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ABSTRACT 

Osmoregulation is an essential process to maintain water and ionic balance and when 

euryhaline fish move between freshwater and seawater environments as part of their life 

cycle this presents additional osmoregulatory challenges. Migrating fish can be exposed 

in both environments to pollutants such as endocrine disrupting chemicals (EDCs) that 

include natural hormones (e.g. 17β-estradiol; E2), synthetic hormones (e.g. 17α-

ethinylestradiol; EE2), and industrial chemicals (e.g. nonylphenol). The focus of this 

thesis was to study the effects of different categories of EDCs on the osmoregulatory 

functions of euryhaline fish such as three-spined sticklebacks (Gasterosteus aculeatus) 

and rainbow trout (Oncorhynchus mykiss). Osmoregulatory variables (such as 

osmolality, water and ionic content) were compared in plasma and tissues (white muscle 

and carcass) of rainbow trout. This validated the use of specific tissue parameters as a 

surrogate of plasma responses to various osmoregulatory challenges. Waterborne 

exposure to 17α-ethinylestradiol revealed differential sensitivity of vitellogenesis in the 

three-spined sticklebacks (no induction) and rainbow trout, but had a significant effect 

on calcium homeostasis in both species. Intraperitoneal implants of 17β-estradiol 

reduced CaCO3 production and apparent water absorption in the intestine and increased 

in tissue calcium stores of seawater-acclimated trout, but fish were able to compensate 

and showed no overall osmoregulatory disturbance. Waterborne exposure to 

nonylphenol in freshwater trout was also investigated, but no effects on osmoregulation 

were found up to 2 ng/l. Overall, estrogens can affect osmoregulation differentially in 

euryhaline fish species, and sometimes at EDC levels lower than the threshold for 

reproductive effects (i.e. vitellogenin induction).  
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1. OVERVIEW 

The maintenance of consistent osmotic conditions is critical for normal cell functioning in 

living organisms. For water-breathing animals, the strategy involved in osmotic 

homeostasis depends on the salinity of the external environment (McCormick and 

Bradshaw, 2006). A number of mechanisms are employed to regulate the intracellular and 

extracellular compartments (plasma, lymph, and interstitial fluid) to redress disruption of 

the appropriate osmotic conditions. The majority of fish live either in fresh water or in sea 

water, but some fish species are able to maintain their body fluids in both these 

environments. These fish species are termed euryhaline and some of these (particularly 

estuarine species) can even survive rapid fluctuations in the osmolarity in their 

surroundings on a daily (tidal) basis (McCormick, 2001; Marshall and Grosell, 2006). In 

euryhaline fish, when they migrate from freshwater to seawater environments or vice versa 

as a normal part of their life cycle, they may face additional exposures to different 

waterborne chemicals, and some of these chemicals may affect their ability to osmoregulate 

(Wendelaar Bonga and Lock 2008). 

 

Osmoregulation refers to the regulation of ions and water in the intracellular and 

extracellular compartments in fish. In teleost fish, many of the regulatory processes are 

dependent on various hormones. Hormones involved include cortisol and the GH/IGF axis 

(GH refers to growth hormones; IGF refers to insulin-like growth factor) that play a major 

role in seawater acclimation and promote salt secretion (McCormick, 2001; Sangiao-

Alvarellos et al., 2006; Sakamoto and McCormick, 2006). Prolactin plays a role in 

freshwater osmoregulation in promoting ion uptake (McCormick, 2001; Manzon, 2002). 
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Therefore, the interference with any of the hormone system controlling osmoregulation 

may be an important factor in some euryhaline or marine species and worthy of future 

study (Matthiessen, 2003).  

 

The issue of endocrine disruption has received considerable research attention and became 

a major environmental issue, principally focusing on the effect of estrogenic compounds on 

fish reproduction (Körner et al., 2008), although wider effects have been studied 

(Matthiessen, 2003; Schlenk, 2008; Hotchkiss et al., 2008). Even though many 

investigations have been carried out into the effects of endocrine disruptors in fish, there 

are very few that have examined the effect of endocrine disruptors on osmoregulation 

(Bangsgaard et al., 2006), a process fundamental for fish health and survival. In Britain, 

endocrine disruptor effects are now of a high priority in research and the present study has 

focused on the potential effects of these chemicals on various aspects of osmoregulation 

and ion regulation in euryhaline fish.  

 

2. ENDOCRINE DISRUPTORS 

Endocrine disrupting chemicals are natural or synthetic compounds that can exert an effect 

on homeostasis in animals by interfering with their hormone systems. There is a growing 

interest in the possible threat posed by these chemicals and a significant number of in vitro 

and in vivo studies have been carried out to examine such effects.  

 

In the environment, fish are exposed to multi-component mixtures of chemicals which enter 

water bodies via different point sources. Many of these chemicals might be toxic and pose 
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harmful effects on marine life. Accordingly, various studies have considered either the 

effect of a single chemical (Huang et al., 2010) or a mixture of chemicals (Madsen et al., 

1997; Teles et al., 2004; Correia et al., 2007) to estimate the risks and the potential impacts 

of these chemicals and their toxicity towards wildlife. Considerable scientific evidence 

from such studies have indicated that some of these chemicals could mimic the action of 

steroid hormones and produce a similar biological response to that produced by the 

endogenous hormones. 

 

Endocrine disruptors have been shown to cause serious physiological effects in the different 

developmental stages and various species of fish. Adverse physiological alterations 

reported in several studies on estrogenic chemicals include increased vitellogenin 

production (Arukwe et al., 2001; Teles et al., 2007; Zlabek et al., 2009), gonadal intersex 

(Örn et al., 2003; Tyler and Jobling, 2008), and reduced gonad growth rate and size. They 

have also been shown to affect fish behaviour related to reproduction such as courtship and 

aggression in the three-spined stickleback (Gasterosteus aculeatus) (Bell, 2001), male 

fathead minnows (Pimephales promelas) (Majewski et al., 2002), and male sand gobies 

(Pomatoschistus minutes) (Saaristo et al., 2010). They are also known to interfere with non-

reproductive physiological and behavioural processes, such as the inhibition of the smolting 

of Atlantic salmon (Salmo salar) (Madsen et al., 1997). 

 

The aquatic environment has been described as an ultimate sink for natural and man-made 

chemicals (Sumpter, 1998). Many chemicals that humans introduce into the environment 

have the capacity to interfere with and modulate the endocrine systems of wildlife and 
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mimic or antagonise the natural (endogenous) hormones. These are termed as endocrine 

disrupting chemicals (EDCs) (Kaminuma et al., 2000). The mechanism through which 

EDCs affect an organism can be via acting as a hormone receptor agonist or antagonist, 

through altering hormone metabolism or synthesis or excretion, or by modifying hormone 

receptor levels (Sonnenschein and Soto, 1998).Whether ECDs are affecting human health 

has not been established definitively, but there are many studies that indicate that this is the 

case. There is concern about their effects on reproductive ability such as the sperm counts 

and quality that have decreased globally (Carlsen et al., 1992; Giwercman et al., 1993, 

2007; Joensen et al., 2009). For example, bisphenol A is an important environmental 

contaminant and is a synthetic estrogen (Ramakrishnan and Wayne, 2008). It is widely used 

in packaging food and drinks (Ramakrishnan and Wayne, 2008; Galloway et al., 2010) and 

it has been reported that it may be associated with endocrine changes in men (Galloway et 

al., 2010).There has been increasing attention in the last decades on the effect of EDCs in 

the environment. EDCs are now often classified according to their biological effect, and 

there are wide varieties of pollutants referred to as EDCs. There is a wide range of EDCs 

derived from both natural and industrial sources. They include a diverse group of 

agricultural chemicals, synthetic industrial and naturally occurring compounds such as 

estrogens pesticides, polycyclic aromatic hydrocarbons, phthalate plasticizers, 

alkylphenols, synthetic  steroids,  and  natural products, e.g. phytoestrogens (Santodonato, 

1997; de Alda and Barceló, 2001; Burkhardt-Holm, 2010). 

 

Numerous man-made chemicals can mimic hormones such as organochlorine pesticides 

and bisphenol A. Chemicals of industrial origin are not the only ones that can act as 
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hormone mimics, but some natural chemicals can mimic natural estrogens or interfere with 

the action of endogenous hormones (Cajthaml et al., 2009). They are thought to be largely 

derived from those naturally excreted by women, and/or synthetic estrogen-like molecules 

such as 17α-ethinylestradiol (EE2) from the contraceptive pill (Tyler et al., 1998, 1999). 

Various industrial chemicals such as plasticizers, surfactants and pesticides, have 

concentrations detected in environmental samples ranging from ng/l to µg/l (Nadzialek et 

al., 2010).  

 

Because of EDC’s action on endogenous hormones, they can interfere with normal 

reproduction that is controlled by hormonal signals. The effects of EDCs on wildlife 

species have been extensively investigated in vivo (Purdom et al., 1994) and in vitro (Le 

Gac et al., 2001), where many natural fish populations are exposed to theses EDCs. These 

studies provided us with evidence of the negative effect(s) of EDCs such as the 

masculinization of female gastropod molluscs by tributylin-based antifoulant (TBT) 

(Matthiessen and Gibbs, 1998), and the feminization of marine and freshwater fish by 

estrogenic hormones and their mimics discharged in sewage and industrial effluents 

(Matthiessen, 2003; Jobling and Tyler, 2003).  

 

2.1 Estrogens as endocrine disruptors 

2.1.1 17α-ethinylestradiol (EE2) 

Both natural and synthetic estrogens commonly enter the freshwater by sewage treatment 

works and the compounds responsible for estrogenic activity such as 17β-estradiol (E2) and 

the synthetic E2 derivate 17α-ethinylestradiol (EE2) (Desbrow et al., 1998; Williams et al., 



Chapter 1 

20 
 
 

2003). The occurrence of EE2 in the aquatic environment is due to the insufficient removal 

in the wastewater treatment plant (Clouzot et al., 2008). Steroid estrogens cause a wide 

range of feminizing effects in fish, such as intersex and vitellogenin induction (Jobling et 

al., 2006). Ethinylestradiol (EE2) is a synthetic estrogen used in combination with other 

steroid hormones in oral contraceptives and it is an endocrine disruptor of great concern 

(Caldwell et al., 2008; Clouzot et al., 2010). It is considered as the primary contaminant 

that contributes to the estrogenic activity in surface waters in United Kingdom (Desbrow et 

al., 1998), and one of the most potent and significant xenoestrogens that has been detected 

in domestic sewage ranging from 0.2 to 7 ng/l, and up to 5 ng/l in surface waters (Desbrow 

et al., 1998; Belfroid et al., 1999; Larsson et al., 1999; Ternes et al., 1999).  

 

Although EE2 detected in the environment is present in nanograms per liter, these 

concentrations are high enough to induce plasma vitellogenin when exposed under 

laboratory conditions (Lange et al., 2001; Schultz et al., 2003; Al-Jandal et al., submitted, 

Chapter 3). In addition, EE2 has more resistance to break down than natural estrogens (Solé 

et al., 2000). Fish feminization is induced from EE2 concentrations as low as 0.1 ng/l in 

male rainbow trout (Purdom et al., 1994). In a full life cycle of zebrafish (Brachydanio 

rerio) exposure via water at 1.67 ng/l EE2 caused vitellogenin induction (Segner et al., 

2003). It has been reported that long term exposure of newly hatched roach (Rutilus rutilus) 

to 4 ngEE2/l resulted in sex reversal of males population (Lange et al., 2009). 

 

2.1.2 17β-estradiol (E2) 

17β-estradiol is a natural steroidal estrogen (Schlenk, 2008), containing an aromatic A-ring 
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as part of its tetracyclic molecular framework (Tapiero et al., 2002). The most important 

source is domestic effluents where E2 derives principally from human and veterinary 

medicines (Gagné et al., 2005), but also agriculture runoff (Céspedes et al., 2004). It is 

considered as a potent environmental contaminant (Ying et al., 2002; Dorabawila and 

Gupta, 2005) even at low exposure concentrations. Unfortunately, the presence of E2 

received little attention until recently, although it is always present due to its secretion in 

mammalian urine. Estradiol levels in the environment increased over the years due to the 

increase in the global population in large cities and live stock-farming practices (de Alda 

and Barceló, 2001). 

 

17β-estradiol plays an important role in the physiological process of fish reproduction, for 

example, the estrogenic constituents of the sewage effluents such as E2 can cause testis-ova 

in male roaches (Rutilus rutilus) living downstream of sewage treatment works (Jobling et 

al., 1998). E2-associated endocrine disruption in the reproductive system of male medaka 

(Oryzias latipes) exposed to environmentally relevant concentrations for 3 weeks induced 

hepatic vitellogenin concentrations and testis-ova (Kang et al., 2002). In addition, several 

studies showed a negative effect of E2 on fish osmoregulatory performance. A variety of 

salmonid fish treated with E2 showed a reduced chloride cell density and Na
+
, K

+
-ATPase 

activity in the gills (Madsen and Korgaard, 1989; Coimbra et al., 1993; Madsen et al., 

1997). Furthermore, E2 treatment increases plasma vitellogenin and calcium level in teleost 

fish (Perrson et al., 1994; Guerreiro et al., 2002; Al-Jandal et al., submitted – Chapter 5). 

Vijayan et al. (2001) reported that E2 impairs the hypo-osmoregulatory capacity in the 

tilapia (Oreochromis mossambicus) due to the decrease in the branchial Na
+
, K

+
-ATPase 
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activity and decline in the metabolic activity of the liver and gills. It has been reported in 

previous studies that pollutants such as nonylphenol can act as endocrine-disruptors by 

binding to the estrogen receptor and mimic the action of 17β-estradiol (Colborn et al., 

1993). Estradiol has been known to have a marked impact on calcium balance and can 

stimulate the calcium-binding protein production (vitellogenin) in fish, which is essential 

for egg production (Mosconi et al., 1998). It can induce calcium resorption from scales and 

bone of salmonid fish (Persson et al., 1994; Kacem et al., 2000).  

 

2.1.3 4-nonylphenol (NP) 

Nonylphenol is an organic compound and classified as xenobiotic. It is known to be a 

environmental estrogen (Tabata et al., 2001), and has been demonstrated to be toxic to both 

freshwater and marine species (McClease et al., 1981; Comber et al., 1993; Hwang et al., 

2008). It is a degradation or breakdown product of nonylphenol ethoxylate (Yadetie et al., 

1999) which is used in non-ionic surfactants (Yadetie et al., 1999; Harris et al., 2001). It is 

more persistent, toxic and estrogenic (Maguire, 1999) and bio-accumulative once in the 

aquatic environment (Ahel et al., 1993; Jobling et al., 1996). Nonylphenol polyethoxylates 

are discharged in high quantities to sewage treatment plants and directly to the environment 

where there is no sewage or industrial waste treatment (Maguire, 1999), then they 

completely degraded into NP (Ahel et al., 1994). Alkylphenol polyethoxylates are not 

estrogenic per se, however they are degraded during the sewage treatment (Sonnenschein 

and Soto, 1998), and the free phenols are estrogenic (Soto et al., 1991). It has been found 

that NP mimics 17β-estradiol in competing for the binding site of the receptor of the natural 

estrogen (White et al., 1994).  
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Nonylphenol is one of the most studied estrogen mimics, and as with other alkylphenols it 

is known to produce estrogenic effects (Jobling and Sumpter, 1993; White et al., 1994). 

Estrogenicity of NP has been reported in fish, amphibians, birds, and mammals 

(Hutchinson et al. 2006; Vetillard and Bailhache, 2006). It can cause the synthesis of 

vitellogenin (Jobling et al., 1996; Arukwe et al., 1997; Kinnberg et al., 2000) and eggshell 

zona radiata protein in the juvenile salmon (Arukwe et al., 1997) and inhibit testicular 

growth in rainbow trout (Jobling et al., 1996). Nonylphenol has been also linked to the 

delays in downstream migration and smolts development of Atlantic salmon (Salmo salar) 

(Madsen et al., 2004). It has been found that NP concentrations of 1 and 10 µg/l (sewage 

treatment plant effluent concentrations lie between this range) were not able to induce 

sexual differentiation in the wild rainbow trout, whereas the induction of vitellogenin and 

zona radiate protein were more sensitive (Ackermann et al., 2002). 

 

2.2 Endocrine control of reproduction 

The central players of the normal functioning of the endocrine system are the hypothalamus 

and the pituitary gland where the most fundamental physiological processes are regulated 

which includes reproduction. Signals from the brain control the hypothalamic secretion of 

gonadotropin-releasing hormones by sending signals that stimulate the pituitary gland to 

release gonadotropins. Gonadotropins control the production and secretion of steroid 

hormones from the gonads (Scholz and Klüver, 2009). 

 

Endocrine disruptors have effects on a wide range of physiological parameters including 

reproduction in fish (Örn et al., 2003; Bjerregaard et al., 2006). Endocrine disrupting 
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chemicals can possibly perturb the hormones that regulate the reproductive function and 

this may lead to decrease in egg production, fertility in female fish, and reduce the gonad 

size or cause feminization of male fish (Arcand-Hoy and Benson, 1998). In general, the 

field of endocrine disruptors has mainly focused on reproduction (McCormick et al., 2005). 

Indeed, most of the EDCs studied to date act to interfere with the reproductive hormones, 

particularly estrogens or androgens (Angus et al., 2005). Steroid hormones are a large class 

of lipophilic molecules that act on different target sites to regulate many physiological 

functions (Tabb and Blumberg, 2006).  

 

Nonylphenol is described as an environmental pollutant with endocrine disrupting 

characteristics and causes various dysfunctions in the male and female reproductive 

systems by modifying the level of follicle-stimulating hormone (FSH) and luteinizing 

hormone (LH) in rats (Nagao et al., 2001). In female tilapia (Oreochromis niloticus), 

nonylphenol induces changes in the gonad suggesting that it acts by mimicking sex 

hormones (Rivero et al., 2008). Steroid hormones such as 17β-estradiol (E2) also affect 

gonadal development as shown by several studies such as exposure of adult zebrafish 

(Danio rerio) to E2  resulted  in  secondary  sexual  characteristic modification in males 

and dose-dependent inhibition of egg production in females (Brion et al., 2004). 

 

2.3 Vitellogenin induction as a biomarker for environmental estrogen exposure 

One of the most widely used biomarkers of exposure to estrogens and their mimics in fish 

is the induction of vitellogenin (Tyler et al., 1996; Kime et al., 1999). Vitellogenin is a yolk 

precursor lipophosphoprotein in the oviparous vertebrates (Bergink and Wallace, 1974) 
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which is produced by the female liver stimulated by estrogen and it is normally present in 

very low concentrations in the plasma of immature and male organisms. Jobling and 

Sumpter (1993) found that the metabolites of nonylphenol polyethoxylate are estrogenic in 

male rainbow trout, where they considered the production of vitellogenin as an indication 

of estrogenic activity. White et al. (1994) investigated the ability of selected alkylphenolic 

compounds to stimulate vitellogenin gene expression in rainbow trout hepatocytes such as 

4-octylphenol and 4-nonylphenol. Panter et al., (1998) studied the effects of 17β-estradiol 

and estrone on the plasma vitellogenin level and gonadosomatic index of male fathead 

minnows (Pimephales promelas). They represented the first report on the estrogenicity of 

steroids to male fathead minnows, and they found an increase in plasma vitellogenin when 

exposing to high levels of 17β-estradiol. The exposure to 1-10 ng/l of 17β-estradiol 

provokes feminization in male fish (Routledge et al., 1998). The presence of intersex in 

wild fish species indicates that endocrine disrupting chemicals are present in their 

environment (Gercken and Sordyl, 2002). 

 

2.4 Non-reproductive targets of endocrine disruptors 

Hormones are not only involved in regulating reproductive processes, and some research on 

endocrine disruptors is now focusing away from purely reproductive endpoints. An 

increasing number of studies have started to focus on the effect of endocrine disrupting 

chemicals on another physiological process such as osmoregulation. To understand the 

basis of these interactions, I will now describe our current knowledge of osmoregulation in 

fish, and the organs and mechanisms involved, before describing their endocrine control 

and potential interference of this by EDCs. 
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3. OSMOREGULATION 

3.1 Osmoregulation and ion balance in fish 

All living organisms either aquatic or terrestrial must maintain their water and ionic balance 

and the ability to regulate the osmolarity of body fluids to maintain homeostasis is 

fundamental to life. Marine fish maintain their hypotonic body fluids by drinking sea water, 

and this can expose them to dissolved contaminants via an additional route (i.e. the gut) 

compared to freshwater fishes. In the case of freshwater fishes, they are hyper-osmotic to 

their surroundings, and thus considerable amounts of water will move into their bodies 

down the osmotic gradient. Euryhaline fish rely on many internal mechanisms to coordinate 

the physiological adjustments essential for responding to alterations in the surrounding 

salinity.  

 

In adult fish, hydromineral balance relies on specialized tissues and organs, namely the 

gills, intestine and urinary system that are under neuroendocrine control (Varsamos et al., 

2005). Maintaining the osmolarity of the extracellular fluids tends to buffer the fish cells 

and tissues against the effects of extreme differences compared to the external freshwater or 

seawater. Osmotic regulation involves the intake and output of both water and ions, and the 

main extracellular electrolytes in all vertebrates are Na
+
 and Cl

-
, which is why these are the 

most commonly measured ions when studying osmoregulation in both freshwater and 

seawater fish. 

 

3.2 Osmotic strategies 

Fish either conform to environmental changes by letting their own internal conditions 
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follow those of the external medium, or they may regulate their own body fluids to 

maintain reasonable independence of the external environment. Thus fish can be classified 

as “osmoregulators” or “osmoconformers” depending on whether they can or cannot 

maintain the osmotic concentration of their extracellular fluid constant in the face of 

changes in external osmotic concentrations.  

 

3.2.1 Osmoconformers: 

Elasmobranchs are osmoconformers with plasma osmolality equal to or slightly higher than 

the surrounding marine environment (Yancey, 2005). They have evolved a strategy by 

reabsorbing and retaining urea and other body fluid solutes in their tissues so that plasma 

osmolarity remains slighter higher than that of the external seawater (Smith, 1931; Thorson, 

1962; Mandrup-Poulsen, 1981). As a consequence they benefit from not having to spend 

metabolic resources on osmoregulation (Marshall and Grosell, 2006) and they do not need 

to drink seawater. However, they still face the problem of a diffusion of salts into their 

bodies from the high salinity concentration in the external environment. This is 

compensated for by salt excretion in the urine, by secretions of the rectal gland, and salt 

excretion via the gills (Haywood, 1973). 

 

3.2.2 Osmoregulators: 

Osmoregulators can tightly regulate their internal plasma osmolarity independent of the 

surrounding environment. Teleost fish are osmoregulators, and they are either hyper-

osmoregulators (osmoregulate in freshwater) or hypo-osmoregulators (osmoregulate in 

seawater) (Marshall and Grosell, 2006). As a strategy to compensate for the water loss in 
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the marine environment teleost fish drink the surrounding seawater, but they are still able to 

achieve ionic and osmotic homeostasis by the function of the gills, gut, and urinary bladder. 

In freshwater teleosts the kidney plays a role in producing dilute urine to counter the 

diffusive water gain and the gills take up ions (Sakamoto and McCormick, 2006).  

 

3.2.2.1 Problems for osmoregulators 

Teleost  fish exist in a  wide  range  of  salinity  habitats  thus they are faced with variety of  

osmotic problems. Fish challenged with an altered ambient salinity require different 

mechanisms to maintain homeostasis (Figure 1): 

 

3.2.2.1.A Seawater fish and osmoregulation 

The osmolality of seawater is approximately 1000 mOsm kg
-1

 and the plasma osmotic 

pressure of most marine teleosts is about 300-350 mOsm kg
-1

 
 
(Shehadeh and Gordon, 

1969; McDonald and Milligan, 1992). Saltwater fish are thus hypo-osmotic to the 

surrounding medium (Figure 1A). Therefore, they are facing the problem of diffusive salt 

gain and osmotic water loss to the surrounding environment and this is exacerbated by the 

large surface area of the gills (Genz et al., 2008). Seawater fish manage this problem using 

various osmoregulatory mechanisms: (1) They excrete a small volume of isotonic urine by 

the kidney; (2) They drink a large volume of seawater (Smith, 1930; Evans, 1993). The 

drinking rate varies among species and with environmental salinity and the higher the 

salinity the greater the rate of drinking (Røvik et al., 2001; Bartels and Potter, 2004). They 

process the seawater by reabsorbing monovalent ions and retaining water which takes place 
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in the intestine, and the excess salt load generated by these gut processes is secreted across 

the gills (Bartels and Potter, 2004).  

 

3.2.2.1.B Freshwater fish and osmoregulation 

In contrast with teleosts living in seawater, freshwater teleosts have body fluids that are 

more concentrated than the surrounding medium (Figure 1B). The osmolality of the 

freshwater is usually < 1 mOsm kg
-1

 and the osmotic concentration of blood in freshwater 

fish is 190-310 mOsm kg
-1

  (McDonald and Milligan, 1992) hence the fish are subjected to 

osmotic water gain and loss of ions by diffusion across gills and in the urine (Evans et al., 

2005). The problem of water gain is managed by (1) low drinking rate; (2) production of a 

copious volume of hypotonic urine by the kidney with ion reabsorption along the excretory 

system; and (3) the ion losses are compensated by active uptake of monovalent and divalent 

ions by the gills, which is crucial for the ion homeostasis (McDonald and Wood, 1981; 

Bartels and Potter, 2004). 

 

3.3 Major osmoregulatory organs 

Several osmoregulatory organs play important roles in ion and water balance of fish body 

fluids; these include the gills, gastrointestinal tract, skin, kidney, and more specific organs, 

such as the rectal gland in elasmobranchs (Evans et al., 2005; Marshall and Grosell, 2006). 

 

3.3.1 Gills 

Gills are the most studied organ in fish osmoregulation and ion regulation, during fish 

acclimation to different salinities, the direction of ion transport is reversed, where they give 
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(A)  

Seawater: 1000 mOsm kg
-1

  

  

 

(B) 

Freshwater: < 1 mOsm kg
-1

  

 

            Diffusion 

            Active 

              Ions 

              Water 

 

Figure 1: Osmoregulation in marine and freshwater teleost (A and B, respectively). A) 

Marine teleosts face the problem of diffusive salt gain and osmotic water loss, therefore 

they drink large volumes of seawater, produce small amount of urine and excrete ions 

actively via the gills. B) Freshwater teleosts are subjected to osmotic water gain and 

diffusive ions loss. Therefore, they produce large volumes of dilute urine and take up ions 

actively via the gills.  
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an excellent model to study ion regulation and transport (Hwang and Lee, 2007). The 

majority of fish species use the gills as the primary site for respiratory gaseous exchange. 

The gills are situated on either side of the fish pharynx, and composed of two main 

epithelial surfaces; the lamellar and the filament epithelia (Perry, 1997). The gill epithelium 

of teleosts contains several different cell types; the pavement cells, which are the most 

abundant cell types and known to play role in the gas exchange. In freshwater teleost gills, 

evidence suggests that some PVCs may play an active role in ion uptake and acid-base 

transport by the gills (Evans et al., 2005). The mitochondria-rich cells (or MR cells) also 

known as chloride cells or ionocytes. In general, the mitochondria-rich cells are ovoid-

shaped cells and as their name suggests, they have high densities of mitochondria in their 

cytoplasm (Evans et al., 2005), ovoid nuclei and high levels of the transport protein 

Na
+
/K

+
-ATPase (Laurent and Dunel, 1980). They play a role in ion transport, where in 

freshwater fish two subtypes of MR cells were described; α and β cell (Evans et al., 2005). 

