to the conflicting goals of minimising both computation

time and accumulated footprint error; but in any case no time advantage can be obtained

for error below the value m at which T
CI

= T
NCI

.

5.6. Summary

This chapter has provided definitions for two types of change identifier: descriptor and

distance based and used these to construct several example change identifiers. How the

change identifiers can be used to measure change has been examined, while paying special
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attention to their thresholds and how they may work in concert. The concept of a change

identifier set was expanded upon and it was shown how they may be used in applications

with di↵ering requirements. Finally this chapter has presented a method by which to

assess the change identifiers by the footprints that are produced when using them.
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Previous chapters have discussed dot patterns, footprints and change identifiers but have

not yet detailed exactly how an application using change identifiers would be constructed.

This chapter provides a framework in which the change identifiers can operate and shows

how the experiments used in this thesis were constructed. The need to formalise the use

of the change identifiers arises from the need to answer the questions that have emerged

from the examinations of dot patterns, footprints and change identifiers, namely:

1. How does the dynamic dot pattern data arrive?

2. How is the data stored?

3. How is the footprint algorithm specified?

4. How are the change identifiers run?

5. How are the results displayed?

6. How can the system be tested?

The change identifier framework proposed in this chapter to encompass the running of

the identifiers is highly modular (Fig. 6.1) in construction, allowing each of the above

mentioned concerns to be dealt with individually. As shown in Fig. 6.1 the core engine of

the framework requires a change identifier set and a footprint algorithm. The dynamic dot

pattern is read by a bu↵er that ‘feeds’ a pattern for every timestep to the core; this pattern

is processed in accordance with the change identifier set and, if an update is required, a

footprint is generated using the footprint algorithm. The core sends a footprint for each

timestep to the application layer (if an update has not occurred this is the same as the

previous footprint) which then displays the footprint to the user.

6.1. How does the dynamic dot pattern data arrive?

When considering the way in which the dynamic dot pattern data arrives we wished to

remove as many assumptions about the data as possible. The bu↵er (see Fig. 6.1) can be

configured to work with di↵erent formats but for this thesis we use only what we consider

as the bare minimum data configuration, a text file of dot locations at a given timestep

with no identity information (and no guarantee that any two files have the same dot at

the same position within each file). It could be argued that identity and location (or a

movement vector) for the entities that have changed is less information than all of the dot
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Figure 6.1. Modular Framework Architecture

locations, as it will produce a smaller file, however this assumes that not every entity is

likely to change at the same time. We took the view that reducing the types of information

required would make the framework more generally applicable.

6.2. How is the data stored?

Storage of the dot pattern is a complex problem as it strongly a↵ects the running of the

change identifiers. Not having an identity associated with the dots makes performing up-

dates on an existing structure di�cult, so ideally the storage format should have a fast

construction time. The main aim when considering possible data structures is to pro-

vide simple and fast access to the dots that the identifiers request. We cannot provide

an optimised structure to achieve this because there is no way to know in advance all

possible queries that can be made by change identifiers (there being no end to the num-

ber of identifiers that can be imagined). Instead we look at the requests that we most

commonly come across in the identifiers created for this thesis, under the assumption that

these common queries are likely to be consistently occurrent across the set of all possible

identifiers. What we find is that most of the identifiers only wish to sum the values of the

location vectors, find the centroid, find extremal points in some dimension or find (esti-

mated) nearest neighbours. This can be achieved by maintaining as many ordered binary

trees as dimensions (one for each element in the location vector). These binary trees can

be built concurrently as dots from the data file are parsed. We should note that Java (the
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language the framework is written in) already implements the red-black tree (Guibas and

Sedgewick [Guibas and Sedgewick, 1978]) in its ordered sets, however even if this was not

the case, red-black trees are a suitable data structure for our purposes. As was discussed

in the background chapter, the red-black tree is a binary tree (each node has at most two

children) with two di↵erent types of edge: red and black, and this dichromatic approach

allows it to be considered as analogous to a 2-3 B-tree (a tree that can have up to two

values at each node [Bishop, 2007]) by thinking of the red edges as horizontal links with a

black node between them. Its structure allows for easier balancing and a computationally

fast insertion time without hindering its search time. As the data structure is rebuilt for

each phase, the red-black tree’s fast insertion and search times make it a sensible choice.

The complexity for a red-black tree is O(log n) for both insert and search time in normal

and worst cases. The footprint algorithms will also benefit from the small search times

provided by the data structure so they are by no means being hampered when we compare

the time taken for using change identifiers against the time taken to update the footprint

at each phase. As a final note on data structures: If the format that the data arrives in

changes drastically, the bu↵er being distinct from the main core of the process renders the

process of changing the data structure relatively easy1.

6.3. How is the footprint algorithm specified?

The footprint algorithm is specified at the initialisation of the program. This would be

straightforward if not for the footprint selection and parameterisation. The classification

given in Chapter 4 will aid the selection of the footprint algorithm as, ideally, the user

knows in advance the geometric requirements for the footprint (for example, must it be

able to contain cavities?)2. The parameter choice is beyond the purview of this thesis but

we discuss in Chapter 8 § 8.3 how the identifiers might be used to help with its selection

as the dynamic dot pattern changes and how the dot pattern descriptors might be used

to inform the initial choice.

6.4. How are the change identifiers run?

Chapter 5 detailed how the change identifiers are described using the XML specification.

The specifications are loaded into the core of the framework and the process that is imple-

mented is shown in Algorithm 1, which works as follows: The incoming data consists of a

sequence of dot patterns (e.g., from observations relayed by sensor arrays or from RFID

tags attached to a flock of animals). At the beginning of the sequence a footprint foot(�
0

)

is generated for the dot pattern at phase �
0

and saved as the stored footprint SFP
0

. The

phase �
0

from which it is generated is stored as the stored dot pattern (SDP
0

).

1Relative to changing the way the change identifiers are run or read in to the core
2The data structure may rule out some footprint algorithms that require intensity values or identities but
as mentioned earlier it allows the framework to be applicable to more applications.

111



6. Methodology

At subsequent time steps, the change identifiers are used to determine whether a new foot-

print should be computed; this is done by evaluating the extent to which the current phase

�
i

di↵ers from the previously stored dot pattern SDP
i�1

. If this value, eval(�
i

, SDP
i�1

, SFP
i�1

),

exceeds some pre-set threshold, then a new footprint foot(�
i

) is generated as the new

stored footprint SFP
i

, and the current phase is used as the new stored dot pattern DP
i

.

Otherwise, the stored dot pattern and footprint are retained from the previous time step.

For any phase �
i

, the footprint foot(�
i

) that would be computed from it (whether or not

this computation actually takes place) will be referred to (admittedly somewhat tenden-

tiously, bearing in mind the non-uniqueness of the footprint) as the true footprint for that

dot pattern.

Algorithm 1 Process at the Core
1: i = 0
2: Input first dot pattern �

0

3: SFP
0

= foot(�
i

)
4: SDP

0

= �
i

5: repeat
6: i = i+ 1
7: Input �

i

8: if eval(�
i

, SDP
i�1

, SFP
i�1

) > threshold then
9: SDP

i

= �
i

10: SFP
i

= foot(�
i

)
11: else
12: SDP

i

= SDP
i�1

13: SFP
i

= SFP
i�1

14: end if
15: until No more input available

6.5. How are the results displayed?

The display of the footprint is handled by the application layer. This is a necessary part of

the framework for any real-world application but less so for the experiments performed in

this thesis. As such the version of the program used for the experimentation runs on the

command line without a Graphical User Interface (GUI). Aside from the user interface,

another core di↵erence between a testing environment and a real world application is in

the consideration of the length of the dynamic dot pattern. It has been previously stated

that there should be no restriction imposed on the length of the dynamic dot pattern

so the framework must be constructed so that it can, theoretically, be run indefinitely.

However any set of test data must come to an end and the length of the dynamic dot

pattern must be known so that proper analysis can be performed.

6.6. How can the system be tested?

Over the course of the run on the dynamic dot pattern the framework can store data

that, at the conclusion, is passed to the test application. For example, for each phase
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the data stored is the length of time taken to process each change identifier, the time

taken to process the timestep (change identifiers and footprint algorithm) and the change

identifier that caused an update of the footprint (if any). Immediately after this run the

test application makes a call to the core for it to repeat a run over the dynamic dot pattern

updating the footprint at each timestep. This provides the above mentioned true footprint

for each time step. As described in Chapter 5 we can use the di↵erence between the true

footprint and the stored footprint at each time step to get a measure for error. For this

measure to be useful it must return a distance of 0 if the true footprint and the stored

footprint are identical.

There are a number of di↵erent methods by which to ascertain the di↵erence between two

regions. Hausdor↵ distance, Fréchet boundary separation and symmetric area di↵erence

are three of the possible similarity measures with di↵erent approaches ([Galton, 2000,

ch. 7.3]). Hausdor↵ distance has two variations which we shall also consider: the Hausdor↵

boundary separation [Alt et al., 1993] and the dual-Hausdor↵ distance [Davis, 1995]. The

rest of this section will involve first a description of how each measure works followed by a

discussion on how they relate to the problem of measuring footprint di↵erence. These five

measures are by no means the only measures of distance between shapes but they provide

a su�ciently distinct range with which to discuss some of the di�culties presented when

selecting an appropriate measure for this thesis, and indeed some of the di�culties faced

in the field of shape similarity assessment.

