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ABSTRACT 

 

The mechanisms and functions of shark grouping behaviour have received relatively little 

scientific attention to date. The current widespread use of social network analysis to study 

animal groups, in concert with rapid advances in animal tracking technology, now allows 

us to test specific hypotheses about how and why sharks form groups. This thesis uses 

replicated laboratory experiments to investigate some of the mechanisms underpinning 

aggregation in a model species of benthic, oviporous elasmobranch, the small spotted 

catshark (Scyliorhinus canicula L. 1758; Scyliorhinidae). Acoustic tracking of this species  in 

the wild is also conducted to explore how network analyses can be adopted to study the 

localized movements, habitat connectivity and ranging behaviour of adult sharks.  

 

Groups of juvenile S. canicula were characterized by non-random social preferences, 

crucially, only when individuals were familiar with one another suggesting social 

recognition is important in young sharks of this species. Genetic analyses of parent and 

offspring DNA revealed very high levels of multiple paternity in this species, likely due to 

male sexual harassment and multiple mating, which leads to increased genetic diversity 

between juvenile sharks. Perhaps unsurprisingly, there was no evidence of kin relatedness 

structuring social interactions between conspecifics. Furthermore, testing the effects of 

environment on social behaviour provided evidence that these juveniles aggregated more 

in structurally complex environments than simple ones. However, at the individual level 

sharks showed consistency in their social network positions through t ime and across 

different habitat types. This result is indicative of personality traits in S. canicula. 
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Using data gathered via passive acoustic telemetry of wild shark behaviour, network 

analysis provided a useful tool with which to quantify movement between receivers. One 

chapter has been dedicated to the application of these methods, highlighting a number of 

different analyses for predicting movement behaviour from such data. Finally, these 

methods were adopted to address ecological questions in this sexually segregated species. 

Persistent site fidelity to a localised inshore area by both male and female sharks 

suggested that segregation occurred at a relatively small spatial and temporal scale. 

Despite strong evidence of segregation, analyses of movement networks and individual 

co-occurrences revealed distinct periods of behavioural synchronicity during the months 

of March, April and May. In addition, habitat complexity appeared to be a significant 

driver of female behavioural strategy. Enhancing our knowledge of the social and 

environmental drivers of aggregation and movement in sharks is of great importance 

given the ecological threat facing many of our ocean’s top elasmobranch predators. 
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1.1 Introduction 

 

Group living has been documented in animals from a wide range of terrestrial, freshwater 

and marine taxa (Krause and Ruxton 2002). The formation of social groups may involve 

both active and passive processes. For example, individuals may actively prefer to 

associate with conspecifics and orientate to their direction of locomotion (Couzin et al. 

2005; Guttal and Couzin 2010). Some fish species for example show both polarised 

schooling behaviour, defined by highly synchronous swimming when moving from one 

place to another or evading a predator, and less organised, uncoordinated shoaling 

behaviour when aggregating for social purposes (Pitcher 1983). Such patterns of grouping 

can be maintained by each individual obeying a few simple, localised rules of attraction, 

orientation and repulsion (Couzin et al. 2002; Sumpter 2006). In contrast many animal 

aggregations do not involve social attraction and form as a result of animals being drawn 

to aggregate due to a limited resource such as food or specific habitat requirements 

(Johnson et al. 2002) or due to synchronised patterns of daily or seasonal activity (Guttal 

and Couzin 2010). Thus an important distinction needs to be made between aggregations 

that do not involve social attraction (referred to hereafter simply as aggregation) and 

those that do (hereafter, social groups). Throughout this introduction and indeed more 

generally throughout the thesis, ‘aggregation’ will also be referred to when there is no 

clear indication or sufficient research to support that grouping is socially derived or under 

experimental conditions where social interactions are not clearly measured (see 

experiment 1, Chapter III  for example). 
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Animal groups arise from a complex trade-off of costs and benefits associated with 

both conspecific and heterospecific interaction. Freshwater teleost fishes for example, 

gain antipredator benefits such as the dilution of risk or the confusion effect when 

shoaling with group mates (Krause and Ruxton 2002; Hoare et al. 2004). Schooling 

behaviour in larger fish and, equally, formation flight in some migratory birds, also appear 

to facilitate a reduction in the energetic costs associated with movement (Cutts and 

Speakman 1994; Herskin and Steffensen 1998). Furthermore, benefits can be conferred to 

groups of predators hunting large prey items cooperatively that they would be otherwise 

unable to tackle alone and, indeed, some predators use both strategies (e.g. Ebert 1991; 

Hoelzel 1991). Conversely there are costs associated with grouping behaviour, typically a 

reduction in foraging efficiency or an increased risk of parasite or disease transmission 

(Johnson et al. 2002; Hoare et al. 2004). As a result the fitness of an individual in a group is 

likely to vary as a function of both group size and composition and the context under 

which grouping has occurred. Unsurprisingly, group living has been the subject of intense 

research by behavioural ecologists with particular focus on optimum group size and the 

decision to join or leave a group (Caraco 1979; Côté and Poulin 1995; Krause and Ruxton 

2002), the genetic consequences of interacting with kin (Hamilton 1964; Hain and Neff 

2007), the mechanisms underlying patterns of social organisation (Krause et al. 2000 a; 

Croft et al. 2005) and those required to support repeated individual interaction such as 

social recognition and familiarity (Barber and Wright 2001; Tibbetts and Dale 2007; Ward 

et al. 2007).  

Shoaling and schooling behaviour in fish has been highly selected for in extremely 

variable three dimensional (3D) aquatic environments (Pitcher and Parrish 1993). Some 
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small freshwater teleost fish however, also shoal under laboratory conditions and 

therefore much of what is known so far about social behaviour in fish can be attributed to 

research on model teleost species such as the guppy (Poecilia reticulata, Magurran et al. 

1994; Krause and Ruxton 2002; Croft et al. 2004), the European minnow (Phoxinus 

phoxinus, Barber and Wright 2001; Griffiths et al. 2007) or the three-spined stickleback 

(Gasterosteus aculeatus, Ward et al. 2002; Frommen et al. 2007; Ward et al. 2008).  

Sharks and rays (Class Chondrichthyes, Subclass Elasmobranchii; known collectively 

as elasmobranchs) are also frequently observed grouping in large numbers, however little 

is known about the mechanisms driving this behaviour. Indeed, quantifying aggregation or 

social interactions in marine fishes presents a significant challenge in comparison to 

smaller, freshwater teleost species. Laboratory experiments have repeatedly demon-

strated that predator avoidance behaviour constitutes a common driver of shoaling 

among many teleost fishes (Lachlan et al. 1998; Krause et al. 2000a; Hoare et al. 2004). 

This idea, although rarely empirically tested (see Guttridge et al. 2012a for exception), is 

often alluded to in studies of juvenile elasmobranch behaviour (Morrissey and Gruber 

1993; Heupel and Simpfendorfer 2005a) whom themselves are likely to be vulnerable to a 

range of larger predators. Many highly predatory species of shark occupy apex positions 

within their respective food webs suggesting that there are arguably significant factors  

other than predator avoidance that dictate elasmobranch grouping behaviour, at least in 

the adults. Shark aggregations and the physical or environment variables which underpin 

these events are reasonably well documented in the scientific literature (Economakis and 

Lobel 1998; Heupel and Simpfendorfer 2005a; Dewar et al. 2008). In contrast there is 

considerably less known about the occurrence of social groups in wild sharks, although 
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some species have been hypothesised to engage in diel periods of social refuging 

behaviour (Sims 2003). It is well known for instance that scalloped hammerhead sharks 

(Sphyrna lewini) which are largely solitary foragers, exhibit regular, polarised schooling 

behaviour associated with specific locations such as underwater seamounts (Klimley and 

Nelson 1984), and that these social groups may exhibit fission-fusion properties. Refuging 

behaviour has been observed in a number of other elasmobranchs and includes group 

resting behaviour in some demersal species, whereby individuals refuge, often in close 

physical proximity or contact at regular periods throughout the day or year (Sims et al. 

2001, 2005; Powter and Gladstone 2009). The proximate causes of such behaviours and 

the functions underlying aggregation and social grouping in these top predators remain 

relatively unexplored.   

This general introduction aims to synthesize the existing research on aggregation 

and social grouping in elasmobranch fishes. Drawing on examples from the teleost fish 

literature for comparison, this chapter will review our current knowledge of the patterns, 

mechanisms and function of aggregation events in elasmobranch fishes. The latter section 

of this chapter considers the methodological developments which have both promoted 

current research into elasmobranch grouping behaviour and which may aid future 

development of this field. The use of social network analysis as a theoretical framework 

with which to study repeated interactions in gregarious animals is discussed in light of the 

benefits of applying such analyses to a K selected species of marine predator.  

 

 



David Jacoby  Ph.D Thesis 

 

- 23 -  
 

1.2 Patterns of grouping behaviour in elasmobranch fishes 

 

Elasmobranchs, which are subclass of the Chondrichthyans, are a highly diverse, marine 

vertebrate taxon that has adapted to fill the apex predatory role within estuarine, coastal 

and oceanic environments. Characterised by a cartilaginous and not bony skeletal 

composition, this highly successful taxonomic group evolved over 420 million years ago 

(Compagno et al. 2005). Chondrichthyans are known to utilise six different types of 

reproductive mode (Compagno 1990) and in general contrast to bony fish, are much 

slower to attain maturity, produce fewer, more well-developed offspring and regularly live 

for periods of decades, rather than years. These K selected life-history traits are consistent 

across all species of elasmobranch despite the substantial variation in reproductive mode 

and behavioural strategy. Some benthic sharks such as catsharks (Scyliorhinidae) or 

bullhead sharks (Heterodontidae) for example, are typically found within coastal regions 

(Sims et al. 2001; Powter and Gladstone 2009) foraging on invertebrates and undergoing 

oviparous reproduction. In contrast, large pelagic species, such as sphyrnid or carcharhinid 

sharks are highly mobile, viviparous and may forage on other elasmobranchs or large 

migratory teleost fish (Klimley 1987; Carey et al. 1990). Due to these K selected life-history 

traits, elasmobranchs are particularly vulnerable to anthropogenic exploitation and thus 

rely heavily on high juvenile survival rates to sustain population stability (Feldheim et al. 

2002; Chapman et al. 2009). The evolution of group living in sharks appears relatively 

common both in the juvenile (e.g. Rowat et al. 2007; Guttridge et al. 2009a) and adult 

phases (e.g. Economakis and Lobel 1998; Hight and Lowe 2007), presumably acting to 

maximise individual fitness. In addition, elasmobranchs are also characterised by a high 

brain mass to body mass ratio (Northcutt 1977; Yopak et al. 2010) and this may be an 
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indication of their potential to develop and maintain complex social behaviours such as 

dominance hierarchies and stable social bonds (Myrberg and Gruber 1974; Dunbar and 

Shultz 2007). 

In the last 20 years there has been an abundance of research devoted to the 

exploration of conspecific and heterospecific aggregation in many species of shark and ray 

(Economakis and Lobel 1998; Semeniuk and Dill 2006; Dudgeon et al. 2008). The distinc-

tion has already been made between non-social aggregations through synchronised 

behaviours or for limited resources and social grouping behaviour; it is noteworthy to 

mention here that the majority of the literature discussed falls into the former category. 

Some species may show both aggregation and social grouping and indeed aggregation 

may well in some cases be an important prerequisite for the development of social groups 

(Sims et al. 2000; see Fig. 1). A summary of the species documented as demonstrating 

group behaviours and the context and timings of these events is given in Table 1. 
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Figure 1. Aggregation for food resources leading to social grouping. (A) Photograph of three 

basking sharks Cetorhinus maximus (arrowed) conducting courtship ‘following’ behaviour in the 

western English Channel. Basking sharks are solitary but aggregate in thermal fronts to feed on 

rich zooplankton patches; it is at this time that they also conduct social behaviour typified by 

‘following’ of females by males, a behaviour which can last for many hours. (B) Close-up of two 

basking sharks conducting close following behaviour; when one shark turns the other follows. At 

such times when courtship behaviour occurs, full body breaching is also observed, which may be 

part of courtship. See Sims et al. (2000). Photographs courtesy of the Marine Biological Association 

of the UK.  
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Table 1. Summary of elasmobranch literature documenting aggregation and social behaviours. Species are listed by taxonomic order and by family within order. 

 

Aggregation 
/Social 

Species Scientific Name Predominant Sex Time of Year Study/Function Data Collection 
Technique 

Source 

Aggregation Spurdog 
 

Squalus acanthias 
 

Mixed 
 

Not specified Population distribution 
and sexual segregation 

Fisheries landings 
 

Ford (1921) 
 

 Port Jackson 
shark 

Heterodontus 
portusjacksoni 

Female Aggregate year 
round, more 
abundant Jul - 
Oct, some 
dispersal 

Reproductive strategies 
and sexual segregation 
 
Site fidelity and 
refuging 

Observational, 
fisheries landings 
 
Observational, 
active telemetry 

McLaughlin and 
O’Gower (1971), 
 
Powter and 
Gladstone (2009) 

 Nurse shark Ginglymostoma 
cirratum 

Mixed (male 
bias) 

Not specified Reproductive strategies Observational  Carrier et al. 
(1994) 

 Zebra shark Stegostoma 
fasciatum 

Mixed (female 
bias) 

Nov - Apr Reproduction strategies Mark-recapture, 
photo identification 

Dudgeon et al. 
(2008) 

 Whale shark Rhincodon typus Male Apr - Jun, 
plankton 
blooms/coral 
spawning 

Population distribution Photo identification Riley et al. (2010) 

 Basking shark 
 

Cetorhinus 
maximus 

Not specified 
 

Sept - Oct  Reproductive strategies 
 

Aerial photography 
 

Wilson (2004) 
 

 White shark Carcharodon 
carcharias 

Not specified Aug - Feb Philopatry and 
population distribution 

Satellite and 
acoustic tagging, 
genetic analyses 

Jorgensen et al. 
(2009) 

 
 
 
 
 

Small spotted 
catshark 

Scyliorhinus 
canicula 

Single sex groups 
 
 
Single sex groups 

Aggregate year 
round (♀) 

Environmental 
conditions and 
population distribution 
Movement, philopatry 
and sexual segregation 

Trawl survey 
 
 
Mark-recapture, 
acoustic telemetry 

Rodríguez-Cabello 
et al. (2007) 
 
Sims et al. (2001) 
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Cont. Leopard shark Triakis 
semifasciata 

Female Daytime 
aggregation 
(summer 
months) 

Behavioural 
thermoregulation 

Active and passive 
telemetry 

Hight and Lowe 
(2007) 

 Grey reef 
shark 

Carcharhinus 
amblyrhynchos 

Female 
 
 
Mixed 

Daytime 
aggregation (Mar 
- May) 

Environmental 
conditions 
 
Site fidelity and 
movement 

Observational, 
passive telemetry  
 
Active telemetry, 
observational 

Economakis and 
Lobel (1998),  
 
McKibben and 
Nelson (1986) 

 Blacktip shark Carcharhinus 
limbatus 

Mixed (juveniles) Daytime 
aggregation (Jun, 
Oct & Nov) 

Environmental 
conditions and nursery 
habitat use 

Passive telemetry Heupel and 
Simpfendorfer 
(2005a) 

 Lemon shark Negaprion 
brevirostris 

Not specified Not specified Activity 
patterns/habitat use 

Active telemetry, 
observational 

Gruber et al. 
(1988) 

 Blue shark Prionace glauca Single sex groups Not specified Sexual segregation and 
habitat use 

Fisheries landings Litvinov (2006) 
 

 Whitetip reef 
shark 

Triaenodon obesus Mixed Not specified Reproductive strategies Video analysis Whitney et al. 
(2004) 

 Scalloped 
hammerhead 
shark 

Sphyrna lewini Female 
 
Mixed 

Daytime 
aggregation year 
round (offshore) 

Schooling behaviour 
 
Population distribution 

Observational 
/photographic 
Observational and 
passive telemetry 

Klimley (1985) 
 