The mucous cells, which produce large apical mucous secretory granules, irrespective of 

whether the fish is living in fresh or seawater (Wilson and Laurent, 2002).  

 

The gills are not only the major site for gas exchange, but also for ion transport, acid-base 

regulation and nitrogenous waste excretion (Marshall and Grosell, 2006). To facilitate the 

process of gaseous exchange the gills have a high surface area with a thin epithelial layer 

separating the blood of the fish and aquatic environment. Various different epithelial cell 

types assume respiratory, osmoregulatory and excretory roles. The gill has a remarkable 

capacity for integrating these various functions and adjusting them to the needs of the 

organism. Thus, the gills are the major site for the passive loss or gain of ions and water 
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that occur in freshwater and seawater environments. It has become clear that the branchial 

epithelium is also the primary site of active transport processes and the primary site of body 

fluid pH regulation and nitrogenous waste secretion (Evans et al., 2005).  

 

3.3.2 Intestine 

The intestine also plays an important role in osmo- and iono-regulation, and is an important 

osmoregulatory organ particularly in saltwater fish, taking up water to compensate for 

osmotic water loss to the hyperosmotic environment (Marshall and Grosell, 2006). When 

saltwater is taken in during drinking in marine fish the initial desalination process starts in 

the oesophagus (Grosell, 2006). Seawater contains significant quantities of divalent ions, 

such as magnesium (Mg
2+

) and sulphate (SO4
2
), but only small amounts of these are 

absorbed from the seawater during its passage through the intestine and become a useful 

biomarker for net water movement (Hickman, 1968). 

 

Ingested seawater passes through the gastrointestinal tract where ions are differentially 

absorbed across the intestinal epithelium to facilitate water absorption (Taylor and Grosell, 

2006). The intestine actively absorbs Na
+
 and Cl

-
 by two apical co-transporters Na

+
:Cl

-
 

(NC) and Na
+
:K

+
:2Cl

-
 (NKCC), that facilitate water absorption. The mechanism of Na

+
 and 

Cl
-
 absorption is fueled by the basolateral Na

+
,K

+ 
ATPase (Musch et a., 1982; Grosell, 

2006). The NaCl absorption can also occur via parallel antiport systems of Na
+
/H

+
 and Cl

-

/HCO3
-
 exchangers as described for the seawater-adapted tilapia (Oreochromis 

mossambicu) (Howard and Ahearn, 1988). More recently, it has been shown that a large 

portion of total Cl
-
 absorption results from the apical Cl

-
/HCO3

-
 exchange (Wilson et al., 
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1996; Grosell et al., 2001, Grosell et al., 2005). The latter makes a significant contribution 

to the luminal alkalinisation in the intestine, and the high pH provides favourable 

conditions for Ca
2+

 and Mg
2+

 precipitation. If these divalent ions do not precipitate, they 

can significantly oppose water absorption (Wilson et al., 2002). The precipitation of 

divalent cations in the intestine of marine fish and not freshwater fish is due to the 

osmoregulatory strategy of fish living in hyperosmotic environment, and the need to ingest 

calcium-rich sea water (Figure 2). 

 

3.3.3 Kidney and urinary bladder 

Fish kidneys are long structures running dorsally in the body cavity above the gas bladder 

and beneath the vertebral column. Kidneys are mesonephric containing renal tubules 

(nephrons) and may have glomeruli in freshwater and euryhaline species. In contrast in 

marine fish the kidney possess greatly reduced glomeruli and some species can completely 

lack glomerular nephrons (Marshall and Grosell, 2006), an oddity that has resulted from the 

need to reduce water loss (Masini et al., 2001). 

 

The kidney has an important function in osmoregulation in both freshwater and seawater 

fish, although its role is completely different under the two different environmental 

conditions. In freshwater, the fish face the problem of water gain and ion loss, therefore, the 

kidney excretes this excess water as dilute urine. While in seawater, where the fish face the 

problem of water loss and ion load, the primary function of the kidney is the excretion of a 

small volume of urine together with primarily divalent ions (Miyazaki et al., 2002; 

Nishimura and Fan, 2003). 
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Figure 2: Schematic cellular model of the ions transport processes in the intestinal 

epithelium of the marine teleost intestine. Fluid absorption is driven by active NaCl 

absorption by two apical cotransporters (Na
+
,Cl

-
 and Na

+
,K

+
,2CL

-
) fuelled by basolateral 

Na
+
-K

+
-ATPase (~). Remaining Cl

-
 uptake occurs via Cl

-
/HCO3

-
 anion exchange (AE). 

Endogenous metabolic CO2 provides cellular HCO3
-
 catalysed by carbonic anhydrase 

(C.A.), and the resulting H
+
 is extruded via the basolateral membrane. Basolateral import of 

HCO3
-
 also contributes to luminal HCO3

-
 via Na

+
: HCO3

-
 cotransporter (NBC). 

(Information incorporated from Grosell, 2006 and Wilson, 2011). 
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In most fish, the two kidneys unite and open into the urinary bladder. The urinary bladder 

in freshwater acts as the final location for ion uptake to generate hypotonic urine, and 

minimise salt loss. While in seawater fish, the urinary bladder contributes to the absorption  

of monovalent ions and water, which will help in concentrating the divalent ions and 

reducing water loss (Marshall and Gorsell, 2006).  

 

3.3.4 Skin and opercular membrane 

The contribution of the skin to fish osmoregulation is minor in comparison to the other 

organs described above. Mucous cells in the skin can secrete mucus that is thought be 

involved in osmoregulation by reducing the permeability of the skin to ions and water 

(Manzon, 2002). Marine teleost gobies Gillichthys mirabilis have mitochondria-rich cells in 

their skin similar to the chloride-secreting cells in the fish gills of marine fish and it has 

been demonstrated that these cells are responsible for anion transport across Gillichthys 

skin (Marshall and Nishioka, 1980). The skin has also been implicated as a site of Ca
2+

 

uptake in the freshwater rainbow trout (Onchoryhnchus mykiss) (Perry and Wood, 1985). 

The killifish opercular epithelium has proved to be an excellent general model for Cl
-
 

secreting epithelia, it contains typical mitochondria-rich Cl
-
 secreting cells. These fish have 

a high capacity to adapt to changes in salinity and to acclimate from low to high salinity 

This involves a rapid phase during which the secretion of Cl
-
 via chloride cells located both 

in the opercular epithelia and in the gill is increased rapidly (Hoffmann et al., 2002).  

 

3.4 Euryhaline fish osmoregulation 

Euryhaline fish are unusual amongst teleosts in having the ability to osmoregulate 
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efficiently in waters of highly variable salinity. They are able to alter their pattern of 

osmoregulation rapidly if sudden fluctuations in salinity occur. Euryhaline fish require 

additional energy for the synthesis of new salt transporting proteins as the fish moves from 

salt to freshwater and vice versa (Kidder et al., 2006). Gills are probably the organs that 

consume most of the energy during osmoregulation, kidneys play a minor role in 

comparison to the gills, however, several changes occur in this organ that need  energy in 

the form of ATP. The energy requirement of the gills and kidney are maintained by 

oxidation of glucose and lactate, where the liver is the main site for glucose turnover, 

therefore the liver (non-osmoregulatory organ) metabolism is enhanced to make glucose 

available to fuel other metabolic and osmoregulatory processes especially in gills and 

kidney (Sangiao-Alvarellos et al., 2003). 

 

The gills are a vital osmoregulatory organ in euryhaline fish. In guppy (Lebistes 

reticulates), the density of mitochondria-rich cells (MR) in the gills increases with 

increasing environmental salinity indicating that they are the major sites of active exchange 

of ions in the euryhaline fish (Erkemn and Kolankaya, 2009). However, the situation is 

more complex than simply the density of these cells. This is because in freshwater fish 

there are at least two populations of mitochondria-rich cells demonstrated in the gill 

epithelia which appear to have separate functions in Na
+
 and Cl

-
 uptake (Goss et al., 2001; 

Perry et al., 2003). The mitochondria-rich cells in marine teleost gills are clearly very 

different functionally, being involved in Na
+
 and Cl

-
 secretion rather than uptake, and the 

same cell type probably drives the transport of both these ions (Evans et al., 2008). Galvez 

et al. (2002) studied the mitochondria-rich chloride cells in the freshwater trout gill. A 
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novel magnetic bead separation technique was used in their lab to isolate different MR cell 

subtypes. Results indicated that PNA (peanut lectin agglutinin) binds only to one sub type 

of MR cells on the apical surface of the gill epithelium. Hence, they characterized two 

populations of cells; the PNA-positive (PNA
+
 MR cells) and the other subtype PNA-

negative (PNA
-
 MR cells). The intestine is also a major osmoregulatory organ in the 

euryhaline fish especially when they acclimated to seawater (3.3.2) for instance, the 

European eel increase their drinking rate by > 10 fold (Martinez et al., 2005). 

 

There are two types of euryhaline teleost fish; anadromous that migrate to freshwater to 

spawn such as populations of Salmonidae, and catadromous fish that migrate from 

freshwater to spawn, such as the European eel (Anguilla anguilla) and flounder (Platichthys 

flesus) (Maes et al., 2007). The sheepshead minnow, Cyprinodon variegatus, is an excellent 

regulator of plasma osmolality and they are exposed to large daily fluctuations in salinity 

(Haney, 1999). The tilapia (Oreochromis mossambicus) is another species that is able to 

maintain the body osmolality and NaCl concentrations in a narrow range independent from 

the environmental salinity (Cataldi et al., 2005).  

 

3.5 Endocrine control of osmoregulation 

The ability to regulate plasma ions in the face of a changing external salinity is a necessity 

for fish that move between freshwater and seawater, which a few species do as part of their 

normal life cycle. The need to respond to rapid changes in the external environment is 

crucial to osmoregulatory adaptation and is brought about by the neuroendocrine system. 

Some hormones are involved in the development and differentiation of transport epithelia 
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that control the ability of fish to migrate between freshwater and seawater (McCormick, 

2001). During smolting in salmonid fish, the parr-smolt transformation, where the young 

salmon prepare to migrate to the ocean, is effected by several hormones including cortisol 

and growth hormone. Other hormones, in particular androgens and estrogens may 

negatively influence the smolting process and impair the seawater tolerance (Madsen et al.,  

1997; Bangsgaard et al., 2006).  

 

Many studies have been conducted on the hormonal control of osmoregulation in 

euryhaline teleosts. It has been generally accepted that prolactin (PRL) is the dominant 

factor in regulating hydromineral balance in freshwater and that cortisol is the dominant 

factor in seawater (McCormick, 2001). Hormones play a vital role in homeostatic and 

acclimation demands of salt and water transport. In spite of the different transport needs 

among vertebrates, the hormones involved are similar (McCormick and Bradshaw, 2006). 

For example both growth hormone (GH) (Björnsson, 1997; Sangiao-Alvarellos et al., 2006) 

and prolactin (Sakamoto and McCormick, 2006) play a role in osmoregulation. Seale et al. 

(2002) observed a significant increase in plasma growth hormone and a rapid decline in 

plasma prolactin levels 6 h after transfer of tilapia (Oreochromis mossambicus) from 

freshwater to 80 % seawater and a rapid increase in prolactin after transfer from seawater to 

freshwater. In addition, the changes in prolactin levels were inversely correlated with 

changes in plasma osmolality. Prolactin is generally accepted as a freshwater-adapting 

hormone in most euryhaline fish, and its importance varies both between and within species 

(Manzon, 2002). One of the earliest known functions of prolactin in teleost fish was ion 

uptake (Sakamoto and McCormick, 2006) and decreased water influx.  
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Cortisol is another steroid hormone that has been identified as a seawater-adapting hormone 

in a large number of fish and it is specifically involved in ion uptake under fresh water 

conditions (McCormick, 2001). In particular, cortisol stimulates chloride cell proliferation 

and differentiation in the gills of fish (Foskett et al., 1983).  

 

The GH/IGF-1 axis plays an important role in seawater adaptation in salmonid teleosts 

(Sakamoto et al., 1993; Mancera and McCormick, 1998). Plasma IGF-I increases during the 

parr-smolt transformation and seawater-acclimation in salmonids (Lindahl et al., 1985), and 

IGF-I mRNA expression increased in rainbow trout (Oncorhynchus mykiss) gills after 

seawater exposure (Sakamoto and Hirano, 1991). Poppinga et al. (2007) reported that 

rainbow trout injected intraperitoneally with somatostatin-14 (a potent inhibitor of growth 

hormone) reduced seawater adaptability by inhibiting the GH–IGF-1 axis. 

 

3.6 Endocrine disruption of osmoregulation 

Endocrine disrupting compounds can interfere with the endocrine system at various levels 

and exert their effects by several modes of action. In addition, there is increasing evidence 

for the effect of endocrine disruption on osmoregulation in freshwater and seawater fish 

from the literature (McCormick et al., 2005; Carrera et al., 2007; Lerner et al., 2007). 

However, there is little or no attention given to the comparative sensitivities of different 

species of fish osmoregulation to endocrine disruptors. 

 

Most of what is known about the effects of endocrine disrupting chemicals has been 

focused on reproduction as a major axis, although other areas of endocrine system might be 
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a target of endocrine disruptors. The vast majority of these studies to date have investigated 

the interference with reproductive endocrinology, particularly estrogens, androgens, and 

their critical role in fish maturation and reproduction. Estrogens such as 17β-estradiol (E2), 

estrone (E1) and estriol (E3) are a group of steroid hormones that can act as endocrine 

disruptors (Costa et al., 2010). They are predominantly female hormones, which in 

mammals are important for maintaining the reproductive tissues, breasts, skin and brain 

health. The steroids of concern for the aquatic environment due to their endocrine 

disruption potential are primarily estrogens and artificial estrogens used in contraceptives, 

which include E2, E1, E3, 17α-ethynylestradiol (EE2) and mestranol (MeEE2) (Ying et al., 

2002). 

 

Hormones are not only involved in regulating reproductive processes, and some research on 

endocrine disruptors is now focusing away from purely reproductive endpoints. An 

increasing number of studies have started to focus on the effect of endocrine disrupting 

chemical on another physiological process such as osmoregulation. The impact of these 

chemicals on osmoregulatory abilities have been addressed in several species and provide 

evidence of the negative interaction with the physiological and biochemical impacts 

(Madsen et al., 1997; Vijayan et al., 2001; Guzman et al., 2004; Carrera et al., 2007). For 

example, waterborne exposure to xenoestrogens in salmon (Salmo salar) reduces 

behavioural and physiological components of smoltification such as lower migration 

frequency (reduced migratory drive) (Bangsgaard et al., 2006). The treatment with 17β-

estradiol showed an inhibitory action and impairs the hypoosmoregulatory capacity of 

killifish (Fundulus heteroclitus) (Mancera et al., 2004). Significant increase in total and 
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ionic Ca
2+

 have been observed in the plasma of sea bream (Sparus aurata) induced by 

peritoneal implants containing 10 μg/g E2 (Guerreiro et al., 2002). Furthermore, estrogen 

receptors were found on the intestine and not in the gills of the sea bream (Socorro et al., 

2000) and functional estrogen receptors were identified in an intestinal epithelial cells of 

female rat (Thomas et al., 1993), suggesting the involvement of E2 as an estrogen on Ca
2+

 

homeostasis via the intestine rather than the gills.  

 

4. PROJECT AIM 

Thousands of chemicals are reaching the environment due to human activities. It is still a 

challenge for scientists to study and examine the effect(s) of these chemicals on the health 

of aquatic organisms. Some of these chemicals can affect the endocrine system of aquatic 

organisms and are classified as endocrine disruptors. The concerns about these chemicals 

have focused for many years on the effect on reproduction, where adverse effects have been 

shown. Very little is known about the effects of these chemicals on other physiological 

processes. In the present study, the main aim and the novelty was to investigate the effects 

of known environmental estrogens on osmoregulation as a relatively new axis for 

exploration. To allow a focus on the different osmoregulatory challenges found under 

freshwater and seawater conditions, the present study used euryhaline species that can 

acclimate to both these salinities. The reproductive life cycle of many euryhaline fish 

species is associated with a migration between freshwater and seawater, or vice versa. This 

is a particularly interesting combination of physiological systems to study with respect to 

the influence of endocrine disrupting chemicals, e.g. if osmoregulation is also disturbed 
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they may not even survive the transition from one salinity extreme to the other which is 

essential before they can begin the main reproductive spawning events. 

 

To accomplish this study a range of endocrine disrupting chemicals was used in this study 

to examine the influence(s) on the osmoregulatory ability in the euryhaline fish. The 

studied chemicals proved to exist in the English rivers, and they were able to exert their 

effect even in ng/l level, due to their persistence and high potency. The species used were 

rainbow trout and three-spined stickleback as model euryhaline species. However, the 

different body sizes of these two species creates some problems of direct comparisons, 

particular in relation to tissues that can be sampled and measured.  

 

The first experiment was therefore conducted as a directly compare and validate the use of 

osmoregulatory parameters in both plasma and tissue digests of one species (rainbow trout) 

acutely exposed to different salinities to assess the usefulness of these tissues in studying 

ion regulation and maintenance of water balance. The second experiment used one of the 

widely used synthetic estrogens 17α-ethinylestradiol (EE2) to examine the relative 

responsiveness of rainbow trout and sticklebacks, using vitellogenin induction and the 

osmoregulatory ability of these species both in freshwater and subsequently seawater. 

Nonylphenol is an extremely relevant environmental xeno-estrogen and was included as a 

third experimental chapter to study the effects of three different environmentally relevant 

concentrations of nonylphenol on ion regulation in rainbow trout in both freshwater and 

following rapid seawater transfer. The last experimental chapter focused on the effect of an 
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endogenous estrogen (17β-estradiol), but for the first time carried out the exposure on fish 

already acclimated to seawater, and specifically examined the intestinal calcification 

process and the subsequent role this plays in ionic and osmotic homeostasis.  



Chapter 2 

Accepted for publication in Comparative Biochemistry and Physiology A: Molecular & Integrative 

Physiology.  

Noura J. Al-Jandal and Rod W. Wilson                                                                                                             44 
 
 

 

 

 

 

 

 

 

 

A comparison of osmoregulatory responses in 

plasma, white muscle, and carcass of rainbow 

trout (Oncorhynchus mykiss) following acute 

salinity challenges 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

Accepted for publication in Comparative Biochemistry and Physiology A: Molecular & Integrative 

Physiology.  

Noura J. Al-Jandal and Rod W. Wilson                                                                                                             45 
 
 

A comparison of osmoregulatory responses in plasma, white muscle and carcass of 

rainbow trout (Oncorhynchus mykiss) following acute salinity challenges 

 

1. ABSTRACT 

Euryhaline teleosts regulate their internal osmotic and ionic status across a wide range of 

external salinities. Studies often rely on measurements on plasma when osmoregulatory 

status is perturbed, whereas tissue measurements are used for small fish with limited blood 

volume. However, a direct comparison is lacking for plasma and tissues, so the 

relationships between plasma, white muscle and carcass were examined for a range of 

osmoregulatory variables in rainbow trout (Oncorhynchus mykiss) following challenge with 

an acute (24 hour) transfer from freshwater to a hyper-osmotic salinity of either 25 or 35. 

Significant increases in plasma osmolality, [Na
+
], [Cl

-
], [Ca

2+
], [Mg

2+
] were observed when 

salinity was increased, but not for [K
+
] which was tightly and independently regulated. The 

water content of both tissues showed reciprocal changes to plasma osmolality. The carcass 

ion content only showed a significant increase at the highest ambient salinity, except for 

[Cl
-
] which was significantly elevated at both salinities. In white muscle, ions showed 

significant increases, except Cl
- 
and Ca

2+
 which were well regulated. Measurements from 

both tissues can provide reliable surrogates for most of the plasma osmoregulatory 

variables except Cl
-
 and Ca

2+
 when using muscle tissue. In the case of internal regulation of 

K
+
 both tissues provide sensitive and quantitatively similar indicators of environmental 

salinity disturbance, whereas plasma does not.  
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2. INTRODUCTION 

Fish are in a continuous and intimate contact with the surrounding medium, and most fish 

live in water of a substantially different osmolality and ionic content from their plasma, 

resulting in osmoregulatory challenges that must be compensated to allow homeostasis of 

osmotic and ionic variables in their internal body fluids (Kidder et al., 2006; Evans, 2010). 

Most teleosts are excellent osmoregulators, being able to tightly maintain a stable 

osmolality and ionic content of their internal milieu, and some species are also euryhaline 

being able to achieve this across a wide range of ambient salinity (Evans et al., 2005; 

Marshall and Grosell, 2006; Evans, 2010). In freshwater fish, the salt content of the blood 

is typically at least 100 times higher than the surrounding freshwater, whereas in marine 

fish it is one-third of the ambient seawater (Sakamoto and McCormick, 2006). There are 

essential strategies that teleost fish have evolved to balance the composition of the 

extracellular fluid according to the prevailing challenge presented by the external 

environment. Stressors such as increasing or decreasing the surrounding water salinity or 

exposure to an ionoregulatory toxicant can induce hydromineral disturbances in fish that 

therefore require regulatory mechanisms to be rapidly regulated up or down.  

 

Freshwater fish are hyper-osmotic to the surrounding medium; therefore, they encounter the 

problem of ion loss and osmotic water gain (Evans et al., 2005). To compensate for this 

problem they produce a copious volume of extremely dilute urine (hypotonic) which 

involves a substantial glomerular filtration rate (Evans et al., 2005; Marshall and Grosell, 

2006). To minimise ionic losses via this large urinary volume, monovalent and divalent 
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ions are reabsorbed by the renal epithelia (Bijvelds et al., 1996; Evans et al., 2005). 

However, there are still unavoidable net ionic losses via both the urine and by diffusive 

efflux across the gills, and these are balanced by the active uptake of monovalent and 

divalent ions by the gills and via the gut from dietary sources.  

 

Seawater fish are faced with the reverse situation to freshwater fish, i.e. an osmotic loss of 

water and gain of inorganic ions (Evans, 2010). This water loss is balanced by continuously 

drinking a large volume of sea water followed by the uptake of Na
+
 and Cl

-
 ions, and the 

precipitation of ingested Ca
2+

 and Mg
2+

 ion as their insoluble carbonates, by various 

mechanisms in the gastrointestinal tract (Grosell, 2006), that collectively play a critical role 

in osmoregulation by driving water absorption in the intestinal lumen (Marshall and 

Grosell, 2006; Whittamore et al., 2010). The extra load of Na
+
 and Cl

-
 from the intestine is 

excreted via the gills and skin epithelia via a linked mechanism involving mitochondria-

rich cells (Marshall and Grosell, 2006). The lack of a loop of Henle and concentrating 

mechanism in the kidney of teleosts prevents the production of urine which is hyperosmotic 

to the plasma and it appears that the main function of the kidney in marine fish is the 

excretion of excess divalent ions, particularly Mg
2+

 and SO4
2-

 (Evans et al., 2005; Marshall 

and Grosell, 2006).  

 

A small proportion of teleosts are euryhaline, and the physiological capacity to switch 

between extremes of external salinity may be the reason that teleosts are found in almost all 

aquatic habitats (McCormick, 2001). There are two main types of euryhaline fish, the 
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anadromous fish (breeding in fresh water) such as Atlantic salmon (Salmo salar) (Nilsen et 

al., 2008) and rainbow trout (Oncorhynchus mykiss) (Landergren, 1999), and the 

catadromous fish (breeding in sea water) such as the European eel (Anguilla Anguilla) (van  

Ginneken and Maes, 2005) and European flounder (Platichthys flesus). 

 

Numerous studies have reported that fish challenged with an altered salinity environment, 

or osmoregulatory toxicants (such as acid pH and metals), experience dramatic changes in 

either plasma variables such as osmolality, [Na
+
], [Cl

-
], carcass or muscle variables such as 

water and ion content (Lotan, 1969; Wood et al., 1988; Wilson and Wood, 1992; Hansen et 

al., 1993; Nussey et al., 1995; Fielder et al., 2007). Such data are often used to infer the 

degree of adaptability of their osmoregulatory processes to such challenges and indicate the 

physiological mechanisms that are utilised in restoring a stable internal milieu in terms of 

ionic and water balance. However, few studies have simultaneously reported plasma and 

tissue osmoregulatory variables (Bath and Eddy, 1979; Beaumont et al., 2000), and so 

interpretation and comparison of these two different sources of data are not always 

straightforward. 

 

The major aim of the present study was to compare the use of plasma and tissue 

osmoregulatory variables in quantifying the responses of a euryhaline fish species to 

various environmental salinity challenges. This is particularly relevant to studies which 

involve the direct comparison of fish of different sizes, as blood plasma volume is often 

difficult to obtain or the volume can be limiting for analysis in small sized fish. However, 
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the timescale and  magnitude of  changes  in  osmoregulatory variables within plasma and  

tissues have not previously been directly compared within the same fish. 

 

3. MATERIALS AND METHODS 

3.1 Fish 

Thirty rainbow trout (Oncorhynchus mykiss) (body mass = 44.5 ± 1.8 g and length = 15.8 ± 

0.2 cm) were obtained from Hatchlands trout farm (Devon, UK). The fish were kept in 

aerated, dechlorinated freshwater (Na
+
 = 390; K

+
 = 47; Ca

2+
 = 598; Mg

2+
 = 152; Cl

-
 = 400 

µM; pH 7.5 and temperature 11.9 ± 0.04 °C) at the University of  Exeter, and were fed 

daily on a commercial pelleted feed (BioMar, 3 mm, Aqualife, Denmark) at a rate of 1 % 

body mass per day. 

 

3.2 Experimental design and exposure 

Three aquaria were prepared for acute exposure to different salinities under static 

conditions, with aeration supplied to each tank. One tank was filled with the same 

freshwater (FW) as used for the holding condition. Two different elevated water salinities 

were then also prepared; i) a salinity of 25 (SW25), and ii) a salinity of 35 (SW35) (Table 1). 

The latter represents full strength oceanic seawater, and both 25 and 35 salinity treatments 

were made up using commercial sea salts (Tropic Marin®, Germany) added to deionised 

water. Conductivity (control freshwater) or salinity (seawater salinities of 25 and 35) were 

measured using a portable salinometer (YSI handheld probe and meter; Model 85, Yellow 

Springs; Ohio, USA). 
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Ten fish were transferred to each of the treatment tanks, and left undisturbed for 24 h 

before terminal sampling. Water samples were taken from the exposure chambers to 

measure the ambient ion concentrations by the ion chromatography (Dionex ICS-1000, 

Sunnyvale, CA, USA) following appropriate dilution (Table 1).  