The Hausdor↵ distance is given by the greatest of the Euclidean distances between the

closest points from one region to the other. That is, the maximum of the greatest of the

distance from any point in polygon X to its closest point in polygon Y and greatest of the

distance from any point in polygon Y to its closest point in X, shown by the dashed arrow

in Fig. 6.2. The formula for this measure is given below, in which d(a, b) is the Euclidean

distance between a and b:

d
h

(X,Y ) = max(sup
j2Y

inf
i2X

d(i, j), sup
i2X

inf
j2Y

d(j, i))

Hausdor↵ boundary separation is the Hausdor↵ distance of the boundaries of the regions

(in Fig. 6.3 this is the solid line showing the greatest closest distance from Y to X) and

the dual-Hausdor↵ distance is the greater of the Hausdor↵ distance of the two regions and

the Hausdor↵ distance of the closed complements of the two regions.

The Fréchet distance is the minimal length of line required to connect two paths; this is

easier to understand if the Fréchet distance is considered as the minimal length of leash

required to connect a dog and its walker travelling on a path each, with the restriction

that they cannot go backwards but are allowed to dictate their own speeds. To use the

Fréchet distance as a measure of footprint similarity, the boundaries of the footprints must

first be refactored as directed paths.

The symmetric area di↵erence between two regions comprises the cumulative area of the
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Y

Figure 6.2. Hausdor↵ distance Example.

X

Y

Figure 6.3. Hausdor↵ boundary separation Example.
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An example of symmetric area di↵erence is given in Fig. 6.4, the shaded region in Fig. 6.4(b)

is the parts of the regions (X and Y ) that do not coincide with any part of the other region

((X \ Y )[ (Y \X)) and the area of these parts is the symmetric area di↵erence of X and

Y .

The various distance measures have di↵erent properties, some of which are beneficial to

our application and some which are detrimental. The Hausdor↵ distance and Hausdor↵

boundary separation present some particularly interesting aspects for comparison.

As shown in Fig. 6.5, the Hausdor↵ distance is inconsistent in its treatment of ‘spikes’.

Internal spikes are almost entirely ignored whereas external ‘spikes’ can add greatly to the

distance. Hausdor↵ boundary separation, on the other hand, treats both forms of spike

with far more equivalence. Hausdor↵ boundary separation is, instead, adversely a↵ected

by one of the footprints ‘wrapping’ the other, as demonstrated in Fig. 6.6.

In terms of computation the Hausdor↵ distance is more complicated than the boundary

separation as it takes the region into account. This may be achieved by either treating

the shape as a set of simplices ([Alt et al., 2001]) or by sampling from within the shape
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(a) Two footprints: X and Y .

X

Y

(b) The shaded region represents the sym-
metric area di↵erence between footprints X
and Y .

Figure 6.4. Symmetric area di↵erence

Figure 6.5. Example of the inconsistent fashion in which the Hausdor↵ Distance treats spikes. The
black arrow is the Hausdor↵ distance in both images

Figure 6.6. Example of the small Hausdor↵ boundary separation given when one footprint encloses
another.

to get an approximation. Either method is made more di�cult when the shapes are non-

convex and/or they have cavities and, of the two approaches, only sampling can allow for

degenerate parts. We note that Alt’s paper is not clear on how the simplex approach finds

the correct Hausdor↵ distance if one of the ‘ends’ of the line from which the distance is

taken is within the interior of one of the simplices. Computing the Hausdor↵ boundary
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separation is a little simpler, and an e�cient approach was given by Alt et al. in 1993 [Alt

et al., 1993]. Alt et al.’s approach involves computing the Voronoi Diagram of the vertices

of the footprint and using a plane sweep algorithm to find the intersections of the other

footprint with the edges of the Voronoi Diagram.

Davis [Davis, 1995] gave a description of the dual-Hausdor↵ distance and how it may

be computed. The paper is highly technical, and is concerned with identifying whether

mathematical abstractions of objects are similar enough to their real world counterparts

for mechanical calculations performed on them to be accurate. It su�ces for this thesis to

note that assuming the Hausdor↵ distance can be computed and that there is a sensible

limitation placed on the space the footprints inhabit (to provide a boundary for their

complements) then dual-Hausdor↵ provides a more sensitive measure than the Hausdor↵

distance and does not fall prey to its unfair treatment of spikes.

When considering how the Fréchet distance could be implemented to provide a measure

of di↵erence between the two footprints there are some immediate problems. The first

is in deciding where the paths for the boundaries start; some footprint algorithms build

up their footprint by defining a path, like the Swinging Arm algorithm, others build the

edges with no respect to ordering, like the ↵-shape. Even if a specific extremal point

were chosen as the start and end points, for example the upper left hand vertex, it would

still not be clear how a cavity or a separate component would be dealt with. Further

there is the idiomatic di↵erence in that, despite considering degeneracies, this thesis has

mostly considered the footprint as a region, and not as the boundary describing a region.

Given the above it would seem that the Fréchet distance is not a good fit for the footprint

similarity measure.

The strictures that were chosen when discussing the nature of footprints in Chapter 4

identify two ideologically distinct parts. Initially we describe the footprint as a region

instead of a boundary or path. However the discussion also indicated that degenerates

could well be desirable components of the footprint, and a degenerate, by definition, cannot

be described as a region. (Dis)similarity measures that look only at the boundary of the

path will ignore the region it encloses while measures that concern themselves with the

encompassed region will be unable to take degeneracy into account.

The five measures can loosely be described as falling into either region measures or bound-

ary measures: There is also a di↵erence in the order of their returned units. The assorted

Region Boundary
Hausdor↵ distance Hausdor↵ boundary separation

dual-Hausdor↵ distance Fréchet distance
Symmetric area di↵erence

Table 6.1. Di↵erence in approaches for shape similarity measures.

Hausdor↵ measures and the Fréchet distance all return scalar distances whereas the sym-

metric area di↵erence returns a measure in the same dimension as the footprints. The

Fréchet distance also relies on a 1-dimensional path to exist and would not work with

non-planar footprints, for example if the footprints were both spheres.
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Within the above discussion there have been clear negatives and positives identified for all

of the di↵erent measures and these are re-iterated here for clarity. Both Hausdor↵ distance

and Hausdor↵ boundary separation have types of shapes for which they do not provide

accurate measures of distance. The dual-Hausdor↵ measure is fair but is not straight-

forward to implement and, like Hausdor↵ distance, has di�culties when the end point for

one of the distance measures exists in the interior of one of the footprints. The symmetric

area di↵erence measure has no way of dealing with degeneracies save to ignore them.

Fréchet distance requires that a directed path can be decided upon for both footprints,

and it is not clear how this would be best achieved, particularly if the footprints contain

cavities, multiple components or degeneracies.

We note that, for the purposes of this thesis, symmetric area di↵erence is a good candidate

similarity measure. It returns a value in the same dimensional order as the footprints, and

therefore loses less information about the di↵erence. It also treats the footprints as regions;

fitting in with the requirements given in Chapter 4. It is also comparatively simpler to

compute than the other measures as it requires only that the intersections between the

edges be found. The only problem is in its treatment (or lack thereof) of degeneracies. It

is a di�cult decision and this thesis still expresses the view that degeneracies cannot be

ignored for the definition of the footprint to be valid. We reconcile this with the observation

that all the examples of degeneracies that we have encountered are ‘edge cases’, that is, for

most of the applications considered within this thesis we would not expect the footprints

to have common or particularly large degeneracies. As such we assume that the symmetric

area di↵erence measure is close enough to the ‘true’ dissimilarity between two footprints,

and is, therefore, still valid as a measurement of the error produced when computing the

footprint using change identifiers.

Since we are only interested in comparisons, not actual values, we normalise the error by

expressing it as the symmetric area di↵erence taken as a fraction of the area of the true

footprint (foot(�
i

)). Thus the aggregate mismatch between the stored footprint and the

true footprint over a dot-pattern sequence of length p is given by

mismatch =
pX

i=1

||foot(�
i

)� SFP
i

||
||foot(�

i

)|| ,

This mismatch bears a strong resemblance to the visual error used by Alani et al. [Alani

et al., 2001]. The similarity has arisen independently and was noticed only after mismatch

was implemented, but the concurrency adds credence to our choice of error measure.

6.7. Eliminating Wasteful Processing

As an addendum to considering the methodology we note a way in which excess computa-

tion can be prevented. Many of the discussed identifiers make use of the same calculations

(e.g. bounding box, centroid). It would be wasteful to perform these calculations for

each identifier so a data table is attached to each phase in the dynamic dot pattern. The
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identifiers can query this data table, if a value does not exist then they calculate it and

add it to the table for the benefit of any other identifier that may require it.

6.8. Summary

This chapter has provided a modular framework for the change identifiers to be run within

that allows both for real-world application use and for assessment. A data structure to

contain the dot patterns has been proposed and rationalised. When considering the assess-

ment of the change identifiers the chapter has explored three footprint di↵erence measures

and shown why symmetric area di↵erence has been used for the experimentation within

this thesis. Finally this chapter has discussed a method to reduce wasteful computation

when running the change identifiers framework.
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The previous chapters have examined the construction of the change identifiers, how they

may be combined and used, and a methodology with which to test them. This chap-

ter discusses the parameters used within the testing, a justification on why they will be

su�cient to fairly assess the change identifiers and finally presents the results from the

experimentation.

7.1. The Dynamic Dot Patterns

The first hurdle faced when attempting to create a test-bed for change identifiers is in

the choice and/or creation of the dynamic patterns. Using just one type of dynamic dot

pattern will produce unreliable results, and may lead to overfitting the change identifiers

to just that application. While there is a large number of actual and potential applications

which generate this data there is a dearth of available examples. Therefore, as well as the

few real-world cases, we need a set of example dynamic dot patterns exhibiting a range

of behaviours. A pattern generator was constructed to allow for a variety of di↵erent

behaviour types including the random type used for the dot pattern analysis in Chapter 3.