Hearn et al. (2010) 

 Southern 
stringrays 

Dasyatis 
americana 

Not specified n/a 
(anthropogenic 
influence) 

Ecotourism impacts Photo identification Semeniuk and 
Rothley (2008) 

 Cowtail 
stingrays and 
Whiprays 

Pastinachus 
sephen and 
Himantura uarnak 

Not specified Not specified Mixed species 
aggregations and 
predator avoidance 

Observational Semeniuk and Dill 
(2006) 

 Spotted eagle 
ray 

Aetobatus narinari Mixed Not specified Activity patterns and 
behavioural ethogram 

Active telemetry, 
observational 

Silliman and 
Gruber (1999) 
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Cont. Giant manta 
ray 

Manta birostris Not specified Summer (North), 
Winter (South) 

Site fidelity and 
movement 

Passive telemetry Dewar et al. 
(2008) 

Social Sevengill shark Notorynchus 
cepedianus 

Not specified Not specified Group foraging and 
social facilitation 

Observational Ebert (1991) 

 Basking  shark 
 

Cetorhinus 
maximus 
 

Mixed 
 

May - Jul Environmental 
conditions and 
reproductive strategies 

Observational 
 

Sims et al. (2000) 
 

 White shark Carcharodon 
carcharias 

Mixed n/a 
(anthropogenic 
influence) 

Social ethogram Observational Sperone et al. 
(2010) 

 Small spotted 
catshark 

Scyliorhinus 
canicula 

Female n/a captive Social networks Captive study Jacoby et al. 
(2010) 

 Nursehound 
 

Scyliorhinus 
stellaris 
 

Not specified 
 

n/a captive Social refuging 
 

Captive study 
 

Scott et al. (1997) 
 

 Smooth 
dogfish 
 

Mustelus canis 
 

Mixed 
 

n/a captive Dominance hierarchies 
 

Captive study 
 

Allee and 
Dickinson (1954) 
 

 Lemon shark Negaprion 
brevirostris 

Mixed (juveniles) Interactions 
predominantly 
May - Dec 

Social organisation 
 
Social organisation 

Captive study 
 
Wild observational 

Guttridge et al. 
(2009a) 
Guttridge et al. 
(2011) 

 Blacktip reef 
shark 

Carcharhinus 
melanopterus 

Mixed Daytime 
aggregation year 
round 

Social networks (wild) Photo 
identification/ 
Observational 

Mourier et al. 
(2012) 

 Scalloped 
Hammerhead 
shark 

Sphyrna lewini Not specified Daytime 
aggregation year 
round 

Social refuging Active telemetry Klimley and 
Nelson (1984) 

 Bonnethead 
shark 

Sphyrna tiburo  Mixed n/a captive Dominance hierarchies Captive study Myrberg and 
Gruber (1974) 



  

1.2.1 Aggregation 

There is widespread evidence of elasmobranchs aggregating in both single- and mixed-sex 

communities (McKibben and Nelson 1986; Litvinov 2006; Semeniuk and Dill 2006). Such 

aggregations have been correlated with numerous environmental and biological variables 

from geographic locations (Klimley and Nelson 1984) and time of year (Heupel and 

Simpfendorfer 2005a; Robbins 2007) to areas of high prey abundance (Hulbert et al. 2005; 

Martin et al. 2009). Some of the earliest insights into how shark aggregations may be 

structured were gained from analysing the catches from commercial trawlers. Landings of 

spurdog (Squalus acanthias) and small spotted catshark (Scyliorhinus canicula) in Plymouth, 

United Kingdom in the early 1900s offered the first indication of the average group sizes 

and sexual segregation of the individuals occurring on the trawling grounds (Ford 1921). 

Geographic segregation of the sexes is a widespread phenomenon in sharks (see 

Wearmouth and Sims 2008 for review) and consequently may lead to differential anthropo-

genic exploitation of the sexes (Mucientes et al. 2009) through spatially-focused fishing 

pressure (see Conservation Implications and future research directions, Chapter VIII).  

Research into elasmobranch aggregation includes both the easily accessible coastal 

and benthic species and also the highly mobile, oceanic migrants (Klimley 1985; Robbins 

2007; Riley et al. 2010). An example of the latter is the aggregation of white sharks 

(Carcharodon carcharias), albeit sparse over a large area, during a seasonal migration from 

the coast of Baja, California, to a region of the eastern Pacific Ocean (Weng et al. 2007; 

Jorgensen et al. 2009). White sharks frequenting this area have also been extensively 

catalogued using photo-identification methods outlined in Domeier and Nasby-Lucas 

(2007), which offers the prospect of monitoring individual co-occurrences at different 
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coastal and oceanic locations to explore ideas about preferential association (see Social 

grouping). The function of these aggregation events in such wide-ranging predators remains 

largely speculative, although social interactions in white sharks have now begun to be 

quantified (Sperone et al. 2010). Aggregation behaviour may occur on a much smaller scale, 

for example, within a coastal environment. Heupel and Simpfendorfer (2005a) studied the 

movements and interactions of neonate blacktip sharks (Carcharhinus limbatus) over a 

period of three years revealing persistent aggregation during daylight hours and dispersal at 

night. Sharks demonstrated high site fidelity when aggregating and seasonal patterning of 

interactions (Heupel and Simpfendorfer 2005a). Although there are significantly fewer 

studies considering batoid aggregation behaviour, some species such as the spotted eagle 

ray (Aetobatus narinari), exhibit remarkable aggregation and schooling behaviour (see the 

section on Social grouping) typically consisting of between 5 and 50 individuals, arranged in 

a variety of swimming formations (Silliman and Gruber 1999). It is not yet known whether 

social factors underpin this behaviour. 

Aggregation behaviour of sharks documented in studies to date appears largely 

motivated by a desire to understand species abundance and distribution within a changing 

environment. Research on wide-ranging planktivorous elasmobranchs such as the giant 

manta ray (Manta birostris) and the whale shark (Rhincodon typus) for example, are 

generally aimed at describing site fidelity and ranging behaviour of individuals between 

areas/populations (Dewar et al. 2008) with a view to conserving known aggregation sites 

(Riley et al. 2010). Knowledge of the spatial and temporal dynamics of these events is 

extremely important, not least as it contributes to improved conservation and fisheries 

management practices for these species. It is unclear whether many of these aggregation 
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events may also serve to facilitate some exchange of social information. It is possible 

though, that species often considered solitary might in fact integrate some aspect of social 

interaction into their behavioural repertoire to gain some of the benefits associated with 

group living (described above). In fact recent studies suggest that sharks have the cognitive 

potential required for such information exchange (see Guttridge et al. 2009b for review) 

and that this can aid social learning of foraging tasks in some species (e.g. Guttridge et al. 

2012b). 

 

1.2.2 Social grouping 

Despite burgeoning research on aggregation, there is a distinct paucity of literature on the 

descriptions and specific patterns of elasmobranch social behaviour (cf. Table 1). Springer 

(1967) identified this knowledge gap over 40 years ago whilst considering the social 

organisation of the many species of shark in the Gulf of Mexico. Although unclear at the 

time due to a lack of empirical evidence, Springer offered the view that “...some shark 

populations exhibit complex behaviour that constitutes part of their social organization”, 

and based on anecdotal evidence from aerial surveys “...that large sharks (and rays) are 

often in groups and not randomly distributed”. In this early study Springer observed 

synchronised, collective behaviours such as echelon swimming, milling and size assortment 

that have become indicative of social interaction in some shark species (Myrberg and 

Gruber 1974; Sims et al. 2000). Indeed, assortment by size, colouration, familiarity and 

kinship are all well documented in teleost fishes (see Krause et al. 2000a for review) and 

have been shown to confer individual benefits such as minimising predation risk through 

phenotypic oddity and reducing competition and aggression between size classes (Hoare et 
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al. 2000). Size assortment has also recently been demonstrated as important in the 

structuring of juvenile lemon shark groups (Negaprion brevirostris, Guttridge et al. 2011) in 

a study representing the first quantification of associative preferences and social 

organisation in a free-ranging shark population. Subsequent research has built upon these 

ideas with a study by Mourier et al. (2012) defining statistically differentiated social 

communities in a population of blacktip reef sharks (Carcharhinus melanopterus). It is worth 

emphasizing for future research the importance of empirical data and hypothesis testing as 

demonstrated by these studies, because the current information provides largely anecdotal 

evidence of social organisation in sharks. This is particularly important since it is equally 

likely that assortment of individuals may occur through passive processes such as variable 

swimming speeds between different sized individuals or habitat features (e.g. temperature) 

which are favourable for some but not others (Croft et al. 2003; Wearmouth and Sims 

2008).   

In contrast to teleost fishes, experimental research on the social interactions of sharks 

have been few and far between (for exceptions see Guttridge et al. 2009a; Jacoby et al . 

2010). The earliest research into elasmobranch social behaviour began with Allee and 

Dickinson (1954), who conducted the first quantitative analyses of dominance and 

subordination in captive smooth dogfish, now known as the dusky smoothhound (Mustelus 

canis). Later, Myrberg and Gruber (1974) identified an extensive dominance hierarchy 

amongst mature bonnethead sharks (Sphyrna tiburo). These data revealed a size-

dependent dominance hierarchy and an apparent predominance of males over females. 

Direct observations and passive acoustic tracking of another closely related species, the 

scalloped hammerhead (Sphyrna lewini), showed highly coordinated schooling behaviour 
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within large groups of individuals, made up almost exclusively of females (Klimley and 

Nelson 1984; Klimley 1987). The authors proposed a social refuging hypothesis during the 

resting phase of the sharks’ diel behavioural cycle as foraging behaviour was never 

witnessed during schooling events (Klimley and Nelson 1984). 

1.3 Mechanisms and functions of grouping 

 

1.3.1 Aggregation 

Many elasmobranch species demonstrate high levels of philopatric behaviour to specific 

habitat locations (Hueter et al. 2005). During early life stages particularly, site fidelity is 

common in sharks with shallow, coastal waters offering ideal nursery areas for juveniles to 

aggregate (Simpfendorfer and Milward 1993). Immature lemon sharks (Negaprion 

brevirostris) at a subtropical lagoon in Bimini, Bahamas for example, disperse relatively 

slowly from their natal breeding grounds with locally born individuals being recaptured 

within the same areas up to six years after birth (Chapman et al. 2009). The shallow water, 

mangrove habitat favoured by groups of juvenile lemon sharks offers suitable conditions for 

individuals to increase somatic growth in the warm prey-abundant waters whilst at the 

same time avoiding larger elasmobranch predators (Morrissey and Gruber 1993; Guttridge 

et al. 2012a). This extended opportunity for juvenile N. brevirostris to interact has clearly 

influenced the behavioural strategy of this species with large aggregations observed in both 

juvenile and adult phases of this species (Gruber et al. 1988; Wetherbee et al. 2007; 

Guttridge et al. 2009a). Site-attached behaviours, such as mating or refuging in some 

species, periodically bring elasmobranchs together for a variety of resource requirements. 

These aggregations are often associated with specific times of day or months of the year. 
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Preferences for a specific thermal niche for example, appear to favour adult females of 

some shark species, resulting in single sex aggregation in warm, shallow coastal habitat 

(Economakis and Lobel 1998; Hight and Lowe 2007). Equally, aggregations of adult 

scalloped hammerhead sharks (Sphyrna lewini) utilise the inshore waters of Kaneohe Bay, 

Oahu, Hawaii between the months of April and October for mating and delivery of pups 

(Clarke 1971) but, as discussed previously, are also known to form large daytime social 

groups (social refuging) around underwater seamounts in the Gulf of California (Klimley and 

Nelson 1984). This species serves to illustrate the potential overlap between aggregation 

and social grouping behaviour in some elasmobranch species.  

A widespread characteristic of shark aggregation is sexual segregation which may be 

influenced by a range of factors including sexual dimorphism in body-size or differential 

activity budgets between the sexes (see Wearmouth and Sims 2008 for review). In many 

species of elasmobranch, asymmetry in gamete production and thus differential reproduc-

tive success from multiple mating events may be sufficient to cause very different 

behavioural strategies and movement patterns (Sims 2003, 2005). Different life-history 

traits between the sexes for example may select for male sharks to invest more time in 

pursuit of mates than female sharks which may themselves allocate a higher percentage of 

time in search of suitable environmental conditions to aid gestation or egg incubation 

(Hight and Lowe 2007). Indeed, a high level of male harassment in some teleost fish has 

been shown to drive spatial segregation of the sexes (Darden and Croft 2008). Shark mating 

behaviour, however, is notoriously aggressive, with females often sustaining severe wounds 

and serious abrasions to the body and pectoral fins from bites by males (Carrier et al. 1994). 

Therefore it is perhaps unsurprising that sexual segregation is relatively common among 
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elasmobranchs (Ford 1921; Klimley 1987; Sims et al. 2001; Litvinov 2006; Mucientes et al. 

2009). The need for females to avoid energetically expensive and potentially damaging 

multiple mating events is a commonly hypothesised mechanistic driver of single-sex, female 

refuging behaviour in sharks (Economakis and Lobel 1998; Sims et al. 2001) and sexually 

segregated schooling behaviour in teleost fish (Croft et al. 2006a; Darden and Croft 2008). 

Furthermore, with no recorded evidence of parental care observed in any species of 

elasmobranch, it is possible that segregation might occur from a relatively young age 

(Litvinov 2006). 

Despite such widespread sexual segregation, there comes a point when both males 

and females must find a mate and consequently mating aggregation behaviour might even 

occur within species which are typically found at very low densities. Group reproductive 

behaviours have been observed in several species (Carrier et al. 1994; Whitney et al. 2004) 

and have been closely linked to both transient and permanent environmental conditions 

such as increases in zooplankton abundance (Sims et al. 2000) and rocky reef habitat 

(Powter and Gladstone 2009), the latter indicating the possibility of discrete breeding 

populations even in some species that disperse widely. It seems apparent that there are 

numerous temporal as well as spatial influences on aggregation and segregation behaviour 

in elasmobranch fishes. One example is the dispersal of juvenile sharks of different sexes 

away from nursery habitat. Blue sharks (Prionace glauca) are the most widely distributed 

elasmobranch species in the pelagic ocean environment and they also demonstrate sexual 

segregation at the earliest age. Male blue sharks appear to move offshore very early in life 

(at < 70 cm total length) and occupy dense aggregations around oceanic seamounts, 

seemingly leaving the females in shallower coastal waters until nearly three times this size 
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(Litvinov 2006). Nearshore environments are commonly utilised by elasmobranch species to 

aggregate (Knip et al. 2010). It is evidently easier to study this type of behaviour in shallow 

coastal waters and as such, aggregation at depth is currently best inferred from fisheries 

data (Girard and Du Buit 1999). However, nearshore habitats are likely to offer high levels 

of prey diversity and abundance for elasmobranch predators and consequently many 

species periodically return inshore to forage and/or breed, permitting juveniles a greater 

chance of survival in the shallow, sheltered waters (Heupel et al. 2004; Chapman et al. 

2009). Behaviourally these aggregation events may serve additional functions as well as 

protection from larger predators, given that some smaller benthic or demersal species 

occupy coastal habitat for the duration of their life (Sims et al. 2001; Dudgeon et al. 2008). 

Passive acoustic monitoring techniques have been employed to quantify the levels of site 

fidelity shown within leopard shark (Triakis semifasciata) aggregations. This study 

suggested that female leopard sharks selectively occupy warmer, inshore refuges as a 

means of behavioural thermoregulation (Hight and Lowe 2007). It is hypothesised that 

thermoregulation behaviour enhances gestation and periods of embryonic development in 

this species, a theory not without support from observations of groups in other shark 

species. Sims et al. (2001, 2006) used a combination of active acoustic telemetry, archival 

tagging and laboratory experiments to explain the differential sexual strategies in another 

benthic predator, the small spotted catshark. They concluded that the apparent spatial 

separation in this species was due to the females’ ability to store sperm and thus avoid 

male copulation attempts during periods of gestation and egg laying (Sims et al. 2001). As a 

result, female S. canicula in the wild are seen in tightly packed groups lying on top of one 

another inside shallow-water, rocky openings such as crevices and caves (Sims 2003; see 

also Fig. 2). This proposed male avoidance appears a significant selection pressure causing 
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disruption among weakly socially-associated females (Jacoby et al. 2010) and forcing them 

to occupy areas outside of their preferred thermal/metabolic niche (Sims 2003; Wearmouth 

et al. 2012). 