 

Table 1: Water chemistry in the three different salinity exposures (na = not applied) 
 

Parameters FW  SW of 25 SW of 35 

Salinity  0.1 24.8 35.1 

Temperature (°C) 11.9 12.0 11.8 

pH 7.48 8.05 8.15 

Osmolality (mOsm kg
-1

) na 704 1006 

Conductivity (mS)  0.20 33.9 46.8 

[Na
+
] (mM) 0.402 433.8 486.1 

[Cl
-
] (mM) 0.390 493.7 542.8 

[K
+
] (mM)  0.062 8.5 14.9 

[Ca
2+

] (mM)  0.591 8.7 11.7 

[Mg
2+

] (mM)  0.161 43.6 61.1 
 

  

3.3 Fish sampling  

Rainbow trout were anesthetized in a 100 mg/l solution of MS222 (Pharmaq Ltd, UK), 

prepared in water collected from the relevant exposure tank that was additionally buffered  

with 300 mg/l of NaHCO3 (Fisher Scientific, UK) followed by vigorous aeration to restore 

normal dissolved CO2 and pH levels. Blood samples (~1 ml) were collected by caudal 

puncture via a 23G needle into heparinised syringes (Monoparin heparin sodium, 5000 I.U./ 

ml; CP Pharmaceuticals, Ltd., Wrexham, UK), and were transferred to microcentrifuge 

tubes held  on ice  and  containing  aprotinin  (10 µl; Sigma-Aldrich) to reduce enzymatic  
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degradation when measuring vitellogenin, and then centrifuged (13,000 rpm for 5 min at 4  

°C; Heraeus by Biofuge Fresco, Kendro laboratory products, Germany) to obtain plasma. A 

portion of the plasma was stored at −20 °C for later analysis of vitellogenin, and the 

remainder was used for measuring the plasma cations (sodium, potassium, calcium and 

magnesium). The plasma osmolality, chloride and total protein were measured by using 

fresh plasma on the day of sampling.  

 

A piece of white muscle (0.59 ± 0.03 g) was dissected from just below the dorsal fin and 

above the lateral line, and transferred to a pre-weighed Teflon tube. The remaining carcass 

without the head and the viscera (29.2 ± 1.2 g) was transferred to a pre-weighed glass 

vessel. The white muscle and the carcass samples were kept at 70 °C in an oven to dry for 

determination of their water content (%) and subsequent tissue ion analysis. 

 

3.4 Analytical techniques 

3.4.1 Analysis of plasma 

Osmolality was measured on 10 µl of fresh plasma using a vapour pressure osmometer 

(Wescor Vapro 5520), and the chloride concentration was measured in 20 µl of fresh 

plasma using a chloride analyzer (Corning M925, UK). The cations (Na
+
, K

+
, Ca

2+
 and 

Mg
2+

) were measured by diluting the fresh plasma (× 201) for analysis by ion 

chromatography.  

 

Plasma protein was measured by the colourimetric Biuret protein assay that is based on the 
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formation of a violet complex between the copper ions and the peptide bond linkage. The 

assay method used was followed by Scown et al. (2009), and then samples read on a 

microplate reader (Molecular Device SpectraMax 340pc) at 550 nm and the plasma protein 

concentrations were determined against the protein standard curve (prepared using bovine 

serum albumin, Sigma-Aldrich, UK).  

 

Plasma vitellogenin was measured by the homologous vitellogenin ELISA protocols (Tyler 

et al., 2002). Plasma was diluted at least 1:10 prior to analysis of vitellogenin 

concentrations, and the detection limits of the rainbow trout vitellogenin ELISA for plasma 

were approximately 30 ng/ml.  

 

3.4.2 Carcass and white muscle water and ionic content 

The oven-dried white muscle and the carcass samples were weighed daily until the dry 

mass was constant (~ 6 days for white muscle, and ~10 days for carcass). Concentrated (69 

%) nitric acid (15.6 N; AnalaR, BDH Laboratory Supplies, UK) was then added to the 

samples at a ratio of 5:1 (ml HNO3 to g of dry mass) and samples were left 48 h for 

complete cold digestion before making the dilutions.  

 

The white muscle acid digest was diluted 100-fold in ultra-pure water (18 M; Elga-

Elgastat, Maxima, UK) for [Na
+
], [Ca

2+
] and [Mg

2+
] measurement by atomic absorption 

spectrophotometry (AAS; Thermo Elemental SOLAAR AAS). Another set of samples was 

diluted 500-fold for measuring [K
+
] by AAS and [Cl

-
] using a colourimetric assay (Zall et 
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al., 1956) where the absorbance readings were recorded on a spectrophotometer (CECIL,  

CE1010, 1000 Series, Cambridge, UK). All experiments were conducted with the approval 

of the University of Exeter Ethics Committee and under a UK Home Office license (PPL 

30/2217). 

 

3.5 Statistical analysis 

All parameters were analysed for differences between treatments using one-way ANOVA 

by using Sigmastat 3.5 (Systat Software, Inc.). Post hoc tests used to analyse data when the 

normality test failed and data were considered the nonparametric Kruskal-Wallis test was 

performed with post hoc comparisons made using Tukey test to differ significantly when 

the p-value was < 0.05. Throughout this paper, the data are presented as mean ± standard 

error of the mean. Relationships between the plasma variables and their equivalent data for 

tissues (either white muscle or carcass) were analysed by linear regression, and the 

goodness of fit (r
2
) and p value for each relationship was calculated. For all statistical 

analyses, p < 0.05 was considered significant. 

 

4. RESULTS 

4.1 Plasma, white muscle and carcass monovalent ions comparison 

4.1.1 Plasma osmolality and tissue water content 

All the freshwater-acclimated rainbow trout used for the salinity challenges in this study 

survived  the 24 h  exposure  to the different  salinities. The increased  salinities caused a 

significant increase in the plasma osmolality of both SW25 and SW35 groups in comparison  
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to the FW group. In white muscle, the water content was significantly different in all three 

salinity treatments, with a progressive decline in the SW25 and SW35 groups in comparison 

to the FW group, indicating proportionally more dehydration of this tissue with increasing 

ambient salinity. A similar trend was observed for the carcass water content, being reduced 

significantly in SW35 group in comparison to the FW group and the SW25 (Figure 1A).  

 

There were highly significant and inverse relationships between either white muscle or 

carcass water content and the plasma osmolality (i.e., plasma osmolality increased while 

tissue water contents decreased with higher environmental salinity) (Figure 1B).  

 

4.1.2 Plasma, white muscle and carcass sodium [Na
+
] 

The plasma [Na
+
] increased significantly in both SW25 and SW35 in comparison to FW 

group. The white muscle [Na
+
] presented a significant increase in SW25 and SW35 groups in 

comparison to the FW group, and the two salinity groups are significantly different from 

each other. The carcass [Na
+
] increased significantly in the highest salinity (SW35) only in  

comparison to the FW and SW25 group (Figure 2A). 

 

Plasma and white muscle [Na
+
] showed a strongly significant relationship where they 

tended to increase together in response to elevated salinity. The plasma and carcass [Na
+
] 

demonstrated a highly significant positive relationship where both variables tend to 

increase together (Figure 2B). 
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Figure 1: Plasma osmolality and various tissue water contents of freshwater-acclimated 

rainbow trout after 24 h exposure to different salinities (S=25 and S=35). (A) Mean ± SEM 

values for plasma osmolality, and water content of tissues across the three salinity 

treatments. Different letters indicate significant difference (p < 0.05) between the different 

salinity treatments. (B) The relationship between various tissues water contents and plasma 

osmolality. The linear regression equation for white muscle water content v. plasma 

osmolality (y = −0.0351x + 88.239), and for carcass water content v. plasma osmolality (y 

= −0.0365x + 84.539). 
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Figure 2: Plasma [Na
+
] and various tissue [Na

+
]of freshwater-acclimated rainbow trout 

after 24 h exposure to different salinities (S=25 and S=35). (A) Mean ± SEM values for 

plasma Na
+
, and tissues Na

+
 across the three salinity treatments. Different letters indicate 

significant difference (p < 0.05) between the different salinity treatments. (B) The 

relationship between various tissues Na
+
 and plasma Na

+
. The linear regression equation for 

white muscle Na
+
 v. plasma Na

+
 (y = 0.15x −13.314), and for carcass Na

+
 v. plasma Na

+
 (y 

= 0.512x −32.985).  
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4.1.3 Plasma, white muscle and carcass chloride [Cl
-
] 

Plasma [Cl
-
] increased significantly with increasing ambient salinity with all three 

treatments being significantly different from each other. In contrast, no change was 

detected in the white muscle [Cl
-
] in any of the groups. The carcass [Cl

-
] followed the trend 

of plasma Cl
-
 in terms of increasing with raising the ambient salinity and all the groups 

were significantly different (Figure 3A). 

 

The plasma and white muscle [Cl
-
] showed a positive and significant relationship, but 

noticeably weaker than the relationship for Na
+
. Plasma and carcass [Cl

-
] showed a highly 

significant relationship (Figure 3B). 

 

4.1.4 Plasma, white muscle and carcass potassium [K
+
] 

Plasma [K
+
] did not differ between the three salinities. The white muscle K

+ 
showed a 

significant increase in the SW35 group in comparison to the FW group only. The carcass K
+
 

increased significantly with elevating the surrounding salinity in the SW35 in comparison to 

both the FW and SW25 groups (Figure 4A). Accordingly, there was no significant 

relationship between either the white muscle or carcass K
+
 content and the plasma [K

+
] 

(Figure 4B). 

 

4.2 Plasma, white muscle and carcass divalent ions comparison 

4.2.1 Plasma, white muscle and carcass [Ca
2+

] 

The plasma [Ca
2+

] increased significantly with elevated ambient salinity in both the SW25  
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Figure 3: Plasma [Cl
-
] and various tissue [Cl

-
] of freshwater-acclimated rainbow trout after 

24 h exposure to different salinities (S=25 and S=35). (A) Mean ± SEM values for plasma 

Cl
-
, and tissues Cl

-
 across the three salinity treatments. Different letters indicate significant 

difference (p < 0.05) between the different salinity treatments. (B) The relationship 

between tissue Cl
- 
and plasma Cl

-
. The linear regression equation for white muscle Cl

-
 v. 

plasma Cl
-
 (y = 0.065x +22.126), and for carcass Cl

-
 v. plasma Cl

-
 (y = 0.460x −17.965). 
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Figure 4: Plasma [K
+
] and various tissue [K

+
] of freshwater-acclimated rainbow trout after 

24 h exposure to different salinities (S=25 and S=35). (A) Mean ± SEM values for plasma 

K
+
, and tissues K

+
 across the three salinity treatments. Different letters indicate significant 

difference (p < 0.05) between the different salinity treatments. (B) The relationship 

between various tissues K
+ 

and plasma K
+
. The linear regression equation for white muscle 

K
+
 v. plasma K

+
 (y = 0.670x +117.147), and for carcass K

+
 v. plasma K

+
 (y = 2.789x 

+189.427).  
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and SW35 groups in comparison to the FW group. White muscle [Ca
2+

] was extremely 

tightly regulated and showed no significant difference between the FW group and either the 

SW25 or SW35 groups, although the two high salinity groups were significantly different to 

each other.  The carcass [Ca
2+

] increased significantly in the highest salinity group SW35 in 

comparison to the FW and SW25 groups (Figure 5A).  

 

There was a no significant relationship between the plasma and white muscle [Ca
2+

], while 

the carcass Ca
2+

 presented a positive relationship with the plasma [Ca
2+

] (Figure 5B).  

 

4.2.2 Plasma, white muscle, and carcass magnesium [Mg
2+

] 

The plasma [Mg
2+

] increased significantly in the SW25 and SW35 in comparison to FW 

group. Both tissues (white muscle and carcass) followed the same trend in terms of 

increasing significantly in the high salinity groups (Figure 6A). There were strong positive 

relationships between the plasma [Mg
2+

] and both the white muscle and carcass Mg
2+ 

contents (Figure 6B). 

 

4.3 Plasma protein and vitellogenin 

There was no significant effect (p = 0.063) of salinity on plasma protein in any of the 

groups (FW = 3.49 ± 0.1; SW 25 = 3.52 ± 0.1; SW35= 3.87 ± 0.2 g/dl). No significant 

differences (p = 0.312) in plasma vitellogenin were observed after exposing the fish to 

different salinities (FW = 2.34 ± 1.1; SW 25 = 1.37 ± 0.3; SW35= 2.82 ± 1.0 µg/ml). 
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Figure 5: Plasma [Ca
2+

] and various tissue [Ca
2+

] of freshwater-acclimated rainbow trout 

after 24 h exposure to different salinities (S=25 and S=35). (A) Mean ± SEM values for 

plasma Ca
2+

, and tissues Ca
2+

 across the three salinity treatments. Different letters indicate 

significant difference (p < 0.05) between the different salinity treatments. (B) The 

relationship between various tissues Ca
2+ 

and plasma Ca
2+

. The linear regression equation 

for white muscle Ca
2+

 v. plasma Ca
2+

 (y = 0.145x +7.263), and for carcass Ca
2+

 v. plasma 

Ca
2+

 (y = 18.650x +74.594). 
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Figure 6: Plasma [Mg
2+

] and various tissue [Mg
2+

] of freshwater-acclimated rainbow trout 

after 24 h exposure to different salinities (S=25 and S=35). (A) Mean ± SEM values for 

plasma Mg
2+

, and tissues Mg
2+

 across the three salinity treatments. Different letters indicate 

significant difference (p < 0.05) between the different salinity treatments. (B) The 

relationship between various tissues Mg
2+ 

and plasma Mg
2+

. The linear regression equation 

for white muscle Mg
2+

 v. plasma Mg
2+

 (y = 0.804x +10.699), and for carcass Mg
2+

 v. 

plasma Mg
2+

 (y = 1.951x +18.149). 
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5. DISCUSSION 

5.1 Plasma osmolality comparison with white muscle and carcass water content 

The present study established the relationships between the plasma, white muscle and 

carcass for a range of osmoregulatory variables. Several significant relationships were 

detected between the plasma and the two tissue compartments which indicate that in many 

cases the tissue data can be a suitable surrogate of the plasma osmoregulatory status in 

response to environmental challenge when no plasma samples are available. However, for 

some of these variables, certain compartments do not appear to be suitable for indicating 

disturbances to internal ion or osmotic regulation. In general, as expected, there were 

significant changes in the majority of the plasma, white muscle and carcass ions with 

increasing the ambient salinity, and the observed changes in these internal compartments 

were generally in parallel (or reciprocal in the case of water content).  

 

After transfer to different salinities, an initial rapid phase of internal changes occurs in fish. 

The pronounced increase in the plasma osmolality was evidence of hyperosmotic stress due 

to the osmotic loss of water and the diffusive influx of ions during the acute exposure to  

elevated salinities. There was ~ 9 and 40 % increase in the plasma osmolality in the salinity 

of 25 and 35, respectively, in comparison to trout in freshwater. The elevated plasma 

osmolalities appear to be accounted for by the parallel increases in the inorganic salts 

(Leray et al., 1981) as the sum of all the measured plasma ions underwent very similar 

increases. Several studies have reported plasma osmolality to increase after 24 h transfer 

from freshwater to seawater in different euryhaline species such as coho salmon 
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(Oncorhynchus kisutch) (Young et al., 1995) and Atlantic salmon (Salmo salar) (Rydevik 

et al., 1990).  

 

As predicted, the tissue water content decreased after 24 h exposure to increased ambient 

salinity due to the osmotic loss of water from the fish. The degree of initial dehydration 

during such acute challenges has been previously shown to depend on the extent of the 

salinity change (Hwang et al., 1989) and this was true in the present study.  Regression 

analysis showed that the decreases in water content of both white muscle and carcass 

during a dehydration stress quantitatively reflect the simultaneous increases in plasma 

osmolality, and thus water content from either compartment can be successfully used as a 

surrogate for, or to predict the plasma osmolality status.  

 

Lotan (1973) indicated that the euryhaline teleost (Aphanius dispar) increased the water 

content in muscle after transfer to freshwater from 300 % seawater because of the cells 

swelling where no volume regulation occurred during the first 24 h. The swelling of the 

muscle cells was due to uptake of water from the extracellular fluids of the fish body. 

Hence, in our study the opposite happened, the significant decrease in the white muscle 

water content detected can be explained by the shrinkage of muscle cells (Lundgreen et al., 

2008). Interestingly, it has been observed that the muscle tissue showed a higher water 

content than the carcass in our study. The same finding was reported by Bath and Eddy 

(1979) where they examined the exposure of rainbow trout to sudden changes in salinity. 

The most obvious explanation is that the carcass measurement includes a large fraction 
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which will be the skeletal material, and bone has a very low water content compared to 

other tissue (Cameron, 1985) such as muscle. 

 

5.2 Plasma, white muscle and carcass monovalent ions 

Seawater contains considerably higher levels of all the monovalent ions, Na
+
, Cl

-
 and K

+
, 

than the plasma of teleost fish. The acute transfer from freshwater to seawater therefore 

rapidly reverses the external-to-internal diffusion gradients for all these ions resulting in 

greater uptake across the gills as well as via ingested seawater in the gut (Bath and Eddy, 

1979). The increase in ambient salinity caused a general increase in plasma ions in 

comparison to the freshwater fish except for the plasma K
+
 which was tightly regulated in 

all treatments. The plasma K
+
 results presumably indicates that rainbow trout may have an 

adequate and rapidly induced mechanism for maintaining the plasma K
+
 balance, and the 

rate of flux between both the external medium and the extracellular fluids, and between the 

intracellular and extracellular fluids to regulate a very stable plasma concentration of K
+
. In 

contrast to the plasma K
+
, both the white muscle and carcass K

+
 contents increased 

significantly with ambient salinity. Accordingly, there was no significant relationship 

between the K
+
 content of either tissue and the plasma [K

+
]. Although there is clearly an 

extra load of K
+
 from the seawater entering the fish plasma (presumably via the gills and 

from ingested seawater in the gut), we speculate that this extra load of K
+
 is very rapidly 

transferred from the plasma to the other body tissues. Therefore, the second conclusion 

from this study is that the tissues can provide very good indicators of disturbance to internal 
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 K
+
 regulation caused by external salinity challenge, whereas the plasma does not indicate 

this because it is so rapidly regulated.  

 

Elevations in both [Na
+
] and [Cl

-
] were detected in the plasma of SW25 and SW35 fish in 

comparison to the FW group as expected (see above). Parallel increases were observed in 

both white muscle and carcass for Na
+
. However, white muscle would appear to be a 

slightly better indicator of plasma Na
+
, as the mean value for the carcass Na

+
 content of fish 

transferred to a salinity of 25 was not statistically distinguishable from the freshwater 

group. This was similar to the study of Prodocimo et al. (2007) on a freshwater rainbow 

trout that showed proportional increases in plasma Na
+
 at several elevated salinities, but 

carcass Na
+
 was only elevated in full strength seawater.  

 

By contrast, to sodium, increases in tissue Cl
-
 that paralleled those in plasma were only 

observed in the carcass. Although there was a statistically significant relationship between 

white muscle [Cl
-
] and plasma [Cl

-
] across all three treatments, the ability to predict one 

from the other was extremely low (r
2
 = 0.175), and there were no significant differences 

between the mean values of the three groups. Thus, muscle [Cl
-
] has no value as a surrogate  

for plasma [Cl
-
] during such an osmoregulatory challenge, whereas carcass [Cl

-
] provides a 

viable alternative. Therefore, the third conclusion is that white muscle [Na
+
] is the best 

indicator of plasma [Na
+
], whereas carcass Cl

-
 is the only option as a surrogate for plasma 

[Cl
-
].  
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5.3 Plasma, white muscle and carcass divalent ions 

Both plasma Ca
2+

 and Mg
2+

 results showed increases that were proportional to the ambient 

salinity. Fuentes et al, (1997) also reported that the plasma Ca
2+

 and Mg
2+

 increased in 

rainbow trout in response to elevated external salinity, which was attributed to either 

increased uptake of these ions via the gut (paralleling increased drinking rate following 

acute salinity transfer in rainbow trout; Perrott et al., 1992) or accelerated brachial influxes. 

A large increase in Ca
2+

 uptake in rainbow trout after increasing the salinity (Prodocimo et 

al., 2007) was explained by increased activity of branchial basolateral Na
+
/Ca

2+ 
exchanger 

(Verbost et al., 1994). 

  

There was no significant relationship between white muscle and plasma Ca
2+

, due to 

impressively tight regulation of the total Ca
2+ 

content of the white muscle concentration 

with changing the ambient salinity except between the two salinity groups across the range 

of salinities used. White muscle Ca
2+

 can clearly not be used as an indicator of salinity 

disturbances to internal Ca
2+

 regulation. By contrast, a significant relationship was obtained 

between the carcass Ca
2+

 data and the plasma [Ca
2+

], although the r
2
 value was low (0.325),  

which indicates a limited ability to predict plasma levels if only carcass measurements are  

made. In addition, only the mean value of the SW35 group was significantly different from  

the freshwater group. This no doubt reflects the vast amount of background Ca
2+

 already 

sequestered within the carcass (primarily in the bones) which forms a rather slowly 

exchangeable pool (Cameron, 1985) with new Ca
2+

 entering the body from the external sea 

water over the previous 24 hour salinity challenge. Thus, although the carcass offers a 
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potentially useful surrogate for disturbances to Ca
2+

 regulation, it is not quite as sensitive as 

plasma measurements.  

 

Both the white muscle and carcass Mg
2+

 data showed a strong and significant relationship 

with the plasma [Mg
2+

]. However, for both tissues only the mean value of the SW35 group 

was significantly different from the freshwater group, these tissue measurements were less 

sensitive than plasma at detecting environmental disturbance to Mg
2+

 balance. This is 

probably related to the fact that while magnesium is found as only a minor contributor 

(relative to calcium) to the solid component of bone and scales, Mg
2+

 is present either 

ionized, complexed or protein bound in the cells of all tissues at rather high levels, being 

the second most abundant intracellular cation after K
+
. Thus, the intracellular compartment 

serves as a very large reservoir of carcass Mg
2+

 relative to the small percentage present in 

the extracellular fluid (Bijvelds et al., 1998). Therefore, acute increases in Mg
2+

 uptake via 

the gills or gut will produce more noticeable changes in plasma than in any tissue 

compartment. 

 

In conclusion, measurements of Ca
2+

 and Mg
2+

 in the carcass can provide a fairly useful 

surrogate for the plasma levels of these divalent cations. The same is true for white muscle 

Mg
2+

, whereas this tissue is cannot be used as an indicator of plasma Ca
2+

, due to the 

exceptionally rapid regulation of intracellular levels of this ion during acute environmental 

disturbance. 
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5.4 Plasma protein and vitellogenin 

Measuring the total plasma protein is a broad indicator of health, stress and well being 

(Riche, 2007). More specific to osmotic disturbances, plasma protein has been used to 

indicate rapid (hours/days) changes in plasma fluid volume because protein movements 

into and out of the vascular system are much slower than fluid shifts (McDonald et al., 

1980). Therefore, fish undergoing dehydration due to an acute seawater challenge would be 

expected to have elevated plasma [protein]. Although there was a trend for increasing 

plasma [protein] with ambient salinity in the present study, this was not quite significant (p 

= 0.063). Generally, stress is also known to reduce plasma vitellogenin levels in fish 

(Carragher et al., 1989), and fish in this study being stressed by change in salinity, but no 

significant change of the plasma vitellogenin induction observed in this study. In another 

words, that shows the acute salinity challenge alone does not affect plasma vitellogenin, 

and any other effect on plasma vitellogenin observed in this PhD study in the next coming 

chapters must be due to the prior exposure to endocrine disruptor. 

 

6. CONCLUSIONS 

1. The water content of the white muscle and the carcass can successfully reflect 

reciprocal changes in the plasma osmolality in response to acute challenge with increased 

salinity. This validates the study of osmotic regulation using either of these tissues or 

plasma, for example when comparing data based on different sizes within the same species, 

and potentially species where sampling plasma is problematic. 
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2. Sodium content from white muscle provides the best reflection of acute 

disturbances to plasma Na
+
 regulation, whereas only Cl

-
 data from the carcass and not the 

white muscle can be used as an indicator of plasma Cl
-
 changes. 

3. Plasma K
+
 is exceptionally well regulated in response to high salinity challenge, and 

the K
+
 levels from either white muscle tissue or the carcass provide the only useful 

indication of disturbances to internal plasma regulation. 

4. Calcium content from the carcass but not the white muscle provides a reasonably 

sensitive surrogate for plasma Ca
2+

. Plasma Mg
2+

 regulation can also be predicted from 

either of these tissues. 
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Differential osmoregulatory responses to 17α-ethinylestradiol between three-spined 

sticklebacks (Gasterosteus aculeatus) and rainbow trout (Oncorhynchus mykiss) 

 

1. ABSTRACT 

The osmoregulatory effects of waterborne exposure to 17α-ethinylestradiol (EE2) were 

investigated in three-spined stickleback (Gasterosteus aculeatus) and rainbow trout 

(Onchorhynchus mykiss). Mixed sex groups of both species were exposed in freshwater to 

nominal EE2 concentrations of 5 and 10 ng/l for 7 days and then held in clean freshwater 

for 21 days before being subjected to a 24 h seawater challenge. After 7 days of exposure to 

EE2, plasma vitellogenin was not affected in sticklebacks, but was significantly elevated by 

3- and 4-orders of magnitude (at 5 and 10 ng/l of EE2, respectively) in both male and 

female rainbow trout and remained elevated throughout the subsequent 21 days in clean 

water. In rainbow trout, ion concentrations and osmolality were measured in plasma, 

whereas in sticklebacks ion and water content were measured in carcass due to their smaller 

size. Exposure to 5 ng/l EE2 in freshwater increased plasma osmolality in rainbow trout (in 

both sexes), but had no effect on plasma Na
+
 or Cl

-
. Subsequent seawater challenge 

increased plasma osmolality by approximately 10% in control rainbow trout but there were 

no additional influence of the prior EE2 treatments. Interestingly, male trout previously 

exposed to 5 ng/l EE2 were better able to hypo-regulate plasma Na
+
 compared to controls 

during seawater challenge. In sticklebacks, regulation of carcass water content was 

unaffected by the exposure to EE2. However, in contrast to rainbow trout plasma Na
+
, male 

sticklebacks exposed to EE2 (10 ng/l) were less able to hypo-regulate carcass Na
+
 content 

in response to subsequent seawater challenge. For the divalent ions, plasma [Ca
2+

] and 
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[Mg
2+

] were significantly elevated in both sexes of rainbow trout after 7 days EE2 exposure 

in freshwater, and after their subsequent seawater challenge plasma [Ca
2+

] was also 

elevated above controls in females. In sticklebacks carcass Ca
2+

 content (but not Mg
2+

) 

changed in opposite directions in males (increased) and in females (decreased) in response 

to EE2 with the latter only being a delayed effect, 3 weeks after the freshwater exposure. 

These data indicate a greater estrogenic sensitivity to EE2 in freshwater rainbow trout 

compared with sticklebacks under identical conditions. They also show that exposure to 

EE2 can affect the regulation of divalent ions even in the absence of vitellogenin induction 

(for Ca
2+

 in sticklebacks), and can also have delayed and less predictable effects on the 

regulation of monovalent ions (Na
+
) when fish are subsequently presented with an 

osmoregulatory challenge such as elevated salinity. 