The dynamic dot patterns used as input for the change identifier framework are:

Real World:

• Ship tracking data1 – Data taken by VHF tracking using the Automatic Iden-

tification System (AIS). This data set covers the English Channel for two 24

hour periods in March 2011 and shows an interesting range of movement types2

[Mean No. dots: 105, No. phases: 289].

• Running data3 – GPS Data that tracks runners over the Great West Run in

Exeter. This set is quite small and because of the way the GPS data is collected

operates over very few widely spaced timesteps [Mean No. dots: 9, No. phases:

11].

Generated Simple:

• Translation – The dynamic dot pattern moves but has a fixed distribution from

the centre [No. dots: 500, No. phases: 500].

1Courtesy of David Walker.
2Examples of which can be seen in [Wood, 2011].
3Courtesy of Dr Zena Wood.
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• Extent (Translation) – The dynamic dot pattern changes in extent by dot trans-

lation [No. dots: 500, No. phases: 500].

• Extent (Cardinality) – The dynamic dot pattern changes in extent by changes

in cardinality [Mean No. dots: 500, No. phases: 500].

• Rotation – The pattern is fixed in place but rotates around a centre [No. dots:

500, No. phases: 500].

Generated complex:

• Orbits4 – A Pattern that simulates the orbit of six objects around the origin.

While an application with this behaviour is unlikely to require a footprint it pro-

vides a layer of complexity to the rotation that may occur in other applications

[No. dots: 6, No. phases: 121].

• Random – In which no pattern bears any resemblance to the previous pattern.

Change occurs often in di↵erent ways, almost certainly requiring an update at

each step. This acts as a form of control pattern to make sure that extreme

changes are always ‘caught’ [Mean No. dots: 275, No. phases: 500].

• Simples with noise – The simple behaviours described above with noise applied

to their position or movement. This is to make sure that the identifiers can still

perform even with imprecise data [No. dots: as above, No. phases: as above].

• Boid-like behaviour – Reynolds [Reynolds, 1987] identified three rules that an

entity can follow which, when observed by a flock of entities, produces complex

flocking behaviours:

1. Alignment – The tendency to travel in the same direction as local flock-

mates.

2. Separation – Steering to avoid collision with local flockmates.

3. Cohesion – The tendency to move toward the average position of local

flockmates.

We use a two-dimensional variation of this structure and add the concept of a

variable lifespan to the entities. Having a lifespan is not necessarily to account

for the possibility of the entities dying but also to allow for possibly incomplete

or duplicated data [Mean No. dots: 591, No. phases: 500].

The work performed by Andrienko and Andrienko [Andrienko and Andrienko, 2007], and

Laube and Purves [Laube and Purves, 2011] provides a good summation of the dangers

inherent in testing across limited types of dot pattern data. The wide range of types of

pattern are used so that we can avoid some of the more common pitfalls. We are, however,

aware that a large proportion of our data is computer generated rather than representative

of real world data, a fact we must bear in mind when drawing our conclusions.

4Courtesy of Dr Antony Galton.
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7.2. The Algorithms

The aspects of the data produced by running the identifiers in which we are most interested

are the ‘error’ presented by the change identifiers and the time taken to run them against

the time taken to run just the footprint algorithm. To be sure of a fair representation

we need to use more than just one footprint algorithm. We have endeavoured to use

algorithms that produce footprints in di↵erent fashions so as to give a wide range of

results on which to draw our conclusions.

• Graham Scan – Graham [Graham, 1972] produced one of the first e�cient (O(n log n))

algorithms for finding the convex hull. The paper [Graham, 1972] is a succinct math-

ematical description of the algorithm, so to avoid repetition we simply note that it

expresses all the dots of a pattern in polar coordinates from an origin point known to

lie within the pattern, and from this origin successively removes points that cannot

be extremal.

• ↵-shape – As described in Chapter 2 the ↵-shape is the conjunction of all circles

of radius 1/↵ that contain either all/none5 of the dots of the pattern. Choosing a

parameter that would always produce footprints in between the convex hull and the

null footprint is not easy (rather tentatively called ‘interesting’ footprints for the

sake of brevity). The average estimated nearest neighbour distance6 was used as a

likely candidate.

• �-hull – The �-hull [Duckham et al., 2008] relies on the Delaunay triangulation.

Using a divide and conquer method this can be found in O(n log n) time and the

�-hull process then removes lines of length greater than the given parameter when

removing them does not ‘break’ the hull. Like ↵-hull a parameter value needs to be

chosen that will produce ‘interesting’ footprints. The parameter also has a direct

e↵ect on the process time of the algorithm, the smaller the line length the more lines

there will be to check to see if they can be removed. The average estimated nearest

neighbour distance provides a value that fits these requirements7.

• Descending Swinging Arm – The Swinging Arm algorithm [Galton and Duckham,

2006] can be extended to function as an iterative process in which successive arm

lengths are tried. The descending version begins with an arm length equal to the

diameter of the pattern, a value guaranteed to give the convex hull. Then by choosing

the second longest side length of the footprint the arm length decreases until the

footprint contains a degenerate line, at which point the footprint previous is selected.

• Ascending Swinging Arm – This version of the Swinging Arm algorithm starts with

the average nearest neighbour distance and increases in increments of the short-

est nearest neighbour distance8 In comparison to the descending swinging arm al-

5All for positive ↵ and none for negative.
6Multiplied by �1 to give a ↵-shape with concavities.
7It should be noted that we are not suggesting that the average nearest neighbour distance always provides
a ‘good’ footprint but that it tends to produce an ‘interesting’ one.

8Or by a quarter of the average if the shortest is less than that value. This is done so as to reduce to the
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gorithm, the ascending version is more likely to produce footprints with multiple

components.

• Minimum Isothetic Bounding Box – The dual red-black trees allow us to find the

extremal dots in the x and y coordinates in O(log n) time. It is likely, therefore, that

the minimum isothetic bounding box can be computed in less time than some of the

change identifiers. It is included to make sure that any positive bias towards change

identifiers from the implementation of any of the above algorithms is balanced.

Adding to the earlier discussions on the nature of a footprint we note that from this

point on this thesis will be dealing with footprints as defined by by the given algorithms.

Whether the change identifiers can generalise to be used for other footprint algorithms

is left as an open question. However we can state that many of the algorithms in the

literature will produce similar types of footprint9 to the algorithms presented here.

7.3. The Change Identifier Sets

As this chapter is looking to make assessments on the general ability of change identifiers to

reduce footprint updates, there will need to be a range of change identifier sets. To provide

this range several sets are created: A set for each of the identifiers introduced in Chapter 5

as singletons, a set for the change identifiers based on the fastest descriptors from Chapter 3

(i.e., Skewness, Kurtosis, PearsonCoeffCorr, OLSGradient, Cardinality and

DiameterSq) a set for the fastest descriptor change identifiers in conjunction with the

distance measures from Chapter 5, and a set containing all of change identifiers. For each

of these twenty sets a version is created with the total thresholds 0.1, 0.25, 0.5, 0.75 and

0.9 giving a total number of change identifier sets used of one hundred. With a hundred

di↵erent change identifier sets there should be enough scope to see sets that reduce the

number of updates for a suitably small trade-o↵ in error.

7.4. Plotting the experiments

Given a set of dynamic dot patterns, a set of footprint algorithms and a collection of change

identifier sets we need to decide on an appropriate, defensible procedure with which to

test them. Before explaining the procedure we add some useful nomenclature shortcuts:

each process of a dynamic dot pattern with a footprint algorithm and a change identifier

set is called a run of the framework; each run produces a graph of time taken with change

identifiers and without against timesteps (Fig. 7.1) and a graph of error against timestep

(Fig. 7.2). For brevity we shall refer to the run over the dynamic dot pattern when using

change identifiers to signal footprint updates as with (i.e., with change identifiers) and

the run when updating the footprint at each time step as without (i.e. without change

identifiers).

number of iterations.
9The footprint type here are those given in the classification in Chapter 4
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Figure 7.1. Example of a graph of time taken per timestep.

Figure 7.2. Example of a graph of symmetric area di↵erence per timestep.

The graphs shown in Fig. 7.1 and Fig. 7.2 are of the same hypothetical experiment, as

evidenced by the correlation of their ‘spikes’. Each update of the footprint, when using

change identifiers has a ‘jump’ on the time-taken graph (Fig. 7.1) and a corresponding

‘drop’ to 0 on the area di↵erence graph (Fig. 7.2). The jump-height is the time taken to run

both the change identifiers and the footprint algorithm, and the drop to 0 indicates that

the footprint from the change identifier run is identical to the true footprint. Fig. 7.2 shows
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two types of slope that represent di↵erent changes in speed in the dynamic dot pattern:

gradual and steep. The phases in the timestep range 4–8 show a gradual increase in the

error, represented by the symmetric area di↵erence, until 9 at which point the thresholds

were exceeded on the change identifier set that was being used. The steep slopes between

16–20 are indicative of much faster change than in the 4–8 range as the symmetric area

di↵erence increases far more between each timestep. Further to showing the rate of change,

the symmetric area di↵erence can also denote di↵erent change behaviours in the dynamic

dot pattern: uniform and erratic. Both the ranges 4–8 and 16–20 show uniform change

in the dynamic dot pattern. The fast rate of change between 16–20 means that, unlike

4–8, there is no obvious ascension, but, because timestep 19 has the same symmetric area

di↵erence as 17, 16–20’s change is likely similarly as uniform as 4–8’s. Whereas between

12 and 16 the symmetric area di↵erence follows the erratic sequence h0, 50, 0, 20, 0i. The

graph shows that a symmetric area di↵erence of at least 100 can be reached before an

update occurs (timesteps 3 and 8), therefore there must be large changes between 13–14,

and 15–16.