 

Figure 2. Aggregation of four female small spotted catsharks (Scyliorhinus canicula) in a narrow 

rock gully off Plymouth, UK. Female-only refuging aggregations are common in this species and are 

thought to arise from the avoidance of  males. Photograph courtesy of Paul Naylor.  

 

1.3.2 Social grouping 

 

The adaptive significance of elasmobranch social behaviour is poorly understood despite a 

growing ecological threat to many species globally (Baum et al. 2003; Ferretti et al. 2010). 

During the juvenile phase of development, avoiding predation is a likely driver of 

aggregation (Morrissey and Gruber 1993; Economakis and Lobel 1998). Indeed in stingrays, 

the antipredator benefits of aggregation by cowtail stingrays (Pastinachus sephen) are 



David Jacoby  Ph.D Thesis 

 

- 38 -  
 

greater in heterospecific groups than single species groups suggesting a social mechanism 

maintains groups that have formed for protection. Heterospecific grouping is apparently 

due to the quicker flight responses and thus earlier warning of approaching predators by 

the reticulate whipray (Himantura Uarnak, Semeniuk and Dill 2006). Until recently, the 

mechanisms and functions underpinning social grouping in elasmobranchs have been 

speculative. Anecdotal evidence and observational data however, still provide the greatest 

insight into social interactions particularly in wild sharks (Sims et al. 2000; Sperone et al. 

2010) suggesting some unusual adaptive mechanisms in some species. Predatory sevengill 

sharks (Notorynchus cepedianus) appear to utilise multiple feeding strategies depending 

upon the prey size and type. Sevengills are thought to use social facilitation and pack 

hunting strategies in order to tackle larger prey items such as Cape fur seals (Arctocephalus 

pusillus pusillus, Ebert 1991). More recently, the burgeoning study of animal social 

networks (Croft et al. 2008), accompanied by developments in computational and analytical 

power has resulted in more hypothesis-led investigations of shark social behaviour under 

semi-wild or captive conditions (Guttridge et al. 2009a; Jacoby et al. 2010).  

Active partner preference has long been inferred in teleost fishes using binary choice 

experimental manipulation (Lachlan et al. 1998; Griffiths and Magurran 1999; Croft et al. 

2006b). Whether slow growing, wide-ranging elasmobranchs are also capable of showing 

active partner preference has remained unexplored until recently. Guttridge et al. (2009a) 

used similar binary choice experiments to demonstrate that juvenile lemon sharks 

(Negaprion brevirostris) show significant associative preferences for both conspecific over 

heterospecific groups (nurse shark, Ginglymostoma cirratum), and size matched over non 

size-matched conspecifics, clearly indicating an overall active preference for social 
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behaviour. Active partner preference demonstrates a social mechanism by which some 

sharks appear to maintain social groups. These social preferences may in fact be driven by 

population level processes such as intersexual conflict whereby the individuals associating 

are each attempting to maximise their own reproductive success. The impact of male 

behaviour upon female small spotted catshark (S. canicula) aggregations for example, was 

recently tested experimentally and showed that the strength of social bonds between 

females within aggregations were non-random (i.e. social groups were exhibited), but were 

also unevenly distributed, and that weakly associated females were more susceptible to 

disruption by male behaviours that were costly to females (Jacoby et al. 2010). Inferring this 

level of detailed information in wild populations is clearly more challenging. 

In an attempt to summarise the relatively scarce literature surrounding the functions 

of elasmobranch social groups, it is important to draw again on comparisons with their 

teleost counterparts. The benefits of schooling behaviour in teleost fishes have been shown 

to include a variety of antipredatory functions (Magurran 1990; Krause and Ruxton 2002), 

reduced energetic demand and oxygen consumption (Herskin and Steffensen 1998), 

information transfer and cooperation (Croft et al. 2006b) and more efficient collective 

decision making (Ward et al. 2008). It is unknown which of these, if any, apply to apex 

predatory sharks despite a number of species which have been documented schooling in 

large numbers (Klimley 1985; Wilson 2004). In a comparative study of teleost and 

elasmobranch schooling behaviour, Klimley (1985) observed that scalloped hammerhead 

shark (Sphyrna lewini) schools comprised predominantly of females with larger individuals 

aggressively vying for central positions within the school. This study hypothesised that 

social refuging behaviour served to facilitate information exchange between resting sharks 
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(Klimley 1985). It has been discussed that sharks are capable of active partner choice 

(Guttridge et al. 2009a; Guttridge et al. 2011) implying some form of recognition or 

phenotype matching mechanism. If so, there are probable benefits to associating with 

unfamiliar conspecifics, as these individuals are arguably more likely to possess information 

about resources outside an individuals’ home range (Goodale et al. 2010). Thus, these 

refuge aggregations, particularly in facultative schoolers like the scalloped hammerhead 

may serve to disseminate novel information throughout a population via fission-fusion 

behaviour and social learning, something which has been qualified in free-ranging French 

grunts (Haemulon flavolineatum) in a coral reef habitat (Helfman and Schultz 1984). Within 

these social groups it is also probable that there is some degree of hierarchy and/or 

assortment between individuals (Allee and Dickinson 1954; Myrberg and Gruber 1974). 

Alternatively, social groups may be rather brief and sporadic, functioning merely as a 

means of finding and mating with the opposite sex (Sims et al. 2000). The basking shark 

(Cetorhinus maximus) is the world’s second largest fish and they appear to conduct annual 

social behaviours associated with tidal-shelf and oceanic fronts. These behaviours include 

close following behaviour and parallel and echelon swimming in what are thought to be 

courtship displays that include full body breaching, although mating has never been 

observed conclusively in this species (Sims et al. 2000; see also Fig. 1).  

To conclude this section on the patterns, mechanisms and function of aggregation 

and social grouping behaviour in elasmobranchs, it is important to reiterate that evidence 

of social interaction among sharks is, in part, likely to result from common behavioural 

strategies such as migration and collective movement or aggregation around a specific 

resource. These may include thermal habitat for gestation or incubation (Hight and Lowe 
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2007), suitable topographic or environmental features to avoid male harassment (Sims et 

al. 2001, 2005) or oceanographic attributes which provide a familiar ‘way -point’ on a 

migratory route (Jorgensen et al. 2009). Determining the relative influence of social 

interaction on the initial formation of shark aggregations is still a relatively new endeavour, 

but will surely prove an interesting and challenging area for future research. This thesis will 

attempt to address this gap in knowledge by testing hypotheses relating to the mechanisms 

which may underpin social behaviour in sharks. 

1.4 Methods for studying shark social behaviour  

 

1.4.1 Tracking and telemetry 

The spatial and temporal dynamics of gregarious animal interactions are highly complex. 

Tracking these interactions through time requires extensive records of specific individuals, 

something which has, perhaps unsurprisingly, proven extremely difficult to obtain for free-

ranging elasmobranchs. Acoustic telemetry has developed considerably in the past 25 

years, particularly in its application to monitoring the movements and behaviours of marine 

fishes such as sharks (Sims 2010). As a functional yet rather more labour intensive 

predecessor to passive telemetry, active tracking using ultrasonic telemetry relies on 

following an acoustic transmitter tagged shark from a boat using a directional hydrophone. 

This technique has proved successful in revealing polarized schooling behaviour in several 

large elasmobranch predators (Klimley and Nelson 1984; McKibben and Nelson 1986). More 

recently, passive acoustic and satellite telemetry techniques have shed light on the 

movements and interactions of elasmobranch species at a variety of spatial scales (e.g. 

Eckert and Stewart 2001; Sims et al. 2006). Although expensive at the outset, the continual 
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development of smaller and cheaper acoustic tags has promoted the widespread use of 

passive acoustic telemetry as a means of tracking large numbers of teleost and 

elasmobranch species as they interact through space and time (Sims 2010). Chapters II, VI 

and VII provide more information on deploying and analysing data gathered via acoustic 

biotelemetry technology. As an example of how this technology can be used to study the 

behaviour of wild sharks, Heupel and Simpfendorfer (2005a, b) used omnidirectional 

passive acoustic receivers to study the movement and interactions of juvenile blacktip 

sharks (Carcharhinus limbatus). Nearest neighbour analysis of the telemetry data revealed 

that shark aggregations were more common in the late summer during which there were 

strong diel patterns to aggregation events (Heupel and Simpfendorfer 2005a). This serves to 

demonstrate that it is now possible to monitor continuously multiple individual sharks and 

their movements within a designated area, provided the receivers encompass at least a 

good proportion of the activity space (or home range) of the species in question. Given that 

arrays of acoustic receivers are often spatially limited, this often means studies are 

restricted to those on juvenile or neonate sharks that have smaller core activity spaces. 

However, large scale deployments for long periods in deep water areas are now being made 

to track adult movement patterns (see Chapter II for detail on the telemetry techniques 

adopted during this project). Regardless of spatial scale this technique provides one of the 

few means to determine round-the-clock habitat use and home range dynamics of sharks 

(Heupel et al. 2004), in addition to their tendency to form large daily aggregations 

(Economakis and Lobel 1998). 

Determining the precise occurrence and scale of social interactions from 

presence/absence data on omnidirectional acoustic receivers is still problematic without 
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high levels of range overlap. Field of view overlap of receiver stations is often traded off 

against increased area coverage within acoustic arrays and consequently new technology 

that accounts for proximity of individuals is required to facilitate analyses of social 

behaviour in wide ranging animals (Krause et al. 2011). Novel studies on both Galapagos 

sharks (Carcharhinus galapagensis, Holland et al. 2009) and juvenile lemon sharks 

(Guttridge et al. 2010) employed specialised, prototype transmitter/receiver tagging 

techniques or proximity loggers to test the reliability of coded data exchange between 

sharks within a given range of one another. The devices used in the lemon shark study were 

capable of detecting individuals within 4 m (~4 body lengths) of each other, but rarely when 

at 10 m distance, emphasising the value of this technique for recording close interactions 

between individual sharks (Guttridge et al. 2010). Once developed further, these 

techniques offer huge scope for advancing our understanding of the ways in which animals 

interact in the wild. It seems likely that significant, rapid progress will be made by 

combining this new technology with social network analyses (Krause et al. 2011).  

Passive acoustic telemetry, widely used in elasmobranch studies of behaviour, has 

been used both to infer and now directly to record social interactions between sharks 

(Holland et al. 2009; Guttridge et al. 2010). From a management and conservation 

perspective, however, it is important to monitor not only where and when these animals 

are aggregating, but also to understand individual and group-based movements between 

habitats within the home ranges of the species in question. As such, it can be useful to view 

specific habitat features as locations interconnected by the animals that move between 

them creating a complex movement structure, the dynamics of which undoubtedly has 

implications for the transmission of disease or parasites between animals (e.g. Fortuna et 
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al. 2009). Equally, such movement structures or ‘movement interaction networks’, as they 

will be referred to throughout this thesis, are likely to prove important predictive indicators 

for sharks occupying threatened habitat such as nearshore areas (Knip et al. 2010). In many 

ways these movement interactions closely resemble the complex structures observed in 

studies of animal social networks and therefore are highly amenable to similar analytical 

approaches (see Chapter VI). 

 

1.4.2 Introduction to social network analysis 

There are a variety of interactions between group living animals that have the potential to 

greatly influence population structure and dynamics. Social animal systems may be highly 

complex and dynamic, involving hundreds and sometimes thousands of individuals but can 

still be successfully interpreted by understanding the influence of individuals or groups at 

different spatial and temporal scales. Social network theory therefore offers a useful tool 

with which to study in detail, social organisation on a multitude of levels, from individual 

behaviours to population-level processes (Krause et al. 2009). Central to this approach is 

the idea that individuals differ in their importance within a network and thus their ability to 

influence group decisions (information transfer) or indeed pathogen transmission. Network 

analysis is therefore becoming increasingly popular amongst behavioural ecologists (Krause 

et al. 2007; Croft et al. 2008; Sih et al. 2009). 

Social network analysis provides a means of analysing the global properties of a 

system based on a variety of dyadic interactions (an interaction or relationship between 
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two individuals) from aggression bouts and dominance hierarchies to cooperation and 

reciprocal altruism (Krause et al. 2000a; Croft et al. 2005, Fig. 3).  

 

 

Figure 3. Examples of social interactions from the animal kingdom. Social networks can be 

constructed from dyadic interactions such as grooming behaviour (Japanese macaques, Macaca 

fuscata; top left, credit Noneotuho), aggression bouts (African elephants, Loxodonta africana; top 

right, credit Maksim), schooling (scalloped hammerhead sharks, Sphyrna lewini; bottom left, credit 

Xvic) and cleaner/client interactions (rainbow cleaner wrasse, Labroides phthirophagus bottom 

right, credit Brocken Inaglory). Photographs courtesy of Wikimedia. 
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Equally, these dyadic interactions might represent the movements of an animal between 

two different areas or habitat types, in which case we would be dealing with a movement 

interaction network (see Chapter VI). Networks can be represented through simple 

graphical format where each individual in a group (or location) is represented by a node and 

a tie or edge between two nodes represents some form of interaction (Fig. 4a). Network 

diagrams may be enhanced by representing the edges between nodes as directional 

indicating an asymmetry in the observed dyadic interaction (Fig. 4b), or weighted, 

pertaining to the frequency an interaction is observed between individuals or a movement 

made between locations (Fig. 4c). Furthermore, accompanying every descriptive network 

diagram is a corresponding n x n association matrix upon which statistical analyses of the 

association data may be performed, such as testing for non-random associative preferences 

or clustering within the network. 

  



David Jacoby  Ph.D Thesis 

 

- 47 -  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Illustration of a simple (a), directed (b) and weighted (c) network. Circles represent nodes 

(i.e. individual organisms) and the ties between them represent interactions (i.e. aggressive displays, 

social grooming etc).  
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Perhaps one of the major benefits to studying interaction behaviour in a network format is 

the ability to overlay large amounts of biological data regarding attributes of individuals on 

top of a social network. Substantial insight can then be gained by highlighting, within the 

network data, those individuals of a particular size, sex, colouration or age class. For 

example we may ask if the social connectivity of an individual can be predicted by its 

attributes or if there is positive or negative assortment in the network based on phenotypic 

traits. By integrating attribute data within the social network, the biological relevance of 

aggregation behaviour becomes clearer (Wolf et al. 2007; Croft et al. 2008). As such, 

foraging behaviour (Morrell et al. 2008), sexual harassment (Darden et al. 2009) and size 

assortment (Croft et al. 2005) have all been explored in teleost fish using a social networks 

approach. Furthermore, it might be of particular interest to compare directly matrices of 

social interaction with data on the genetic relatedness of individuals within a group, giving 

potentially important insight into the benefits, or indeed costs, of associating with kin 

(Chapter IV; Hain and Neff 2007; Frére et al. 2010). Statistical analyses may then be 

performed on either the complete network or on data restricted to specific attribute or kin 

groups allowing considerable flexibility for specific hypothesis-driven research. A more 

extensive discussion of the issues associated with sampling and analysing network data and 

detailed description of network-related metrics can be found in subsequent chapters 

(specifically Chapters II and VI). First and foremost, social network analysis is used 

throughout this thesis to consider the importance of social interaction in juvenile and adult 

shark behaviour. It is, however, also adapted to facilitate the interpretation of shark 

movements from data gathered using passive acoustic telemetry techniques (see Chapter 

VI). These applications are not necessarily mutually exclusive (see Chapter VII), but rather 
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serve to demonstrate how network analyses of complex systems should become integral to 

the analysis of telemetry data (Krause et al. 2011; see also Fig. 5). 

