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Abstract

Determining protein sequence similarity is an important task for protein classi-
fication and homology detection, which is typically performed using sequence
alignment algorithms. Fast and accurate alignment-free kernel based classifiers
exist, that treat protein sequences as a ‘“bag of words”. Kernels implicitly map
the sequences to a high dimensional feature space, and can be thought of as an
inner product between two vectors in that space. This allows an algorithm that
can be expressed purely in terms of inner products to be ‘kernelised’, where the
algorithm implicitly operates in the kernel’s feature space.

A weighted string kernel, where the weighting is derived using probabilistic meth-
ods, is implemented using a binary data representation, and the results reported.
Alternative forms of data representation, such as Ising and frequency forms, are
implemented and the results discussed. These results are then used to inform the
development of a variety of novel kernels for protein sequence comparison.
Alternative forms of classifier are investigated, such as nearest neighbour, sup-
port vector machines, and multiple kernel learning. A kernelized Gaussian classi-
fier is derived and tested, which is informative as it returns a score related to the
probability of a sequence belonging to a particular classification. Support vector
machines are tested with the introduced kernels, and the results compared to alter-
nate classifiers. As similarity can be thought of as having different components,
such as composition and position, multiple kernel learning is investigated with the
novel kernels developed here.

The results show that a support vector machine, using either single or multiple
kernels, is the best classifier for remote protein homology detection out of all the

classifiers tested in this thesis.
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Notation and Abbreviations

A Eigenvalue or wildcard penalty
Ao Matrix of singular values from SVD

) N Covariance matrix

U oo m X m unitary matrix from SVD of a m x n matrix
Vo n X n unitary matrix from SVD of a m x n matrix
X o Matrix X

X LTI Pseudo-inverse of matrix X

Lb oeee e Arithmetic mean

Voo Eigenvector

X Vector X

X' Vector X transpose

kovoooiiiiiiii Length of the k-mer

k-mer ............ Contiguous oligomer, or subsequence, of length &
ENN ............. k nearest neighbour classifier

TrX ... Trace of matrix X

AROC ........... Area under Receiver Operating Characteristic curve
GMM ............ Gaussian Mixture Model

kGMM ........... kernelised Gaussian Mixture Model

kPCA ............ kernel Principal Component Analysis
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ROC ............. Receiver Operating Characteristic
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