Figure 7.3. Example of a graph of time against error for multiple change identifier sets.

The previously discussed graphs display the e↵ectiveness of a particular set for a specific

run. However they are not very useful for comparing identifiers against each other; one

set may take longer than another but produce less error. By iterating over the change

identifier set collection we also fill in points on a graph of time taken against error Fig. 7.3.

Each point on Fig. 7.3 represents the performance of that change identifier set on the

given dynamic dot pattern for the given footprint algorithm. Looking at time against

error graphs we can instantly see if an identifier is performing better than another at

minimising time and/or error.

Altering the algorithm will not change the performance of the identifier sets relative to

each other but it will a↵ect the values given to their performance. For example the time

di↵erences between with and without will be far greater for the Ascending Swinging Arm

algorithm than for the Graham Scan algorithm. By taking an average performance score
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over the set of footprint algorithms we can be sure that we are neither penalising the change

identifiers nor being overly biased towards them. The results can be generalised further

by taking an average performance score over the set of di↵erent dynamic dot pattern

types. With these considerations in place we can make confident statements about the

performance of a change identifier set in general as well as for a specific dynamic dot

pattern type (e.g., A change identifier set may perform particularly well when the pattern

changes only by extent but terribly for a dynamic pattern which rotates.)

7.5. Results

There are one hundred identifier sets running over twenty-one dynamic dot patterns using

six footprint algorithms, leading to 12, 600 individual runs. Each run has values for total

time taken, total symmetric area di↵erence (error), average time taken per timestep, av-

erage symmetric area di↵erence per timestep and average symmetric area di↵erence as a

proportion of the area of the true footprint per timestep. With such a large amount of data

it is impractical to plot all the results on a single graph or to plot each run individually,

so many of the following graphs show only the best performing thresholds for each set and

with their values averaged over the footprint algorithms.

7.5.1. Footprints

Results

Before showing the results of the change identifiers, we present an example of the dot

pattern and the footprints both with and without change identifiers for sixteen timesteps

of the pattern changing by extent and cardinality (Fig. 7.4 and Fig. 7.5) to give some

context to the following charts.

Next the footprint algorithm times are graphed so as to provide context for the times

taken when performing with runs. Fig. 7.6 shows the average time taken per timestep to

run each footprint algorithm for each of the dynamic dot patterns, and Fig. 7.7 shows the

same plot but for only the minimum isothetic bounding box algorithm.

Discussion

The ↵-shape algorithm consistently takes longer to compute than the others; it seems

likely that this high computation time is due to the iterative construction process of the

algorithm that contains regular distance checks (to see if any dots fall within the discs

that are defined by its candidate edges). The expectation would be that the minimum

isothetic bounding box, being the computationally least complex, would be the fastest to

compute and this is shown in the data. We note that the computation time appears to be

almost constant but this is an e↵ect of the logarithmic scaling and disappears when the

125



7. Results

Figure 7.4. An example selection of eight timesteps (�100 – �108) showing the footprint with change
identifiers (solid red) and the footprint without change identifiers (dashed black) on the dynamic
dot pattern using a change in extent and cardinality behaviour and the �-hull algorithm
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Figure 7.5. An example selection of eight timesteps (�109 – �116) showing the footprint with change
identifiers (solid red) and the footprint without change identifiers (dashed black) on the dynamic
dot pattern using a change in extent and cardinality behaviour and the �-hull algorithm
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Figure 7.6. Average time taken per timestep for each footprint algorithm on each dot pattern type.

bounding box computation time is looked at on a linear scale (Fig. 7.7). In Fig. 7.7 the

bounding box on the running data (the smallest dynamic dot pattern used) appears to be

the slowest to compute, however the di↵erence between it and the fastest computation time

is 2.53⇥ 10�6 seconds10. which is small enough that it is likely due to the processor being

10Recorded as 2529.06 nanoseconds. The nanosecond timer in the Java framework is its most accurate way
of identifying time di↵erences, however whether or not it has nanosecond accuracy is entirely dependant
on the capabilities of the processor, thus we can largely trust its accuracy to the millisecond but no
further

128



7. Results

Figure 7.7. Average time taken per timestep for the minimum isothetic bounding box algorithm
on each dot pattern type.

used by other tasks momentarily. We tend to ignore such small time di↵erences in our

analysis as they are misleading and almost certainly anomalous. This thesis does not focus

on the footprint algorithms and their di↵erences, but future work could look at answering

such questions as: Why does the Ascending Swinging Arm tend to compute faster than

the Descending variant? And why does the �-hull only perform quicker than the both

of the Swinging Arm variants when the dynamic dot pattern has featured expansion by
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increasing cardinality?

7.5.2. Change Identifier Sets Time

Results

Fig. 7.8 is a time-taken graph for the change identifier sets in which only the thresholds

with the minimum time are plotted for each set; that is, each change identifier set was

run with the thresholds h0.1, 0.25, 0.5, 0.75, 0.9i and only the threshold with the minimum

time is shown here. The white diamond indicates the average time taken for a without

run to be performed on the dynamic dot pattern.

Discussion

The thresholds are all 0.75 or 0.9 and therefore to the high end of the range that was spec-

ified. This is expected as the higher the threshold the less likely the change identifiers are

to cause an update. The reason they are not all at the 0.9 threshold is that, for those with

a 0.75 threshold, the number of footprint updates for both runs using 0.75 and 0.9 are the

same and therefore they have the same computation times; the lowest threshold is plotted

as a default. Important to note on Fig. 7.8 is that all the change identifier sets, apart from

on the running data, take less time than the without run. The dynamic dot pattern using

the real world running data is very small with only eleven timesteps and nine data points in

each pattern, so it is not surprising that the BoundingBoxSymmetricAreaDiff-0.75

and Centroid-0.25 identifiers take longer than the mean time of the footprint algorithms,

particularly considering that the set of footprint algorithms contain the isothetic minimum

bounding box and the Graham Scan.
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Figure 7.8. Average time taken per timestep for the fastest performing thresholds of each change
identifier set on each dot pattern type.

7.5.3. Change Identifier Sets Error

Results

Unlike Fig. 7.8, Fig. 7.9 plots the average proportionate error (found using symmetric area

di↵erence and the mismatch equation from Chapter 5) per timestep instead of the time

taken. The graph shows the thresholds for each identifier set that minimised the error; all

of which are 0.1.

The graphs in Fig. 7.10, Fig. 7.11 and Fig. 7.12 show the error for three di↵erent change

identifier sets (a set containing all identifiers and the singletons of BoundingBoxArea
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Figure 7.9. Average proportionate error per timestep for the best performing thresholds of each
change identifier set on each dot pattern type.

and NearestNeighbourDistVariance respectively) for all algorithms on two di↵erent

dynamic dot patterns.

Discussion

The lower the threshold the more likely the change identifier set is to cause footprint

updates, and the more frequent the footprint updates the less the symmetric area di↵erence

between the stored footprint and the true footprint will be. A final point of interest on this

graph is that the sets do not appear in the same order for every dynamic dot pattern type

indicating the, perhaps intuitive, fact that di↵erent dynamic patterns change in di↵erent
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(a) On the change in extent via cardinality dynamic dot pattern.

(b) On the random dynamic dot pattern.

Figure 7.10. Graphs showing symmetric area di↵erence against change identifier threshold for the
set containing all identifiers for di↵erent thresholds.

ways and that an identifier that can catch one type of change will not necessarily catch

another.

The error graphs for change identifiers with di↵erent thresholds look much as would be

expected, for the pattern that represents a phenomenon changing in extent the error (as

measured by proportional symmetric area di↵erence) increases as the threshold increases.

The random pattern has given an odd result for the NearestNeighbourDistVariance

set (Fig. 7.12), the fact that the threshold of 0.9 gives less error than 0.75 appears anoma-

lous. However if we consider that there is a timestep ⌧
v

within the pattern after which
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(a) On the change in extent via cardinality dynamic dot pattern.

(b) On the random dynamic dot pattern.

Figure 7.11. Graphs showing symmetric area di↵erence against change identifier threshold for the
BoundingBoxArea set identifier for di↵erent thresholds.

the pattern varies wildly but not in the nearest neighbour distance variance then we can

imagine that the threshold of of 0.75 causes an update at ⌧
v

, but that the threshold is

now too high for it to ‘catch’ the change during this period of wild di↵erence. The 0.9

threshold ‘misses’ the update at ⌧
v

but the cumulative change in nearest neighbour dis-

tance variance allows it to update in the middle of the period of wild change. Such a

situation could well lead to a higher threshold producing less error than one lower. This

is one of the reasons that multiple change identifiers are recommended for use in the set.

Also of interest is that the ↵-hull seems to only vary very slightly if it all. It is likely

that the parameter chosen for the ↵-hull over these runs is producing footprints of ‘poor’
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(a) On the change in extent via cardinality dynamic dot pattern.

(b) On the random dynamic dot pattern.

Figure 7.12. Graphs showing symmetric area di↵erence against change identifier threshold for the
NearestNeighbourDistVariance set identifier for di↵erent thresholds.

quality, that is there may be degenerate parts reducing the region that can be considered

as a footprint. With regard to the variation in the change identifier performance based on

the footprint algorithm used, excluding the ↵-hull for the above reasons, the graphs give

the indication that the footprint algorithms can have di↵erent sensitivities for di↵erent

types of change. For example the �-hull and the minimum isothetic bounding box always

appear to be at alternate ends, what one is sensitive to, the other isn’t. The given graphs

are only of two pattern types and as such there is not enough data to make strong claims

about the sensitivities of the algorithms, and neither is it particularly important to the

discussion on whether change identifiers work for any given footprint algorithm. It is,
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however, and interesting avenue for future work.