Many of the studies cited in this section serve to reiterate the pivotal role teleost fish 

have so far played in providing a model for understanding the ecological and evolutionary 

processes dictating the development of sociality. Similar analyses, however, have also been 

adopted to help reveal the complex community structuring in a number of wide-ranging 

marine mammals (Connor et al. 2001; Gowans et al. 2001; Lusseau 2003) using photo-

identification techniques that are now being adopted to study elasmobranch aggregations 

(Domeier and Nasby-Lucas 2007; Riley et al. 2010). The use of such photo-identification in 

concert with social network analyses might enable more detailed understanding of shark 

aggregation events which could prove important in the future management and 

conservation of many vulnerable elasmobranch species. The complexities of conserving 

elasmobranch populations through a combination of scientific research and conservation 

strategies go well beyond the scope of this review. Discussion of the implications and future 

directions of this type of research is given at the end of this thesis in the general discussion 

(Chapter VIII). 
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Figure 5. Conceptual model illustrating a networks approach to analysing telemetry data. Here 

network analysis is used to support other, more traditional, analyses of both movement and social 

behaviour in sharks. As illustrated in Chapters VI and VII telemetry data containing simple 

information on the presence of individuals at specific times and locations can be used to reveal 

interesting patterns of movement and co-occurrence using a networks approach.  
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1.5 Conclusions 

 

Studying the temporal interactions of large wide-ranging sharks is clearly a challenge. 

However, there are a number of intermediate sized species which still fulfil elevated 

predatory functions within the food web and are also highly tractable to being maintained 

in groups under laboratory conditions (Sims 2003). Benthic sharks, such as the widely 

distributed small spotted catshark (S. canicula) used here throughout this thesis, are known 

to demonstrate site philopatry and single-sex refuging behaviour and thus are likely to 

prove a useful species with which to tackle some of the questions this review highlights.  

Developments in marine tracking technology and visual identification methods 

continue to enhance our knowledge of site philopatry and refuging behaviour in 

elasmobranchs. Determining what drives predatory elasmobranchs to group is important, 

not only for understanding interactions at lower trophic levels but also for the future 

conservation and management of populations and areas associated with their fundamental 

life-history traits. During this review I offer an appraisal of where and when such groups 

have been documented to occur and in the current research described in this thesis I use 

controlled and replicated laboratory experimentation, in combination with wild acoustic 

tracking of sharks, to explore some of the possible mechanisms and functions of this 

behaviour.  

Furthermore, social network theory is appealing in its relevance to our own behaviour 

and the idea of animal social networks is both engaging and accessible. Detailed knowledge 

of how sharks associate in the wild will provide insight into population distribution and 

assortative behaviour such as sexual segregation, which can substantially influence fishing 
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mortality (Wearmouth and Sims 2008; Mucientes et al. 2009). It is hoped therefore that this 

will encourage a more fine scale and hypothesis-driven approach to studying grouping and 

movement behaviour in sharks and rays. 

Following this general introduction, I introduce the model species S. canicula, studied 

in this research and discuss some of the methodological intricacies and specific issues 

associated with using social network analysis to study behaviour in sharks (Chapter II). For 

social interactions to occur, however, individuals must first come together to form groups 

and in Chapter III I quantify juvenile aggregation and social behaviour in this species whilst 

assessing the effects of conspecific familiarity on gregariousness. In Chapter IV the link 

between female reproductive strategy and juvenile social behaviour is explored. This 

collaborative chapter uses genetic techniques to determine the level of female polyandry, a 

phenomenon where a single female mates with multiple males, exhibited by this species. 

This was necessary for, and prior to the rearing individuals of known relatedness for 

experiments on kin association. The following chapter (Chapter V) investigates the potential 

mechanisms driving sociality, this time specifically testing for consistencies in social 

interactions that might be indicative of personality traits. Here I address the extent to which 

juvenile sharks might maintain or indeed alter their social behaviour under increasing levels 

of habitat complexity. Chapter VI is a methods chapter in which I demonstrate how 

important recent advances in telemetry technology for large marine predators can be 

combined with social network analysis to provide new insights to shark movement 

behaviour. The final experimental chapter (Chapter VII) draws upon previous chapters by 

applying a holistic approach to the understanding of free-ranging shark behaviour. Here I 

apply the methods outlined in the previous chapter to determine periods of behavioural 
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synchronicity between the two sexes which generally show marked sexual segregation in 

the wild. Long-term telemetry data and environmental sampling of the area allow 

predictions to be made about the spatial and temporal dynamics of this population while 

network analyses are utilised to study both movement behaviour and individual co-

occurrences. These final two chapters are intended as a look towards the future direction of 

shark socio-ecological research, reflecting the final section of this review with specific focus 

on how elasmobranch populations might be managed under ever more intensive fishing 

pressure (Baum et al. 2003; Myers et al. 2007). 
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2.1 Introduction 

 

The previous chapter provided a detailed exploration of elasmobranch aggregation and 

sociality. Broad examples of social behaviour in sharks were compared and contrasted with 

our current understanding of teleost fish behaviour. Furthermore, analyses of social and 

movement based networks were introduced as a means of elucidating complex data on 

association or movement interactions. To avoid repetition throughout the thesis this 

chapter will outline some of the more general methodological considerations that are 

central to the subsequent data chapters. It will start by introducing the model species of 

shark, the small spotted catshark (Scyliorhinus canicula, L., 1758) used throughout the 

study. The conditions and ethical considerations under which this work was conducted and 

the area in which this species was tracked acoustically are then discussed, finally concluding 

with a discussion on the sampling and analysis of non-orthogonal, network data. 

2.2 Model species 

 

2.2.1 Background 

Chondrichthyes, of which elasmobranchii are a subclass, have radiated into a wide variety 

of forms in order to exploit most available marine habitats and in some cases some 

freshwater habitats as well. Small spotted catsharks (S. canicula, Fig. 6) belong to a diverse 

order of Carcharhiniformes and have a broad distribution in the Northeast Atlantic from as 

far north as Norway, down to Senegal on the west coast of Africa, also occurring in the 

Mediterranean and Adriatic Seas (Compagno et al. 2005, Fig. 7). These sharks are primarily 



David Jacoby  Ph.D Thesis 

 

- 56 -  
 

benthic, occupying coastal shelf habitat and are found at depths ranging from just a few 

metres to approximately 400 m (Rodríguez-Cabello et al. 2007). This species is abundant in 

UK coastal waters and is regularly caught in the Western English Channel (Ford 1921; 

McHugh et al. 2011) where specimens for this study were obtained. Once a stable fishery 

(Ford 1921), the demand for S. canicula has significantly reduced resulting in high levels of 

discard as by-catch. This species however, shows very high levels (98%) of survivorship 

following discard (Revill et al. 2005) which potentially supports stable population sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Adult small spotted catshark (Scyliorhinus canicula) in lateral view beside egg cases (A), 

ventral  view (B) and as a juvenile (C). 
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Figure 7. The geographic distribution of Scyliorhinus canicula. Maximum total length (LT) in this 

species is considerably smaller in the Mediterranean Sea (Max LT: 0.6 m) than in the North Sea (Max 

LT: 1.0 m; Compagno et al. 2005). Map courtesy of Jonathan Hornung.  

 

2.2.2 Biology 

The intermediate size of this shark at maturity (Male LT: 490 – 540 mm, Female LT: 520 – 

640 mm; Ellis and Shackley 1997) and its propensity to survive and breed well in captivity 

have led to widespread studies on the biology, physiology and behaviour of this animal 

(Ballard et al. 1993; Bozzanao et al. 2001; Kimber et al. 2009), making it a model species for 

both field- and laboratory-based elasmobranch research (Sims 2003; Sims et al. 2006: 

Jacoby et al. 2010). In the wild, adult S. canicula demonstrate distinct sexual segregation 

spatially (Wearmouth and Sims 2008) attributed to substantial differences in behavioural 

strategy and home ranges between the sexes despite being sexually monomorphic in body 

size (Sims et al. 2001; Wearmouth et al. 2012). Females refuge in small aggregations during 

the day in warm, shallow-water, rocky crevices venturing into deeper water every few days 
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to feed (Sims et al. 2001). By contrast, male S. canicula undertake crepuscular, diel vertical 

migration (DVM) from colder, deeper waters where they spend the daylight hours, up into 

shallow, prey rich waters at night (Sims et al. 2006). These alternative behaviours are 

thought to result largely from aggressive male mating and mobbing behaviour (Dodd 1983), 

which drive females to aggregate in single sex groups as an avoidance strategy (Sims 2005; 

Wearmouth and Sims 2008). Whilst the social factors hypothesis (male sexual harassment 

of females) arguably plays a significant role in both sexual segregation and aggregation in 

this species, reproductive benefits are also likely to be gained by females occupying warmer 

waters (Economakis and Lobel 1998). Aggregation behaviour is also thought to occur in 

both adult male catsharks and juveniles, although this remains speculative to date (D.W. 

Sims pers. comm.) and social preferences have not been quantified in either before. Given 

what is already known about behavioural strategies in this species, this thesis seeks to 

quantify empirically specific hypotheses about aggregation behaviour and identifies 

potential mechanisms driving such events.  

2.2.2.1 Reproductive biology 

S. canicula is an oviparous shark, laying a pair of eggs, on average, every two to three weeks 

during a protracted breeding season that peaks between November and July (Metten 1939; 

Sumpter and Dodd 1979; Griffiths et al. 2012). Egg cases are generally deposited on 

complex habitat structures such as macroalgae (Ellis and Shackley 1997) and therefore it is 

likely that neonate sharks hatch alongside others, some of which might be related. It has 

been hypothesised by Sims (2003) that in addition to male avoidance, female refuging 

behaviour might also serve to facilitate increases in the rate of egg development due to the 

higher water temperatures in shallow habitat. Given the burgeoning evidence of male 
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sexual harassment in this species (Sims et al. 2001; Jacoby et al. 2010; Wearmouth et al. 

2012) and well documented evidence for sperm storage (Metten 1939) there are probable 

consequences for the reproductive output of female S. canicula.  

2.3 Capture and husbandry 

 

2.3.1 Trawl survey data and experimental shark capture 

The Marine Biological Association (MBA) has been conducting monitoring of the marine fish 

assemblage off the coastal of Plymouth in Devon, UK for over a century (McHugh et al. 

2011). This long-term monitoring program provides detailed time-series data on S. canicula. 

From this data Ebenezer Ford carried out his detailed survey of catshark landings between 

1911 and 1921 with subsequent research continuing up to the present day (Ford 1921; 

McHugh et al. 2011). Since the beginning of this recording period efforts have been made to 

retain as similar trawl gear as possible, with current gear consisting of an otter trawl with a 

12 m head rope and a 50 mm (mesh) cod end. All adult experimental sharks used in this 

study were captured aboard an MBA research vessel using this technique with the majority 

of these individuals captured during 20 min trawls at Whitsand Bay, Cornwall (Inshore: 50° 

20.44′ N, - 4° 16.38′ W to 50° 19.17′ N, - 4° 14.20′ W), and a few captured during 40 min 

trawls around the L4 monitoring station (Offshore: 50° 15.0' N; 4° 13.0' W). The location of 

these sites is given in figure 8. Once aboard the vessel, sharks were maintained in flow-

through tanks before being transported, on land, to the MBA laboratory (ca. 15 min 

journey). 
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Figure 8. Capture locations of experimental sharks, Cornwall, UK. Sharks were caught using an 

otter trawl predominantly between the two points in Whitsand Bay or occasionally around the L4 

Monitoring Station. 

 

2.3.1.1 Wild catch size distribution 

During 44 years of trawling between 1913 and 2011, a total of 1024 trawls were conducted 

at L4, 774 of which contained S. canicula. With aggregation behaviour forming the crux of 

this thesis, the longevity of this dataset provided an interesting opportunity to investigate 

the distribution of catch size in the wild stock population of the focal species. It is unlikely 

that complete groups are retained within a single trawl or that individuals participating in 



David Jacoby  Ph.D Thesis 

 

- 61 -  
 

refuging behaviour are captured, however, the data at least provides a sub-sample of the 

numbers present out in open areas at the time of fishing. Taken in its entirety, these data 

reveal that catch sizes fit a heavy-tailed or power law distribution (Fig. 9a) with an exponent 

of α = 1.8 (Fig. 9b). Power law distributed group sizes, although not consistent with stable 

group size theory (Beauchamp and Fernández-Juricic 2005) do occur frequently in nature 

(Niwa 2003) in addition to power laws predicting other aspects of animal behaviour (Sims et 

al. 2008). These distributions are characterised by a small number of very large group sizes 

and often cause excitement when found in biological systems due to the potential link 

between the mathematical assumptions which underlie power laws and the behaviour of 

the individuals participating in group related behaviours (see Sumpter 2009 for a review). 

The mean catch size of these sharks during this 98 year period was 32.9, however, 

in the last 10 years that number has increased to 74.0 which likely reflects a recovery in 

stocks due to reduced demand for this species and the high survivorship following 

discard (Revill et al. 2005). Since 2008, the sexes of individuals caught have also been 

recorded for each trawl. Given the female propensity to refuge, it was expected that a 

greater number of males might be captured in areas suitable for trawling (i.e. relatively 

flat seabed topography). Indeed, a significantly higher mean number of males (Mean ± 

SE: 40.61 ± 6.18) than females (22.62 ± 4.15) were captured per trawl at L4 between 

2008 and 2011 (Mann Whitney test: U = 5621, z = -2.367, p = 0.018). The result supports 

trends revealed by tracking of this species discussed in a subsequent chapter (Chapter 

VII).  
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Figure 9. Catch size frequency distribution of S. canicula from 774 trawls at L4 spanning 98 years. 

Evidence of a power law distribution is shown in a heavy-tailed histogram (A) and as a log-log plot 

(B) with a scaling parameter of α = 1.8.  

 

2.3.2 Husbandry 

Throughout the study adult and juvenile catsharks, which were maintained in the Seawater 

Hall laboratory at the MBA, were monitored on a daily basis. This was in addition to 

frequent assessment by our resident Named Animal Care and Welfare Officers (NACWO). 

All research was carried out in accordance with Home Office regulations under the 

following licences: Personal Licence PIL 30/8940 and Project Licence PPL 30/3442. All 

animals were fed on a twice weekly discrete feeding schedule of approximately 2.5% wet 

body mass per individual per feed (Sims and Davies 1994). Food comprised a combination 
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of white fish (mixed species), squid (Alloteuthis subulata) and queen scallop (Aequipecten 

opercularis) cut into small pieces and mixed with liposome enrichment and a commercial 

pellet. Weight and length change was closely monitored in all experimental animals and 

additional food provided wherever weight gain was not observed. During experimentation 

all feeding occurred at the end of the day post data collection. All sharks were checked and 

certified by a NACWO prior to release either into Plymouth Sound or Whitsand Bay.  

The water supply to all holding and experimental aquaria came from a semi-open 

recirculation system in which seawater was drawn through a course filter in the sublittoral 

zone of Plymouth Sound and pumped into a 67500 L reservoir. Seawater from the reservoir 

passed through a commercial filtration system before entering the aquaria. Water was 

tested regularly for pH, ammonia, and nitrate concentration, and temperature control was 

maintained by passing the water through a chiller twice a week. Seawater was subject to 

seasonal variation in temperature despite partial temperature control with the chiller; 

ambient water temperatures in MBA aquaria vary from 13 oC in winter to 19 oC in the 

summer. All holding and experimental aquaria were subject to consistent, year round diel 

light cycles (12 h light/12 h dark).  

2.3.2.1 Individual identification 

Whilst in captivity, all adult sharks were tagged with coloured T-bar anchor tags (FD94; Floy 

Tag, Seattle, WA) on the posterior dorsal surface just above the lateral line and level with 

the pelvic fin emargination. Individual identification not only enhanced the welfare of these 

sharks during captivity but also helped to determine the maternal heritage of the eggs laid 

by different females. For identification of the substantially smaller juvenile and neonate S. 

canicula, individuals were tagged with a unique, fluorescent visible implant elastomer tag 
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(VIE – Northwest Marine Technology, WA, USA) which was injected subcutaneously on the 

dorsal surface in any one of 10 different positions or orientations. While difficult to see 

under natural light conditions, due to the nature and thickness of shark skin/dermal 

denticles, tags fluoresced brightly under a VI light source (Fig. 10). There was no evidence 

that this light source influenced behaviour and individuals did not move when illuminated. 