 

2. INTRODUCTION 

There is growing evidence that many chemicals discharged into the environment can affect 

endocrine functions in fish, and alter the normal processes of development and 

reproduction (Tyler and Routledge, 1998; Weber et al., 2003). The pharmaceutical 

estrogen, 17α-ethinylestradiol (EE2), used in oral contraceptives and in post-menopausal 

treatments, enters surface waters via effluent discharges from wastewater treatment works 

(WWTW) and has been implicated as one of the primary contaminants contributing to the 

feminisation of fish in freshwaters (Jobling et al., 2006). Reported median concentrations of 

EE2 in WWTW effluents range from 1-17 ng/l and from below the detection limit to 15 

ng/l in surface waters (Zha et al., 2007). Despite the low environmental concentrations, 
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EE2 is exquisitely potent and laboratory studies have demonstrated the induction of 

vitellogenin (the precursor of yolk in females) in male fish of many species (Kime and 

Nash, 1999) at waterborne concentrations as low as 0.1 ng/l (Purdom et al., 1994). 

Vitellogenin is therefore used in fish as a sensitive biomarker of exposure to estrogens and 

their mimics (Eidem et al., 2006). Altered dynamics of vitellogenin induction in females 

can impact their reproductive capabilities (Ankley et al., 2001; Thorpe et al., 2007) and 

very high levels of vitellogenin induction can cause adverse health effects such as kidney 

failure (Hutchinson et al., 2006; Liney et al., 2006). 17α-ethinylestradiol has also been 

shown to induce disruptions in the development of the gonadal duct, cause intersex and 

even lead to complete sex reversal in roach (Rutilus rutilus) at concentrations of only 4 ng/l 

(Lange et al., 2008; Lange et al., 2009). Long term exposure to EE2 at concentrations 

between 4 and 6 ng/l has been shown to cause reproductive failure in both laboratory 

maintained fish populations (zebrafish; Nash et al., 2004) and wild fish populations 

(fathead minnows; Kidd et al., 2007). 

 

Although endocrine disruption has received considerable attention, most of this research 

has been directed at the effects on the reproductive axis, and to a lesser extent on 

development (as reviewed in Tyler et al., 1998; Vos et al., 2000). Environmental estrogens 

can affect other physiological processes in aquatic organisms. For example, exposure to 

nonylphenol has been shown to alter olfaction in fish (Moore and Waring, 1996), EE2 and 

fenitrothion (an anti-androgenic pesticide) have been shown to disrupt behaviours  

associated with aggression and courtship in the three spined stickleback (Gasterosteus 
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aculeatus) (Bell, 2001; Sebire et al., 2009, respectively), and EE2 can alter growth in tilapia 

(Oreochromis nilotica) (Shved et al., 2007).  

 

Osmoregulation is a key physiological process in fish and its effective control is especially 

crucial for euryhaline species that move between fresh and brackish/salt waters as part of 

their natural behaviour. Although osmotic and ionic regulation have the potential to be 

impacted by endocrine disruptors comparatively few studies have investigated how 

exposure to such chemicals influences osmoregulation compared to reproductive endpoints. 

Vijayan et al. (2001) and Lerner et al. (2007) found osmoregulatory effects of -estradiol 

(E2) in tilapia and in Atlantic salmon (Salmo salar), respectively, but the responses were 

not identical. Freshwater tilapia showed elevated plasma [Na
+
] after injection with -

estradiol, but also exhibited a reduced ability to regulate plasma osmolality after seawater 

challenge (Vijayan et al., 2001). In Atlantic salmon, waterborne exposure to -estradiol 

(2 µg/l) and nonylphenol (10 and 100 µg/l) caused reduced plasma [Na
+
] in freshwater, but 

elevated [Cl
-
] in seawater. On the other hand, Moore et al. (2003) found no effects on 

osmoregulation in Atlantic salmon smolts in freshwater exposed to 5-20 µg/l nonylphenol. 

Some EDCs (such as EE2 and NP) can bioconcentrate many thousand fold (Larsson et al., 

1999; Gibson et al., 2005) and thus for migrating fish, delayed effects on osmoregulation 

after an EDC exposure is entirely possible. The effect of EDCs were further investigated to 

study the influence on ion ATPase activities in different fish species. Sexually immature 

sea bream (Sparus auratus) injected intraperitoneally with coconut oil  and 200 µgNP/g 

body mass reduced kidney Na
+
, K

+
 ATPase activity (Carrera et al., 2007). Prolonged 
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treatment with 2 µg g
-1

 E2 in the euryhaline killifish, Fundulus heteroclitus decreased gill 

K
+
-pNPPase activity only following transfer from SW to 1 ppt SW (Mancera et al., 2004).  

 

The aim of the present study was to assess how a short term exposure (7 days) to EE2 (at 

environmentally relevant concentrations) in fresh water affected the subsequent 

osmoregulatory capabilities in freshwater and following the challenge of an acute transfer 

to seawater in two species, rainbow trout (Oncorhynchus mykiss) and three-spined 

stickleback (Gasterosteus aculeatus), that both have strong euryhalinity (Perry et al., 2006; 

Tudorache et al., 2007). The response and relative sensitivity of the fish to EE2 exposure 

was quantified by measurements of vitellogenin induction and effects on osmoregulatory 

capability assessed via measurements of ion levels and osmolality of plasma (in rainbow 

trout), or ion and water content of the carcass (in sticklebacks). A separate study has 

assessed the comparability of these compartments for assessing osmotic and ionic 

regulatory parameters within the same species (Al-Jandal and Wilson, submitted, Chapter 

2), allowing us to make direct comparisons between the effects on trout and sticklebacks in 

the present study. 

 

3. MATERIALS AND METHODS 

3.1 Fish  

One hundred immature rainbow trout (Oncorhynchus mykiss) and 300 three-spined 

sticklebacks (Gasterosteus aculeatus) of mixed sex for both species, were obtained from 

Houghton Springs fish farm (Dorset, UK). The sticklebacks and the rainbow trout were 
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kept in separate aerated, holding tanks (155 litre capacity, receiving dechlorinated 

freshwater; Na
+
 = 390; K

+
 = 47; Ca

2+
 = 598; Mg

2+
 = 152; Cl

-
 = 400 µM; titratable alkalinity 

(to pH 4.0) = 0.85 mM; pH 7.5; temperature 10.4 ± 1.5 °C) at the University of Exeter and  

were fed daily at rates of 1 % of total body mass for sticklebacks and 0.5 % of total body 

mass for rainbow trout. Sticklebacks were fed on a mixture of brine shrimp, blood worms 

and white mosquito larvae (Tropical Marine Centre, Bristol, UK), administered twice daily. 

Rainbow trout were fed daily on a commercial pelleted feed (BioMar, 5 mm, Aqualife, 

Denmark). Previous studies have shown that commercial fish food may contain estrogenic 

substances that can elevate vitellogenin levels in the plasma (Pelissero et al., 1991; 

Pelissero and Sumpter, 1992; Matsumoto et al., 2004), but the food used in the present 

study has previously been shown to be free of significant estrogen content by Thorpe et al. 

(2000). They reported that a feeding ration of 1 % of body weight/day did not result in any 

changes in vitellogenin concentrations in the plasma of juvenile male or female rainbow 

trout as used in the present study. Food was withheld 2 days prior to and during the 7 days 

EE2 exposure period. To allow identification of individual trout, 3 months before the EE2 

exposure fish were anaesthetised in MS222 (Pharmaq Ltd, UK; 100 mg/l buffered with 300 

mg/l of NaHCO3; Fisher Scientific, UK) and implanted with PIT tags (Avid plc UK, size 8 

mm) subdermally in the left upper flank taking care to avoid the lateral line and red muscle. 

Assessments were made of the ion levels in a sub group of rainbow trout (plasma) and 

sticklebacks (carcass) 10 days prior to the EE2 exposure. 

 

For  trout,  body  mass  was  recorded  (109.2 ± 2.1 g)  and  blood  samples  (300 µl)  were 
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collected by caudal puncture with a 20-gauge needle into chilled heparinised syringes 

(Monoparin heparin sodium, 5000 I.U./ ml, CP Pharmaceuticals, Ltd., Wrexham, UK) and 

the blood was transferred immediately into microcentrifuge tubes (held on ice) containing 

aprotinin (~1 µl per 100 µl blood; Sigma-Aldrich) to reduce enzymatic degradation of 

vitellogenin. Blood samples were centrifuged (13,000 rpm for 5 min at 4 °C; Heraeus by 

Biofuge fresco, Kendro laboratory products, Germany) to obtain plasma. Half of the fresh 

plasma was stored on ice for analysis of osmolality and chloride and to make a dilution for 

cation analysis, and the remainder was frozen (−80 °C freezer) for later analysis of 

vitellogenin. For sticklebacks, a sub-group of the population was anaesthetised and killed 

by cerebral blow. Body mass was recorded (0.57 ± 0.07 g) and the fish blood samples were 

collected by caudal severance into heparinised haematocrit tubes from the open ends of the 

caudal artery/vein complex.  

 

3.2 Experimental design and exposure 

A flow-through system comprising of six aquaria (155 l each) was used for exposing both 

fish species simultaneously to EE2. Freshwater was supplied from a header tank by gravity 

to three mixing bottles (1200 ml/min each), which were dosed with EE2 to provide nominal 

water concentrations of EE2 of either zero (i.e. control), 5 ng/l or 10 ng/l. The output from 

each mixing bottle was split into two, each one delivering 600 ml/min of the required 

concentration to one of two replicate aquarium tanks per treatment. The mixing bottles 

received EE2 from a dosing stock bottle via a peristaltic pump (Watson Marlow 205U, UK; 

using mediprene tubing - Yellow/Yellow, Elkay Laboratory Products, UK, Ltd).  
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The dosing stock solution of EE2 (5 µg/l) was prepared in a 10 l darkened bottle (avoiding 

exposure to light). To generate the dosing stock, a concentrated stock solution of EE2 was 

prepared in acetone (20 mg/l) from which 2.5 ml were added to the dosing bottle. The 

acetone was allowed to evaporate before adding 2 l of deionised water and stirring the 

solution for 2 h. Eight litres of deionised water were then added to produce 10 l of the 

dosing stock. This approach was adopted to avoid the use of solvent in the exposure tanks.  

The dosing of the fish tank exposure system was initiated 10 days before adding the fish to 

ensure equilibration of EE2 between the water phase and all dosing and exposure tank 

surfaces. On the first days of the exposure, 12 rainbow trout and 24 sticklebacks were 

placed in each tank. The sticklebacks were held in mesh cages (Boyu Industries Co., Ltd., 

China) within the tank to avoid conflict with the rainbow trout. A small test had been 

previously carried out by adding the two species together in the same tank in the above 

manner after 2 days starvation. Video analysis showed no aggressive or predatory 

behaviour from the trout and no stress related behaviour was observed in the sticklebacks 

within their mesh cages (e.g. tight shoaling or avoidance of the cage edges). 

 

Fish were not fed during the 7 days exposure in fresh water. For ethical/welfare reasons a 

few fish (rainbow trout) were removed from two of the tanks and terminated; 4 fish from 

one of the control tanks and 2 fish were terminated from one of the highest concentration 

(10 ng/l) tanks. At the end of the 7 days exposure, the rainbow trout were anaesthetised (as 

above), blood sampled by caudal puncture and then returned to the same exposure tank. 

Twelve of the 24 sticklebacks were also removed from each of the exposure tanks and 
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sacrificed (as above) for collection of blood and tissue samples (gonads). The remaining 12 

sticklebacks in each tank and the blood-sampled rainbow trout were then kept in EE2-free 

freshwater for 21 days (i.e. a 3 weeks depuration period) to give the rainbow trout enough 

time to recover from the blood sampling and both species to recover from EE2 exposure. 

Following this 21 days depuration period, fish in all tanks were exposed to seawater 

(salinity = 25 ‰) for 24 hours in a semi-static system, and then a final sampling undertaken 

(see below). The desired salinity was achieved in each tank by adding pre-determined 

volumes of a hypersaline solution made up using commercial sea salts (Tropic Marin
®

, 

Germany) giving the following conditions: Osmolality = 714.7 ± 5.4 mOsm kg
-1

; [Na
+
] = 

248.3 ± 11.6 mM; [Cl
-
] = 369.8 ± 3.1 mM; [K

+
] = 7.9 ± 0.04 mM; [Ca

2+
] = 7.0 ±0.2 mM; 

[Mg
2+

] = 42.0 ± 2.1 mM. Unfortunately, there was a technical error in two of the exposure 

tanks (one of the control replicate tanks and one of the 10 ng/l replicate tanks) during 

sampling of the rainbow trout after the SW challenge test. As a result, although all fish 

survived, data from these two tanks are not available, and individual fish numbers are 

therefore, reduced in these two treatments in seawater. 

 

3.3 Sampling 

3.3.1 Fish sampling 

Sticklebacks were placed in anaesthetic (as above) before being terminated by a schedule 1 

method of the UK Home Office regulations (brain destruction), weighed and blood 

sampled. The blood was collected in heparinised micro haematocrit capillary tubes (~50 µl 

capacity; Bilbate limited, UK), centrifuged using a micro haematocrit centrifuge (Gelman 
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Hawksley Ltd) and the plasma collected (~3 µl) and stored at −80ºC until analysis for 

vitellogenin by ELISA (Katsiadaki et al., 2002; Hahlbeck et al., 2004). The rainbow trout 

were blood sampled as detailed above and the blood was centrifuged and the plasma 

separated into two tubes and one aliquot kept at −80ºC until analysis for vitellogenin, and 

the other aliquot kept on ice and used directly to measure the osmolality and ions (see 

below). Gonads and kidneys were dissected from all fish for histology and sex 

confirmation.  

 

All experiments were conducted with the approval of the University of Exeter Ethics 

Committee and under a UK Home Office license (PPL 30/2217). 

 

3.4 Analytical techniques 

3.4.1 Determination of EE2 concentration in exposure water  

Water samples from the exposure tanks were stored at −20ºC until analysis to confirm the 

EE2 concentrations by gas chromatography/mass spectrometry (GCMS) by the 

Environment Agency's National Laboratory Service in Nottingham, UK (Kelly, 2000). 

Briefly, 50 ml of 100 % methanol (Fisher Scientific, UK) and 10 ml of glacial acetic acid 

were added to 1 litre of the water sample followed by extraction on solid-phase cartridges 

(SPE; C18, Sep-Pak and Waters, Waters Corporation, Milford, Massachusettes, USA). 

Cartridges were pre-conditioned with 5 ml of 100 % methanol and followed by 5 % 

methanol and in HPLC water (Fisher Scientific, UK). Samples extracted onto the cartridges 

were dried with nitrogen gas for 10-15 min, wrapped in aluminium  foil and  kept in −20 ºC  
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until analysis. The GC-MS technique used had a detection limit of 0.1 ng EE2/l (Kelly, 

2000). The osmolality and [Cl
-
] of the seawater tank exposure were measured as described 

for plasma ions (see below). 

 

3.4.2 Vitellogenin analysis (ELISA protocol) 

Plasma vitellogenin was measured for both rainbow trout and sticklebacks by homologous  

vitellogenin ELISA protocols (Katsiadaki et al., 2002 and Tyler et al., 2002). Rainbow trout 

plasma was diluted at least 1:10 prior to analysis of vitellogenin concentrations. Detection 

limits of the rainbow trout and sticklebacks vitellogenin ELISA for plasma were 

approximately 30 ng/ml and 20 ng/ml, respectively.  

 

3.4.3 Plasma and carcass ion analysis  

Stickleback carcasses (i.e. without the head and gut) were dried in an oven (70 °C) 

overnight, and weighed daily until the dry mass was constant. The carcasses were digested 

in 6 ml of concentrated 69 % nitric acid (15.6 N) (HNO3) (AnalaR, BDH Laboratory 

Supplies, UK) overnight. Following complete digestion, 100 µl of the acid digest solution 

were diluted by addition of 10 ml of ultra-pure water (18 M; Elga-Elgastat, Maxima, 

UK). For rainbow trout plasma, the osmolality was measured on 10 µl of fresh plasma 

using a vapour pressure osmometer (Wescor Vapro 5520, USA). Chloride concentration 

was measured in 20 µl of fresh trout plasma using a chloride analyzer (Corning M925, 

UK), whereas in sticklebacks [Cl
-
] was measured in carcass digests using a colourimetric 

chloride assay (CECIL, CE1010, 1000 Series, Cambridge, UK; Zall et al., 1956). Cation 
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concentrations ([Na
+
], [Ca

2+
] and [Mg

2+
]) were measured in rainbow trout plasma and 

stickleback carcass digests using atomic absorption spectrophotometry (PYE Unicam SP9, 

Philips, model no. SP9800; in flame emission mode for [Na
+
], and atomic absorption mode 

for [Ca
2+

] and [Mg
2+

]). For calcium and magnesium measurements lanthanum chloride 

(LaCl3) was added (0.1 % w/v final concentration) to all standards and samples to avoid 

sulphate and phosphate interference (Pybus et al., 1970). For the rainbow trout plasma, two 

dilutions were prepared; 100-fold to measure [Ca
2+

] and [Mg
2+

], and 1000-fold for 

measuring [Na
+
].  

 

3.5 Histology 

To assess the status of sexual development, the dissected organs were fixed in Bouin’s 

solution (Raymond A. Lamb, Eastbourne, UK) for 4 h and subsequently washed twice in 70 

% industrial methylated spirit (IMS). The samples were then dehydrated in a graded series 

of IMS up to 100 %, cleared in xylene and then embedded in paraffin wax (Sigma-Aldrich, 

Poole, UK) using a Shandon tissue processor (Citadel 2000, Thermo Electron Corporation, 

Runcorn, UK). The blocks were sectioned (5 µm), sections floated on a water bath and then 

collected onto glass slides. Sections were stained using Harris's haematoxylin and eosin 

(ThermoShandon) using an automated stainer (Shandon Varistain XY automated stainer, 

Shandon Life Sciences Ltd., UK), treated with Histomount (National Diagnostic) and left 

overnight to dry at room temperature before examination by light microscopy (Zeiss 

Axioskop 40 microscope, Carl Zeiss, Oberkochen, Germany). Digital images were taken 

using  an Olympus  DP70  charge-coupled  device  camera  (Olympus  Optical)  coupled  to 
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analySIS 3.2 software (Soft Imaging System, Munster, Germany). 

 

3.6 Statistical analysis 

Vitellogenin and the ion concentration data were analysed using one-way ANOVA 

followed by unpaired t-test analysis to compare the treatment groups using Sigmastat 3.5 

(Systat Software, Inc.). Kruskal Wallis (non parametric ANOVA) was used to analyse data 

when the normality test failed ([Na
+
] in male rainbow trout after EE2 exposure, [Cl

-
] in 

males sticklebacks after EE2 exposure; [Mg
2+

] and [Na
+
] in males sticklebacks after 

seawater challenge, vitellogenin in males sticklebacks after EE2 and after seawater 

challenge, and vitellogenin in females after EE2 exposure. Data were considered to differ 

significantly when the p value was < 0.05. Vitellogenin data were not normally distributed 

and were log transformed to achieve variance homogeneity. Throughout this paper, the data 

are presented as mean ± standard error of the mean. Data after freshwater EE2 exposure 

were tested separately from the data after SW challenge. 

 

4. RESULTS 

4.1 Determination of tank water concentrations of EE2 

The mean concentrations of EE2 measured within the two exposure treatments were both 

greater than 80 % of the nominal concentrations (Table 1). 

 

4.2 Plasma vitellogenin  

After 7  days  exposure  to  EE2, plasma vitellogenin concentrations in male trout increased 
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Table 1: Measured EE2 concentrations in the exposure tanks during the 7 days exposure in 

freshwater, determined by GCMS technique (Kelly, 2000; see Materials and Methods for 

full details). Values are means ± SEM where n = 6. 

 

Treatment  Mean [EE2]  

(ng/l) 

Range 

(ng/l) 

% of nominal for 

mean value 

Control < 0.1* 0.0-0.0 n/a 

5 ng/l EE2 

10 ng/l EE2 

4.34±0.07 

8.12±0.21 

4.13-4.49 

7.53-8.64 

86.7 

81.2 

*mean value is below the detection limit of 0.1 ng/l 

 

significantly from 0.5 µg/ml in the controls to 265 µg/ml and 4410 µg/ml in the 5 and 10 ng 

EE2/l exposure groups, respectively. Plasma vitellogenin concentrations in female trout 

followed a similar pattern, and increased from 0.1 µg/ml in controls to 386 µg/ml and 1654 

µg/ml in the low and high EE2 exposure groups, respectively. After 3 weeks in clean 

freshwater and a further 24 h in clean sea water, the vitellogenin concentrations were still 

elevated above controls for both sexes in the two EE2 exposure groups, with little sign of 

clearance (Figure 1A). 

 

In the sticklebacks, plasma vitellogenin concentrations were measured at 0.2 µg/ml in 

control males, whereas in females they were almost 4-fold higher at 713 µg/ml; some of the 

control females (n = 6) were approaching sexual maturity. After 7 days exposure to EE2 in 

freshwater, there was no significant difference between any of the treatment groups for 

either sex and this was also the case following 3 weeks in clean freshwater and the 24 h 

seawater challenge (i.e. there was no delayed effect of the EE2 on vitellogenin induction; 

Figure 1B). 
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Figure 1: Plasma vitellogenin concentration in male and female rainbow trout (A) and three-spined 

sticklebacks (B) immediately after a 7 days exposure to EE2 in freshwater and after a 24 h exposure 

to sea water following a 21 days depuration period in freshwater after the initial EE2 exposure. 

Each column represents the mean ± SEM. Asymmetric error bars are due to logarithmic scale of 

vitellogenin data. Different letters above bars (capital letters for males and small letters for females) 

indicate significant differences compared to the control within a given time point (P < 0.05, Tukey's 

multiple comparison). Numbers in the bars indicate n of replicates of samples analysed.  
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4.3 Osmoregulatory variables 

Prior to the EE2 exposures plasma or carcass ion levels in rainbow trout and sticklebacks 

were within the normal range established in previous studies (Flik et al., 1997; Handy et al., 

2002; Tkatcheva et al., 2007). In rainbow trout plasma, osmolality and ion levels were Osm  

= 304.9 ± 0.8 mOsm kg
-1

, [Cl
-
] = 131.7 ± 0.4 mM, [Na

+
] = 147.9 ± 1.7 mM, [K

+
] = 2.8 ± 

0.1 mM, [Ca
2+

] = 2.3 ± 0.1 mM, [Mg
2+

] = 0.5 ± 0.0 mM. In sticklebacks the carcass water 

content was 72.0 ± 1.4 %, and ion contents were [Cl
-
] = 39.5 ± 6.2 µmol g

-1
, [Na

+
] = 57.0 ± 

3.7 µmol g
-1

, [K
+
] = 75.1 ± 2.0 µmol g

-1
, [Ca

2+
] = 485 ± 20 µmol g

-1
, [Mg

2+
] = 28.4 ± 2.4 

µmol g
-1

.  

 

After 7 days exposure to 5 ng EE2/l in freshwater, the plasma osmolality in both male and 

female rainbow trout was significantly elevated in comparison with the respective controls. 

Following exposure to seawater, after the 21 days recovery period, the plasma osmolality 

showed no differences between treatments in both sexes (Figure 2A), but was higher in all 

of these groups compared with their respective values after 7 days exposure to EE2 in 

freshwater. In the sticklebacks, after 7 days of EE2 exposure, the carcass water content was 

similar in controls and both EE2 treatment groups (73-75 %), and did not differ 

significantly from the pre-exposure values. After exposure to seawater (following the 21 

days depuration period) the body water contents (71-72 %) were slightly depressed 

compared with the freshwater values, but there were no statistically significant differences 

between treatment groups (Figure 2B). 
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Figure 2: (A) Plasma osmolality of the rainbow trout (mixed sex) and (B) the carcass water 

content in sticklebacks immediately after a 7 days EE2 exposure and after a 24 h exposure 

to sea water following a 21 days depuration period in freshwater after the initial EE2 

exposure. Numbers in the bars indicate n of replicates. 
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In rainbow trout, plasma [Na
+
] in both sexes showed no significant changes after EE2 

exposure in fresh water, but after the 24 h seawater challenge, males in the 5 ng EE2/l 

group had a significantly lower [Na
+
] compared with controls. The females showed a 

similar, but non-significant, response pattern as in the males for plasma [Na
+
] (Figure 3A). 

In the sticklebacks, carcass [Na
+
] did not differ between the treatment groups after exposure 

to EE2 in fresh water. However, a significant difference was observed in sticklebacks after 

seawater challenge with values being elevated above controls in the high EE2 group males, 

and in the low EE2 group females (Figure 3B).  

 

There was no effect of the EE2 treatments on plasma [Cl
-
] of trout for either sex, either in 

freshwater or after the 24 h seawater challenge (Figure 4A), although plasma [Cl
-
] was 

raised by ~15 mM in all groups following seawater challenge relative to their freshwater 

values. There was no effect of EE2 treatment on carcass [Cl
-
] of sticklebacks for either sex 

after 7 days exposure in freshwater. The data for carcass [Cl
-
] in sticklebacks after the 

depuration period (seawater challenge) were not included because of samples loss due of a 

technical error (Figure 4B). 

 

17α-ethinylestradiol exposure caused concentration-dependent increases in plasma [Ca
2+

] 

in both male and female rainbow trout in freshwater. Following the seawater challenge 

(after the 21 days depuration period) there were no significant differences between the 

treatment  groups  for  [Ca
2+

]  in  males, but  the [Ca
2+

] increased significantly compared to 
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Figure 3: (A) [Na
+
] in the plasma of rainbow trout and (B) [Na

+
] in carcass digest in 

sticklebacks immediately after a 7 days EE2 exposure and after a 24 h exposure to sea 

water following a 21 days depuration period in freshwater after the initial EE2 exposure. 

Numbers in the bars indicate n of replicates. 

 



Chapter 3 

Version of this chapter submitted to: Comparative Biochemistry and Physiology C: Toxicology & 

Pharmacology 

Noura J. Al-Jandal, Charles R. Tyler, Anke Lange, Ioanna Katsiadaki,
  
Rod  W. Wilson                             91 

 
 

Immediately after 7 days 
exposure to EE2

Control 5 ng/l 10 ng/l Control 5 ng/l 10 ng/l 

P
la

s
m

a
 [
C

l- ] 
(m

M
)

0

20

40

60

80

100

120

140

160

180

Male 

Female 

24 h SW challenge after 
21 days depuration

A

 12    11          12    12         12    12           4      4          12    12          4      6

 

15          8                           11         12                          11         13

B

Immediately after 7 days exposure to EE2

Control 5 ng/l 10 ng/l

C
a

rc
a

s
s
 [
C

l- ] 
(µ

m
o

l/g
)

0

10

20

30

40

50

60

Male 

Female 

15           8                           11       12                         11       13

 

Figure 4: (A) Plasma [Cl
-
] of rainbow trout immediately after a 7 days exposure to EE2 

and after a subsequent 24 h exposure to sea water following a 21 days depuration period in 

freshwater after the initial EE2 exposure, and (B) and sticklebacks carcass [Cl
-
] after 7 days 

exposure to EE2 ([Cl
-
] data for the seawater challenge is missing due to a technical 

problem). Numbers in the bars indicate n of replicates. 
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controls in both treatments in female trout (Figure 5A). In sticklebacks, carcass [Ca
2+

] was 

significantly higher in males in the high EE2 exposure group in fresh water compared with 

controls, but no differences were observed for the females. Following the 24 h seawater 

challenge, carcass [Ca
2+

] showed no significant differences between males, but decreased 

significantly in females in the treatment groups in comparison to the control (Figure 5B).  