7.5.4. Time against Error

Results

The error and time against dot patterns graphs have confirmed that the thresholds of the

change identifier sets a↵ect their computation times and their error values in the expected

fashion. That is, decreasing the threshold increases the time taken for a decrease in the

error and vice versa. However, as we discussed earlier, such graphs do not allow for an

assessment of change identifiers that takes into account both their time taken and their

error, and therefore how the sets compare to each other. Figures Fig. 7.14 and Fig. 7.15

show the average time taken per timestep against the average error per timestep, and the

total time taken for the run against the total error for the run respectively for the best

performing change identifier set thresholds. Best performing in this case are the sets with

thresholds which perform better than others in the same family11 on at least one of the two

objectives: reducing the time taken and reducing the error. This form of comparison uses

the idea of dominance, a concept used within the field of Multi-Objective Optimisation.

The following statements use Fig. 7.13 as an example of dominance relations in which the

aim is for both objectives to be minimised.

• Strong Dominance: One solution outperforms another on all objectives. So in

Fig. 7.13 8x 2 O a
x

< b
x

in which O is the set of all objectives.

• Weak Dominance: One solution out performs another on at least one objective and

is no worse on any other. 9x 2 O d
x

< b
x

^ 8x 2 O d
x

 b
x

.

• Mutual Non-Dominance: One solution performs better than another on at least one

objective and worse on at least one objective. 9x 2 O 9y 2 O a
x

< d
x

^ a
y

> d
y

.

To fully explain the figure: ha, d, ei, ha, ci, hb, ei, and hb, ci are mutually non-dominating

tuples, b is dominated by a and weakly dominated by d, and c is dominated by d and e.

Given this description of dominance it can be stated that the change identifiers that will

interest us are those that are mutually non-dominating.

The values in the graphs represent the average result over all dynamic dot patterns and all

footprint algorithms, and the blue line in each graph indicates the time taken to complete

a without run (this without run is analagous to the the T
NCI

line from the trade-o↵

graph Fig. 5.7 in Chapter 5).

Discussion

The change identifier sets have formed definite bands in both graphs. The bands have

been enlarged in the subgraphs of each figure so that they may be better examined. Why

11That is, sets that have the same identifiers
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Figure 7.13. Graph showing dominance relations.

the banding should be so distinct is not obvious, however it may be explained if there are

set timesteps in the dynamic dot patterns at which not updating causes large increases

in the symmetric area di↵erence; the banding would indicate the di↵erent granularities at

which sets can identify these steps.

The only significant di↵erence between Fig. 7.14 and Fig. 7.15 is that the figure showing

totals (Fig. 7.15) has concatenated Bands 3 and 4 from the figure showing averages per

timestep (Fig. 7.14) into a single Band 3; this is likely an artifact of the scaling di↵erences

between total and average. On both figures Band 2 has a good example of the time-error

trade-o↵ curve that was discussed in Chapter 5, in fact all the bands have an indication

of this curve but none so strongly realised as in the second band.

All of the identifier sets are well below the computation time when running without so

we focus on the first band, in which the identifiers have minimised the symmetric area

di↵erence. The identifier sets appearing in Band 1 have been re-plotted (with all their

best performing threshold values) onto Fig. 7.1712. We note that once again there is an

indication of the time-error trade-o↵ curve appearing. The thresholds of each identifier

place them where we would expect on the curve with the lower thresholds to the top-left

(more footprint updates so less error and higher computation time) and the higher thresh-

olds to the bottom-right (less footprint updates so greater error but lower computation

time). This placement on the curve adds to the evidence given by the separated time

and error graphs to bolster the credence of the statement that the time-error curve can

be traversed by altering the threshold. This is important because, as previously noted,

the e↵ectiveness of the change identifiers will be context specific. Once suitable identifiers

have been chosen for an application a user will need to be able to choose a threshold which

provides a time-error ratio that is acceptable for that application.

A final note on the time against error graphs is how well the NearestNeighbourDist-

12The graphs are only of the average timestep results and not the total results to reduce clutter as both
are very similar; di↵ering in only the scales
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Figure 7.14. Time taken against proportionate error per timestep averaged across all dot patterns
for the best performing thresholds of each change identifier set. The first plot is of all the change
identifiers together; the subsequent plots are the bands of similar symmetric area di↵erence from
the original plot. Note the di↵erence in scales along the x axis. (Legend is given in Fig. 7.16)
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Figure 7.15. Time taken against proportionate error totalled for each run averaged across all dot
patterns for the best performing thresholds of each change identifier set. The layout is the same
as for Fig. 7.14; the first plot shows all of the identifier sets and the subsequent plots are ‘zoomed’
in sections of this initial plot. (Legend is given in Fig. 7.16)
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Figure 7.16. Legend for plots Fig. 7.14 and Fig. 7.15
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Figure 7.17. Time taken against error per timestep averaged across all dot patterns for the best
performing thresholds of the identifiers appearing in Band 1

Variance identifier (estimated nearest neighbour distance variance) has performed, with

its lowest threshold value producing the least error score. This does not mean that Near-

estNeighbourDistVariance is a ‘better’ identifier than any other necessarily but, given

the averaging across the twenty-one di↵erent types of dynamic dot pattern, suggests that

it is a very generally applicable change identifier.

7.5.5. Individual Run: NearestNeighbourDistVariance on the

Extent-Cardinality-Expand-Noisy dynamic dot pattern using the

�-hull.

The previous results have all focused on the results averaged across the dot patterns and/or

the footprint algorithms for multiple change identifier sets. In this section we will examine

the results from runs of an individual identifier set.

Results

Of the identifier sets the NearestNeighbourDistVariance-0.1 performed well across

the averaged runs and so we will look primarily at the results of tests for which it was

the change identifier set. On figures Fig. 7.8 and Fig. 7.9 the dynamic dot pattern that

expanded in extent via change in cardinality with noise presented the greatest variance

in time and error so it is the pattern used for the runs shown in Fig. 7.18 and Fig. 7.19.

These runs use the �-hull, as it had the median performance on that particular dynamic

dot pattern.
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Figure 7.18. Time taken to compute at each timestep for NearestNeighbourDistVariance–0.1
on the Extent-Cardinality-Expand-Noisy dynamic dot pattern using the �-hull footprint algorithm.

Figure 7.19. Proportionate error at each timestep for NearestNeighbourDistVariance – 0.1
on the Extent-Cardinality-Expand-Noisy dynamic dot pattern using the �-hull footprint algorithm.
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Discussion

Fig. 7.18 shows that, even as the computation time for the pattern increases with the

cardinality, the change measured by the given set can still be calculated within far less

time than the algorithm takes to run. Fig. 7.19 displays the error at each step found by

the symmetric area di↵erence between the current and true footprint as a fraction of the

true footprint’s area. To clarify why the symmetric area di↵erence itself cannot be used

as a value for error, we note that a small symmetric area di↵erence corresponds with a

similar stored footprint to true footprint, but that this gives no indication about where the

distinctions between small and large symmetric area di↵erence values are made. Fig. 7.20

shows an example of this e↵ect; both box pairs A and B have the same symmetric area

di↵erence, however the box b
2

could well be considered a better fit to b
1

than a
2

is to

a
1

. To be able to draw conclusions about how well the footprint has been maintained the

equation for mismatch from Chapter 5 is used in which the symmetric area di↵erence at

each timestep is taken as a proportion of the true footprint. The maximum proportionate

error that is reached in Fig. 7.19 is 0.57 (or 57%) which may seem quite a high value but

the mean is less than half that at 0.24. Fig. 7.21(a) shows the same data as Fig. 7.19

but replotted as a histogram; the vertical axis shows the proportion of timesteps from

the given dynamic pattern that have error in the range given by each bar. The second

histogram (Fig. 7.21(b)) demonstrates that the NearestNeighbourDistVariance-0.1

set provides an error less than 0.24 for just less than 60% of the timesteps of the dynamic

dot pattern; this is far more acceptable a score than the maximum error would initially lead

us to believe. While the value for an acceptable proportionate symmetric area di↵erence

is application specific, this result confirms the initial hypothesis that it is possible to

maintain a footprint representation of the dot pattern whilst not updating the footprint

at each timestep.

A B

a

a1

2
b1

b2

Figure 7.20. Example of the Problem in Using Symmetric Area Di↵erence as an Error Measure
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(a) Proportionate error histogram for NearestNeighbourDistVari-
ance – 0.1 on the Extent-Cardinality-Expand-Noisy dynamic dot pattern
using the �-hull footprint algorithm.

(b) Proportionate error histogram for NearestNeighbourDistVari-
ance – 0.1 on the Extent-Cardinality-Expand-Noisy dynamic dot pattern
using the �-hull footprint algorithm showing the proportion of timesteps
below 0.24 proportionate error.

Figure 7.21. Proportionate error histograms for NearestNeighbourDistVariance – 0.1 on the
Extent-Cardinality-Expand-Noisy dynamic dot pattern
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7.5.6. Individual Run: NearestNeighbourDistVariance on the

Extent-Cardinality-Expand-Noisy dynamic dot pattern using the

minimum isothetic bounding box.

Results

To be certain that the choice of the �-hull is not unfairly weighting the graphs in the

change identifier set’s favour, tests were run using the same dynamic dot pattern but with

the minimum isothetic bounding box as the footprint algorithm (Fig. 7.22 and Fig. 7.23).