 

 

 

 

 

 

 

 

Figure 10. Visible implant elastomer (VIE) identification tag fluorescing under VI light. VIE tags are 

gradually shed backwards out of the skin as the shark grew. 

 

2.3.2.2 Experimental aquaria and hatchery programme 

Approximately 20 adult females were maintained in the laboratory for extended periods 

(between four and 10 months) with these individuals providing virtually all eggs for the 

subsequent studies on juvenile sharks. Adults were housed in large, circular aquaria which 

were 1.83 m in diameter by 0.43 m in depth with a capacity of 2242 l of seawater. An 
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additional 48 adults were brought into captivity in order to surgically implant acoustic 

transmitters and to monitor recovery, prior to release into the acoustic array (see Chapters 

VI and VII for details). Experiments involving neonate or juvenile sharks were conducted in 

large rectangular aquaria (1026 l capacity, 1.8  1.0  0.6 m) with some small groups of 

individuals being transferred from smaller ‘familiarisation’ tanks (35 l capacity, 0.3  0.4  

0.3 m, see Chapter III for more detail). All aquaria were connected to the semi-open, 

recirculation system.  

Eggs were removed from captive females when tendrils were observed trailing from 

the cloaca and thus maternal heritage was determined (see Chapter IV for more detail). 

Eggs were then removed from the aquaria and were transferred to an egg rack in a separate 

tank where they were housed individually until they hatched (Fig. 11). The incubation 

period was negatively correlated with seawater temperature with a mean of 177.7 days 

(range: 128 – 226 days). During the course of the project a total of 355 individual sharks, of 

known maternal heritage, were reared in this manner, all of which were measured and 

weighed upon hatching and a small fin clip taken for DNA analysis (see Chapter IV). 

Additional individuals from unknown eggs (n ≈ 400) were also used for laboratory 

experiments. Following the post-hatching measurements, individuals were moved into 

specific holding environments, depending on the experiment and details of these are 

outlined in each chapter. Sex of the individuals was determined at birth with an 

approximate sex ratio of 1:1. As there were no significant effects of sex on social behaviour 

in juveniles (see Chapter IV), for all laboratory chapters the sex of the individuals were 

randomly selected. 
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Figure 11. Purpose built egg hatchery with hatchling (inset). Individual social environments 

were manipulated from the day sharks hatched. 

 

2.4 Analytical considerations  

 

Throughout this thesis a number of different statistical and analytical programs were used. 

Unless otherwise stated, data manipulation was conducted in Microsoft Excel and Access 

and all traditional parametric and non-parametric statistics were carried out in PASW 

Statistics 18 (IBM Corp., Somers, NY, USA) and R (R Development Core Team). Network 

analyses were largely conducted in SOCPROG 2.4 (Whitehead 2009) and UCINET (Borgatti et 
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al. 1999). Throughout this thesis the term ‘aggregation’ is used to define group resting 

behaviour that may or may not be underpinned by social preferences. Aggregation is 

therefore quantified by determining mean group sizes or group numbers within an 

experiment. ‘Social groups’ therefore refer to aggregations where social preferences have 

been determined and explicitly tested. In order to do this a social networks approach was 

adopted, the ideas and benefits of which were introduced in Chapter I. Before social 

networks can be constructed and analysis undertaken however, there are a number of 

important issues to address.  

 

2.4.1 Network construction 

Social interactions, where one animal is observed directing behaviour towards another 

animal (e.g. grooming or fighting), are often difficult to record within wild animal 

populations due to the speed or brevity of some behaviours, the number of animals 

involved or the location and timing of these events. Due to some of these constraints social 

networks are often constructed from symmetric, association data based upon who is in 

close proximity to whom. What constitutes a social interaction or even alliance to a specific 

group and at what spatial scale we might expect these to occur, largely depend on the 

species in question and these are all important considerations when determining data 

collection techniques. Group resting behaviours, such as those observed in some benthic 

elasmobranchs that rest either in tactile contact or within a single body length (Sims et al. 

2001; Hight and Lowe 2007) command a different set of associative parameters at a 

different scale, than those required for studying wide ranging facultative schoolers where 

there might be a distance of 10-15 m between individuals for example (Klimley 1985). To be 



David Jacoby  Ph.D Thesis 

 

- 68 -  
 

of use therefore, a social network must account for at least some of these species specific 

behaviours and it is therefore crucial to be mindful of incorporating both biological 

relevance and scale when defining interaction/association parameters (Lusseau et al. 2008). 

With these considerations in mind, an implicit understanding of these interact ions 

demonstrates how sociality may influence individual and group level behaviours (Wey et al. 

2008). The formation of weighted social networks (Fig. 4c, Chapter I) ultimately relies upon 

the truncation of multiple static or binary networks representing each sampling period and 

provides a ‘snapshot’ of social interactions across all of these periods at once. As such there 

is the potential to lose a lot of information during this process; the sampling frequency and 

duration of data to be included in the final network used to illustrate and analyse social 

behaviour in the study system, must therefore be given considerable thought. Recent 

research into time-aggregated and time-ordered networks are beginning to address this 

issue offering statistical methods for determining suitable sampling regimes (Haddadi et al. 

2011; Blonder et al. 2012). 

2.4.1.1 Collecting association data 

Data on animal associations can be gathered in several different ways depending on the 

study system and the objectives of the experiment. Scan sampling of a population whereby 

animals within a predetermined distance of one another are deemed to be grouping 

(‘gambit of the group’ – GoG) is just one way in which association data is often accumulated 

(Whitehead 2008; Franks et al. 2010). Alternatively, egocentric networks can be 

constructed by using focal follows of individual animals over a given time period. The 

network is established based on the individuals with whom the focal animal interacts with 

during that time (e.g. Edenbrow et al. 2011). In an attempt to reduce the potential for 



David Jacoby  Ph.D Thesis 

 

- 69 -  
 

subjectivity in both of these commonly used methods, established protocols are now being 

developed to calculate the associative distances and minimum sampling frequencies 

required to accurately construct a social network (Haddadi et al. 2011). Given the controlled 

and replicated conditions under which the laboratory experiments were carried out for this 

current project, GoG scan sampling was used throughout with a sampling frequency 

determined by comparing preliminary network structures across a range of sampling 

intensities. 

For all experiments where aggregation or association measures were calculated, the 

experimental protocol remained practically the same and is outlined here. Any differences 

in the data collection methods are included in the methods in the later chapters. The 

propensity of my model species to spend long periods resting, either in small groups or 

individually, allowed aggregation and social grouping to be quantified based on scan 

samples of who was resting next to whom (Fig. 12). Indeed the social networks of adult 

female aggregations have been quantified using the same methodology previously (Jacoby 

et al. 2010). All sharks were free to be solitary during a sample and any swimming sharks 

were recorded to determine levels of activity. Consequently group size and group number 

were not expected to co-vary. During each scan sample individuals were considered 

aggregated or associating, if the centre point of the shark (a predefined point halfway along 

the length of the body) was estimated to be within one body length of a conspecific. Body 

lengths were based on the mean body length of the individuals within the experimental 

group. This simple measure reduced the complication associated with individual orientation 

and was considered a sufficient metric for aggregation based on the large size of arenas 

relative to shark size, and the few individuals used per trial. 
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Figure 12. Illustration of juvenile sharks as they rest in small groups or individually at the bottom 

of an experimental arena. Water flow into and out of the arena (arrows) was at the surface to 

reduce the influence of current on resting behaviour. Circular zones of association (ZOA), with a 

radius of one body length are shown (dashed lines) with an overlap of centre points representing 

individuals in the same group.  

 

2.4.1.2 Association indices 

Once collected, association data must then be converted to a matrix format whereby every 

possible dyadic interaction is assigned either a zero or a one in a binary network or a value 

between zero and one for a weighted network. There are a number of factors which 

potentially introduce bias into the data at this stage and thus an appropriate association 

index must be used to control for these factors (Whitehead et al. 2005; Croft et al. 2008). 

Inevitably, during studies on free ranging animals, some individuals within a population are 

more likely to be sampled at a higher frequency than others due to numerous biological 

factors such as individual differences in home range, age classes and/or dispersal. The 

benefits of applying different association indices to social data are discussed at length by 
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Cairns and Schwager (1987). For the purposes of this thesis, I shall focus on the two most 

commonly used indices, the Simple Ratio Index (SRI) and the Half-Weight Index (HWI), both 

of which are used during the analysis of catshark data in subsequent chapters. The SRI 

(Equation 1) provides an absolute measure of the amount of times individual a was seen 

with individual b, relative to the amount of times these individuals were observed 

separately (Cairns and Schwager 1987). The SRI, however, assumes that within every 

sampling period the whereabouts of each individual is accounted for and thus the use of 

this index is often restricted to captive studies (Cairns and Schwager 1987). In the wild, it is 

impossible to track the location and interactions of all of the animals in a population and 

bias is often introduced due to the increased likelihood of some individuals occurring in a 

sample over others, as a simple by-product of group composition (Whitehead 1997; 

Lusseau et al. 2006; Croft et al. 2008). The HWI (Equation 2) is therefore frequently used to 

account for this bias. The assumptions for this index are that during social network studies 

of wild populations, individuals are more likely to be identified when associated together 

than when apart in separate groups. The HWI particularly is useful for when individuals are 

more likely to be observed apart than together for example, when there is no a priori 

hypothesis about strong and consistent temporal associations between group mates 

(Whitehead 2008). 

Equation 1: 
x 

(Simple Ratio Index) 
x + yab + ya + yb 

 
   

 
   

Equation 2: 
x 

(Half-Weight Index) 
x + yab + ½(ya + yb) 
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where x is the number of observations in which a and b were observed together in the same 

group, yab is the number of sampling periods in which a and b were observed in separate groups, 

ya is the number of sampling periods in which only a was observed, and yb in which only b was 

observed (Ginsberg and Young 1992).  

When dealing with movement interaction data, that is the movement of a single or 

group of animals between locations in a movement network context, many of the above 

considerations still apply. However, the adjacency matrix is constructed from interaction 

instead of association data and is thus directional as well as weighted. Simple ratio and 

simple counts of movements can therefore be used. The analysis of movement interaction 

data is addressed in detail in Chapter VI.  

 

2.4.2 Social network metrics 

The use of social network analysis facilitates both the exploration of an animal’s or a 

location’s role within the overall network structure but also the global propert ies of a 

network as a whole which can then be compared across contexts. This can be achieved by 

calculating a wide array of node-based and global network metrics. Measures of individual 

centrality for example are useful for highlighting nodes (i) which are likely to be of key 

importance to the structure of the network. Social cohesion in networks of yellow-bellied 

marmots (Marmota flaviventris) for example, is disproportionately maintained by young, 

often yearling individuals (Wey and Blumstein 2010). Such measures of centrality include 

degree (ki), which describes simply the number of edges attached to an individual node (i.e. 

its network neighbours). Degree can be further defined as In-degree (ki
in) and Out-degree 

(ki
out) within a directed network in order to determine the amount of behaviour received 

from conspecifics relative to the amount of behaviour directed towards others. Global 
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properties of a network might include the edge density which quantifies the number of 

network edges relative to the total possible number of edges for a network containing n 

nodes. These and many other social network metrics are discussed at length by Croft et al. 

(2008) and are expanded upon within subsequent data chapters where specific metrics 

have been used during the analysis.  

 

2.4.3 Analysing non-independent network data 

By definition, relational data points, such as those found in social network data, are inter-

dependent upon one another. The social interactions of one individual are ultimately 

dictated by the social behaviour of others in the population. This must be addressed 

therefore when testing hypotheses using social network data as many common statistical 

approaches assume independence (see Croft et al. 2011 for a discussion and a review of 

approaches to overcome this issue). A popular method and one used frequently throughout 

this thesis, is to use null models against which observed social or movement data can be 

compared (Manly 2006). The finer detail of the null models used here are discussed where 

necessary within each chapter as null models are often data-specific and dependent upon 

the hypotheses being tested (Whitehead 2008; Croft et al. 2011). More broadly null models 

offer a tool for randomising one component of our observed data (e.g. group size, group 

composition), whilst constraining another (e.g. number of groups) before calculating an 

experiment-specific test statistic. By permuting these random iterations, often between 

5,000 and 50,000 times dependent on when the resulting P values stabilise, a null 

distribution can be obtained which reflects the distribution of the test statistic expected 
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from random or chance associative behaviour. The observed test statistic can then be 

compared to this null distribution and significance values can be obtained.  

There remains significant interest in developing and enhancing the ways in which 

network data is analysed. For more detail on the lively discussion surrounding the 

appropriate parameters and techniques for permuting social network data refer to Manly 

(1995), Bejder et al. (1998), Whitehead et al. (2005), Manly (2006), Whitehead (2008), Croft 

et al. (2008) and Croft et al. (2011). The following data chapters offer worked examples of 

some of the methods discussed in this chapter and illustrate the need to tailor these 

analyses and models to the data in question.  

 

 

 

 

 

 

 

 



  

 
 
 
 
 
 
 
 

Chapter III. 

The effect of familiarity on aggregation 

and social behaviour in juvenile small 

spotted catsharks, Scyliorhinus canicula 
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3.1 Abstract 

 

Animals that devote time to aggregating with conspecifics may stand to benefit from 

repeated associations with familiar conspecifics. While the development of familiarity has 

been demonstrated in many teleost fishes, there is limited information on whether sharks 

(Elasmobranchii) are capable of, or known to benefit from the recognition of familiar 

individuals. This study was designed to examine whether juvenile small spotted catsharks , 

Scyliorhinus canicula aggregate and to determine whether aggregation is underpinned by 

social preferences for conspecifics. Using controlled and replicated experiments, the role of 

familiarity as a potential mechanism driving aggregation and social behaviour in this species 

was examined. Replicated familiar and unfamiliar groups (n = 10 for each) were assessed for 

social structure based on group resting behaviour. Observed S. canicula association data 

compared to null model simulations of random distributions, revealed differences in 

aggregation under different social contexts. Only familiar juvenile sharks aggregated more 

than would be expected from random distribution across their habitat. Familiarity increased 

the mean number of groups but did not significantly affect mean group size. Significant 

preference and avoidance behaviour across all groups was also observed. Furthermore, the 

strength of social attraction, quantified by the mean association index, was significantly 

higher in groups containing familiar individuals. Interestingly there was a high degree of 

variation across replicates at the individual level, with some groups assorting by familiarity 

and others not. This study, to my knowledge, is the first to examine experimentally the 

influence of conspecific familiarity on aggregation behaviour in sharks. These results not 
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only imply a functional benefit to aggregation but also suggest persistent social affiliation is 

likely to influence dispersal following hatching in this small benthic elasmobranch. 

3.2 Introduction 

 

In an aquatic environment, as on land, the neonate or juvenile life history phase is a 

particularly vulnerable time for many animal species. Survivorship within the first year is 

often low (Hall et al. 2001) and consequently juveniles may adopt a number of different 

strategies in an attempt to find sufficient food for growth, avoid predation and/or resist 

exposure to potentially lethal environmental conditions (Swaney et al. 2001; Brown 2003; 

Lürling and Scheffer 2007). One strategy that is commonly adopted is to aggregate with 

conspecifics, a strategy which might occur through both active and passive processes 

(Krause and Ruxton 2002). Such behaviour is likely to have implications for the timing of 

dispersal from natal areas. For species that demonstrate little or no parental care, such as 

elasmobranchs, these behavioural strategies might be particularly important. 