 

In rainbow trout, EE2 exposure induced a small significant increase in plasma [Mg
2+

] in 

both males and females. After the seawater challenge, there was an increase in plasma 

[Mg
2+

] generally in both sexes compared to their freshwater values, but there were no 

significant differences between treatments (Figure 6A). In sticklebacks, there were no 

significant differences in the carcass [Mg
2+

] between the EE2 treatment groups, either after 

the 7 days freshwater exposure or following the seawater challenge (Figure 6B), although 

all values were ~25 % higher in seawater compared to their freshwater values. 

 

4.4 Histological findings 

In control rainbow trout ovaries consisted of primary oocytes at the perinuclear stage, while 

the testes contained predominantly spermatogonia (i.e. both sexes were immature). 

Exposure to EE2 at the adopted concentrations and short duration (7 days) revealed no 

obvious changes in the gonads in trout. In sticklebacks, the gonads were more mature and 

in females, ovaries contained oogonia, primary and secondary oocytes and vitellogenic 

oocyte, and the testes contained spermatogonia A & B, spermatocytes, spermatids and 

spermatozoa. There were no signs of overt sexual disuption (i.e. effects on germs cells) for  
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Figure 5: (A) [Ca
2+

] in plasma of rainbow trout and (B) [Ca
2+

] in carcass digest of 

sticklebacks immediately after a 7 days EE2 exposure and after a 24 h exposure to sea 

water following a 21 days depuration period in freshwater after the initial EE2 exposure. 

Numbers in the bars indicate n of replicates. 



Chapter 3 

Version of this chapter submitted to: Comparative Biochemistry and Physiology C: Toxicology & 

Pharmacology 

Noura J. Al-Jandal, Charles R. Tyler, Anke Lange, Ioanna Katsiadaki,
  
Rod  W. Wilson                             94 

 
 

Immediately after 7 days 
exposure to EE2

Control 5 ng/l 10 ng/l Control 5 ng/l 10 ng/l 

P
la

s
m

a
 [
M

g
2
+
] 
(m

M
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Male 

Female 

24 h SW challenge after 
21 days depuration

A

 12    11         12    12         12    12          4      4          12    12           4      6

 A
B

a
b B b

Immediately after 7 days 
exposure to EE2

Control 5 ng/l 10 ng/l Control 5 ng/l 10 ng/l 

W
h

o
le

 b
o

d
y
 [
M

g
2
+
] 
(µ

m
o

l/
g

)

0

5

10

15

20

25

30

Male 

Female 

24 h SW challenge after 
21 days depuration

B

 15     8           11    12         11    13         16     6          14    12           9    12

 

Figure 6: (A) [Mg
2+

] in plasma of rainbow trout and (B) [Mg
2+

] in carcass digest of 

sticklebacks immediately after a 7 days EE2 exposure and after a 24 h exposure to sea 

water following a 21 days depuration period in freshwater after the initial EE2 exposure. 

Numbers in the bars indicate n of replicates. 
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the EE2 exposure, as expected for the short exposure duration employed. Histological 

analysis of kidney samples similarly showed no signs of overt structural disruptions by the 

EE2 exposure.  

 

5. DISCUSSION 

5.1 Overview 

There is a concern globally about the effect of endocrine disruptors on fish and their 

potential to affect a wide range of physiological functions (Goodhead and Tyler 2008). In 

the present study, the immediate and latent effects of exposure to one of the most well 

known endocrine disruptors, 17α-ethinylestradiol (EE2), were studied with respect to the 

osmoregulatory capabilities of two euryhaline fish species. The EE2 freshwater exposure 

regime adopted was short (7 days) followed by a 21 days period for recovery and 

depuration, before a 24 h seawater exposure to investigate their subsequent capability in 

response an osmoregulatory challenge (Madsen et al., 1997; Staurnes et al., 2001; 

McCormick et al., 2005).  

 

5.2 Comparative estrogenic responses in rainbow trout and stickleback 

Rainbow trout were more sensitive to the waterborne estrogenic treatment compared with 

the three-spined stickleback exposed simultaneously in the same tanks, as measured by 

vitellogenin induction responses. This agrees with previous separate studies on these two 

species where vitellogenin induction has been reported in rainbow trout exposed to 

concentrations of  EE2  as low  as 0.1 ng/l (Purdom et al., 1994), whereas  for  sticklebacks,  
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threshold concentrations are somewhat higher; e.g. 53.7 ng/l, in males (Andersson et al., 

2007) or between 10 and 20 ng/l in males (Katsiadaki and co-workers, personal 

communication). Previous studies have further shown rainbow trout to be more sensitive to 

other environmental estrogens when compared with other fish species too, including roach 

(-estradiol; Routledge et al., 1998) and zebrafish (4-tert-octyphenol; Van den Belt et al., 

2003). In the latter study, the zebrafish and trout were held at different temperatures (25-29 

°C and 12-17 °C, respectively), and therefore, temperature could have influenced the 

differential responses seen in this case. However, Körner et al. (2008) showed that 

increased temperature actually elevated the vitellogenin mRNA expression in juvenile 

brown trout after exposure to EE2, and therefore  the different sensitivities of rainbow trout 

and zebrafish do not appear to be explained simply by temperature. 

 

Exposing two species within the same tanks separated by a screen ensures identical 

exposure conditions when comparing two species and so removes any doubt about 

comparability of the precise exposure concentrations. However, this dual exposure regime 

could potentially have induced complicating factors in one or both species. However, as 

mentioned in the Methods section a prior test showed no aggressive or stress-related 

behaviour and the osmoregulatory variables measured in fish from the exposure tanks were 

within the normal range found for these species held in their mono-species stock tanks. 

This would indicate minimal influence of the dual exposure conditions on their respective 

responses to the EE2 exposure.  
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In the present study, there were no obvious sex-related differences in the induction of 

vitellogenin and the persistence of vitellogenin in the circulation in rainbow trout after EE2 

exposure was similar to that reported in the Atlantic salmon after exposure to both 4-tert-

octylphenol and -estradiol (Bangsgaard et al., 2006) supporting the contention that a 

short term exposure to EE2 can have long lasting effects. 

 

To our knowledge, there are no previous studies that have directly compared rainbow trout 

and sticklebacks exposed under the same exposure conditions, and no studies have used 

similar short term exposures (7 days) to examine longer lasting and delayed effects. 

However, two previous studies have exposed juvenile rainbow trout for a longer period (2 

weeks) to a range of EE2 levels (1-100 ng/l in Verslycke et al., 2002) where vitellogenesis 

was induced after two weeks exposure to 4.5 ng/l EE2 as a component of treated sewage 

effluent in Larsson et al. (1999).  

 

5.3. Effect of EE2 on osmotic regulation 

5.3.1 Osmolality and water body content 

The effect of EE2 on osmotic regulation in freshwater also differed between the two study 

species, as did their response to the later seawater challenge. Ion concentrations and 

osmolality were measured in rainbow trout plasma samples whereas carcass water and ion 

contents were used in sticklebacks making direct comparison of these variables between 

species more complicated. Nevertheless, the relative effects of EE2 on osmotic regulation 

are still apparent. For Na
+
 and Cl

-
, we have assumed that changes in plasma concentrations  
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will approximate changes in carcass levels of these ions, therefore allowing qualitative 

comparison between the trout and stickleback. This assumption is partially based on a 

number of studies examining the ionoregulatory effects of exposure to acidification and to 

toxic metals where comparable responses in the blood and in carcass ions have been shown 

(e.g. Wood et al., 1988; Wilson and Wood, 1992). In addition we have recently completed a 

comparative study on the relationship between the carcass and plasma measurements within 

the same rainbow trout after 24 hour exposures to different salinities to induce a range of 

osmoregulatory challenges (Al-Jandal and Wilson, Chapter 2). This methodological study 

showed a clear and strong relationship for carcass versus plasma comparisons for all the 

osmoregulatory variables presented in the present study (i.e., water content/osmolality, Na
+
, 

Cl
-
, Ca

2+
 and Mg

2+
). This justifies the comparison of trends for these particular 

osmoregulatory parameters in carcass of sticklebacks and plasma of trout within the current 

study. However, it is worth noting that the goodness of fit between plasma and carcass data 

for Ca
2+

 and Mg
2+

 was not as high as for the monovalent ions. This is almost certainly 

because the quantity of these divalent ions in plasma is small compared to the rest of the 

body. The vast majority of calcium is contained within the skeletal compartment (Cameron, 

1985), and Mg
2+

 which is much more abundant in the intracellular compartment of all cells 

(Morgan and Potts, 1995; Bijvelds et al., 1998). So, small changes in the fluxes of these 

divalent cations (e.g. across the gills or gut) are more likely to induce measureable changes 

against the low background in the plasma, than against the high background in the carcass. 

Clearly these factors need to be considered when comparing data from trout and 

sticklebacks in the present study. 
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The slight changes in plasma osmolality on exposure to EE2 were common to both sexes in 

rainbow trout. There was about a 10 % increase in plasma osmolality in all treatment 

groups in the 24 h seawater challenge (after 21 days recovery) relative to the values in 

freshwater. This response was as expected for an acute seawater challenge for salmonids 

(Hwang et al., 1989; Marshall et al., 1999; Al-Jandal et al., submitted, Chapter 2), i.e. as a 

result of passive uptake of ions and loss of water due to the sudden reversal of osmotic and 

ion gradients. However, there were no differences between the treatments groups with 

respect to plasma osmolality of seawater-challenged rainbow trout, i.e. no delayed effect of 

EE2 on seawater transfer tolerance was seen.  

 

In the sticklebacks, the carcass water content was not affected by the EE2 treatment in 

freshwater or after the seawater challenge (following 21 days depuration in freshwater). 

Clearly the sticklebacks were able to maintain water balance effectively in both freshwater 

and seawater environments, despite an exposure to EE2. Rainbow trout showed a rapid 

water loss during the first 24 hours of acclimation to the salinity increase. This might 

suggest that EE2 at the exposure concentrations adopted did not affect the balance between 

passive water movements and the urine production (in freshwater) or drinking rate (in 

seawater) in sticklebacks. It was also notable that carcass water content was regulated 

extremely well in response to the acute seawater challenge in sticklebacks, with no 

significant difference between treatments. In a separate study where we directly compared 

tissue water content with plasma osmolality within the same fish in response to acute 

salinity challenge, we found that carcass water content was validated as a surrogate of 
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plasma osmolality (Al-Jandal and Wilson, submitted, Chapter 2). Thus sticklebacks appear 

to have a more rapid induction of osmoregulatory homeostasis than trout following such an 

acute salinity challenge, indicating a higher degree of day-to-day euryhalinity. 

 

5.3.2 Effect on monovalent ions 

Disruption of ion regulation usually leads to a decrease in plasma or carcass ions when in 

freshwater, and an increase when in seawater, i.e. the normal regulation of these internal 

ion levels is impaired and they follow the prevaling gradient between the internal and 

external environment. In freshwater rainbow trout the plasma [Na
+
] and [Cl

-
] were not 

affected after the 7 days exposure to EE2, indicating that EE2 either had no effect on the 

relevant ionoregulatory processes, or that the active uptake and passive loss processes 

responded equally in the hypo-osmotic freshwater environment (Wood, 1992). Rather than 

impairing the tolerance to a high salinity challenge, prior exposure to EE2 appeared to 

“improve” some aspects of ion regulation following an acute seawater challenge, at least in 

terms of the plasma [Na
+
] the male fish previously exposed to 5 ng EE2/l in freshwater. At 

this stage we do not know which aspect of seawater osmoregulation might be responsible 

for this enhanced hypo-regulation of Na
+
 (e.g. gill versus gut, or active versus passive 

transport processes). However, this overall response differs from a study by Vijayan et al. 

(2001) who found that intraperitoneal injection of a different estrogenic compound, -

estradiol, into freshwater-acclimated Mozambique tilapia (Oreochromis mossambicus) 

reduced their ability to hypo-regulate plasma [Na
+
] after transfer to 50 % seawater relative 

to sham-injected controls, which was explained by reduction in gill Na
+
K

+
 ATPase 
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activities by -estradiol. In another study, aqueous exposure of freshwater juvenile 

Atlantic salmon to -estradiol and environmentally relevant concentrations of 

nonylphenol disrupted their freshwater ion regulatory ability by decreasing plasma sodium 

levels (Lerner et al., 2007), again differing from a lack of EE2 effect in freshwater in the 

present study.  

 

In the sticklebacks, EE2 exposure did not affect carcass Na
+
 regulation in freshwater, 

however, following the seawater challenge, male fish subsequently had increased [Na
+
] in 

comparison with controls. This is similar to the effect noted in tilapia in 50 % seawater 

after injection with -estradiol (Vijayan et al, 2001) which was explained by inhibition of 

gill excretion of Na
+
 via the Na

+
/K

+
-ATPase. However, we cannot rule out other effects of 

EE2, such as on the passive permeability of the gill or skin, Na
+
 handling by the gut, which 

could also potentially explain higher plasma Na
+
 levels.  

 

The obvious concern would be that estrogenic compounds in the environment may have a 

negative influence on the movement of fish in the wild between different salinities (e.g. 

Madsen et al., 1997). It would appear that for sodium regulation following EE2 exposure at 

least, sticklebacks appear to follow the more obvious trend of impaired regulation in 

seawater, whereas trout were either unaffected (at 10 ng/l) or have improved hypo-

regulation of sodium (at 5 ng/l) when acutely transferred to seawater. However, we should 

bare in mind that sodium is just one of the important ions that must be internally regulated 

and sampling was limited to just one timepoint, 24 h after seawater transfer. Nevertheless, 
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at the very least such differential species responses to EE2 for sodium regulation suggests 

that prediction of estrogenic effects on osmotic regulation may not be as predictable as 

reproductive effects. 

 

5.3.3 Effect on divalent ions 

In rainbow trout, the ion most affected after exposure to EE2 in freshwater was [Ca
2+

]. This 

is perhaps not surprising as it is well established that increased plasma [Ca
2+

] is known to 

parallel elevated vitellogenin concentrations in fish, and indeed plasma [Ca
2+

] has been 

used as an indirect measure of vitellogenin (Gillespie and de Peyster, 2004; Lv et al., 2006). 

In both sexes of rainbow trout, there were [EE2]-dependent increases in the plasma [Ca
2+

] 

after 7 days of exposure in freshwater. A number of studies have shown an increase in 

[Ca
2+

] due to estrogenic exposure. Persson et al. (1994) found that freshwater juvenile 

rainbow trout injected with -estradiol experienced increased calcium uptake at the gill 

as well as enhanced vitellogenesis and concluded that these were linked processes. An 

increase in both plasma calcium and vitellogenin after -estradiol treatment was also 

observed by Carragher and Sumpter (1991). The increased calcium level in fish plasma is 

not necessarily derived from external sources only, but could also be from the considerable 

stores of calcium within scales and bones (Rotllant et al., 2005), and studies have shown 

that plasma calcium can be supplied from the scales under specific physiological 

challenges, such as treatment with -estradiol (Armour et al., 1997; Persson et al., 1997).  

 

Following 3 weeks depuration, and then a 24 h seawater challenge, the difference in [Ca
2+

] 
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between controls and EE2-exposed trout persisted in females but not in the males. It is 

likely that with the removal of the estrogenic stimulus (EE2), although vitellogenin was 

still present in the circulation, there would have been a reduced synthesis of new 

vitellogenin, and potentially also a reduced drive to take up or mobilise further Ca
2+

. 

However, as the vitellogenin concentrations had not declined by this time, and were not 

different between the two sexes, we cannot offer any clear explanation for this difference in 

[Ca
2+

] between male and female trout. Nevertheless, the potential for a disconnection 

between plasma [Ca
2+

] and vitellogenin levels further supports the principle that estrogenic 

control of Ca
2+

 regulation can be independent of vitellogenin levels. Thus plasma Ca
2+

 

cannot be reliably used as indirect measure of vitellogenin in contrast to previous 

suggestions (Gillespie and de Peyster, 2004; Lv et al., 2006). 

 

In sticklebacks, the body levels of Ca
2+

 increased after EE2 exposure (in freshwater) in 

males only, and there were no significant treatment effects after seawater challenge. This 

finding for elevated Ca
2+

 in males was not associated with a parallel increase in plasma 

vitellogenin (which did not occur in sticklebacks, in contrast with in trout). This further 

supports the above proposal that Ca
2+

 regulation was affected independently of any 

influence of EE2 on vitellogenesis (i.e. different to the conclusion of Persson et al., 1994).  

 

Interestingly, there was a significant decrease in the carcass [Ca
2+

] in the female 

sticklebacks 3 weeks after the end of the EE2 exposure. We can speculate that this indicates  

a delayed effect of EE2 on the redistribution of Ca
2+

 between somatic and gonadal tissues.  
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The reason why this was only observed in the stickleback females could be related to the 

greater maturity of their ovaries compared to trout in this study (see section 3.4 

“Histological Findings” in the Results section). Perhaps EE2 directly stimulates Ca
2+

 

uptake into ovaries, independently of vitellogenin induction, but only in ovaries that are 

already primed by the maturation process. This Ca
2+

 uptake from the plasma would 

ultimately draw from stores in somatic tissues that would manifest as a reduction in carcass 

Ca
2+

 levels.  

 

Prolactin is known to function as a hypercalcemic hormone in freshwater teleost fish (Flik 

et al., 1986). In euryhaline fish such as the three-spined sticklebacks, prolactin cells become 

highly active in freshwater (Wendelaar Bonga and Greven, 1978) as it is usually a calcium-

poor external medium and prolactin levels increase as a response to maintain the normal 

internal calcium levels (Flik et al., 1989). Estrogenic exposure could affect the synthesis of 

prolactin, for example Poh et al. (1997) reported that the prolactin content in tilapia was 

elevated by treatment with -estradiol. Pickford et al. (1970) also reported that prolactin 

may elevate the plasma Na
+
 in seawater conditions (as we found here for carcass [Na

+
] in 

the male sticklebacks exposed to EE2), which was attributed to a decrease in gill Na
+
/K

+
-

ATPase activity. Interestingly, prolactin appears to have sex-specific roles in many 

vertebrates, including paternal care in male sticklebacks (Schradin and Anzenberger, 1999).  

 

It is therefore interesting to speculate that EE2 somehow interferes with the role of 

prolactin in male sticklebacks, and their subsequent Ca
2+

 regulation in freshwater and Na
+
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regulation in seawater, but not in female sticklebacks. However, we have no current 

measurements of prolactin to support this hypothesis. 

 

Plasma Mg
2+

 was increased after EE2 exposure in both male and female rainbow trout in 

freshwater. Similar to calcium, plasma Mg
2+

 levels have been used as an indirect indicator 

of  the level of vitellogenin (Arukwe and Goksøyr, 2003; Lv et al., 2006). However, in 

rainbow trout, although plasma Mg
2+

 was elevated following seawater challenge relative to 

levels in freshwater, the same trend between EE2 treatments and controls was not evident 

after the seawater challenge, even though vitellogenin was still greatly elevated. Freshwater 

fish depend primarily on dietary sources for magnesium, but have secondary mechanisms 

for Mg
2+

 uptake via the gills in freshwater (Bijvelds et al., 1998). Given that the rainbow 

trout in this study were not fed during the exposure it seems likely that the higher level of 

Mg
2+

 in the  EE2 treatments under freshwater conditions was due to enhanced gill uptake. 

Alternatively, the magnesium pool of the bones and scales may be used as a reserve to 

maintain normal magnesium  levels in soft tissues when magnesium intake is low (Cowey 

et al., 1977; Reigh et al., 1991; Bijvelds et al., 1996). In carp (Cyprinus carpio) with low 

magnesium status, it has been shown that magnesium is mobilised from the bones and is 

replaced by Na
+
 (Vandervelden et al., 1992). Therefore, we cannot rule out a potential 

effect of EE2 on Mg
2+

 release from internal stores instead of (or in addition to) an effect on  

gill uptake of Mg
2+

. 
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6. CONCLUSION 

This study has demonstrated that rainbow trout had a greater sensitivity to the estrogenic 

effects of EE2 exposure, with no vitellogenin induction at all in the sticklebacks, even at 

the highest concentration used (10 ng/l). In contrast, EE2 had significant effects on 

osmoregulatory function in both these euryhaline species, even in the absence of 

vitellogenin induction (in sticklebacks), demonstrating a greater sensitivity of 

osmoregulation to estrogenic stimulation compared with the commonly used reproductive 

endpoint of vitellogenin induction. Furthermore, there were some intriguing differences 

between the species with respect to specific osmoregulatory responses. Such differences 

included an improved hypo-regulation of plasma sodium during seawater challenge in male 

rainbow trout (in the 5 ng/l exposure group), in contrast with an impaired carcass sodium 

regulation during seawater challenge in male sticklebacks. A further interesting finding was 

the disconnection between internal Ca
2+

 levels and plasma vitellogenin (in freshwater male 

sticklebacks immediatley after 7 days EE2 exposure, and in the trout following 3 weeks 

depuration and seawater challenge), which suggests differences in the control (or 

sensitivity) of these two processes by estrogenic chemicals. Overall, osmoregulatory 

impacts of estrogenic exposure have been demonstrated in two euryhaline species, but such 

effects may be less predictable than the better studied reproductive impacts. 
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Effects of a sublethal waterborne exposure to 4-nonylphenol in freshwater and 

seawater on ion regulation capabilities in rainbow trout (Oncorhynchus mykiss) 

 

1. ABSTRACT 

The osmoregulatory effects of waterborne exposure to nonylphenol (NP) were examined in 

rainbow trout (Onchorhynchus mykiss). Immature female rainbow trout were exposed to 

three environmentally relevant concentrations (0.5, 2 and 8 µg NP/l) for 7 days in 

freshwater, directly followed by acute seawater challenge test (24 h). The measured 

concentrations of nonylphenol in the exposure tanks were only one third of the nominal 

concentrations. After 7 days exposure to nonylphenol, there was no vitellogenin induction 

observed in any of the treatments, although significantly higher levels of plasma 

vitellogenin were detected in the plasma samples of the fish exposed to the seawater test. in 

comparison to the freshwater, and that could be due to the difference in the ELISAs assays 

sensitivities. The effect on the osmoregulatory variables could not be established due to 

technical error (aeration stopped) in one of the sampling days lead to significant differences 

between the replicate tanks of each treatments. As an alternative, the effect of low oxygen 

level occurred was investigated to study the potential effects on the ions levels. It was very 

clear that the tanks affected by the low oxygen presented a significant lower effect of 

plasma osmolality, Na
+ 

and Cl
-
, K

+
 in the fish exposed 7 days to nonylphenol in freshwater. 

The increase in ventilation as a normal physiological response to the low oxygen caused 

increase in the gill functional surface area, and promotes oxygen uptake and increases the 

ions efflux rate. 
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2. INTRODUCTION 

In the last 20 years, much research has been focused on a group of chemicals present in the 

aquatic environment that can be either natural or man-made (synthetic), which have the 

ability to interfere with the organism’s normal endocrine function (Arcand-Hoy and 

Benson, 1998; Tyler et al., 1998; Moore et al., 2003). These so-called endocrine disrupting 

chemicals (EDCs) can disrupt the hormonal system in vertebrates by mimicking natural 

hormones, inhibiting their production by affecting synthesis pathways, or alteration of their 

excretion dynamics (Soares et al., 2008). Hormones affected have included those associated 

with growth, development (e.g. thyroid hormones) and sexual development and function 

(including androgens and estrogens). Most of the studies on EDCs have focused on 

chemicals that affect estrogenic response pathways, and many of these EDCs elicit an 

estrogenic effect by binding to and activating the estrogen receptor(s) (Jobling et al., 2003). 

 

Endocrine disrupting chemicals include a broad class of chemicals such as the main 

naturally occurring estrogens in all vertebrates, for example estradiol-17β (E2), estrone 

(E1) and estriol (E3) (Tyler et al., 1998), and the synthetic ones include 17α-

ethinylestradiol (EE2) (Van den Belt et al., 2003), and the estrogen mimics nonylphenol 

(NP) (Matthiessen et al., 2006). Phytoestrogens are plant compounds that exist widely in 

numerous plants such as soybeans. Phytoestrogens such as genistein and equol can act 

either as estrogen agonists or antagonists (Herman et al., 1995).  

 

Synthetic and natural steroid estrogens are of particular concern in affecting wildlife health. 

Due to their human origin, steroid estrogens are regularly measured in the domestic sewage 
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effluents throughout United Kingdom, Japan, Australia, and the United States (Desbrow et 

al., 1998; Johnson et al., 2000; Niven et al., 2001; Komori et al., 2004; Johnson et al., 2007; 

Ying et al., 2009). Although the measured concentrations are usually low, in the ng/l range, 

in lab experiments they have been shown to induce estrogenic activities in various animals 

including vitellogenin induction and intersex in some fish species (Örn et al., 2003; Van 

den Belt et al., 2003; Balch et al., 2004; Hahlbeck et al., 2004; Balch and Metcalfe, 2006; 

Lange et al., 2009). It is worth noting that some xenoestrogens, such as 4-nonlyphenol, 

have been detected at higher concentrations up to µg/l (Johnson et al., 2005). 

 

The aquatic environment is the ultimate sink for most chemicals whether natural or man-

made. They may be disposed of via drains to sewage treatment works or in landfills sites, 

industrial wastes, agriculture and food/drug processing. Either the chemicals or their 

degradation products will eventually enter the aquatic environment (Sumpter, 1998; Barse 

et al., 2007). There is strong evidence that steroid estrogens discharged by the human 

population via sewage works are a major cause of endocrine disruption in fish in the UK 

(Jobling et al., 1998). 

 

In fish, the major routes of uptake of EDCs are the gills, the gut via food, and the skin 

especially in small fish where there is a large surface area to volume ratio (Lien and 

McKim, 1993). These chemicals reach the blood stream directly from gill uptake, reaching 

the target organs without passing through the liver first, unlike the situation in mammals 

(Sohoni et al., 2001). 
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Possible reproductive disruption in wild fish was initially found through the observation of 

the induction of vitellogenin in male fish, which has subsequently proven to be a useful 

biomarker of exposure to chemicals with estrogenic activity (Örn et al., 2003; Vethaak et 

al., 2005), and has been applied widely to screen and test for estrogens and for estrogenic 

activity of effluent discharges (Knudsen et al., 1997; Rodgers-Gray et al., 2000; Liney et 

al., 2006).  

 

Nonylphenol is one of the most studied estrogen mimics that appears to effect development 

in several organisms (Hemmer et al., 2002; Yadetie and Male, 2002). Nonylphenol belongs 

to the alkylphenols and is one of the degradation products of alkylphenol polyethoxylates. 

It is a xenobiotic used in the production of nonylphenol ethoxylates surfactants. Due to the 

wide use of nonylphenol ethoxylates they can reach sewage treatment works in 

considerable amounts where they incompletely degraded to nonylphenol (Soares et al., 

2008). The major source of nonylphenol into the aquatic environment is through the 

discharge of effluents from sewage treatment works (Ahel et al., 1996; Langford et al., 

2005). 