Figure 7.22. Time taken to compute at each timestep for NearestNeighbourDistVariance–
0.1 on the Extent-Cardinality-Expand-Noisy dynamic dot pattern using the isothetic minimum
bounding box footprint algorithm.

Discussion

Even with the low complexity of the bounding box algorithm Fig. 7.22 demonstrates that

some change identifiers can still operate in less time. The ‘spikes’ for the without run on

Fig. 7.22 are indicative of the misleading data that can arise when running experiments

sensitive to small increments of time on a machine not solely dedicated to this purpose;

occasionally the processor will give precedence to other tasks. These anomalous data

points are one of the problems avoided by basing our overall conclusions on the average

results across multiple runs. Fig. 7.23 matches Fig. 7.19 but is somewhat more ‘blocky’

as would be expected when dealing with symmetric area di↵erences on the minimum

bounding box.
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Figure 7.23. Proportionate error at each timestep for NearestNeighbourDistVariance–0.1 on
the Extent-Cardinality-Expand-Noisy dynamic dot pattern using the isothetic minimum bounding
box footprint algorithm.

7.5.7. Individual Run: NearestNeighbourDistVariance on the random

dynamic dot pattern using the �-hull.

Results

The dynamic dot pattern used in the previous tests has a relation between successive

phases. While it is noisy, the pattern changes in a consistent fashion and this is evidenced

in the steady increase of symmetric area di↵erence shown in Fig. 7.19 and Fig. 7.23.

Within the set of dynamic dot patterns used for this thesis there is a random pattern

in which no phase need bear any relation to the previous. We would not expect change

identifiers to function particularly well for a pattern that requires such regular updates.

However, should the dynamic dot pattern have enough brief respites, in which the dif-

ference between two phases is not great, it will be possible for change identifiers to save

some computational time. Fig. 7.24 shows the time comparison for with and without

runs on the random dynamic dot pattern using the �-hull footprint algorithm and is, due

to the many footprint updates required, decidedly cramped. Fig. 7.25 shows the times

taken for the same experiment as the di↵erence between the without and with runs.

Fig. 7.26 shows the proportionate symmetric area when running with. The graph has

been cropped because the scaling made it di�cult to see the timesteps at which updates

occurred; the di↵erence between the symmetric area di↵erences ranging between several
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orders of magnitude.

Figure 7.24. Time taken to compute at each timestep for NearestNeighbourDistVariance–0.1
on the Random dynamic dot pattern using the �-hull footprint algorithm.

Discussion

The line on Fig. 7.25 stays mostly above the 0 point on the y-axis, and we can therefore

state that, even if it is only by a small amount, the change identifiers are still saving

time. With regard to the error Fig. 7.26 shows that the mean proportional symmetric

area di↵erence was 0.70 but the maximum was 169; this is far too large an error to

be acceptable to most, if not all, applications. However such randomised dynamic dot

patterns are unlikely to occur in the real-world and can be mitigated against by using

sets with identifiers for each descriptor class, such as the FastestNoDistance. Fig. 7.27

and Fig. 7.28 show graphs for a test using FastestNoDistance with thresholds of all

its identifiers set at 0.25 to prevent constant updates. The set still manages to have an

average computation time less than that of the without run: a mean time of around

0.007 seconds per timestep and a total time saved of 3.3 seconds. The proportionate error

has a maximum of 5.7 but an average of only 0.13, thus we feel confident stating that,

despite the high maximum, the average error is well within the bounds of acceptability

for most applications. This adds further weight to our hypothesis that a change identifier

set can can be used, even on highly variable data, to reduce overall computation time for

low values of footprint error.
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Figure 7.25. Di↵erence between with and without in time taken to compute at each timestep for
NearestNeighbourDistVariance–0.1 on the Random dynamic dot pattern using the �-hull
footprint algorithm.
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Figure 7.26. Proportionate error at each timestep for NearestNeighbourDistVariance–0.1 on
the Random dynamic dot pattern using the �-hull footprint algorithm. The red line indicates the
mean proportionate error.
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Figure 7.27. Di↵erence between with and without in time taken to compute at each timestep
for FastestNoDistance–0.25 on the Random dynamic dot pattern using the �-hull footprint
algorithm.
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Figure 7.28. Proportionate error at each timestep for FastestNoDistance–0.25 on the Ran-
dom dynamic dot pattern using the �-hull footprint algorithm. The red line indicates the mean
proportionate error.
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The NearestNeighbourDistVariance–0.1 set’s average performance is reasonable13

on the extent via cardinality dynamic dot pattern, but by using the knowledge that we

have about the nature of a specific dynamic dot pattern and the classes of other change

identifiers we can define a set that reduces the symmetric area di↵erence further without

increasing the time taken greatly. For the final result of this chapter we define the user

selected set UserSelected with the specification given in Listing 7.1. The identifier set

has two identifiers: a measure of extent (DiameterSq) and distribution (Cardinality)

and a proportionate max allowed fails of 0.5. The threshold is set at 0.5 so that should

any of the identifiers have their thresholds breached the footprint will be updated. The

identifiers that have been chosen were selected to match the pattern which increases its

extent by increasing the cardinality. The dynamic dot pattern will, therefore, directly

a↵ect the change identifier classes of distribution and extent.

1 <c h a n g e i d e n t i f i e r s e t name=”UserSe lected �0.5” ver=” 0 .1 ”>
2 <d e s c r i p t i o n>User s e l e c t e d s e t</ d e s c r i p t i o n>
3 <maxFails>0 .5</maxFails>
4 <concurrent> f a l s e</ concurrent>
5 <c h a n g e i d e n t i f i e r>
6 < i d e n t i f i e r>DiameterSq</ i d e n t i f i e r>
7 <p r i o r i t y>0</ p r i o r i t y>
8 <th r e sho ld>0 .1</ th r e sho ld>
9 </ c h an g e i d e n t i f i e r>

10 <c h a n g e i d e n t i f i e r>
11 < i d e n t i f i e r>Card ina l i t y</ i d e n t i f i e r>
12 <p r i o r i t y>0</ p r i o r i t y>
13 <th r e sho ld>0 .1</ th r e sho ld>
14 </ c h an g e i d e n t i f i e r>
15 </ c h a n g e i d e n t i f i e r s e t>

Listing 7.1 User Defined Change Identifier Set

7.5.8. Comparison of UserSelected and

NearestNeighbourDistVariance.

Results

The result of running UserSelected over the noisy extent dynamic dot pattern is shown

in Fig. 7.29 plotted against two variants of NearestNeighbourDistVariance. The

graphs in Fig. 7.30 and Fig. 7.31 show the proportionate error and time taken for each

timestep forNearestNeighbourDistVariance–0.1, NearestNeighbourDistVariance–

0.25 and UserSelected–0.5.

Discussion

Looking at Fig. 7.29 it can be seen that the UserSelected set has clearly increased the

accuracy of the footprint tracking for a very small increase in time (3.71⇥ 10�4 seconds,

13Albeit with some, depending on the application, unreasonable maximum errors.
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Figure 7.29. Time taken against proportionate error per timestep for
NearestNeighbourDistVariance–0.1, NearestNeighbourDistVariance–0.25 and
UserSelected–0.5 on the Extent-Cardinality-Expand-Noisy dynamic dot pattern using the
�-hull footprint algorithm.

which is small enough to be considered negligble14). Fig. 7.30 shows that the UserSe-

lected set is well below both of the NearestNeighbourDistVariance sets for nearly

half of the timesteps. At timestep 235 the NearestNeighbourDistVariance–0.1 set

starts to break its threshold, from this point onwards the proportionate symmetric area

di↵erence of the UserSelected set and NearestNeighbourDistVariance–0.1 is a

lot more balanced. The NearestNeighbourDistVariance–0.1 set appears to update

8 times15 on Fig. 7.30 and only 7 times on Fig. 7.31 but at timestep 247 the proportionate

symmetric area di↵erence is 1.63⇥10�10, which is so low as to appear to touch the axis on

the graph. On Fig. 7.31, around the 300th timestep, we can see that the UserSelected

set and NearestNeighbourDistVariance–0.1 have similar computation times for sim-

ilarly sized sets, leading to the conclusion that the UserSelected set only has a higher

overall computation time because it updates more often. The graphs demonstrate that,

with knowledge about the dynamic dot pattern, we can select intuitively sensible change

identifier sets that will perform well at reducing computation time for controllable levels

of error.

14Given our previous discussion on the accuracy of measuring small time increments on a computer not
dedicated to the purpose of running the change identifier tests.

15Recall that there is always an update on the intial timestep
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Figure 7.30. Proportionate error at each timestep for NearestNeighbourDistVariance–0.1,
NearestNeighbourDistVariance–0.25 and UserSelected–0.5 on the Extent-Cardinality-
Expand-Noisy dynamic dot pattern using the �-hull footprint algorithm.
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Figure 7.31. Time taken to compute at each timestep for NearestNeighbourDistVariance–
0.1, NearestNeighbourDistVariance–0.25 and UserSelected–0.5 on the Random dynamic
dot pattern using the �-hull footprint algorithm.
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7.6. Summary

This chapter has shown that the change identifiers can decrease the number of updates

needed to maintain a suitable footprint over a dynamic dot pattern. The graphs presented

have demonstrated the reduction in time taken needed for computation per timestep, and

they have also provided evidence that the error score for the stored footprint, when mea-

sured for similarity against the true footprint, is quantifiably low. While there are many

more graphs that could be added to this chapter, for example those that show individual

runs for some of the other dynamic dot patterns and change identifiers, we are conscious

that the current graphs already extend beyond the text and that it is becoming di�cult to

follow them in accordance with their discussions. Further to clarity considerations, more

graphs will not show new aspects of the analysis but simply reinforce the points already

made. Additional graphs of results from tests using the UserSelected set created in

this chapter and some other sets, including a set created for Boid-like dynamic patterns,

can be found in the appendices.