Group living in both the form of active social grouping (schooling and shoaling) and 

aggregation behaviour, has been highly selected for in both teleost (Pitcher and Parrish 

1993) and elasmobranch (see Chapter I) fishes. Aggregation behaviour implies a lack of 

social attraction between individuals and results from a common requirement for shared 

resources which are clustered in space (Johnson et al. 2002). In contrast social grouping 

arises through active social preferences between individuals (Krause and Ruxton 2002; Croft 

et al. 2008). The mechanisms and functions of both aggregation and social grouping in 

teleost fishes have received considerable attention (Brown and Warburton 1999; Swaney et 
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al. 2001; Krause and Ruxton 2002). Given that one of the main aims of this thesis is to 

explore aggregation and social behaviour in a model species of shark, aggregation in the 

context of the thesis refers to the resting behaviour of a social group where social 

preferences have not yet been explicitly tested for. Research on both adult and juvenile 

sharks has so far been largely restricted to the structure of aggregations of predominantly 

large, coastal and often tropical species, typically belonging to the families Sphyrnidae or 

Carcharhinidae (Klimley, 1985; Economakis and Lobel 1998; Heupel and Simpfendorfer 

2005a). Juveniles of many such species have been found to utilise warm shallow, inshore 

waters for breeding and parturition (Morrissey and Gruber 1993). The relatively safe and 

food abundant waters associated with tropical lagoons offer ideal nursery grounds in which 

juvenile sharks can develop and, when large enough, they are known to venture offshore 

into deeper, more productive waters (Simpfendorfer and Milward 1993; Heupel et al. 2007; 

Chapman et al. 2009). An interesting consequence of these shark nursery areas is the 

potential for repeated individual encounters between sharks. Juvenile lemon sharks 

(Negaprion brevirostris) for example, form social groups that have been shown to 

preferentially assort by body size, with larger individuals showing stronger leadership 

tendencies (Guttridge et al. 2011).  

The development of social recognition or familiarity in teleost fishes is well 

documented (Griffiths and Magurran 1997; Barber and Wright 2001; Darden et al. 2009) 

and has been shown to confer benefits in a range of species (Höjesjö et al. 1998; Swaney et 

al. 2001; Ward and Hart 2003; Jordan et al. 2009). There are distinct advantages in being 

able to discriminate between kin or familiar conspecifics (see Ward and Hart 2003 for a 

review), ranging from a reduction in competition and inbreeding, to enhanced antipredator 
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behaviour and inclusive fitness benefits (Griffiths and Magurran 1999; Frommen et al. 2007; 

Hain and Neff 2007). This ability and the mechanisms maintaining social recognition vary 

widely depending on the life history of the species (Mateo 2004). While familiarity is key in 

the shoaling and schooling of freshwater teleost fishes, little is currently understood of the 

role of familiarity in structuring interactions in social elasmobranchs. 

The current trend in analysing animal social networks (Wey et al. 2008; Krause et al. 

2009; Sih et al. 2009) is beginning to be applied to elasmobranch social behaviour (see 

Chapter I for review), with recent studies, for example, using this approach to examine the 

impact of captive male behaviour on females of differential social status in a sexually 

segregating benthic shark (Jacoby et al. 2010). Social network analysis has also been used to 

explore the social and spatial component of shark aggregations in the wild (Mourier et al. 

2012). Recently the wild social interactions of juvenile N. brevirostris were quantified 

demonstrating non-random assortment of individuals by body length and potentially 

relatedness within a shallow water tropical nursery area (Guttridge et al. 2011). 

Understanding the mechanisms, functions and temporal dynamics underpinning shark 

social behaviour is vital for assessing the vulnerability of different elasmobranch species, 

many of which require urgent conservation efforts due to persistent anthropogenic threats.  

The size and behaviour of large coastal sharks (even as juveniles) renders them 

difficult subjects in which to carry out experiments testing explicit hypotheses (see 

Guttridge et al. 2009a for an exception). Indeed, virtually all of our current knowledge on 

juvenile shark behaviour to date, comes from the tracking and direct observation of 

viviparous species in shallow, warm water habitat (Holland et al. 1993; Heupel and 

Simpfendorfer 2005b; Guttridge et al. 2009a). For obvious reasons, data on the behaviour 
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and aggregation of juvenile sharks in oviparous, deeper dwelling species are exceptionally 

rare (Powter and Gladstone 2009) and hypothesis testing, even more so. With profound 

differences in life-history traits and different habitat utilisation, oviparous sharks are likely 

to experience different selection pressures to their live-bearing relatives during 

development (Sims 2005). Whether aggregation and social behaviour plays a greater role in 

the early survival of these sharks in deeper water, remains unknown. With eggs often 

deposited in large numbers on complex habitat features (Sims 2003; Powter and Gladstone 

2009), neonates are likely to hatch very close spatially to one another, potentially occupying 

rocky crevices and other hiding places for some time. It seems pertinent then to determine, 

not only the likelihood or importance of aggregation and social behaviour, but also the 

mechanisms which might underpin juvenile behaviour in a model species of benthic, 

oviparous shark hatched from localised clutches of eggs.  

The small spotted catshark (Scyliorhinus canicula) is a small benthic elasmobranch 

common to UK coastal waters (Compagno et al. 2005). As adults, the females particularly, 

spend a significant proportion of their diel cycle refuging (group resting) in single sex groups 

in shallow water rocky crevices (Sims 2003; Wearmouth et al. 2012). More detail on the 

biology of this species is given in Chapter II. Equally, neonate S. canicula, reared in the 

laboratory (approximately 100 mm total length upon hatching), spend long periods resting 

on the bottom (e.g. only 0.6 min h-1 are spent active during daytime; Sims et al. 1993). This 

experiment was designed to test the hypothesis that juvenile (> 6 month old) S. canicula 

aggregate more than would be expected from random space use. How familiarity between 

conspecifics influenced this aggregation behaviour, was then explored. The specific aims of 

this study were to determine whether (i) recently hatched benthic sharks show a tendency 
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to form aggregations, (ii) aggregations are underpinned by non-random social preferences 

between individuals (i.e. they demonstrate social groups) and (iii) familiarity influences both 

group size/group number distribution and individual social preferences through assortative 

interactions. Using a relatively small, oviparous elasmobranch species offered a rare 

opportunity to manipulate the social environment of each individual from hatching (see 

Chapter II). A combination of analytical approaches, including social network analysis (SNA), 

were used to consider both aggregation, the formation of resting groups that may or may 

not demonstrate social preferences and social behaviour and the quantification of social 

interactions within resting groups under controlled, captive conditions. Network replication 

achieved here, remains relatively rare in studies of animal social behaviour (Croft et al. 

2011) and is used (albeit in low numbers) to consider trends across treatments. 

3.3 Materials and Methods 

 

3.3.1 Experimental sharks 

All S. canicula were reared from egg cases maintained in the laboratory and laid by wild 

female sharks (n = 13) temporarily housed at the Laboratory of the Marine Biological 

Association, Plymouth, UK between April and December 2009 (see Chapter II for more 

detail). Upon hatching, sharks used in Experiment 2 were tagged with a fluorescent visible 

implant elastomer tag (VIE; Northwest Marine Technology, WA, USA) in order to identify 

which specific individuals were associating. A total of 392 neonate and juvenile sharks were 

used in this study, all of which were held in either a large hatchery/holding aquarium (1026 

l capacity, 1.8  1.0  0.6 m) or in small numbers in isolated familiarisation aquaria (35 l 

capacity, 0.3  0.4  0.3 m) in accordance with the experimental design described below. All 
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aquaria were fed from the same circulatory seawater system described in Chapter II. 

Tracking S. canicula by individual identification post hatching ensured that all individuals 

used were exposed to the same social environments prior to experimentation. The ethics 

and husbandry for this study fall under the general methodology outlined in Chapter II.  

 

3.3.2 General methodological procedure 

During a trial, experimental sharks were removed from specific holding environments and 

transferred to experimental arenas (1026 l capacity, 1.8  1.0  0.6 m) for a 24 h 

acclimation period prior to data collection. Although the sex of an individual to be used was 

selected randomly (Chapter IV demonstrates that no evidence was found for sex effects on 

group structure), size-matched individuals were specifically chosen for all trials to control 

for potential size assortment on aggregation behaviour [mean total length, LT ± SD = 171.92 

± 8.68 mm for juveniles (> 6 months old) and 103.51 ± 4.57 mm for neonates (< 2 months 

old)]. Wild data on the activity patterns in adults of this species reveal that both males and 

females frequently spend daylight hours resting and that females particularly become more 

active at night (Sims et al. 2001; Wearmouth et al. 2012). Furthermore, juvenile S. canicula 

have been shown to show significant increases in activity rate and oxygen consumption 

(VO2) during hours of darkness (Sims et al. 1993). Data collection therefore comprised four 

scan samples per experimental day, each three hours apart (0830, 1130, 1430 and 1730 h) 

which, given the time of year (winter), was sufficient to encompass crepuscular and daylight 

aggregation behaviour. Data were collected on the number of groups (including zero values 

when all individuals were resting alone), the number of individuals per group with a 
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minimum group size of two individuals and in Experiment 2 the identity of each group 

participant.  

 

3.3.3 Experiment 1 – Familiarity and aggregation behaviour 

Experimental juveniles were selected from a large holding aquaria and were measured and 

weighed (LT between 150 and 180 mm, mean weight: 13.94 g) before being transferred on 

Day 0 of the experiment to small familiarisation aquaria (35 l capacity, 0.3  0.4  0.3 m). Here 

they were kept in groups of 10 individuals, with each familiarisation aquaria both visually 

and chemically isolated from one another. Preliminary studies using a series  of binary 

choice experiments revealed an apparent trend towards an associative preference for 

familiar conspecifics after just four days of familiarisation, although this trend was 

marginally non-significant (D.M.P. Jacoby, unpublished data). Therefore, 10 days of 

familiarisation were allowed prior to experimentation. Following assignment to these 

holding conditions, juveniles within the same holding aquaria were deemed ‘familiar’ and 

those of different tanks ‘unfamiliar’.  

Following familiarisation, whole familiar groups were transferred to the experimental 

arena for acclimation (24 h) before data collection on aggregation behaviour commenced. 

Unfamiliar groups, also acclimatised for 24 hours, were constructed by taking one individual 

from 10 familiarisation aquaria. Using four experimental arenas, two familiar and two 

unfamiliar treatments were run simultaneously until 10 replicates of each had been 

achieved. Aggregation data, as defined in the introduction and the general methods 

(Chapter II), were collected over two days providing eight samples per trial. Group sizes and 

number of groups were averaged across the eight samples for each replicate and a 
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multivariate general linear model (GLM) was then carried out to determine the influence of 

familiarity (independent variable) on the dependent variables of mean number and mean 

size of shark groups. These observed values were then compared to randomised 

distributions of group sizes calculated in a null-model simulation program coded in C#. This 

facilitated testing of whether juvenile S. canicula aggregated more than would be expected 

from chance distributions within the behavioural arena. Parameters for the simulation 

model, such as arena size, number of sharks, sampling protocol and mean size of sharks, 

were standardised to mirror the empirical experimental regime. Association parameters for 

the null model were based on a circular zone of association (ZOA) surrounding each 

individual which equated to one body length from the centre of the randomly assigned 

virtual shark. Individuals (n = 10) were then randomly assigned to the virtual arena space 

using a uniform, random distribution of x y coordinates. Associations were deemed to have 

occurred when the ZOA of one individual overlapped the centre point of another individual. 

Thus, group sizes and group numbers were recorded and averaged across eight samples, 

which was the same as that of the experimental protocol. Null models were constructed for 

each sample group which allowed each null model to be tailored to the exact mean size of 

sharks within a particular treatment, therefore accounting for any potential bias imposed 

by the ratio of shark size to arena size. This procedure was replicated 10,000 times for each 

observed group and P values were calculated from frequency distributions of the observed 

test statistic for randomised data (Manly 2006). Pilot runs of the randomisation tests 

demonstrated that 10,000 iterations were sufficient for P values to stabilise. Stouffer’s 

method for combining P values was used to produce an overall level of significance 

(Piegorsch and Bailer 2005).  
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3.3.4 Experiment 2 – Social preferences and assortment 

To determine whether aggregation behaviour was underpinned by social preferences at the 

individual level, another experiment was carried out in the same experimental arenas, this 

time using smaller neonate catsharks (< 2 months old). During this experiment, data on 

social behaviour was collected over five days (20 samples in total) for 16 replicated groups, 

again divided into familiar and unfamiliar treatments  (n = 8, per treatment). Each trial 

comprised 12 size-matched experimental sharks which were selected from small 

familiarisation/hatching aquaria, each containing four individuals. Experimental groups 

therefore consisted of either three groups of four or one individual from 12 separate 

aquaria, thus allowing testing of whether individuals assort based on familiarity within their 

smaller conspecific groups. 

Social network analysis (SNA) was used to test for preferential association between 

individuals and to provide individual metrics of sociality across networks. Manipulation of 

the association data was carried out in SOCPROG 2.4 (Whitehead 2009) whereby data on 

group membership for each trial was converted to a matrix of association using the Simple 

Ratio Index (SRI; Cairns and Schwager 1987). Each possible dyadic or paired association was 

therefore assigned an association index (AI) value between 0 and 1 based on the frequency 

with which those two individuals were observed together across the 20 samples (i.e. a 

weighted network measure). A Monte Carlo permutation test, outlined in Whitehead 

(2009) was conducted on each of the 16 replicated groups addressing the null hypothesis of 

random preference and avoidance of within-group associations. For this test, row and 

column totals of the incidence matrix were maintained, preserving group sizes whilst 

individual group membership was randomised. For each of the 16 groups, a null frequency 
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distribution was produced from 20,000 permutations, each with 1000 ‘flips’ of the data 

between columns and rows, a revised version of the Manly/Bejder procedure (Manly 1995; 

Bejder et al. 1998; Whitehead 2009). Significant dyads of preference and avoidance were 

also calculated by highlighting those dyads with a significantly higher (AI > 97.5%) or 

significantly lower (AI < 2.5%) value compared to the randomly generated distribution of 

AIs.  

Finally, patterns of assortment by familiarity within these neonate groups were 

quantified using a null simulation model that was designed to test whether within-group 

association (i.e. between familiars) was significantly higher than between-group association 

(i.e. between unfamiliar individuals). The mean value for between-group association was 

subtracted from the within-group association providing a difference which was used as the 

test statistic for this experiment. For each of the groups containing familiar conspecifics (n = 

8) participants were randomly permuted into the observed group sizes for each of the 20 

observed samples. This process was iterated 10,000 times to create a null distribution 

against which the observed values were compared. All traditional data analyses (i.e. 

excluding network analyses and null modelling) were conducted in PASW Statistics 18 (IBM 

Corp., Somers, NY, USA) and R (R Development Core Team). 

3.4 Results 

 

3.4.1 Experiment 1 – Familiarity and aggregation behaviour 

Across all replicates within the familiar treatment there were significantly higher mean 

numbers of groups than expected by random space use (Stouffer’s test: n = 10, p < 0.001). 
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However, groups differed in their patterns of aggregation. Of the 10 familiar treatment 

replicates, six demonstrated significantly higher mean numbers of groups than random 

(two tailed test: p < 0.025), whilst patterns of aggregation did not differ from random for 

the remaining four groups (two tailed test: p > 0.025). Two of the six significant groups also 

showed significantly higher mean group sizes (two tailed test: p < 0.025).  

Table 2. Summary of the null model simulation for aggregation behaviour ( Experiment 1) of 

familiar (F) and unfamiliar (UF) shark groups.  