 

The chemical and physical properties of nonylphenol influence its degradation. It is a 

hydrophobic compound with low solubility in water (Soares et al., 2008), and can become 

associated with organic matter (adsorbed) in sediments (John et al., 2000). Furthermore, it 

is a semi-volatile organic compound capable of water/air exchange (Soares et al., 2008).  

Sunlight can decrease the concentration of nonylphenol in the surface layers of natural 

waters by photolysis (Neamtu and Frimmel, 2006), whereas in sediment the half-life of 
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nonylphenol is 60 years (Shang et al., 1999), and can be biodegraded by microorganisms 

(Chang et al., 2004). In UK rivers, water samples collected during 1994 and 1995 showed 

nonylphenol concentrations ranging from <0.2 to 30 µg/l depending on the proximity to 

industrial discharges (Blackburn et al., 1999).  

 

Nonylphenol is a chemical of a significant environmental concern due to its estrogenic 

effects and is hazardous to aquatic life (Lech et al., 1996; Nimrod and Benson, 1996; 

Schwaiger et al., 2002; Kurihara  et al., 2007; Hwang et al., 2008). The evidence of 

nonylphenol estrogenicity is mainly based on the induction of vitellogenin in male or 

immature female fish (Sumpter and Jobling, 1995; Christiansen et al., 1998; Huang et al., 

2008). The mechanism by which nonylphenol exerts its estrogenic and endocrine disrupting 

effect in vivo could be through a direct-acting mechanism, for instance binding to estrogen 

receptor (Yadetie et al., 1999), or via indirect mechanisms like increased plasma 17β-

estradiol (E2) in fathead minnows (Pimephales promelas) (Giesy et al., 2000). One of the 

major effects of nonylphenol was to increase the plasma concentration of the endogenous 

estrogen (E2). Vitellogenin induction has been suggested to be a sensitive E2-specific 

biomarker and nonylphenol was found to mimic the natural hormone 17β-estradiol by 

competing with the natural steroid estrogen for binding site of the receptor (Giesy et al., 

2000). 

 

Nonylphenol has also been identified as an anti-androgen by using the yeast detection 

system for the anti-androgenic and androgenic effects of chemicals. The results suggested 

nonylphenol affects multiple steps of the activation and function of androgen receptors (Lee 
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et al., 2003). Several studies reported the adverse effects of nonylphenol on the 

development of male reproductive tract during perinatal exposure of male rats (Lee, 1998; 

de Jager et al., 1999). 

 

Most attention regarding the biological activity of nonylphenol has been focused on its 

effects on reproductive processes. Less attention has been paid to the actions of 

nonylphenol on other physiological processes such as osmoregulation. The majority of 

previous studies have concentrated on the impact of endocrine disruptors on reproduction 

by using vitellogenin induction as a biomarker for exposure to an estrogen. The primary 

objective of the present study was to examine the effect of nonylphenol on the 

osmoregulatory capabilities of rainbow trout. The novelty of this study is that it will assess 

the effects of 3 different environmentally relevant concentrations (0.5, 2 and 8 µg/l) of 

nonylphenol on ion regulation in fish under the same exposure conditions. Nonylphenol 

was chosen because it is an extremely relevant environmental xeno-estrogen and widely 

dispersed in water, sediment and many biota (Ahel et al., 1993, 1994). Rainbow trout was 

used for this study as it is widely used in the study of endocrine disruption, due to its well 

described endocrinology and osmoregulatory physiology, the availability of body sizes that 

facilitate sufficient volumes of blood for such studies (Christiansen et al., 2000), and its a 

ability to acclimate to seawater as a good euryhaline species that lends itself to studies of 

the osmoregulatory impacts of toxicants. 
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3. MATERIALS AND METHODS 

3.1 Fish 

Immature triploid female rainbow trout (Oncorhynchus mykiss) (300 fish) were obtained 

from Hatchlands trout farm (Devon, UK). The rainbow trout were kept in aerated, 

freshwater holding tanks (dechlorinated freshwater; [Na
+
 ] = 432.5 ± 18.7; [K

+
] = 63.9 ± 

3.0; [Ca
2+

] = 165.2 ± 2.1; [Mg
2+

] = 154.6 ± 4.6; Cl
-
 = 400 µmol l

-1
; pH 7.5; temperature 

10.4 ± 1.5 °C) at Exeter University, and were fed daily on a commercial feed (pellets) 

(BioMar, 5 mm, Aqualife, Denmark) at rates of 1 % body mass. Food was withheld two 

days prior to the nonylphenol exposure.  

 

From the stock fish, 24 trout were anesthetized in MS222 (Pharmaq Ltd, UK), (100 mg/l 

buffered with 300 mg/l of NaHCO3; Fisher Scientific, UK) for the collection of a blood 

sample for analysis of ion levels and vitellogenin prior to the exposure study. Blood 

samples (100 µl) were collected by caudal puncture using 26G needles into heparinised 

(Monoparin heparin sodium (mucous), 5000 I.U./ ml, CP Pharmaceuticals, Ltd., Wrexham, 

UK) syringes held on ice and transferred into microcentrifuge tubes containing aprotinin 

(10 µl) (Sigma-Aldrich) to reduce enzymatic degradation of vitellogenin, and then 

centrifuged (13,000 rpm for 5 min at 4 ºC; Heraeus by Biofuge fresco, Kendro laboratory 

products, Germany) to obtain plasma. A portion of the plasma was stored on ice for 

analysis of osmolality and chloride, and cations analysis. The remainder was frozen (−80 

°C freezer) for later analysis of vitellogenin. Body mass and total length was also recorded 

(35.6 ± 3.0 g; 15.7 ± 4.5 cm respectively). 
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3.2 Experimental design and exposure 

A flow through system comprising of 10 aquaria (99 l each) was used for exposing rainbow 

trout to nonylphenol. Freshwater was supplied from a header tank by gravity to five mixing 

bottles (1200 ml/min each), which were dosed with nonylphenol to provide water 

concentrations of 0.5, 2, and 8 µg NP/l. Dilution water and solvent controls (ethanol at 

0.0001 %) were included (ethanol was used as a solvent vehicle for the nonylphenol 

exposures). The output from each mixing bottle was split into two, each one delivering 600 

ml/min of the required concentration to one of two replicate aquarium tanks. The mixing 

bottles received nonylphenol from the stock bottles via a peristaltic pump (Watson Marlow 

205U, UK; using mediprene tubing - white/white, Elkay Laboratory Products, UK, Ltd) 

(Figure 1). 

 

The nonylphenol stock solution (800 mg in 100 ml ethanol) was prepared in a dark bottle 

and kept at 4°C. From this stock, the dosing bottles were prepared fresh every 2 days. The 

system required replenishing with 2 L of each stock daily, therefore, 4 L of each bottle was 

prepared fresh to deliver the required concentration in the exposure tanks. All the dosing 

bottles contained 0.1 % ethanol, and the nonylphenol concentrations were 0.5, 2 and 8 

mg/l). The dosing of the system was initiated 4 days before the fish exposure to ensure 

equilibration of nonylphenol between the water phase and all dosing and exposure surfaces.  

After initial dosing for 4 days, 24 rainbow trout were placed into 5 tanks only (one replicate 

tank for each treatment). After a further two days, the second set of replicate tanks received 

24 fish for each tank and treated similar to the first set of tanks. The rationale for a 

staggered experimental design was  because  it  was  only  possible to  analyse 60 fish/day, 
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Figure 1: Showing the exposure plan in schematic drawing (above), and pictures taken 

from the real exposure in the laboratory. 
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where the terminal sampling was designed to be completed in 4 days. The exposure to 

nonylphenol was carried out in freshwater for 7 days, and then 12 fish only from the 24 fish 

in each tank were sampled from each exposure, including controls. The remaining 12 fish 

in each nonylphenol exposure regime were then subjected to a seawater challenge. On day 

7 of the exposure rainbow trout (n = 60; 12 from each tank) were anaesthetized (as above) 

and blood sampled by caudal puncture. 

 

The remaining 12 trout in each tank were then exposed to seawater after flushing the tanks 

at a fast flow rate (3.8 l/min) for 2 h, to remove all the nonylphenol. The seawater challenge 

test (salinity = 25 ‰), was undertaken to study the effect of a 7 day exposure to 

nonylphenol on the subsequent ability of the fish to osmoregulate in freshwater and after 

seawater challenge. The seawater used for this challenge was made up using commercial 

sea salts (Tropic Marin®, Germany) [Osmolality = 700 ± 3 mOsm kg
-1

; [Na
+
] = 273.6 ± 

10.8 mM; [Cl
-
] = 342.7 ± 2.4 mM; [K

+
] = 7.5 ± 0.3 mM; [Ca

2+
] = 6.4 ±0.3 mM; [Mg

2+
] = 

28.6 ± 1.1 mM].  

 

3.3 Fish sampling 

Rainbow trout were sampled after the seawater challenge as detailed above. Blood 

collected was centrifuged and the plasma separated into two tubes, one of them kept at 

−80ºC until analysis for vitellogenin, and the other sample was kept on ice, and used 

directly to measure osmolality and [Cl
-
].  
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3.4 Analytical techniques 

3.4.1 Determination of chemical concentrations in exposure water 

Water samples from the exposure tanks were taken on day 0 and 7 of the exposure to 

nonylphenol and kept in glass bottles collected previously from the Environment Agency's 

National Laboratory Service, Starcross, UK. Water samples were kept in dark in box with 

ice and taken to the analytical laboratory. The osmolality and [Cl
-
] of the tank exposure 

water were measured by vapour pressure osmometer and chloride analyzer in the Exeter 

laboratory. 

 

3.4.2 Plasma ions analysis 

Rainbow trout plasma vitellogenin was measured by homologous vitellogenin ELISA, 

(Tyler et al., 2002). Detection limits of the rainbow trout was 40-80 ng/ml. Plasma 

osmolality was measured using a Wescor Vapro 5520 vapour pressure osmometer with 10 

µl of the fresh plasma. [Cl
-
] was measured in trout using a chloride meter (Corning M925, 

Chloride analyzer, UK) with 20 µl of fresh plasma. Sodium, Ca
2+

, K
+
 and Mg

2+
 were 

measured by using atomic absorption spectrophotometery (AAS; PYE Unicam SP9, 

Philips; with Na
+
 and K

+
 in FES mode, and Ca

2+
 and Mg

2+
 in AAS mode). For calcium and 

magnesium standards and samples, lanthanum chloride (LaCl3) was added to reduce 

sulphate and phosphate interference (Pybus et al., 1970), two dilutions were prepared, ×100 

to measure [Ca
2+

], [Mg
2+

] and [K
+
], whereas ×1000 were prepared for measuring [Na

+
]. All 

experiments were conducted with the approval of the University of Exeter Ethics 

Committee and under a UK Home Office license (PPL 30/2217). 
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3.5 Statistical analysis 

All parameters were analysed for differences between treatments using one-way ANOVA 

by using Sigmastat 3.5 (Systat Software, Inc.). Post hoc tests used to analyse data when the 

normality test failed and significant differences between groups were determined using the 

non-parametric Kruskal-Wallis One Way ANOVA on ranks followed by the Dunn’s 

Method to determine differences between groups. Differences between groups were 

considered to differ significantly when the p-value was < 0.05. Throughout this paper, the 

data are presented as mean ± standard error of the mean. 

 

4. RESULTS 

4.1 Determination of tank water concentrations of nonylphenol 

The measured nonylphenol concentrations in the exposure tanks are shown in (Table 1). 

The mean concentration of nonylphenol within the three exposure treatments were between 

26 % and 36 % of the nominal concentrations.  

 

4.2 Plasma vitellogenin 

After 7 days exposure to nonylphenol in freshwater, no induction of vitellogenin was 

detected in the plasma of the exposed fish. The concentrations measured in plasma of fish 

from all the exposure tanks were < 200 ng/ml. However, after seawater challenge test, the 

vitellogenin concentrations measured in fish from all the exposure tanks were > 300 ng/ml 

(Figure 2). No vitellogenin induction was observed after exposure to the highest level of 

nonylphenol (2 µg/l measured, nominal = 8 µg/l). 
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Table 1: Measured nonylphenol concentrations in the exposure tanks during the 7 day 

exposure in freshwater. Values are means ± SEM. 

 
 

Treatment Mean of [NP] (µg/l) Range (µg/l) % of nominal for mean value 

Control < 0.125 0.125 -0.125 n/a 

Solvent control < 0.125 0.125 -0.125 n/a 

0.5 µg NP/l 0.181± 0.03 0.125 - 0.251 36.2 

2 µg NP/l 0.611 ± 0.05 0.529 -0.730 30.6 

8 µg NP/l 2.093 ± 0.19 1.64 – 2.54 26.2 
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Figure 2: Plasma vitellogenin concentration in rainbow trout after 7 days exposure to 

nonylphenol and after a 24 h seawater challenge test. Each column represents the mean ± 

SEM 
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4.3 Osmoregulatory variables 

Due to an unfortunate error on the sampling day for one set of replicate tanks, where the 

aeration stopped accidently. Therefore, fish sampling was delayed for 2 h to allow the 

affected fish to recover from oxygen depletion stress. After sampling the fish, all the 

parameters relevant to fish osmoregulation were measured. The data from the exposure in 

freshwater showed significant differences in the mean values between the replicate tanks 

within each treatment after applying ANOVA, especially in osmolality (almost 10-30 

mOsm kg
-1

 difference), chloride, sodium and potassium. The mean values were 

significantly lower in the tanks where the aeration was interrupted (Table 2A). 

 

Table 2A: Showing plasma osmolality and ions between the replicate tanks after 7 days 

exposure to nonylphenol in freshwater. Number of fish in each tank (n = 12). Data missing 

for control T1 due to technical error. The values are the means ± SE of the replicate tanks. 

Asterisks indicate significant difference between replicate tanks, and grey shaded rows are 

tanks affected by lack of aeration. 

 

 

Treatments 
Tanks 

codes 

Osmolality 

(mOsm kg
-1

) 

[Cl
-
] 

mM 

[Na
+
] 

mM 

[K
+
] 

mM 

[Ca
2+

] 

mM 

[Mg
2+

] 

mM 

Control 
T1 299.9 ± 3.0 122.4 ± 1.1 none none none none 

T2 278.8 ± 6.5
*
 113.7 ± 3.0

*
 128.8 ± 3.5 1.8 ± 0.2 2.0 ± 0.1 0.6 ± 0.1 

Solvent 

Control 

T3 295.2 ± 2.6 122.0 ± 0.9 147.0 ± 1.7 3.7 ± 0.3 2.0 ± 0.1 0.9 ± 0.2 

T4 282.3 ± 5.8 116.1 ± 1.8
*
 134.0 ± 2.7

*
 1.9 ± 0.1

*
 2.1 ± 0.1 0.8 ± 0.1 

0.5 µgNP/l 
T5 303.6 ± 2.6 125.6 ± 0.9 143.9 ± 1.0 3.1 ± 0.1 1.9 ± 0.04 0.7 ± 0.03 

T6 280.6 ± 4.2
*
 115.9 ± 1.5

*
 134.2 ± 1.8

*
 2.5 ± 0.1

*
 2.1 ± 0.1

*
 0.8 ± 0.03 

2 µgNP/l 
T7 300.0 ± 3.1 126.6 ± 1.2 145.9 ± 1.7 3.3 ± 0.1 2.0 ± 0.1 0.9 ± 0.1 

T8 272.0 ± 6.1
*
 113.9 ± 1.6

*
 132.9 ± 2.3

*
 3.5 ± 0.3

*
 2.2 ± 0.2 1.1 ± 0.2 

8 µgNP/l 
T9 295.8 ± 3.6 121.8 ± 1.1 144.8 ± 1.3 3.2 ± 0.2 2.1 ± 0.1 0.8 ± 0.1 

T10 278.6 ± 6.2
*
 113.1 ± 2.6

*
 133.7 ± 3.6

*
 3.3 ± 0.2

*
 2.4 ± 0.3 1.2  ± 0.2 
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After seawater challenge, the ANOVA for the intact replicate tanks were applied to 

investigate if there are any differences between the replicate tanks after the error occurred 

during the freshwater exposure. There were no significant differences between the replicate 

tanks detected for all the treatments, except for the osmolality and [Mg
2+

] in the highest 

exposure tanks (8 µg NP/l), the [Cl
-
] showed significant difference between the replicate 

tanks of 2 and 8 µg NP/l exposure treatments (Table 2B). 

Table 2B: Showing plasma osmolality and ions between the replicate tanks after acute 

seawater challenge. The values are the means ± SE of the replicate tanks. Asterisks indicate 

significant difference between replicate tanks, and grey shaded rows are tanks affected by 

lack of aeration. 

 

Treatments Tanks 
Osmolality 

(mOsm kg
-1

) 

[Cl
-
] 

mM 

[Na
+
] 

mM 

[K
+
] 

mM 

[Ca
2+

]  

mM 

[Mg
2+

]  

mM 

Control 
T1 365.7 ± 5.1 156.6 ± 2.9 190.9 ± 2.9 3.5 ± 0.2 3.1 ± 0.1 2.2 ± 0.2 

T2 375.6 ± 4.7 160.5 ± 2.3 191.6 ± 2.8 4.1 ± 0.2 2.1 ± 0.1 1.7 ± 0.2 

Solvent 

Control 

T3 355.6 ± 6.6 151.1 ± 2.7 184.3 ± 3.1 4.3 ± 0.1 3.1 ± 0.1 2.0 ± 0.1 

T4 354.0 ± 8.4 151.5 ± 3.6 176.0 ± 4.2 4.1 ± 0.2 1.8 ± 0.1 1.6 ± 0.2 

0.5 µgNP/l 
T5 367.0 ± 8.1 154.7 ± 4.1 189.5 ± 6.8 4.0 ± 0.3 3.0 ± 0.3 2.5 ± 0.6 

T6 359.3 ± 8.8 157.1 ± 4.2 181.5 ± 6.3 3.1 ± 0.2 2.0 ± 0.1 1.4 ± 0.1 

2 µgNP/l 
T7 363.5 ± 9.3 150.0 ± 4.0 184.6 ± 4.0 3.5 ± 0.2 3.1 ± 0.1 2.0 ± 0.2 

T8 385.8 ± 8.0 162.5 ± 2.7
*
 178.6 ± 6.4 3.8 ± 0.4 1.6 ± 0.2 1.4 ± 0.2 

8 µgNP/l 
T9 358.2 ± 4.7 148.1 ± 2.3 190.5 ± 3.4 4.1 ± 0.3 3.1 ± 0.1 2.2 ± 0.1 

T10 384.5 ± 8.3
*
 160.1 ± 2.5

*
 180.5 ± 3.4 3.7 ± 0.2 2.0 ± 0.1 1.5 ± 0.2

*
 

 

5. DISCUSSION 

The influence of nonylphenol on osmoregulatory system has been previously studied in 

salmonids. Most of the exposure regimes used by the previous studies were applied by 

using nonylphenol injected into the fish (Madsen et al., 2004; McCormick et al., 2005; 

Carrera et al., 2007). Some studies used the aqueous exposure route but with higher levels 
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than those used in the present study (Arsenault et al., 2004; Lerner et al., 2007) which 

aimed to examine the effect of environmentally relevant concentrations of nonylphenol in 

freshwater and the ability of this xeno-estrogen to impair the salinity tolerance immediately 

after direct exposure to an endocrine disruptor. 

 

5.1 The concentration of nonylphenol in the exposure tanks 

The measured concentrations of nonylphenol in the exposure tanks after 7 days, were 

approximately one third of the nominal concentrations in all the exposure concentrations. 

Similar studies have reported actual concentrations which were approximately 1/3 to 1/5 of 

the nominal concentrations (Nimrod and Benson, 1998; Nichols et al., 2001; Schoenfuss et 

al., 2008). The reduced concentrations could be due to several reasons such as degradation 

of nonylphenol in the exposure tanks. Alternatively the lower measured concentrations may 

have been related to an incomplete solubilisation of nonylphenol in the stock solution 

(aqueous solubility limit of NP = 5.24 ± 0.11 mg NP/l at 14 °C, Ahel and Giger, 1993) 

although unfortunately we did not measure the stock solution concentration. Other potential 

factors include volatilization of nonylphenol, adsorption to tubing or the glass tanks. 

Adsorption to organic matter present in the tanks can also occur (Villeneuve et al., 2002), 

and fish themselves may absorb some nonylphenol (Pickford et al., 2003). However, in our 

study we have used a flow through system which makes these factors unlikely to happen. 

Furthermore, the pump’s flow rate was not checked for accuracy during and after the study 

to ensure the delivery of the proper concentration required for the study. Since the loss was 

around 70 % in all the doses the pump’s flow rate may also be a factor. 
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Other studies that have exposed fish to nonylphenol have found widely differing recoveries 

of nonylphenol in the water. Pickford et al., (2003) exposed male fathead minnows 

(Pimephales promelas) to nonylphenol through waterborne exposure for 2 weeks at 

nominal concentrations of 1, 10 or 50 µg/l, and the measured concentrations in the dosed 

tanks were between 72-129 % of nominals. One possible reason why the measured 

concentrations of nonylphenol were more closely aligned with nominals in that study was 

that their exposure tanks were dosed for 7 days with nonylphenol prior to addition of the 

fish, whereas in our study we pre-dosed the system for only 4 days, that longer period of 

exposure might have helped. This suggestion is further supported by another study, where 

dosing of nonylphenol (nominal concentrations 1, 10 and 100 µg/l) were initiated 3 weeks 

prior to adding fish, and the measured concentrations were between 70 % and 85 % of 

nominals (Harris et al., 2001). However, although lower levels of nonylphenol were 

obtained in the exposure tanks than anticipated, they are still close to the relevant 

environmental concentrations which should not be considered as a total loss. 

 

5.2 Plasma vitellogenin 

The exposure to nonylphenol for 7 days revealed no vitellogenin induction in the plasma of 

rainbow trout. The results showed no vitellogenin induction which could be due to the low 

exposure level and short exposure period. Also, it turned out that the nominal exposure 

levels did not reach to the exposure tanks. Several studies have exposed fish to nonylphenol 

at concentrations between 1 and 50 µg NP/l and have reported either a non-significant 

effect on plasma vitellogenin concentrations and/or great variability among fish in the same 

treatment (Pickford et al., 2003; Van den Belt et al., 2003). Similar to our result in terms of 
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vitellogenin induction, Atlantic salmon (Salmo salar L.) smolts were exposed in freshwater 

to 5, 10, 15, and 20 µg NP/l for a 30-day period where no vitellogenin induction detected 

(Moore et al., 2003). There was also no detectable vitellogenin in juvenile Atlantic salmon 

treated with 10 µg NP/l for 21 days in freshwater (Lerner et al., 2007). 

 

It is not known why there was an elevated level of vitellogenin in all fish after the seawater 

challenge in the present study. One possible reason is a consequence of a stress response 

after being subjected to the accidentally reduced oxygen level, but this is speculation only. 

Indeed, generally, stress is known to reduce plasma vitellogenin levels in fish (Carragher et 

al., 1989), rather than increase them, so this seems an unlikely explanation. However, the 

increase observed after seawater challenge was actually rather small relative to the orders 

of magnitude changes commonly observed in response to significant estrogenic stimulation. 

It is therefore wise to interpret these data with caution, and it is quite likely that the small 

difference may reflect different performance of the ELISA assays for samples analysed on 

these different experimental days. 

 

On the other hand, several studies have documented that hypoxia (low oxygen) acts as an 

endocrine disruptor of fish reproduction by affecting hormones secreted by the 

hypothalamus-pituitary-gonadal-liver system (Wu et al., 2003; Landry et al., 2007; Thomas 

et al., 2007). But, there is no direct evidence that hypoxia can affect the vitellogenin level. 

Male fathead minnows (Pimephales promelas) were exposed to a mixture of estrogenic 

chemicals under hypoxic conditions (< 2 mg of O2/l) and the results revealed no effect of 

hypoxia on vitellogenin response (Brian et al., 2009). 
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One possible reason might explain the difference in the plasma vitellogenin levels in 

seawater from the freshwater is the difference sensitivity between different ELISAs carried 

out. As the plasma samples used to measure the vitellogenin were divided for different 

ELISAs in different days.  

 

5.3 Osmoregulatory variables 

The reduction in oxygen that occurred due to the accidental loss of aeration in the exposure 

tanks would have added an additional stress to the exposed fish besides the exposure to 

nonylphenol. The gills carry out multiple tasks such as gas exchange and ion transport 

(Evans et al., 2005). In general, freshwater fish face the problem of gaining water and 

losing ions, and the major ions in plasma, Na
+
 and Cl

-
, have particularly high rates of loss 

via branchial diffusion, even under normoxic conditions (Wood, 1992). Data showed a 

significant decrease in these ions in the tanks affected by oxygen depletion in comparison 

to their unaffected replicate tanks within each treatment (Table 2A). That can be explained 

by the extra stress, as fish would normally increase their ventilation as a normal 

physiological response to lower oxygen levels (Evans et al., 2005). Higher ventilation helps 

to assist in the extraction of enough oxygen from the water to satisfy the normal oxygen 

demand. However, a consequence of elevated ventilation could also be increased diffusive 

ion loss across the gills (Gonzalez and McDonald, 1992, 1994) and may result in 

decreasing the level in the plasma detected in the affected tanks. An increase in the gill 

functional surface area, as during hyper-ventilation, promotes oxygen uptake and increases 

the Na
+
 efflux rate, whereas reduction in surface areas cause the opposite. This relationship 

between oxygen uptake and diffusive ion fluxes is called the osmo-respiratory compromise. 
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A study on freshwater adapted rainbow trout experimentally showed a relationship between 

oxygen consumption and Na
+
 loss, where Na

+
 loss increased whenever oxygen 

consumption increased (Gonzalez and McDonald, 1992). Another reason could be the 

down regulation of the uptake channels and/or Na
+
-K

+
-ATPase activity to make energetic 

savings during hypoxia (Wood et al., 2007). In freshwater fish hyperventilation (due to low 

oxygen) is expected to cause reduced plasma ions (especially Na
+
 and Cl

-
), whereas 

hyperventilation in seawater fish will cause the opposite (increased plasma ions, especially 

Na
+
, Cl

-
, and Mg

2+
 that have the biggest gradients across the gills). The results support the 

above ideas on low oxygen supply and decrease in the plasma osmolality, Na
+
 and Cl

-
 level 

in freshwater fish accordingly. 

 

Due to the loss of aeration at a key stage of the experiment, the data obtained were not 

complete in terms of a complete set from replicate tanks for each treatment. To study the 

potential effects of nonylphenol on the osmoregulatory variables was the major aim of this 

study and this was clearly hampered by this problem. Therefore, the investigation of the 

potential physiological effects of low oxygen level on the osmoregulatory variables has 

been the focus in the latter part of the discussion. 
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The influence of 17β-estradiol on intestinal calcium carbonate precipitation and 

osmoregulation in seawater-acclimated rainbow trout (Oncorhynchus mykiss) 

 

1. ABSTRACT 

The intestine of marine teleosts produces carbonate precipitates from ingested calcium as 

part of their osmoregulatory strategy in sea water. The potential for estrogens to control the 

production of intestinal calcium carbonate and so influence osmoregulation was 

investigated in seawater-acclimated rainbow trout following intraperitoneal implantation of 

17β-estradiol (E2) at two doses (0.1 and 10 µg E2 g
-1

). Levels of plasma vitellogenin 

provided an indicator of estrogenic effect, increasing significantly by 3 and 4 orders of 

magnitude at the low and high dose, respectively. Plasma osmolality and muscle water 

content were unaffected, whereas E2-treated fish maintained lower plasma [Na
+
] and [Cl

-
]. 