The chapter has also indicated that some change identifier sets perform measurably better

than others and that, with some thought, it is possible to define change identifier sets

that perform well for given dynamic dot patterns. The sets found by the original limited

enumerative approach (all singleton sets with multiple thresholds) are, at best, adequate

and don’t compare favourably to those created by user selection.
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8.1. Thesis Summary

The goal of this thesis has been to show that the use of change identifiers will reduce

the time taken to maintain a footprint over a dynamic dot pattern while introducing an

acceptable level of error.

The inquiry began with an investigation of the dot patterns. Our goal was, not merely

to provide background to the change identifiers, but to see if measurements on the dot

patterns could provide useful information in its own right. This exploration of the dot

patterns led to the identification and analysis of the dot pattern descriptors. There is a

wealth of information present in the individual patterns and the descriptors are partial

measures of this information. It was found that, not only, could the descriptors provide

a stable base for the change identifiers but that they may be able give a classification

structure for the dot patterns. A preliminary examination of how this classification might

be constructed is demonstrated in § 8.3.

Footprints have a large scope of operation, appearing in di↵erent forms across a range of

fields. Before looking at the change identifiers this thesis devoted a chapter (Chapter 4)

to the investigation of the types of footprint that are commonly produced by the footprint

algorithms in the literature and proposed a classification (as an extension of the work

performed in [Dupenois and Galton, 2009]) based on this investigation. The chapter also

looked at how the footprint type may be a↵ected as it is updated over a dynamic dot

pattern; further discussion on which can be found within the future work chapter.

Having discussed the underlying aspects of the proposed problem the thesis turned its

attention to the change identifiers. Chapter 5 presented the change identifiers used within

this thesis and proposed a method by which to combine them into sets measuring multiple

di↵erent types of change. It also introduced an assessment approach based on comparing

the stored footprint the change identifier set presented at any particular dot pattern phase

with the ‘true’ footprint, i.e. the footprint that would have been created had the algorithm

been run for the phase.

Chapter 6 gave a description of the more practical issues faced when planning the change

identifier experiments. The chapter paid particular attention to the measure of footprint

similarity that would be used to ascertain the error of a run with change identifiers. While

a conclusion was reached to use symmetric area di↵erence there is scope for future work

involving other footprint similarity measures, possibly arising from considering other ways
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of defining the requirements on a footprint.

The results of the investigation were shown in Chapter 7, which also detailed the range

of dynamic dot patterns and algorithms that were used to provide a fair appraisal of the

worth of change identifier sets. Chapter 7 showed that it was possible to reduce (greatly

in some instances) the number of footprint updates while maintaining a symmetric area

di↵erence that was low proportional to the area of the ‘true’ footprint. The chapter also

demonstrated that some identifier sets can out-perform others for specific patterns and

that it is possible to create sets to do so using knowledge about the dynamic dot pattern’s

nature. Finally the results indicated that some identifiers may be generally more applicable

than others.

Choosing the appropriate set for any given application is the main di�culty that may

arise when using them. For some applications it may be easy to know in advance how

change is most likely to occur and therefore which identifiers to use, however there are

some applications in which the change can occur in multiple and unpredictable ways. In

such erratic cases a set of identifiers is needed that can identify a mixed range of change

types while still taking less time to compute than the footprint algorithm the application

is using.

8.2. Conclusions

This thesis provides an investigation into a novel approach for tracking a footprint across

spatio-temporal data. The evidence it presents demonstrates that when using change

identifiers to indicate the appropriate times at which to update the footprint the average

computation time taken per timestep can be greatly reduced for small increases in footprint

error. Given the already vague notion of a footprint, this error can be rationalised as

allowable approximation of the region that contains the dot pattern at any given timestep.

The relationship between the time taken and error has been shown to follow a Pareto-curve

on which decreases in error tend to lead to an increase in time taken and vice versa. The

traversal along this curve is controllable by the altering of a proportionate threshold on

the identifiers. Selection of identifiers appropriate to a context and their thresholds have

been made intuitive by the use of considering each identifier as a measure of a specific type

of change and their threshold as a percentage of allowed change in the aspect that they

measure. We conclude that the change identifiers are a useful approach to the examination

of dynamic dot patterns and that they have scope for use beyond that presented here.

Further to the use of change identifiers as a way of reducing the number of updates

other uses they might have are explored. This exploration leads to the conclusion that

the information supplied by the change identifiers could well be useful in its own right,

perhaps even by-passing the need to produce a footprint in many cases (for example when

it only needs to be known if the extent is increasing). This will be expanded upon in § 8.3.
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8.3. Future Work

The examination presented in this thesis has focused primarily on the ability of change

identifiers to reduce the number of required updates whilst tracking the footprint across

a dynamic dot pattern. However it has also touched, albeit lightly, on other areas of

research (mostly still within the field of spatio-temporal entities) in which they may provide

benefit. This section is a look at these unexplored change identifier attributes with some

preliminary thoughts and observations.

8.3.1. Dot Patterns

Dot Pattern Types

The descriptors presented in Chapter 3 provide a way of distinguishing di↵erent dot pat-

terns, and it may be possible to use these di↵erences to delineate between classes of dot

patterns. Should there be intuitively distinct, and plausibly useful, classes that can be used

to provide this sort of dot pattern taxonomy then the identifiers can be used to notify the

user when a pattern switches from one type to another. The immediate di�culty faced by

any taxonomy is in avoiding entirely arbitrary delineations between the pattern types, so

to provide a defensible set of distinctions the values of the descriptors are conceptualised

as vectors denoting a point in the ‘descriptor space’. The Euclidean distance between

these points provides a similarity measure and, with a sample set of randomised patterns,

a clustering method (such as the agglomerative clustering method used as a descriptor)

can be used to sort them into progressively larger clusters of similar patterns. By looking

at the dendrogram1 of this clustering a ‘cut’ can be made at the various levels allowing

di↵erent clusterings of varying granularity to be selected.

Before any form of clustering can take place the descriptor values need to be normalised;

without this step one descriptor can contribute more to the distance than another. A

simple normalisation approach can be performed by taking the maximum and minimum

values for a descriptor across the set of randomised patterns and scaling these to a range of

�1 to 1. Descriptors that can result in values of infinity (gradient of principal component

for example) are normalised across a a sigmoidal function curve as shown in Fig. 8.1.

Should the clustering analysis provide a set of clear descriptor divisions then the next

task will be to decide how best to classify a new pattern without having to re-run the

clustering process. A possible approach is to settle on some ‘archetypal patterns’ for each

of the delineations. The values of each archetype provide a central point in the descriptor

space for their respective types. These points can be used to form a Voronoi division of

the space and a pattern is therefore of the type whose archetype it is closest to. Such an

approach allows a pattern from outside the test set of patterns used for clustering to be

classified (the training set), but it requires that the descriptor values are normalised. The

normalisation currently proposed relies on some maximum and minimum values for the

1A graph with a tree-like structure showing the concatenation of clusters in the order they appear.
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Figure 8.1. Graph showing Sigmoidal Normalisation Curve x

1+|x| .

descriptors (except those normalised on the sigmoidal curve), if the pattern to be classified

(the candidate pattern) has values beyond the range of the maxima and minima of the

training set then the clustering analysis will need to be re-run. To provide a classification

that never requires the analysis to be re-run requires a training set that contains all possible

extremal values for a descriptor; in e↵ect every value would need to be normalised on an

asymptotic curve like the sigmoidal approach discussed above. Even if the candidate’s

values are within the range of the training set, the classification of the candidate pattern

is only relative to the training set. A classification that can delineate between the di↵erent

types of dot pattern presented when tracking a herd’s movement may be unsuitable for

the set of dot patterns presented by the buildings within cities. A better approach would

have sample patterns from the field in which we wish to classify the dot patterns and find

the archetypes specific to that field.

Using an agglomerative clustering method we have clustered a randomised dynamic dot

pattern of length 15 by the sigmoid normalised values of the fastest non-correlated de-

scriptor set (given in Chapter 3) to give some preliminary indications as to whether or not

such ‘archetypal patterns’ could be found. Only 15 patterns have been used as the graphs

and associated image displays of larger sets are not particularly intelligible in a printed

document.

The dendrogram in Fig. 8.2 shows a few large ‘jumps’ towards the end as the distance

between the pattern clusters increases. At the cut o↵ point indicated on the figure there

are 3 clusters h5, 6i, h14, 1, 7i and h0, 2 ! 4, 8 ! 13i, this cut-o↵ was chosen as both ‘legs’

of the branch joining h14, 1, 7i to h0, 2 ! 4, 8 ! 13i are of a significant length compared

to the average ‘jump’. The patterns defined by this division of the clustering can be seen

in Fig. 8.3.

The class divisions at this clustering level are not necessarily those that a human would

choose, but some of the reasons why the delineations have been made can be rationalised.

For example, in the first cluster, [5] and [6] are both mostly collinear patterns with similar
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Figure 8.2. Dendrogram for the clustering of dot patterns by the fastest non-correlated descriptor
set

orientation, while in the second cluster [7], [14] and [1] also have similar orientation but

in the opposite direction to cluster one. However not all the clusterings are as easily

understood, for example why are [8] and [2] not connected until the join just before the

cut-o↵ shown in Fig. 8.2 despite both being very dense and comparatively small patterns?