 
 

  Mean Number of Groups   Mean Group Size  

Group Treatment  Observed Expected P  Observed Expected P 

1 F  1.13 1.63 0.8972  2.22 2.35 0.7595 

2 F  2.38 1.63 0.0017
+
  2.37 2.35 0.4497 

3 F  2.13 1.63 0.0188
+
  2.82 2.35 0.0194

+
 

4 F  2.50 1.63 0.0004
+
  2.80 2.35 0.0227

+
 

5 F  2.38 1.63 0.0017
+
  2.68 2.35 0.0634 

6 F  1.25 1.63 0.8045  2.20 2.35 0.7956 

7 F  2.25 1.63 0.0075
+
  2.78 2.35 0.0285 

8 F  1.38 1.63 0.6650  2.36 2.35 0.4520 

9 F  2.00 1.63 0.0533  2.50 2.35 0.1920 

10 F  2.75 1.63 0.0001
+
  2.36 2.35 0.4520 

1 UF  0.75 1.63 0.9954 
-
  2.33 2.35 0.5029 

2 UF  1.13 1.63 0.8972  2.00 2.35 0.9895 
-
 

3 UF  1.38 1.63 0.665  2.55 2.35 0.1537 

4 UF  2.38 1.63 0.0017
+
  2.26 2.35 0.4520 

5 UF  1.63 1.63 0.3496  2.23 2.35 0.7410 

6 UF  0.88 1.63 0.9821 -  2.29 2.35 0.6191 

7 UF  0.88 1.63 0.9821 -  2.43 2.35 0.3185 

8 UF  1.13 1.63 0.8972  2.44 2.35 0.2986 

9 UF  1.13 1.63 0.8972  2.56 2.35 0.1506 

10 UF  0.75 1.63 0.9954 
-
  2.40 2.35 0.3713 

Two tailed test: (+) Result is significantly greater than expected. (-) Result is significantly smaller than 

expected. Significance is indicated by bold lettering.  
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Conversely the unfamiliar treatment overall showed significantly lower mean group 

numbers than would be predicted under random space use (Stouffer’s test: n = 10, p = 

0.999). Of the 10 replicates for this treatment, only one group showed significantly higher 

mean group numbers (p < 0.025) with four of the remaining nine groups showing 

significantly lower mean numbers of groups than would be predicted under random space 

use (two tailed test: p > 0.975). Furthermore, all 10 groups showed randomly distributed 

mean group sizes (0.025 < p < 0.975). A summary of the results comparing the familiar and 

unfamiliar treatments is given in Table 2. 

Data on the mean number of groups and the mean group sizes of juvenile S. canicula 

in both familiar and unfamiliar treatments were normally distributed (Kolmogorov-Smirnov 

test with Lilliefors correction, p > 0.050) and satisfied the assumption of equal variance 

(Levene’s test: p > 0.050). As predicted from the previous analysis, the multivariate GLM 

revealed that conspecific familiarity significantly increased the mean number of juvenile 

shark groups (mean: Familiar = 2.02; Unfamiliar = 1.20; F1,18 = 11.570, p = 0.003, Fig. 13) but 

did not significantly influence the mean size of these groups (mean: Familiar = 2.51; 

Unfamiliar = 2.35; F1,18 = 2.965, p = 0.102), suggesting a greater number of samples where 

all individuals were resting alone in the unfamiliar treatments. 
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Figure 13. Median box-plot with inter-quartile range of number of groups formed under familiar 

and unfamiliar aggregation experiments. * Denotes significance (p < 0.01) and ° an outliner. 

 

3.4.2 Experiment 2 – Social preferences and assortment 

The permutation test for non-random association revealed that each of the 16 networks 

showed preference and/or avoidance behaviour more than would be expected by chance (p 

< 0.050, Table 3) with high variation between groups in the number of preferred and 

avoided dyads. Non-random social preferences therefore appeared to underpin the pat-

terns found in the aggregation analysis (Experiment 1). How then did familiarity affect the 

social behaviour of individuals? There was a significantly higher mean association index for 

networks containing familiar individuals (t(14) = 2.757, p = 0.015, Fig. 14), suggesting 
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familiarity promoted associative behaviour through the persistent aggregation of familiar 

sharks into several small groups. Interestingly, familiar treatments showed significantly 

higher levels of individual avoidance when compared to the unfamiliar treatments (mean 

rank: Familiar = 12.13; Unfamiliar = 4.88; U(14) = 3.00, z = -3.106, p = 0.002, Table 3), despite 

very similar levels of preferential association (mean: Familiar = 3.25; Unfamiliar = 3.38; t(14) 

= -0.116, p = 0.910, Table 3). This may reflect the fact that individuals in this particular 

experiment were housed in groups of four during familiarisation, so were familiar with only 

three out of a possible 11 other conspecifics, choosing to associate largely within treatment 

groups. To test this idea a null model was used to test for assortment in the social networks 

by familiarity. Only two of the eight groups containing familiar individuals showed 

significantly greater within-group association than between-group (p < 0.050) and thus 

assortment by familiarity. There were high levels of network variation with the overall 

effect being non-significant (Stouffer’s test: n = 8, p = 0.305). In fact in some networks, 

individuals showed marginally non-significant, negative preferences for familiar association 

suggesting high individual variation in social preferences.   

 

 

 

 

 

 

 

 

Figure 14. Mean association index between treatments containing familiar and unfamiliar 

individuals. The index is a measure of overall strength of social attraction between individuals.  



David Jacoby  Ph.D Thesis 

 

- 91 -  
 

Table 3. Summary of the test for preference and avoidance behaviour.  The test includes the 

number of significant pairs (dyads) within each network, between familiar (F) and unfamiliar (UF) 

treatments. A significant P value indicates greater levels of preference and avoidance behaviour 

compared to 20,000 random iterations of the observed association data.  

  Significant Dyads    

Network Treatment Preferred Avoided 
Obs. Mean 

Association 

Exp. Mean 

Association 
P 

1 F 3 2 0.1292 0.1372 0.0007 

2 F 2 5 0.2888 0.2990 0.0056 

3 F 6 8 0.1512 0.1626 0.0000 

4 F 0 4 0.1580 0.1717 0.0001 

5 F 2 4 0.1766 0.1904 0.0001 

6 F 2 3 0.1645 0.1828 0.0000 

7 F 4 2 0.1118 0.1215 0.0002 

8 F 7 11 0.2135 0.2268 0.0001 

9 UF 1 2 0.1587 0.1721 0.0001 

10 UF 5 1 0.1089 0.1153 0.0062 

11 UF 1 0 0.0847 0.0930 0.0001 

12 UF 4 2 0.0857 0.0907 0.0125 

13 UF 7 2 0.1362 0.1464 0.0010 

14 UF 3 0 0.1038 0.1090 0.0327 

15 UF 3 1 0.1461 0.1568 0.0003 

16 UF 3 0 0.0699 0.0760 0.0064 
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3.5 Discussion 

 

During this study groups of juvenile S. canicula were manipulated to quantify the 

aggregation and social behaviour of the early life-history stages in this benthic, oviparous 

elasmobranch species. In addition, the study sought to determine the influence of 

conspecific familiarity on gregariousness. Initial analyses of aggregation, prior to analyses of 

social associations, revealed that S. canicula do indeed aggregate more than would be 

expected from a random distribution within the arena, but interestingly, only when 

individuals are familiar with one another. The results provide strong evidence that 

familiarity, at least in older (> 6 month) juvenile S. canicula, is an important mechanistic 

driver of aggregation behaviour. Both group number and group size in familiar treatments 

were on average greater than would be expected under a random distribution within the 

experimental arenas. This result was not reflected in the unfamiliar groups. Experiment 2 

revealed significant non-random social behaviour across all replicated groups, confirming 

that social preferences appear to play an important role in structuring aggregation 

behaviour in neonate sharks (< 2 months) through either preference or avoidance between 

specific individuals. Within these social groups the mean association index (i.e. the strength 

of social attraction) was also significantly higher in familiar networks than unfamiliar. Whilst 

some groups did show evidence of assortative association, the overall effect of social 

preferences between familiars was not significantly greater than between unfamiliar 

individuals. To my knowledge, this is the first study to explore and experimentally test the 

influence of conspecific familiarity on shark aggregation. 
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There are broad accounts of aggregation behaviour across a wide range of 

elasmobranch species (see Chapter I for review) and recently, there has been burgeoning 

evidence that the challenge has gone beyond simply describing aggregation with a move 

towards determining the mechanisms and functions of such behaviour in this vertebrate 

taxa (Guttridge et al. 2011; Mourier et al. 2012). By aggregating with conspecifics on the 

basis of kin and/or familiarity, teleost fishes have been shown to benefit from reduced 

levels of competition and predation risk (see Ward and Hart 2003 for review) and it is 

possible that small elasmobranchs might benefit in similar ways. Given the size of S. 

canicula at birth and tendency for adult sharks of many species to predate upon other 

elasmobranchs (e.g. Simpfendorfer et al. 2001), predator avoidance is likely to be a 

significant driver of juvenile behavioural strategy (e.g. Sims et al. 1993 for S. canicula 

hatchlings). Variation in predation risk has been found to significantly influence social 

network dynamics determining rates of fission-fusion behaviour and the temporal stability 

of social bonds in a shoaling teleost fish (Kelley et al. 2011). As such, it is possible that 

juvenile catsharks use aggregation to dilute individual risk of attack and also habitat 

features in order to hide. The influence of habitat on social behaviour in this species is 

explored in a subsequent chapter (Chapter V) and future research directly assessing habitat 

and predation risk in a social networks context will no doubt prove insightful.   

The results of this study suggest that the tendency for juvenile, benthic sharks to 

aggregate varies as a function of their immediate social environment, with conspecific 

familiarity serving to enhance non-random grouping that probably functions as an 

antipredator strategy (Sih 1987; Rangeley and Kramer 1998). Interestingly however, there is 

a suggestion that sharks that are unfamiliar with one another, might adopt alternative 
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antipredator strategies, perhaps hiding or camouflaging against the background substrate. 

Whilst there is no evidence that wild juvenile S. canicula occupy nursery habitat until large 

enough to disperse into deeper water, it seems likely given that large numbers of egg cases 

are deposited together on and around specific habitat substrate. In this context, familiarity 

between hatchlings might be expected to develop promoting aggregation in neonates that 

hatch in close temporal and spatial proximity. Indeed, adult female S. canicula on average 

lay a pair of eggs every two to three weeks and from captive rearing of this species it was 

found that eggs from the same clutch hatch within a few days of one another provided they 

are incubated at the same temperature (Griffiths et al. 2012; D.M.P. Jacoby, unpublished 

data). Thus, by manipulating the social environments of the experimental neonates from 

hatching, the results of this study appear to support this hypothesis. Further research, 

however, is clearly required to test whether this occurs under natural conditions. 

The merits of being able to individually recognise and repeatedly associate with 

conspecifics have been explored in great detail using small teleost fishes as a model 

(Griffiths and Magurran 1999; Krause et al. 2000a; Ward and Hart 2003; Frommen et al. 

2007; Jordan et al. 2009). Evidence of non-random social preferences in these neonate S. 

canicula is consistent with temporally stable social bonds in the adults of this species 

(Jacoby et al.  2010). In the wild, female S. canicula, like all other elasmobranch species 

invest heavily in the growth and cognitive development of offspring prior to birth, but show 

no evidence of post-natal maternal care. As a result, juvenile sharks are left to fend for 

themselves from birth, often surviving in nursery groups in shallow protected waters  where 

there is greater opportunity for repeated social interactions (Heupel and Simpfendorfer 

2005b; Chapman et al. 2009). Under these circumstances, the reinforcement of individual 
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recognition and stable social bonds between juveniles may prove important during the first 

years of survival and development. This has been observed in juvenile lemon sharks, which 

show persistent social preferences, leadership and assortative behaviour for periods of up 

to eight months (Guttridge et al. 2011). Indeed, social behaviour in these young sharks 

appears also to be influenced by environmental conditions whereby juvenile N. brevirostris 

utilise warm, shallow mangrove inlets during high tide as a means of avoiding predation 

from larger adult and subadult conspecific and heterospecific sharks (Guttridge et al. 

2012a). Benthic sharks display very different behaviour to many of these well documented 

carcharhinid species, demonstrating long periods of group refuging/resting behaviour often 

in association with complex habitat structures (Sims 2003; Sims et al. 2005; Powter and 

Gladstone 2009; Wearmouth et al. 2012). Juvenile S. canicula which hatch in much deeper, 

coastal waters, however, are likely to be equally susceptible to adult predation and 

therefore aggregation resulting from non-random social attraction must also confer 

antipredator benefits. Given that the antipredator benefits of grouping will hold for both 

familiar and unfamiliar individuals, why then should non-random social grouping be 

restricted to just familiar sharks? It is probable that like teleost fishes, familiarity confers 

other additional benefits, such as a reduction in aggression or competition for food 

between group members (Krause et al. 2000a; Ward and Hart 2003) however, further 

research would be required to test this idea in sharks. 

Conducting experiments on elasmobranchs in captivity poses a number of potential 

issues including achieving sufficient replication for statistical power and having large 

enough aquaria to encourage typical behaviour. Some of these issues can be addressed by 

using small model species such as S. canicula and by quantifying behaviour such as group 
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resting. While it is acknowledged that the dimensions of the experimental area could 

potentially bias active swimming behaviour of these sharks in particular, the potential 

resting area available in the aquaria and the size of the individuals in each replicate were 

factors built into the null model. Therefore any potential bias imposed on aggregation 

behaviour was accounted for by increases in the mean of the distribution in the null 

aggregation model. Furthermore, it is important to reiterate here that all individuals were 

free to be solitary during any given sampling period. As such a minimum group number of 

‘zero’ was possible whereas the minimum group size was restricted to ‘two’ individuals 

meaning that group size and group number were not expected to negatively co-vary 

automatically.  

Using a replicated experimental design not only allowed general conclusions about 

behaviour to be drawn but also highlighted the level of individual and group-level 

heterogeneity in the social behaviour of sharks (Jacoby et al. 2010). This was particularly 

apparent in the results for social assortment with some networks showing preferential 

association between familiar individuals and other networks showing avoidance. Within an 

ecological context it is possible that some individuals, perhaps less social individuals, may 

gain more information from unfamiliar conspecifics when encountering new habitat 

surroundings, as familiar individuals have been exposed to similar a priori experiences 

(Brown and Laland 2003; Pinter-Wollman et al. 2009). Tracking the behaviour of sharks of 

different social connectivity under differing environmental and social contexts will prove an 

interesting avenue for future studies.  

Research on teleost fishes now provides a comprehensive foundation for studying 

social recognition in aquatic organisms (Ward et al. 2007). Furthermore, significant 
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developments in the application of social network analysis to study animal groups enable us 

to study these mechanisms at the level of the group and/or the population (Croft et al. 

2008). With very different life-history characteristics, elasmobranchs will no doubt provide 

an interesting group for comparison. The extent to which familiarity influences aggregation 

and social grouping in sharks is likely to reflect how important individual recognition is to 

survival during the early stages of growth and development. 

This first experimental chapter has established that S. canicula form social groups 

under conditions where conspecifics are familiar with one another. Familiarity has been 

shown to drive changes in group number and enhance the strength of social association 

between individuals. It has been  discussed how repeated individual interactions are likely 

to occur in the wild between neonates that hatch in close temporal and spatial proximity, 

however, it is equally likely under such conditions that hatchlings will also be related to 

some extent to one another. The next chapter addresses whether kin relatedness is 

important in structuring juvenile association and discusses the levels of relatedness that 

might be expected given the female reproductive strategy in this species.  
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kin-based associations in the small 

spotted catshark, Scyliorhinus canicula 
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4.1 Abstract 

 

As with many animals, social grouping between newborn elasmobranchs is potentially 

important for survival and may be influenced, in part, by both genetic and social drivers 

such as relatedness and familiarity.  Assortment by relatedness depends on two key factors; 

(i) the opportunity for kin to associate and interact and (ii) the ability of individual’s to 

differentiate among kin and non-kin and for them to actively prefer to associate with kin. 

The opportunity for associations to occur among kin will in part be determined by the 

reproductive strategy adopted by the mother. In particular, when there is multiple 

paternity (MP) – females mating with multiple males – the average degree of relatedness 

between siblings will be reduced. This chapter investigates these two key factors directly in 

the small-spotted catshark (Scyliorhinus canicula). First, the degree of MP occurring in wild 

caught individuals is examined. 150 neonates from 13 different mothers were genotyped 

using 10 microsatellite loci. Descriptive exploration of the reproductive data revealed that 

larger females laid larger eggs that were more likely to hatch than eggs from smaller 

females. MP was commonplace, with progeny from 92% of females sired by multiple males. 