Plasma [Ca
2+

] and [Mg
2+

] and muscle [Ca
2+

] increased with vitellogenin induction, whilst 

the intestinal excretion of calcium carbonate was reduced. This suggests that elevated levels 

of circulating E2 may enhance Ca
2+

 uptake via the intestine by reducing CaCO3 formation 

that normally limits intestinal availability of Ca
2+

. Increasing E2 also caused a significant 

decline in intestinal fluid [SO4
2-

], suggesting a reduction of water absorption by the 

intestine. Together with elevated [Na
+
] and [Cl

-
] and reduced [HCO3

-
] in intestinal fluid, we 

speculate that E2 may influence water absorption via a number of potential intestinal 

processes; 1) reduced NaCl cotransport, 2) reduced Cl
-
 uptake via Cl

-
/HCO3

-
 exchange, and 

3) reduced precipitation of Ca
2+

 and Mg
2+

 carbonates. Despite these effects on intestinal ion 

and water transport, overall osmoregulatory status was not compromised in E2 treated fish, 

suggesting the possibility of compensation by other organs.  
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2. INTRODUCTION 

2.1 Osmoregulation by marine teleost fish 

Marine teleost fish are osmoregulators, maintaining their body fluids hypo-osmotic (~300 

mOsm kg
-1

) to seawater (~1000 mOsm kg
-1

) and therefore face the problem of osmotic 

water loss and the passive gain of ions (Evans et al., 2005; Marshall and Grosell, 2006). To 

overcome this potential dehydration they continuously drink the surrounding seawater at 

rates of 1-5 ml kg
-1 

h
-1

 (Smith, 1930; Evans, 1993; Fuentes et al, 1996; Marshall and 

Grosell, 2006) and excrete the excess salt load across the gills (Na
+
 and Cl

-
), and in the 

rectal fluid and urine (Ca
2+

, Mg
2+

 and SO4
2-

) (Marshall and Grosell, 2006). The 

gastrointestinal tract therefore has a key role in processing ingested seawater, and absorbing 

water (Shehadeh and Gordon, 1969; Marshall and Grosell, 2006).  

 

2.2 Role and mechanism of the intestine in osmoregulation 

The principal and most intensively studied driving force for water absorption in the 

intestine of seawater teleosts is the simultaneous absorption of Na
+
 and Cl

- 
(Smith, 1930; 

Skadhauge, 1974; Usher et al., 1991; Marshall and Grosell, 2006). This absorptive process 

is ultimately fuelled by the basolateral Na
+
,K

+
 ATPase (NKA) which generates an 

electrochemical Na
+
 gradient sufficient to drive the apical uptake of Na

+
 and Cl

-
 via two 

cotransporters; Na
+
:Cl

-
 (NC) and Na

+
:K

+
:2Cl

-
 (NKCC) (Musch et al., 1982; Grosell, 2006; 

2010). A second direct driving force for fluid absorption in the marine teleost intestine 

involves the apical anion exchanger (AE) Cl
-
/HCO3

-
 which may contribute as much as 70 

% of the total Cl
-
 and water absorption by this epithelium under non-fed conditions (Grosell 

et al., 2005; Grosell, 2006; 2010). The secreted bicarbonate has two major sources; the first 
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being the hydration of the endogenous metabolic CO2 that is mediated by cytosolic 

carbonic anhydrase (Walsh et al., 1991; Wilson et al., 1996; Wilson and Grosell, 2003; 

Grosell et al., 2005; 2007; Grosell and Genz, 2006). The H
+
 ions liberated from this CO2 

hydration are mostly transported across the basolateral membrane, either via Na
+
/H

+
 

exchange (NHE) or a V-type H
+
-ATPase, resulting in acid absorption proportional to 

HCO3
-
 secretion at the apical membrane (Grosell and Taylor, 2007; Grosell et al., 2009; 

Whittamore et al., 2010). The second source of cellular bicarbonate is direct basolateral 

entrance via a Na
+
:HCO3

-
 cotransporter (NBC1) allowing for the basolateral uptake of both 

Na
+
 and HCO3

-
 driven by the basolateral Na

+
,K

+
 ATPase (Grosell and Genz, 2006; Grosell 

et al., 2009; Grosell, 2010). A third indirect driving force for water absorption is the 

precipitation of divalent cations (Ca
2+

 and Mg
2+

 from ingested seawater). The presence of 

elevated concentrations of HCO3
-
 (30-110 mM) and high luminal pH (up to 9) in the 

intestinal fluid provide favourable conditions for the precipitation of calcium and 

magnesium carbonates. In the absence of carbonate precipitation, the poorly absorbed Ca
2+

 

and Mg
2+

 would rise to very high levels (67 and 353 mM, respectively) which would 

clearly retard osmotic water absorption from the intestine (Wilson et al., 2002). Removal of 

most of the ingested Ca
2+

 and a smaller proportion of the ingested Mg
2+

 by alkaline 

precipitation conveniently avoids an excessive accumulation of these ions, reducing the 

luminal osmolality and thereby maximising the potential for water absorption by the 

intestine (Wilson et al., 2002; Marshall and Grosell, 2006; Whittamore et al., 2010). 

 

The ingestion of seawater presents the intestine with a large potential source of Ca
2+

 for 

absorption and since systemic Ca
2+

 is very tightly regulated within the intracellular and 
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extracellular fluids the intestine has an important role in Ca
2+

 homeostasis. Since the gills 

do not participate in the excretion of divalent ions (Flik and Verbost, 1993) any Ca
2+ 

absorbed by the intestine, and not sequestered by any of the internal pools (such as bones, 

otoliths, scales, gonads etc.), will be removed by the kidneys. However, given the 

infrequent and small amounts of urine produced by marine teleosts (Marshall and Grosell, 

2006), the kidneys are very limited in their ability to excrete excess divalent ions such as 

Ca
2+

. It is therefore not surprising that the renal excretion rates of Ca
2+

 by marine teleosts 

are estimated as being low (Hickman, 1968; Björnsson and Nilsson, 1985). Despite this, 

relatively few studies have considered the role of the intestine in Ca
2+

 homeostasis in 

marine teleosts. Under resting inter-digestive conditions, many studies show that little Ca
2+

 

is actually absorbed across the intestine into the blood. In vivo the vast majority (> 80 %) of 

Ca
2+ 

entering the intestine can be accounted for as excreted in the rectal fluid, with ~40-60 

% in the form of solid CaCO3 (Wilson and Grosell, 2003) thus the entry of Ca
2+ 

into the 

body seems to be considerably limited. However, other studies report a net absorption of 

Ca
2+

 across the intestine (Sundell and Björnsson, 1988; Flik et al., 1990; Flik and Verbost, 

1993), and in particular, the intestine can contribute in times of extra demand for Ca
2+

 such 

as gonadal maturation. Given that marine teleosts precipitate CaCO3 as part of their 

osmoregulatory strategy, which also helps to limit the Ca
2+

 availability for absorption from 

the ingested water to maintain Ca
2+

 homeostasis (Wilson et al., 2002; Wilson and Grosell, 

2003), this raises the question of whether there is any coordination or integration of these 

processes during periods of elevated Ca
2+

 demand. 
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2.3 The role of estrogens in fish osmoregulation 

Sex steroid hormones include androgens and estrogens and these hormones are key 

coordinators of the reproductive development and function in males and females 

respectively. The function of estrogens is well conserved in vertebrates and includes the 

regulation of oocyte growth within the gonads and secondary sex characteristics and 

behaviours (Nagahama et a., 1995; Tyler and Sumpter, 1996). In addition, estrogens play a 

role in multiple processes in the body, including in the regulation of metabolism (Chen et 

al., 2009), the regulation of growth (Yu et al., 1979; Simm et al., 2008), bone development 

(Warner and Jenkins, 2007) and immune function (Wenger and Segner, 2008). 

 

Estradiol has also been shown to play a role in the regulation of ionic and osmotic 

homeostasis, and the physiological processes involved in salt and water transport in fish 

(Mancera et al., 2004; Carrera et al., 2007). The effects reported include inhibition of key 

osmoregulatory variables (Mancera et al., 2004; McCormick et al., 2005; Lerner et al., 

2007). For example, significant increases in total and ionic Ca
2+

 have been observed in the 

plasma of sea bream (Sparus aurata) following intraperitoneal implants containing 10 μg 

E2/ g body mass (Guerreiro et al., 2002; Guzman et al., 2004). Further indirect evidence 

supporting the involvement of estradiol in osmoregulation is provided by the expression of 

estrogen receptors in the intestine in a number of fish species including the sea bream 

(Socorro et al., 2000) and fathead minnows (Pimephales promelas) (Filby and Tyler, 2005). 

In the rainbow trout, four estrogen receptors have been described and expression of all four 

genes was demonstrated in the digestive tract (Nagler et al., 2007). Estrogen hormones such 

as E2 exert their effect principally (but not exclusively) by binding and activating the 
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nuclear estrogen receptors (Edwards, 2005). It has been suggested that estrogens and their 

receptors expressed in the gills in salmonids (Rogers et al., 2000) may be involved in 

osmoregulation as E2 and a variety of xenoestrogens antagonize metabolic, morphological, 

and physiological changes that take place during smoltification (Miwa and Inui, 1986; 

Madsen et al., 2004).  

 

More specifically, a role of estradiol in calcium balance is supported by the additional need 

for Ca
2+

 during sexual maturation in females. During gonadal maturation, the females 

require abundant Ca
2+

 to provide oocytes with a ready store for subsequent skeletal 

development of their offspring. The enhanced demand of Ca
2+

 at such times can be 

supplied from various sources, under the influence of estrogens. In salmonids, estradiol can 

induce Ca
2+

 resorption from the scales and bones (Mugiya and Watabe, 1977; Carragher 

and Sumpter, 1991; Persson et al., 1994) and from the ambient water (Persson et al., 1994). 

Due to the continual ingestion of Ca
2+

-rich seawater the intestine of marine fish has 

potential access to a readily available pool of Ca
2+

 which can be used to supply developing 

oocytes during sexual maturation. Here we hypothesise that the intestine could feasibly 

respond to estrogenic stimulus by enhancing Ca
2+

 uptake. The putative enhancement of 

Ca
2+

 uptake via the intestine may coincide with a reduction in the elimination of Ca
2+

 as 

CaCO3, leading to increased Ca
2+

 transport by the intestinal epithelium. 

 

2.4 The aim of the study 

A number of previous studies have examined the effect of estradiol on hypo-

osmoregulation in teleosts (Madsen and Korsgaard, 1991; Vijayan et al., 2001; Guzman et 
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al., 2004; Mancera et al., 2004). However, only one study has investigated the potential for 

calciotropic hormones (parathyroid hormone-related protein and stanniocalcin) to regulate 

bicarbonate and calcium transport by the marine teleost intestine in vitro (Fuentes et al., 

2010). To our knowledge, this is the first study examining the potential estrogenic control 

of intestinal CaCO3 formation and excretion and the subsequent consequences for ionic and 

osmotic homeostasis in a seawater-adapted teleost, the rainbow trout, in vivo.  

 

3. MATERIAL AND METHODS 

3.1 Experimental animals and acclimation to seawater 

Immature female rainbow trout (Oncorhynchus mykiss Walbaum) (n = 44) (194.1 ± 3.5 g 

and 24.8 ± 0.2 cm, respectively) were obtained from Houghton Springs fish farm (Devon, 

UK) and kept in aerated, dechlorinated freshwater (pH 7.5 and temperature 11.2 ± 0.3 °C) 

at the University of Exeter. Fish were left unfed for two days before being transferred to a 

salinity of 10 ppt (approximately iso-osmotic) for 48 h, otherwise they were maintained on 

commercial pellet feed (BioMar, 5 mm, Aqualife, Denmark). Salinity was then increased to 

20 ppt for a further 24 h and then to full strength seawater (salinity of 33 ppt; Na
+
 = 420; K

+
 

= 10; Ca
2+

 = 10; Mg
2+

 = 47; Cl
-
 = 455; SO4

2-
 = 21 mM), where the fish were left to 

acclimate for 10 days before starting the experiments. All fish experiments described in this 

study were conducted according to UK Home Office guidelines. 

 

3.2 Implantation of 17β-estradiol (E2) 

After acclimation to seawater, fish were anaesthetised in a 50 mg/l solution of MS222 

(Pharmaq Ltd, UK) buffered with 150 mg/l NaHCO3, followed by prolonged aeration to 
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restore normal CO2 and pH levels. Estradiol was dissolved in coconut butter (Sigma-

Aldrich, UK) to achieve the concentrations required for the experiment (Control = coconut 

butter only (vehicle); Low dose = 0.1 mg E2/ml; High dose = 10 mg E2/ml). Fish were 

randomly allocated to one of the three treatments (10 fish per treatment) before 

intraperitoneal (i.p.) injection at a dose of 1 µl per gram of fish, to achieve the required 

doses of 0.1 mg and 10 mg of E2 per kg of fish body mass. After injection, the needle was 

withdrawn and ice was applied to the injection site to help solidify the implant and avoid 

losses of the injected coconut butter. Fish were then transferred to individual chambers (18 

litres capacity) containing aerated seawater.  

 

3.3 In vivo experimental procedures and sampling 

A semi-static system was used, whereby fish were maintained in their individual chambers 

for two weeks before terminal sampling. Intestinal precipitates of calcium carbonate 

excreted into the chamber were collected twice daily (10.00 and 17.00) from each fish, and 

80 % of the water in each chamber was renewed every 48 h.  

 

Two weeks after E2 implantation fish were administered an overdose of anaesthetic (300 

mg/l buffered MS222), followed by blood sampling (~1 ml) via caudal puncture. The blood 

sample was divided into two aliquots, one added to 10 µl of aprotinin (Sigma-Aldrich) to 

reduce enzymatic degradation of vitellogenin, and the second without aprotinin for ion 

measurements. Blood samples were then centrifuged (13,000 rpm for 5 min at 4 ºC; 

Heraeus by Biofuge fresco, Kendro laboratory products, Germany) and the plasma was 

separated from the blood cells. The fresh plasma was used to measure osmolality and 
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chloride, and the remainder was subsequently diluted for ion analysis. The abdominal 

cavity was then opened by a ventral midline incision and the entire intestine ligated to 

collect fluid for analysis. A piece of white muscle was removed (2.09 g ± 0.06) from 

immediately below the dorsal fin for ion and water content measurement. The peritoneal 

cavity was then examined to confirm the integrity of the injected implant of coconut oil. 

 

3.4 Analytical techniques for plasma and muscle variables 

Osmolality was measured on 10 µl samples using a vapour pressure osmometer (Wescor 

Vapro 5520, USA). Cations (Na
+
, Ca

2+
 and Mg

2+
) and anions (Cl

-
 and SO4

2-
) were 

measured by ion chromatography (Dionex ICS-1000, Sunnyvale, CA, USA) on samples of 

plasma, intestinal fluids and seawater, following appropriate dilution. Total CO2 of 

intestinal fluids was measured using a carbon dioxide analyser (Mettler Toledo model 

965D, Columbus, OH, USA). The pH of intestinal fluid was determined using an Accumet 

combined microelectrode (Fisher Scientific, Loughborough, UK) connected to Hanna HI 

8314 pH meter. 

 

 White muscle samples were transferred to a pre-weighed Teflon tube and then to an oven 

(70 °C) where they were dried to a constant mass. The dried samples were digested with 5 

volumes of nitric acid (15.6 N; AnalaR, BDH Laboratory Supplies, UK). Following 

complete digestion, two sets of dilutions were prepared (100 and 500) and 10 % (w/v) 

lanthanum chloride (Fisher Scientific, UK) was added to achieve 0.1 % (w/v) for 

measurement of divalent ions by atomic absorption spectrophotometry (Thermo Elemental 

SOLAAR AAS, UK). Muscle chloride was measured on 100-fold diluted digests using a 



   Chapter 5 

 

Version to the chapter submitted to: The Journal of Experimental Biology 

Noura J. Al-Jandal, Jonathan M. Whittamore, Eduarda M. Santos, and Rod W. Wilson                              138 
 

colourimetric assay (Zall et al., 1956) and the absorbance read on a microplate reader 

(Molecular Devices, Spectra MAX 340pc, USA) at 480 nm. Plasma vitellogenin was 

measured as an indicator of the exposure to 17β-estradiol using a homologous ELISA, 

according to previously described protocols (Tyler et al., 2002). Plasma was diluted at least 

1:10 prior to analysis of vitellogenin concentrations, resulting in a detection limit for this 

study of 30 ng/ml. 

 

3.5 Determination of carbonate content of intestinal precipitates 

The collected CaCO3 precipitates were rinsed with deionised water before being oven dried 

 (45 °C) overnight. The next day, the dry weight was taken before adding 1 ml of 5 % (w/v) 

sodium hypochlorite (Fisher Scientific, UK) and left for 4 h to digest the organic mucus 

component. Samples were then rinsed 3 times with deionised water, centrifuged before 

being oven-dried for a further 24 h before and the final dry mass taken. The cleaned, dried 

inorganic samples of the precipitates were then sonicated (Vibra-Cell, Sonics and Materials 

Inc., Newtown, CT, USA) in 20 ml of ultrapure water (Maxima Ultrapurewater, ELGA, 

UK) for double end-point titration to determine the bicarbonate equivalent content. 

 

The bicarbonate equivalents (HCO3
- 
+ 2CO3

2-
) content of these precipitates was determined 

using the double titration method of Hills (1974), as described by Wilson et al. (2002) using 

an autotitrator (TIM845 titration manager and SAC80 automated sample changer, 

Radiometer, France). Samples were gassed with N2 to remove all HCO3
- 

and CO3
2- 

as 

gaseous CO2 during acidification and to ensure a stable pH measurement when returning to 

the starting pH (Wilson et al., 2002). Subsequently, samples were re-acidified to ensure 
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complete dissolution of Ca
2+

 and Mg
2+

 that had been liberated during titration of the 

precipitates. These acidified samples were then diluted for analysis of Ca
2+

 and Mg
2+

 

content by ion chromatography.  

 

3.6 Calculations and data analysis  

 Hickman (1968) and Genz et al. (2008) have previously used SO4
2-

 concentrations in rectal 

fluid as a surrogate of intestinal fluid absorption based on the assumption that intestinal 

epithelium is impermeable MgSO4 therefore considering it as a potential endogenous 

marker for water absorption. In the present study seawater and intestinal [SO4
2-

] for each 

fish were measured and used to obtain an estimate of fractional water absorption (%) by the 

intestine by using the formula: 

 

Fractional Water Absorption = 100 – (Seawater [SO4
2-

]/Intestinal [SO4
2-

] × 100) 

 

The concentration of bicarbonate equivalents (HCO3
-
 + 2CO3

2-
) in the intestinal fluid were 

calculated according to Henderson-Hasselbach equation using measurements of total CO2 

and pH: 

 

 [HCO3
-
] = [TCO2]/(1+10

(pH-9.46)
) 

 

The total CO2 (mM) content [TCO2] is the sum of [molecular CO2] + [HCO3
-
] + [CO3

2-
].  

Therefore, the carbonate (CO3
2-

) fraction was calculated by the following: 

[CO3
2-

] = [TCO2] – [HCO3
-
]  
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Hence, Total HCO3
-
 equivalent = [HCO3

-
] + 2[CO3

2-
] 

 

Vitellogenin data were log transformed prior to analysis. Significant differences between 

treatments were determined using One Way Analysis of Variance (ANOVA) followed by 

the Student-Newman-Keuls Method to determine significant differences between individual 

groups, when data was normally distributed and had approximate equal variance. For data 

that failed to meet these assumptions, significant differences between treatment groups 

were determined using the non-parametric Kruskal-Wallis One Way ANOVA on ranks 

followed by the Dunn’s Method to determine differences between individual groups. 

Differences between treatment groups were considered to be significant when P < 0.05, 

and highly significant when P < 0.001. As an additional indication of the effect of 

estrogenic stimulation on physiological variables, regression analyses were performed 

comparing these against plasma vitellogenin concentrations (log transformed) of individual 

fish. Correlation analysis was carried out by linear regression, and the Pearson correlation 

coefficient (R) was calculated. For all statistical analyses, p < 0.05 was considered 

significant. All statistical analysis were conducted using Sigmastat 3.5 (Systat Software, 

Inc.). 

 

4. RESULTS 

4.1 Plasma vitellogenin and osmoregulatory variables 

Seawater-acclimated rainbow trout implanted with E2 for two weeks, showed highly 

significant inductions of plasma vitellogenin (Figure 1) indicating strong and dose-

dependent estrogenic response. The E2 implants did not affect plasma osmolality at either  
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Figure 1: Plasma vitellogenin concentration in seawater-acclimated rainbow trout after 2 

weeks implant with E2 (0.1 and 10 µg E2 g
-1

). Each column represents the mean ± SEM. 

Asymmetric error bars are due to logarithmic scale of vitellogenin data. Different letters 

above bars indicate significant differences between treatment groups within a given time 

point (P < 0.001, Student-Newman-Keuls method). 

 

dose. However, increasing levels of circulating vitellogenin were associated with 

significant decreases in both plasma [Na
+
] and [Cl

-
] (Figure 2). Estrogen exposure, as 

expected, caused a dose-dependent and highly significant increase in plasma [Ca
2+

], and 

plasma [Mg
2+

] also increased significantly, but in the high dose group only (Figure 3). No 

significant differences were detected in the plasma [SO4
2-

] (Table 1). 

 

Concurrent with observations of plasma osmolality, E2 treatment did not affect muscle 

water content of the seawater-acclimated rainbow trout in any of the treatment groups 

(control  group  = 78.2 ± 0.3 %;  low dose  group  = 78.2 ± 0.2 %; high dose group = 77.5 ±  
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Figure 2: Relationship between the plasma vitellogenin and plasma Na
+
 and Cl

-
. 

Correlation analysis was carried out by linear regression, and the Pearson correlation 

coefficient (R) was calculated. 
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Figure 3: Plasma [Ca
2+

], [Mg
2+

] and white muscle [Ca
2+

] in seawater-acclimated rainbow 

trout treated with E2 (0.1 and 10 µg E2 g
-1

) for two weeks. Different letters above bars 

indicate significant differences between treatment groups. Each column represents the 

mean ± SEM. 
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Table 1: Plasma osmoregulatory variables and muscle water content in seawater-

acclimated rainbow trout implanted with either control or one of two doses of 17β-estradiol 

(0.1 and 10 µg E2 g
-1

) for two weeks. Different letters after each number indicate 

significant differences between treatment groups.  

 

 

Muscle 

water 

content Osmolality [Na
+
] [Cl

-
] [SO4

2-
] 

 
(%) (mOsm kg

-1
) mM mM mM 

Control 78.2 ± 0.3 322.8 ± 8.0 168.8 ± 6.8
a
 144.6 ± 5.9

a
 1.16 ± 0.2 

Low Dose 78.2 ± 0.2 315.9 ± 5.1 157.8 ± 4.0 132.7 ± 4.2 0.69 ± 0.1 

High Dose 77.5 ± 0.3 326.2 ± 8.3 153.2 ± 4.9
b
 126.5 ± 3.5

b
 0.91 ± 0.2 

 

0.3 %). Calcium concentrations in white muscle increased significantly by almost 40 % in 

the high dose group in comparison to the control group (Figure 3). 

 

4.2 Intestinal fluid chemistry and fractional water absorption 

The 17β-estradiol had no significant effect on intestinal fluid osmolality. Intestinal [Na
+
] 

was significantly elevated by 33 % in the high dose group in comparison to controls. No 

significant effect was detected in [Cl
-
] although mean values followed the same upward 

trend as the intestinal [Na
+
] with increasing E2 dose (Table 2). Under control conditions the 

intestinal fluid pH was distinctly alkaline (pH = 8.41 ± 0.06), with high concentrations of 

HCO3
-
 equivalents (95.2 ± 5.8 meq l

-1
). The pH and [HCO3

-
] decreased significantly in the 

high dose group by 0.2 pH units and 22 meq l
-1

, respectively, in comparison to the control 

(Figure 4). Magnesium and SO4
2-

 concentrations were significantly lower in the high dose 

group in relation to the control group by 23 and 27 %, respectively, with no differences 

observed in relation to Ca
2+

 (Table 2). The estimated fractional water absorption based on 

[SO4
2-

] was significantly reduced by 17 % at the highest E2 dose group (Figure 5). 
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Table 2: Intestinal fluid osmolality and ions concentrations in the seawater-acclimated 

rainbow trout implanted with either control or one of two doses of 17β-estradiol (0.1 and 10 

µg E2 g
-1

) for two weeks. Different letters after each number indicate significant between 

treatment groups. 

 
 

 Osmolality [Na
+
] [Cl

-
] [Ca

2+
] [Mg

2+
] [SO4

2-
] 

 (mOsm kg
-1

) mM mM mM mM mM 

Control 332.3 ± 11.3 43.4 ± 3.2
a
 74.9 ± 6.0 6.7 ± 0.7 152 ± 8.3

a
 68.8 ± 3.8

a
 

Low Dose 313.3 ± 7.0 49.5 ± 3.6 81.5 ± 5.3 7.7 ± 0.5  139.0 ± 13.6 59.6 ± 4.9 

High Dose 344.3 ± 17.0 64.5 ± 5.3
b
 87.2 ± 6.1 6.9 ± 0.8 116.6 ± 9.8

b
 50.3 ± 4.7

b
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Figure 4: Intestinal fluid HCO3
-
 equivalent and pH in the seawater-acclimated rainbow 

trout after 2 weeks implant with E2 (0.1 and 10 µg E2 g
-1

). Different letters above bars 

indicate significant differences between treatment groups. Each column represents the 

mean ± SEM. 
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Figure 5: Fractional water absorption in the intestine of the seawater-acclimated rainbow 

trout after two weeks implant with E2 (0.1 and 10 µg E2 g
-1

). Different letters above bars 

indicate significant differences between treatment groups. Each column represents the 

mean ± SEM. 

 

4.3 Intestinal excretion of calcium carbonate precipitates 

The CaCO3 excretion rate was significantly reduced following exposure to E2 (Figure 6A), 

with a 50 % reduction observed in the mean value of the high dose group in comparison to 

the control group during the second week after implantation. A similar relationship was 

observed in the first week (declining CaCO3 excretion with increasing plasma vitellogenin) 

although this was not significant (Figure 6B). During the second week, the rate of excretion 

of Ca
2+

 within the precipitates was also significantly reduced by 40 % in the high dose 

group compared to the control (10.5 ± 2.0 versus 17.6 ± 2.1 µmol kg
-1 

h
-1

, respectively). 

The rate of Mg
2+

 excretion within the precipitates showed a similar significant decrease, 

and this was apparent in both the low and high dose groups (2.0 ± 0.3 and 2.2 ± 0.2 
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Figure 6: (A) Precipitate carbonate excretion rate in the seawater-acclimated rainbow trout 

after 2 weeks implant with E2 (0.1 and 10 µg E2 g
-1

). Different letters above bars indicate 

significant differences between treatment groups. Each column represents the mean ± SEM. 