There are several situations that these non-intuitive clusterings may arise from:

• While the descriptors do not directly correlate, there may be tripartite correlation (as

described in Chapter 3 and by Andrienko and Andrienko [Andrienko and Andrienko,

2007]) which unfairly weights some aspects of the clustering.

• The range of dot patterns used in the clustering is not wide enough and some de-

scriptors are represented in a ‘stronger’ form than others. If the di↵erences in extent

are small compared to the di↵erences in orientation then the orientation will have a

larger weighting in the classification.

• The di↵erences in the parameters that are not visually obvious outweigh the others.

Much more research needs to be performed before such a classification can be used, in

particular the question of how the classification is assessed would need to be answered.

For example, would the classification be better if the ‘archetypal’ dot pattern types/classes

are those that are intuitive to a human? Answering such questions would require an in-

depth analysis of the types of information required in applications using dot patterns and,

given the range of fields in which such patterns appear, will likely have context specific

answers.
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Figure 8.3. Snapshot of the clustering process of dot patterns by the fastest non-correlated de-
scriptor set.

Should definitive classes arise from the agglomerative clustering process it will then be

possible to find a best fit class for any given dot pattern. The dynamic dot pattern can be

seen as a traversal across the ‘class’ space of dot pattern types. While we may expect a

specific dynamic dot pattern to not move too far from its initial class it is certainly possible

that it will migrate gradually towards other classes. For example a herd of wildebai2 being

chased by a predator may go from a single spread out grouping to several dense fleeing

packs.

Plotting a Dynamic Dot Pattern

A further abstraction on the descriptor concept is to imagine the dot patterns as existing

in a multi-dimensional ‘descriptor space’, with each descriptor providing a coordinate

axis. When mapped onto this space each dot pattern forms a single dot, with each of its

descriptor values specifying a position on the appropriate axis. Plotting all of the phases of

a single dynamic dot pattern produces a new dot pattern, which represents the dynamic

dot pattern by the range of descriptor values it has undergone. The footprint of this

2One of three possible plurals for wildebeest: wildebeest, wildebeests and wildebai
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resultant dot pattern describes the bounds of the dynamic dot pattern with respect to the

descriptors and is, therefore, representative of the limits of the change of the underlying

collective3. If time is added to the axes of the descriptor space then, instead of producing

a footprint, the dynamic dot pattern traces a path through its descriptor values. Using the

descriptor space to produce a footprint or a path for a dynamic dot pattern may provide

a new and interesting approach to classifying the collectives by their behaviour.

8.3.2. Footprints

Footprint Types

We can examine the footprint at each time step at which it is updated to ascertain its

intrinsic type within the classification presented in Chapter 4. However, unlike the dot

pattern types suggested above, the calculations are outside the scope of the change iden-

tifiers – which only examine the dot patterns. Instead the calculations must be added as

a new module to the framework; increasing the time taken for computation at each time

step that the footprint is updated. Preferably this increase in time will not void the gain

made in using change identifiers. The state of all of the intrinsic footprint criteria can

be found by iterating over the edges of the footprint, and are therefore of at least time

complexity O(v) in which v is the number of vertices of the footprint. This increase in cal-

culation cost may be allowable by imagining that the time saved by the change identifiers

can be ‘spent’ on other tasks, as long as the system as a whole can still provide a more

up-to-date footprint than attempting to update at each timestep. An alternative way

in which to consider the cost-benefit trade-o↵ is that the time lost while performing the

footprint classification can be allowed if the average calculation time per timestep when

using identifiers and footprint classification is less than the average calculation time per

timestep when updating the footprint at each phase.

Being able to indicate to a user when the footprint type changes is of benefit for the

same reason that the dot pattern type change notification would be; it provides further

information about the nature of the change that the collective is undergoing. In addition

to the footprint state, we may also be able to use this information to indicate when the

footprint algorithms parameter is no longer suitable.

8.3.3. Footprint Algorithm Parameters

In the background chapter, it was noted that most footprint algorithms need a user defined

parameter. The parameter requirement led to the discussion within the results chapter

of the reasoning behind the algorithm parameter selection used in our experimentation,

which aimed primarily to provide fair testing conditions. There is still much work to be

done on the informed selection of the footprint algorithm parameters; the work presented

in this thesis on this area being very much inchoate. The use of the footprint classification

3Assuming we have descriptors that accurately capture the state of the collective.
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may well help with identifying when the parameter needs to change but does not provide a

starting value. Using the footprint classification to select parameters is further hamstrung

by the, possibly erroneous, assumptions that the parameter needs to be changed when the

footprint type changes and that this is the only point at which it need change.

To attain a better understanding of the parameter and footprint relation will likely require

an in-depth examination of the interplay between the dot pattern types and the footprint

algorithms. The footprint algorithm classification (Chapter 4) will need to be extended

to include a description of the nature of the parameter. For example if the algorithm uses

the parameter as a threshold on the edge length (Swinging Arm [Galton and Duckham,

2006], �-hull [Duckham et al., 2008]) it will require a di↵erent starting parameter than

that of an algorithm which requires the number of neighbours to compare at each iteration

(K-Nearest Neighbours [Moreira and Santos, 2007]).

8.3.4. Change Identifiers

There is further research that can be performed on the information provided by identifiers

beyond using them to update footprints. The identifiers provide immediate information

about the fashion in which the dynamic dot pattern is changing, and this information

leads to a description of the complex behaviours the underlying collective phenomenon of

the pattern is undergoing. The changes themselves tend to be small and are increments or

decrements in quantitative values but this thesis has previously suggested that it may be

possible to provide qualitative information directly rather than having a human observer

interpret the results. It may be that, for some applications, providing information about

the expansion of a dynamic dot pattern via a status update (e.g. “The phenomenon is

expanding by 10% every 20 seconds”) is more useful than showing the expansion of a

footprint. Change identifiers can be used to bypass the footprint entirely by relaying only

the useful change information; reducing the amount of assessment needed to be performed

by the user.

It should also be noted that the change identifiers presented in this thesis do not exhaust

the range of possible identifiers, and there are almost certainly other useful measurements

to be added to the set we provide. They could also be further examined by looking for

three-way correlation of they type suggested by Andrienko and Andrienko in their struc-

ture consideration [Andrienko and Andrienko, 2007] and to see if the di↵erence between

the first and second order e↵ects proposed by O’Sullivan and Unwin can be identified

[O’Sullivan and Unwin, 2002].

The conclusions given within this thesis are given with confidence borne from the range of

tests that were performed. However future work using change identifiers could certainly

include testing over more real world data, ideally this would involve an industrial case

study.
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8.3.5. Other Fields

The work in this thesis has primarily focused on examples that are spatio-temporal in

nature; situating them firmly in the area of GISc. However, as mentioned in the introduc-

tion, there are other fields which use data that can be visualised as dynamic dot patterns,

for example the movement through the solution space of an optimisation problem or a

set of changing entities in some classification space. It would be interesting to see if the

application of both footprints and change identifiers to these fields provides new insights

into their behaviours.
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A. Extra Result Graphs

Figure A.1. Time taken against error per timestep for NearestNeighbourDistVariance–
0.1, Optimised[304], UserSelected-Boids and the user selected change identifier set cre-
ated for the Extent-Cardinality-Expand-Noisy dynamic dot pattern, now called UserSelected-
ExtentCard using the �-hull footprint algorithm on the boid like dynamic dot pattern.
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A. Extra Result Graphs

Figure A.2. Proportionate symmetric area di↵erence at each timestep for
NearestNeighbourDistVariance–0.1, Optimised[304], UserSelected-Boids and the
user selected change identifier set created for the Extent-Cardinality-Expand-Noisy dynamic dot
pattern, now called UserSelected-ExtentCard using the �-hull footprint algorithm on the
boid like dynamic dot pattern.
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A. Extra Result Graphs

Figure A.3. Time taken to compute at each timestep for NearestNeighbourDistVariance–
0.1, Optimised[304], UserSelected-Boids and the user selected change identifier set cre-
ated for the Extent-Cardinality-Expand-Noisy dynamic dot pattern, now called UserSelected-
ExtentCard using the �-hull footprint algorithm on the boid like dynamic dot pattern.
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A. Extra Result Graphs

1 <c h a n g e i d e n t i f i e r s e t name=”UserSe lected�Boids ” ver=” 1 .0 ”>
2 <d e s c r i p t i o n>User s e l e c t e d s e t f o r dynamic dot pat t e rn s with boid� l i k e

behaviour</ d e s c r i p t i o n>
3 <maxFails>0 .33</maxFails>
4 <concurrent> f a l s e</ concurrent>
5 <c h a n g e i d e n t i f i e r>
6 < i d e n t i f i e r>DiameterSq</ i d e n t i f i e r>
7 <p r i o r i t y>0</ p r i o r i t y>
8 <th r e sho ld>0 .1</ th r e sho ld>
9 </ c h an g e i d e n t i f i e r>

10 <c h a n g e i d e n t i f i e r>
11 < i d e n t i f i e r>Centroid</ i d e n t i f i e r>
12 <p r i o r i t y>1</ p r i o r i t y>
13 <th r e sho ld>0 .1</ th r e sho ld>
14 </ c h an g e i d e n t i f i e r>
15 <c h a n g e i d e n t i f i e r>
16 < i d e n t i f i e r>NearestNeighbourDistVar iance</ i d e n t i f i e r>
17 <p r i o r i t y>2</ p r i o r i t y>
18 <th r e sho ld>0 .1</ th r e sho ld>
19 </ c h an g e i d e n t i f i e r>
20 </ c h a n g e i d e n t i f i e r s e t>

Listing A.1 User Defined Change Identifier Set For Boid-Like Dynamic Dot Pattern
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