(B) Relationship between the precipitate carbonate excretion rate and the plasma 

vitellogenin. Correlation analysis was carried out by linear regression, and the Pearson 

correlation coefficient (R) was calculated. 
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µmol kg
-1

h
-1

, respectively) in comparison to the control (3.0 ± 0.3 µmol kg
-1

h
-1

) during the 

first week, but only significantly reduced in the high dose group in comparison to the 

control (1.1 ± 0.2 and 2.5 ± 0.6 µmol kg
-1

h
-1

, respectively) during the second week.  

 

5. DISCUSSION 

The major aim of this study was to investigate the possible effect(s) of 17β-estradiol (E2) 

on the handling of calcium by the intestine, in particular CaCO3 formation, and the 

implications this may have in terms of osmoregulation. To achieve this we experimentally 

elevated the circulating estrogen levels using intraperitoneal implants of 17-estradiol. 

Most of the measured parameters within the present data set were compatible with our 

hypothesis in terms of the reduction in CaCO3 formation and excretion, and the subsequent 

potential for enhanced absorption of ingested divalent ions (particularly Ca
2+

).  

 

5.1 Plasma vitellogenin as a marker of elevation of circulating E2  

Vitellogenin is a complex precursor protein for yolk production in oviparous vertebrates 

produced by the liver. It has been widely used as a biomarker for exposure to estrogens 

based on circulating levels in the plasma of immature female or male fish (Sumpter and 

Jobling, 1995). Plasma vitellogenin was therefore measured in the present study as an 

indicator of the biological response to the E2 implantation treatments and their estrogenic 

stimulation. Elevated levels of plasma vitellogenin were clearly observed in a dose-

dependent manner for the low and high E2 treatments. The concentrations of vitellogenin in 

the control group corresponded to those expected in female rainbow trout during early 

gonadal development (Bon et al., 1997).  
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5.2 The role of E2 in promoting absorption of divalent cations via the intestine 

Treatment with E2 was associated with enhanced uptake of Ca
2+ 

into the body, indicated by 

very large elevations in calcium concentration in both the plasma and muscle. The most 

obvious routes for enhanced uptake of Ca
2+

 from the marine environment are the gills and 

the intestine. Although we have no direct evidence of E2 directly enhancing Ca
2+

 uptake 

from the intestine the potential scope for enhanced uptake is clear given that less Ca
2+

 was 

excreted by the intestine in the form of precipitated carbonates in fish treated with E2. 

Under resting conditions, an important function of this intestinal precipitation process is 

thought to be limitation of intestinal absorption of Ca
2+

 from ingested seawater as 40-60 % 

of ingested Ca
2+

 is excreted in the form of solid CaCO3 (Wilson and Grosell, 2003). 

Seawater fish live in a hypercalcemic environment, and any Ca
2+

 absorbed which is in 

excess of growth requirements must be excreted, which has both an energetic cost and in 

the case of renal excretion it enhances the risk of kidney stones. The latter is due to the high 

concentrations of urinary SO4
2-

 in marine fish and the insolubility of calcium sulphate 

(Wilson and Grosell, 2003) in addition to the very low urine flow rates in marine teleosts 

(Hickman Jr. and Trump, 1969; McDonald et al., 1982; Fletcher, 1990). The reduced 

intestinal carbonate precipitation in response to E2 would be a logical component of an 

estrogenic stimulation of Ca
2+

 absorption processes in the intestine. Indeed, the significant 

decrease in excretion of both Ca
2+

 and Mg
2+

 as carbonate precipitates supports the 

suggested effect of E2 on the balance of these two divalent cations in the intestine of 

marine fish. In addition, the role of the gills in the Ca
2+

 uptake cannot be neglected. Sea 

bream (Sparus aurata) fulfil the extra Ca
2+

 demand by utilising the environmental Ca
2+

 to 

protect the internal calcified structures (Guerreiro et al., 2002). However, although the latter 
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study concluded that the intestinal uptake of Ca
2+

 was not affected by E2, they only 

considered measurements based on intestinal fluid, and did not take into account any 

changes in Ca
2+

 present in carbonate precipitates. 

 

Plasma divalent cations, [Ca
2+

] and [Mg
2+

], were both increased in a dose-dependent 

manner after treatment with E2, perhaps not surprisingly given that these two ions are 

known to increase in parallel with the elevated plasma vitellogenin in fish (Guerreiro et al., 

2002). Indeed, an increase in plasma Ca
2+

 and Mg
2+

 following estrogenic stimulation have 

previously been used as indirect indicators of effective vitellogenin induction (Gillespie and 

de Peyster, 2004). Highly elevated [Ca
2+

] in white muscle of the high dose group suggests 

that extra Ca
2+

 was accumulating in more than one major compartment (i.e. plasma as well 

as muscle). A key question for the present study is the source of the extra calcium that 

builds up in plasma and white muscle in response to E2, and in particular whether some of 

this could be due to enhanced uptake by the intestine. 

 

Calcium uptake in the intestinal tract follows a similar cellular route to those in the gills, 

and occurs via active transport mechanisms (Flik et al., 1990). The cytoplasm of 

enterocytes has very low free Ca
2+

 levels and is electrically negative relative to the intestine 

lumen, which subsequently generates an electrochemical gradient to drive Ca
2+

 across the 

apical brush border membrane into the enterocytes. Enterocytes from the Atlantic cod 

(Gadus morhua) demonstrated a presence of voltage-gated L-type Ca
2+

 channels mainly 

located on the apical side of the cell which suggests the involvement of these channels in 

the entry of Ca
2+

 into the enterocytes (Larsson et al., 1998). The subsequent basolateral 
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extrusion of Ca
2+

 to the extracellular fluid occurs via transporters which include Ca
2+

-

ATPase (Flik et al., 1996). Arjmandi et al. (1994) showed that E2 administration in rats 

promotes intestinal absorption of Ca
2+

 in vivo. The latter supports the idea that there is a 

route whereby Ca
2+

 can be absorbed from the intestine, which could potentially fulfil the 

increased need of Ca
2+

 in female fish, to support the vitellogenic growth of oocytes during 

gonadal maturation.  

 

The present study draws attention to the potential for estrogens to influence the 

calcification process by the intestine of marine fish. In an elegant study by Fuentes et al. 

(2010) it has been reported that endocrine factors such as the parathyroid hormone-related 

protein (PTHrP) and stanniocalcin 1 have an antagonistic action in the control of Ca
2+

 and 

HCO3
-
 movement in the intestine of seawater fish such as sea bream (Sparus auratus). 

PTHrP increased Ca
2+

 uptake and reduced HCO3
−
 secretion, whereas stanniocalcin 1 had 

the opposite effect, reversing Ca
2+

 net flux from absorptive to secretory, and promoting 

intestinal HCO3
-
 secretion. In their in vitro study Fuentes et al. (2010) measured the HCO3

− 

and Ca
2+

 transport rates but did not measure the CaCO3 precipitation process itself. The 

present study is therefore the first to investigate any hormonal regulation of the production 

and excretion of CaCO3 precipitates by the intestine of marine fish in vivo, and the first to 

show the potential for estrogenic control of this process. Having shown this using 

exogenous (implants) of E2, this raises the question of whether natural elevation of 

endogenous estrogens (as occurs during sexual maturation of female fish) will have a 

similar effect. This may be important to know for two reasons. Firstly, whether estrogens in 

sexually maturing females act directly on the intestine to control carbonate precipitation, 
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the supply of Ca
2+

 for gonadal uptake, and ultimately affect osmoregulation. Secondly, it 

may help in refining estimates of the global contribution of marine fish to the inorganic 

carbon cycle via their gut excretion of CaCO3 precipitates (Wilson et al., 2009). Currently 

such spatial models of carbonate production by fish populations do not differentiate 

between immature and sexually mature fish, apart from considering body size (Jennings 

and Wilson, 2009; Wilson et al., 2009).  

 

5.3 Effect of E2 on calcium homeostasis 

The implantation with E2 revealed a significant increase in plasma Ca
2+

 levels. It is 

interesting to note that intraperitoneal injection of E2 in freshwater acclimated fish, rather 

than seawater acclimated fish such as in the present study, had no effect on Ca
2+

 absorption 

across the intestine of rainbow trout given 10 µg E2/g body mass (Mugiya and Ichi, 1981).  

However, freshwater fish are constantly faced with an osmotic water influx and therefore 

have extremely low drinking rates (Flik and Verbost, 1993). In freshwater fish that are not 

feeding, the gut is therefore much less important than the gills in terms of uptake of 

exogenous Ca
2+

 (Perry and Wood, 1985). E2 treatment of freshwater rainbow trout 

Oncorhynchus mykiss increases the uptake of Ca
2+

 from the water (presumably via the 

gills) along with mobilization from scales (Carragher and Sumpter, 1991; Persson et al., 

1994, 1995, 1998) during the induction of vitellogenin.  

 

5.4 Effect of E2 on the plasma and the white muscle osmoregulatory variables 

Several previous studies have presented a negative effect of E2 on the osmoregulatory 

performance and ion balance in freshwater, seawater and euryhaline fish following acute 
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transfer between different salinities (Madsen and Korsgaard, 1991; Coimbra et al., 1993; 

Vijayan et al., 2001). Our study, however, showed no overall effect on the ability to 

maintain plasma osmolality or muscle water content, despite evidence in support of an 

inhibition of the ion transport processes in the intestine that are associated with water 

absorption. In a previous study, the whole body water content of three-spined sticklebacks 

(Gasterosteus aculeatus) and the plasma osmolality of rainbow trout, were not affected 

during a 24 hour seawater challenge after exposure to ethinylestradiol in freshwater, and 

both species were able to hypo-osmoregulate effectively (Al-Jandal et al., submitted, 

Chapter 3). The reason for the differences between our data and that published in the 

literature are not entirely clear but may be a consequence of the dose of E2 chosen or 

physiological differences in responsiveness between the fish used in each study, or 

differences between acute salinity challenges (previous studies) and fish maintained in a 

constant salinity for the present study.  

 

Plasma [Na
+
] and [Cl

-
] showed a significant decrease at the high E2 dose, which suggests 

that these fish were not compromised in their ability to excrete excess Na
+
 and Cl

-
 from 

their plasma (performed by the gills) and no overall osmoregulatory stress was detected 

(plasma or muscle). Indeed, fish undergoing treatment with E2 appeared better able to 

hypo-regulate Na
+ 

and Cl
-
 (relative to their ambient sea water) compared to the control fish. 

In a previous study we have found that male freshwater trout exposed to waterborne EE2 at 

5 ng/l were also better able to hypo-regulate plasma Na
+
 compared to controls during a 

subsequent seawater challenge (Al-Jandal et al., submitted, Chapter 3). The results suggest 

that the fish were able to compensate and hypo-osmoregulate despite the changes taking 
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place in the intestine. The potential mechanisms by which estrogenic stimulation may 

improve hypo-regulation of these plasma ions remains to be investigated. 

 

5.5 Effect of E2 on ion and water handling processes in the intestine 

The intestine of seawater fish plays an essential role in compensating for whole body 

osmotic water loss. We hypothesised that the treatment with E2 may induce a negative 

effect on bicarbonate secretion and calcium carbonate precipitation by the intestine and in 

turn the rate of intestinal water absorption. The present data supports this hypothesis. 

Although the actual transport rates of Na
+
, Cl

-
, and HCO3

-
 by the intestine were not 

measured, the concentration of these ions within the intestinal fluid observed across 

treatments were affected by E2 in a manner consistent with changes in transport. Similarly, 

the measured excretion of precipitated calcium carbonates was also substantially reduced. 

Furthermore, the intestinal concentration of sulphate (used as a surrogate marker for fluid 

absorption) indicated that fractional absorption of water by the intestine was also reduced 

by E2. A potential caveat to this statement is that E2 could have increased the intestinal 

absorption of SO4
2-

 and the apparent change in fluid absorption is in fact an artefact of 

lowered intestinal [SO4
2-

] rather than fluid movements. However, assuming that sulphate 

transport was not affected, and close to negligible as previously found (Hickman, 1968; 

Genz et al., 2008), a reduction in the intestinal water absorption can occur for the two 

reasons described below.  

(1) Reduction in solute-linked water absorption driven by apical NaCl cotransport and 

Cl
-
/HCO3

-
 exchange in the intestine: 
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There was a general pattern of increased intestinal Na
+
 and Cl

-
 concentrations and 

decreased plasma Na
+
 and Cl

-
 concentration in response to E2. Together with the reduction 

in HCO3
-
 levels in the intestinal fluid, these data suggest a reduction in Na

+
 and Cl

- 

absorbed by the intestine via both NaCl cotransport and via Cl
-
/HCO3

-
 exchange. Both 

these transport systems drive an important fraction of the net water absorption in the 

intestine of marine fish (Grosell, 2006; Grosell et al., 2009; Whittamore et al., 2010), so 

any inhibition of these processes would be expected to directly interfere with water 

absorption. Usually, the intestinal absorption of the Na
+
 and Cl

-
 from the ingested seawater 

is followed by water absorption, leaving behind the poorly absorbed Mg
2+

 and SO4
2-

 in 

elevated concentrations in the intestinal fluid (Smith, 1930; Grosell et al., 2001).  

 

E2 has been found to reduce the Na
+
/K

+
 ATPase activity in the gills of salmonids (Madsen 

et al., 1997). Although the same basolateral transporter is the underlying driving force for 

apical NaCl co-transport in the intestine, we can only speculate at this stage as to whether 

E2 has a direct influence on any of the individual transporters involved in NaCl uptake or 

Cl
-
/HCO3

-
 exchange within the intestine of marine fish, which could include any of the 

various apical and basolateral transport components involved (Grosell et al., 2007; 

Whittamore et al. 2010). However, it is worth pointing out that using an in vitro preparation 

of the toadfish intestine, Tresguerres et al. (2010) found no effect of luminally applied E2 

on the short circuit current under symmetrical conditions. This suggests that E2 may not 

necessarily influence NaCl cotransport. 
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Estrogen was found to act through estrogen receptors to modulate fluid reabsorption in the 

adult mouse efferent ductules of the reproductive tract by regulating the expression of ion 

transporters involved in Na
+
 and Cl

-
 movement (Lee et al., 2001). Furthermore, it has been 

found that E2 can inhibit Cl
-
 transport processes in the isolated distal colon of female rats 

(Condliffe et al., 2001), showing the potential E2-driven mechanisms for regulating ion 

transport processes in the intestine of other vertebrates. 

 

(2) Reduced water absorption due to decreased precipitation of Ca
2+

 and Mg
2+

 

carbonates: 

Another potential cause for reduced water absorption in the present study is the 

significantly decreased production of carbonate precipitates within the intestine.  The 

divalent cations Ca
2+

 and Mg
2+

 present in the ingested seawater are poorly absorbed by the 

intestine and would become extremely concentrated in the intestine because of water 

absorption driven by the previous described mechanisms (Wilson et al., 2002). The 

prevention of excessive accumulation of these cations by precipitation as their insoluble 

carbonates normally aids in both Ca
2+

 homeostasis (preventing excessive intestinal 

absorption) and in promoting further water absorption by reducing intestine fluid 

osmolality (Wilson et al., 2002; Wilson and Grosell, 2003). The reduction in CaCO3 

excretion associated with reduced intestinal fluid HCO3
-
 levels in response to E2 would 

presumably mean that less water absorption is driven by this alkaline precipitation 

mechanism. However, although CaCO3 is predicted to permit additional fluid absorption by 

the intestine, there is currently no direct experimental evidence that this process of CaCO3 

formation drives intestinal fluid absorption (Wilson et al., 2002; Whittamore et al., 2010). 
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6. CONCLUSION 

Studying Ca
2+

 balance has mostly focused on freshwater and euryhaline fish rather than 

marine fish especially with regard to the intestine as an osmoregulatory organ.  Our novel 

finding is that E2 induces a major Ca
2+

 accumulation in plasma and muscle which is in 

parallel with plasma vitellogenin increases, and reduces calcium carbonate production by 

the intestine in seawater-acclimated rainbow trout. The findings reported here have 

implications for understanding of at least three areas of marine teleost biology. Firstly, the 

physiology of intestinal CaCO3 production and associated ion transport mechanisms in 

relation to natural reproductive maturation in female teleosts. Secondly, the potential for 

exogenous xenoestrogens to influence these processes. Thirdly, they might help to refine 

the model estimates of CaCO3 production by marine teleost fish and subsequently their 

contribution to the global inorganic carbon cycle (Wilson et al., 2009).  
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Endocrine disrupting chemicals are a pervasive problem, and have become a major issue in 

the scientific community and the public due to their widespread occurrence and deleterious 

effects in animals. The effect of endocrine disruptors in wildlife is not yet fully understood 

and it is strongly believed that these chemicals are far more widespread than what is 

currently confirmed. Further research is required in this field besides the effects on 

reproduction, as many other physiological systems are regulated by hormonal systems, such 

as osmoregulation. For this PhD study I have focused my attention on the effect of several 

endocrine disrupting chemicals on the osmo- and iono-regulatory functions of euryhaline 

teleost fish. The results have indicated significant and largely negative effects on these vital 

processes and have highlighted some interesting avenues for future investigation.  

 

When studying osmoregulatory variables, using plasma is the most common strategy to 

achieve fundamental information, whereas some studies have examined other tissues (e.g. 

muscle or carcass) as a source of osmoregulatory parameters, particularly when a source of 

plasma is limited for any reason (e.g. small animal size, or all the plasma available is 

required for other parameter measurements). However, the latter approach using tissues has 

never been rigorously validated as a suitable surrogate for all the potential osmoregulatory 

variables that can be measured in plasma. In the present study, such a validation was 

attempted, and has highlighted to fish physiologist the most robust variables that can be 

directly compared between plasma and tissue compartments (Chapter 2; Al-Jandal and 

Wilson, 2011). The results obtained presented a reciprocal changes between the plasma 

osmolality and the body water content, and parallel changes for most (but not all) of the 

ions that are of routine interest in such studies. This information has been directly useful in 
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a comparative study of two euryhaline species of different body size in Chapter 3 of the 

present PhD study (Al-Jandal et al., submitted), and should be of value to other studies that 

involve similar comparisons. This study provided the first useful methodical tool and clear 

description of how the plasma and tissue analyses correlate. This information will be of 

particular interest to osmoregulatory physiologists that work in species in which plasma 

sampling is troublesome. 

 

One of the endocrine disrupting chemicals of great concern examined was the synthetic 

estrogen 17α-ethinylestradiol (EE2). It is used commonly in the contraceptive pill, and 

known for its high potency, occurrence, and persistent nature (Santos et al., 2007). 

Measured concentrations in UK freshwaters can reach 3.4 ng/l (Williams et al., 2003). This 

study presented the ability to expose two different species (different body size) in the same 

exposure conditions to avoid any practical differences that might a ffect the direct 

comparison. The results showed different sensitivity or response to endocrine disruptors 

differs between species. For example, rainbow trout (Onchorhynchus mykiss) showed a 

higher sensitivity when exposed to EE2 in comparison to the three-spined sticklebacks 

(Gasterosteus  aculeatus), at least in terms of plasma vitellogenin induction (see Chapter 3; 

Al-Jandal et al., submitted).  

 

The study of EE2 on the osmoregulatory capability of the three-spined stickleback 

(Gasterosteus aculeatus) and rainbow trout (Onchorhynchus mykiss) revealed a particularly 

intriguing effect of this estrogen on calcium homeostasis, as internal Ca
2+

 levels were 

upregulated in both species despite their very different responses in terms of vitellogenin 
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induction. Estrogenic stimulation of vitellogenin production and Ca
2+

 accumulation 

normally go hand-in-hand, so to observe a separation of these processes in the sticklebacks 

(no vitellogenin but elevated carcass Ca
2+

) suggests differential sensitivity of the liver 

vitellogenin production and the uptake of environmental Ca
2+

 via the osmoregulatory 

organs.  

 

Calcium balance in freshwater, seawater and euryhaline fish is controlled by a flexible 

combination of branchial uptake, absorption in the gut and renal excretion which are 

considered as essential processes for Ca
2+

 homeostasis. It would be interesting to further 

investigate Ca
2+ 

dynamics after the exposure to EE2 to dissect out which of these organs 

and transport systems are primarily involved in the changes in internal Ca
2+

 levels in 

response to this endocrine disruption. The precise molecular mechanism by which EE2 may 

modulate Ca
2+

 regulation (in the absence of vitellogenesis) will be of great interest. An 

attempt was made to investigate this further in the present PhD study, but the number of 

male three-spined sticklebacks required was unfortunately too large to carry out the planned 

experiments. Instead, a further study (Chapter 5, Al-Jandal et al., submitted) was carried out 

to examine the effect of another estrogen (17β-estradiol; E2) on Ca
2+

 and water balance 

with a particular focus on the calcification process in the gut which is known to limit 

excessive Ca
2+

 uptake and promote water absorption under normal circumstances in 

seawater fish. A number of previous studies have examined the effect of endocrine 

disrupting chemicals on Ca
2+

 balance in freshwater teleosts, whereas the effect of estrogens 

on Ca
2+

 balance in marine fish and specifically the role of the gut was first examined in the 

present PhD study. The data obtained makes an important contribution to the role of 
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estrogenic compounds on the regulation of Ca
2+

 transport by the gut of marine fish 

especially when considering female fish with high estrogen levels during the natural 

maturing process. The present findings will also have potentially important repercussions 

for understanding how fish within pollution-related studies when considering 

environmental endocrine disruptors, although this is likely to be limited in geographical 

location to areas close to coastlines with large human populations.  

 

The estrogenic control of gut CaCO3 production in fish also has intriguing implications for 

an environmental issue of global significance, given the recently discovered contribution of 

gut calcium carbonate excretion to the total input of precipitated carbonate minerals into the 

marine inorganic carbon cycle (Wilson et al., 2009). After the industrial revolution there 

was an increase in the production of CO2, this atmospheric build up of CO2 dissolves in the 

ocean which makes the ocean more acidic that in turn changes the seawater carbonate 

chemistry which is expected to affect the production of the marine calcifying microalgae. 

The high concentration of Ca
2+

 in the ocean reacts with the bicarbonate producing insoluble 

calcium carbonate in the process of calcification (Figure 1). The vast majority of oceanic 

calcification is known to be from planktonic organisms (Feely et al., 2004) and is 

conventionally attributed to coccolithophores and foraminifera in particular. In the past, 

scientists have believed that the ocean’s supply of CaCO3 minerals (e.g. calcite and 

aragonite), which dissolve to make seawater more alkaline, came primarily from the 

external skeletons of microscopic marine plankton. However, Wilson et al. (2009) revealed 

that fish contribute a significant fraction of the ocean calcium carbonate production as a by-

product of their osmoregulatory need to drink a large volume of seawater, and in turn this  
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Figure 1: Schematic diagram showing the contribution of marine fish to the marine 

inorganic carbon cycle. Marine teleosts produce carbonate precipitates in the upper layer (≈ 

500 m). Any carbonates that dissolve in shallow waters (e.g. <1 km deep) could make a 

major contribution to restoring the pH and alkalinity in the surface waters as vertical 

circulation within this region is rapid. If fish carbonates sink to the much deeper ocean 

before dissolving then the restoration of alkalinity (bicarbonate) and pH in the surface 

ocean will be much slower as vertical mixing across this depth will take 500-1000 years 

(Millero, 2007). Furthermore, dissolution may not occur at all if fish carbonates are buried 

within deep sediments, in which case they will not help to restore the pH balance of the 

surface ocean. 

 

non-skeletal, piscine source of CaCO3 may have important influences the pH balance in the 

ocean.  

 

As mentioned earlier the gut plays a major role in osmoregulation in seawater fish and part 

of this involves the production of calcium carbonate (CaCO3). The responses observed to 

an experimentally applied estrogen raise the possibility that estrogens (both natural 

endogenous levels and uptake of exogenous contaminants) may influence this process in 
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the gut, and therefore might affect the percentage of CaCO3 contribution in the ocean by 

marine fish as modelled by Wilson et al. (2009). The results presented in Chapter 5 reveal 

potentially important insights into this crucial process in the fish gut. Although the results 

obtained from this study showed a significant effect on CaCO3 production, the effect on the 

global contribution of fish to the marine inorganic carbon cycle in the real environment 

might not be big when considering the following: 

1. Fish body size, where the large sexually mature fish are small contributors to the 

carbonate production in comparison to the small juvenile fish (Wilson et al., 2009). 

2. Maturation cycle is seasonal rather than continuous for individual adult fish, 

therefore although the effect of estrogens on fish gut production of CaCO3 is 

important during sexual maturation, the overall effect of estrogens on the percentage 

of contribution of fish is globally is not likely to be large on this scale when 

considering whole populations.  

3. When considering the synthetic estrogens, the presence of these in the marine 

environment is low due to the high dilution, therefore, the effect of endocrine 

disruptors is likely to be localised to areas next to the coast, and hence the 

contribution to the global cycle in the open ocean is not likely to be high. 

4. Fish gender plays a role in the matter of natural estrogens, where in this PhD the 

effect of an endogenous estrogen was examined in female fish only, whereas in the 

ocean (real environment) there are male and female fish.  But when considering the 

synthetic estrogens from environmental pollution and their effect on fish, in that 

case the male fish might be included, where the vitellogenin synthesis will occur 
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due to the exposure to the endocrine disruptors and therefore might affect the 

CaCO3 production in male fish too. 

 

It would be very interesting to investigate the effect of more endocrine disrupting chemicals 

on intestinal carbonate precipitation and osmoregulation. In particular, studying the effect 

of nonylphenol effect on the intestinal carbonate precipitation of other euryhaline species 

(e.g. flounder) would be of value, given the environmental relevance of this chemical, and 

the rapid movements of this species between freshwater and seawater extremes during tidal 

salinity changes within their estuarine environment. Nonylphenol has been shown to mimic 

the effect of estradiol and it is a ubiquitous contaminant in water, sediment, and fauna (Lye 

et al., 1999; Gibson et al., 2005; Jin et al., 2008). The chance for the presence of 

nonylphenol in the sewage effluent in the estuaries where the flounder might exist will be a 

good rationale for investigation of the effect of nonylphenol on the CaCO3 production in 

flounder. 

 

The effect of nonylphenol on euryhaline fish was investigated in this study. Unfortunately, 

the aim of the study was hampered by a technical error and the data could not be 

investigated further. Although there were not high quality data to include and provide a lot 

of useful information to add to the thesis, it is important to include this study in the thesis 

for the scientist in the field to learn from our mistakes. 

 

In general, these studies make an important contribution to the field of natural endocrine 

control processes as well as endocrine disruption showing that these chemicals have effects 
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on euryhaline osmoregulation. The results indicated either an improvement of hypo-

osmoregulation after exposure to endocrine disruptor in seawater (Chapter 3 and Chapter 

5), or negative effect on osmoregulation as a process itself. This study provided two aspects 

of research, which were physiological (Chapter 2 and Chapter 5), and ecotoxicological 

(Chapter 3 and Chapter 4) to cover as much range of endocrine disruptors and different 

exposure scenarios (waterborne, endogenous implant). 
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