In the second part of this chapter, the role of relatedness in structuring social interactions is 

explored using the neonate hatchlings from the MP experiment. Analyses of social network 

structure revealed little evidence for kin assortment or structuring by sex, with the majority 

of groups showing random associations. High MP is consistent with the reproductive 

biology of the species, particularly its protracted breeding season and potential for long-

term sperm storage. Kin association, perhaps as a result of such high MP, appears less 

important than familiarity in influencing the behavioural strategies of young S. canicula.  
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4.2 Introduction 

 

Kin recognition has been observed in many different animal species influencing association 

between siblings in different ways (Fletcher and Michener 1987). There are a number of 

adaptive benefits to being able to individually recognise kin and these will depend on the 

species in question and their respective life histories. The ability to distinguish between kin 

and non-kin for example, allows individuals to preferentially allocate resources to 

genetically related conspecifics while also enabling them to avoid costly inbreeding (Gerlach 

et al. 2008). In gregarious mammals and primates in particular, kin association is common, 

conferring both foraging benefits through reduced competition and social benefits in the 

form of alloparental care (Greenwood 1980; Silk 2002; Bradley et al. 2007). In freshwater 

teleost fish that show low dispersal such as the Lake Eacham rainbowfish (Melanotaenia 

eachamensis), female fish are able to balance the benefits of nepotism with the costs of 

inbreeding through their ability to discriminate and therefore change their degree of 

association with male kin over male non-kin (Arnold 2000). Other benefits of kin association 

include a reduction of aggression between group mates which has been shown to lead to 

increased growth rates in captive salmonids (Brown and Brown 1993) and indirect (genetic) 

benefits such as increased cooperative behaviours (Ward and Hart 2003).  

There appears, however, to be substantial variation between studies and species in 

the level of kin association observed in fishes (see Ward and Hart 2003 for review). An 

interesting example is the guppy, Poecilia reticulata that are known to be able to recognise 

kin (Hain and Neff 2007) but show no evidence of relatedness structuring social associations 

within the wild (Croft et al. 2012). Indeed, there is further evidence that in dynamic, wild 
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fission-fusion social systems, kin assortment does not occur (e.g. Peuhkuri and Seppä 1998; 

Pouyard et al. 1999) and that even within eusocial insect societies where nepotism is high, 

explanations other than kin selection might be more appropriate (Nowak et al. 2010). 

Rapidly developing genetic and behavioural analyses, however, now enable us to detect 

more subtle effect sizes and allow us to address more questions relating to kin structuring 

in situ (e.g. Croft et al. 2012). 

Kin recognition systems vary greatly across species and under different social contexts 

(Mateo 2004). Differences in mating system and life history are likely to drive the evolution 

of different mechanisms of social recognition (Ward et al. 2009). Self-referent phenotype 

matching, for example, allows individuals to discriminate between kin and non-kin by using 

their own phenotypic or olfactory cues for comparison (Mateo 2010). The concept of ‘self’ 

is often controlled by the highly polymorphic genes that make up the major histo-

compatibility complex (MHC), the genotype of which has been found to play important 

roles in mediating kin recognition (see Brown and Eklund 1994 for review). MHC appears to 

play a crucial role in species where kin recognition is a learned process instead of a self 

matching mechanism. In a study conducted by Gerlach et al. (2008), zebrafish (Danio rerio) 

learnt kin odour cues through olfactory imprinting only at a specific stage of larval 

development, a mechanism the authors suggest is controlled by the development of 

immune system MHC genes (Gerlach et al. 2008).  

While genetic control mediates some aspects of kin recognition mechanisms, social 

factors are also likely to be involved. Social recognition or familiarity of conspecifics can 

enhance the ability of fish to recognise kin (Ward and Hart 2003) but is often short-lived 

requiring repeated exposure to familiars (Mateo 2004). This repeated exposure does occur, 
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however, between individuals that are born or hatch within close spatial and temporal 

proximity to one another, particularly when juveniles remain within their natal area for 

some time (e.g. Chapman et al. 2009). Consequently the degree of relatedness between 

offspring within such ‘nursery areas’ will be dictated by female reproductive strategy. 

Female promiscuity will no doubt result in a dilution of genetic relatedness between 

offspring within nursery areas and therefore it is important to understand both female 

mating system and juvenile association to determine the role of kin in structuring 

population dynamics. One taxonomic group, that often fulfil important apex predatory roles 

within their ecosystems and in which questions about kin structuring remain virtually 

unexplored, is the sharks and rays (although see Guttridge et al. 2011). 

In their long evolutionary history elasmobranchs have developed complex 

reproductive modes expressed by variation in a range of reproductive characters, including 

the nature of ovarian cycles, gestation periods and mating systems. Nevertheless, 

descriptions of these characters remain unknown for most sharks (Carrier et al. 2004). 

Mating systems can fundamentally influence population-level processes, with polyandry 

(female mating with multiple males) and multiple paternity (MP) directly affecting levels of 

genetic variability and inbreeding, even altering the potential for adaptation within 

populations (Frankham 2005). Applying molecular markers to analyse litters of pups or 

collections of embryos has demonstrated that MP is widespread across shark species. It has 

been detected in several orders including Squaliformes (Lage et al. 2008; Daly-Engel et al. 

2010), Carcharhiniformes (Feldheim et al. 2002; Chapman et al. 2004; Daly-Engel et al. 

2006), Hexanchiformes (Larson et al. 2011), Lamniformes (Gubili et al. 2012) and 

Orectolobiformes (Saville et al. 2002). However, less detail is available on the frequency and 
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extent of MP in sharks, with the data produced suggesting it is highly variable between and 

within species (Veríssimo et al. 2011; Fitzpatrick et al. 2012). Whilst approximately 40% of 

sharks are oviparous (Compagno et al. 2005) investigations have generally focused on 

viviparous sharks, where litters of identical maternal origin can be readily identified often 

from sharks caught by fishing vessels (e.g. Schmidt et al. 2010). Consequently, the extent of 

multiple paternity in species of sharks with alternative reproductive modes is largely 

unstudied, as are the indirect repercussions of female reproductive strategy on offspring 

behaviour. 

It has been demonstrated that polyandry has both benefits and costs, for parents and 

offspring (e.g. Evans and Magurran 2000; Evans and Kelley 2008). The advantages are 

perhaps most evident for males, whereby individuals may force females to mate with them 

in order to skew the paternity of resulting offspring. However, studies of MP in sharks have 

yet to demonstrate direct benefits for females provided by males, such as gifts or paternal 

care (Chapman et al. 2004; Portnoy et al. 2007; Dibattista et al. 2008) or indirect benefits, 

such as increased juvenile survival (Dibattista et al. 2008). Given the high energetic cost 

associated with mating and the risk of problems arising from bite wounds (Pratt and Carrier 

2005), it has been suggested that MP in elasmobranchs may be driven by male benefits and 

influenced by sexual conflict (Daly-Engel et al. 2007; Portnoy et al. 2007; Dibattista et al. 

2008).  

There are increasing records that some sharks and rays, for which there is no 

evidence of parental care or cross-generational social structure, also show high levels of 

female promiscuity although there is substantial variation between species (Fitzpatrick et 

al. 2012). Determining levels of female multiple mating in sharks therefore, is likely not only 
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to inform research into the population genetic structure of these species, but also promote 

greater investigation of potential kin structuring of offspring behaviour within these 

systems. Amongst predatory elasmobranchs, social preferences and familiarity have been 

previously demonstrated (Guttridge et al. 2009a; see also Chapter III) in addition to female 

reproductive philopatry (Tillet et al. 2012), all of which represent behavioural mechanisms 

that directly affect population structure. To the best of my knowledge only one other study, 

has addressed the extent to which kin relatedness might structure shark groups. Guttridge 

et al. (2011) obtained mixed results when exploring kin assortment in a wild population of 

lemon sharks (Negaprion brevirostris), with some year groups assorting and others not, a 

result put down to inconsistencies in sample size and emigration from the study area. 

Continuing on from the examination of the structure and mechanisms underpinning 

aggregation behaviour in S. canicula in the previous chapter, this study was designed to 

determine the level of MP in wild female sharks and explore the extent to which kin 

relatedness structures associations amongst the subsequent shark pups. Juvenile sharks of 

this species have been shown to aggregate, demonstrating non-random associative 

preferences, particularly when grouped with familiar conspecifics (Chapter III). However, 

the behavioural strategies of juvenile S. canicula remain relatively unstudied, but are of 

interest given their small size and the reproductive biology of the adults. MP was expected 

to be relatively high given the protracted breeding season and long-term sperm storage 

exhibited by this species (Metten 1939). Should this be the case, relatedness (controlling for 

the effects of familiarity) was not expected to significantly structure social interactions 

between juveniles due to increased genetic diversity between offspring. Additionally, as 

juveniles were sexed upon hatching, effects of sex were also explored but again were not 
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expected to significantly structure shark associations until after maturity (Jacoby et al. 

2010). Finally, descriptive analyses of female fecundity were also conducted to evaluate any 

possible associated fitness benefits. 

4.3 Materials and Methods 

 

4.3.1 Study species  

S. canicula belong to one of the largest families of sharks, the Scyliorhinidae 

(Carcharhiniformes). The reproductive strategy in S. canicula is one of oviparity, where 

females lay pairs of eggs which are covered by a protective case and anchored on to 

macroalgae and other solid surfaces in subtidal habitats (Ellis and Shackley 1997). This 

species appears to have an unusually protracted breeding season (Ford 1921; Metten 1939; 

Capapé et al. 2008) with egg-laying in British waters generally occurring between November 

to July, peaking in June and July (Harris 1952; Craik 1978; Sumpter and Dodd 1979; Ellis and 

Shackley 1997). Annual fecundity in catsharks from southern England has been estimated at 

between 29 and 62 eggs. Eggs take five to six months to hatch depending on water 

temperature, with the average pup measuring 100.5mm total length (LT) at hatching  (Ellis 

and Shackley 1997). Sperm storage has been well described in this species, with sperm 

localised to the oviducal gland (Metten 1939). In captivity a group of females continued to 

lay eggs after 214 days in isolation (Ellis and Shackley 1997), a result that shares much in 

common with work on Scyliorhinus retifer that produced eggs that hatched normally after 

843 days in isolation, suggesting long-term sperm storage (Castro et al. 1988). In the 

Atlantic S. canicula is often caught as by-catch in demersal fisheries, but its commercial 

importance is growing, particularly through its use as whelk bait. Additionally, within the 
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Mediterranean it is targeted for consumption (Capapé et al. 2008). More information on 

the general biology of this widely distributed and relatively abundant species is given in 

Chapter II. 

 

4.3.2 Collection and maintenance of females 

Female sharks (n = 20) were captured on the 14 January 2010 during a 30 min ‘otter’ trawl 

haul at Whitsand Bay, in the English Channel (50.33° N, 4.24° W, see Chapter II). Of these 20 

sharks 13 produced a sufficient number of eggs to assess MP (minimum = 6, maximum = 

32). All sharks were transferred to the Marine Biological Association (MBA) laboratory in 

Plymouth, UK where they were weighed (mean W; 828.6 g, range 608-1008 g), total length 

(LT) was measured (mean; 613.1 mm, range 544-652 mm) and a fin clip was preserved in 

100% ethanol. The individuals were tagged with T-bar anchor tags (FD94, Floy Tag, Seattle, 

WA) to facilitate identification. All sharks were isolated from male contact from the date of 

capture until their release on 10 May 2010. The four most fecund individuals were held 

until regular egg-laying appeared exhausted (October 2010). Specific details on the aquaria 

in which adults were held can be found in Chapter II. 

 

4.3.3 Sampling of offspring 

Egg-laying females were maintained in single-sex groups for the duration of the experiment. 

During egg-laying periods, sharks were checked for eggs on a near daily basis with eggs 

being removed immediately in all individuals where egg tendrils were observed trailing 

from the cloaca. All eggs were measured (LT) and weighed (W) before being housed 
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individually in isolated compartments of an egg rack in a separate tank (see Chapter II for 

details). During this time water temperature was subject to seasonal increases between 

December and June (range: 11.4–18.0oC). Eggs were excluded from subsequent analyses if 

maternal identity was unclear, that is, the eggs were deposited without physical removal 

and so they could not be attributed to a specific female. During this study a total of 2 06 

eggs of known maternal heritage were collected, of which 27% were not used due to decay 

or lack of fertilisation (see Appendix I for hatch success and individual laying consistency – 

Table A.1. and Fig. A.1.). The remaining 150 eggs were all genotyped using 10 hypervariable 

microsatellite loci (see details below). All healthy eggs were allowed to hatch offering a 

unique opportunity to assess not only kin interaction within social groups but also 

incubation time and offspring dimensions. Upon hatching offspring were measured, 

weighed and a fin clip taken for DNA extraction. For each female the proportion of eggs 

that hatched successfully was calculated, these values were arcsine transformed in order to 

standardise values for further analyses.  

 

4.3.4 Genetic analyses 

Genomic DNA was isolated from S. canicula and 10 microsatellite loci amplified as 

molecular markers. Reliable estimates of multiple paternity involving unknown parents rely 

on knowledge of the allele frequencies in population as a whole. Thus, three sample 

collections from the western Channel were genotyped. The first collection was made at the 

same time as the gestating females (14th January 2010, n = 33), the second collection was 

made earlier from the same location (3rd April 2008, n = 20) and the third originated from 

the geographically proximate Salcombe Bay (50.21 °N 4.76°W; 9th June 2008, n = 24). A full 
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description of the techniques adopted for genotyping and for determining differences in 

allele frequencies to the source population can be found in Appendix I. 

To test for MP, mother and pup genotypes were arranged into arrays and checked by 

eye to ensure that each offspring carried a maternal allele. To facilitate comparison with 

previous studies of MP in sharks, GERUD 2.0 (Jones 2005) and PrDM (Neff and Pitcher 2002) 

were used to estimate the minimum number of sires and the probability of detecting MP 

(PrDM) in groups of pups. In order to reduce the computational burden and in accordance 

with the recommendations of Jones (2005), analyses utilising GERUD (and therefore PrDM) 

were restricted to the four loci with the highest “exclusion probabilities” (Scan02, Scan06, 

Scan14 and Scan16). These loci typically have the greatest polymorphism and thus the best 

ability to reliably reconstruct parentage. Where the program returned multiple solutions for 

progeny arrays, the solutions were ranked by likelihood, based on probabilities generated 

by both Mendelian segregation and allele frequencies derived from all samples included in 

this study. COLONY 2.0 (Jones and Wang 2010) was then used to estimate the most likely 

number of sires and reconstruct sib-ship between offspring using 10 loci. COLONY was run 

using all samples included in this study to estimate the allele frequencies in the source 

population. The error rate was set to 0.02 and two ‘long’ runs were completed to ensure 

convergence of the result. Finally, Genalex (Peakall and Smouse 2006) was used to calculate 

the Queller and Goodnight (1989) moment estimator of relatedness, giving an indication of 

full and half sib-ship. This coefficient was chosen due to its widespread use and allowed 

social behaviour of the offspring to be compared against matrices created from both kin 

reconstruction and quantitative genetic estimation techniques. 
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4.3.5 Behavioural analyses 

4.3.5.1 Kin assortment 

Once neonate sharks had been measured, weighed and fin clipped post hatching, 

individuals were sexed and tagged with visible implant elastomer tags (VIE; Northwest 

Marine Technology, WA, USA), before being housed in groups of four as part of the 

experiment described in Chapter III. Groups within a holding tank were always familiar with 

one another, however some were housed with maternal siblings and others with non-

maternal siblings. As per Chapter III, experimental social groups were constructed in large 

arenas (1026 l capacity, 1.8  1.0  0.6 m) by combining 12 individuals comprising four 

groups of three maternal siblings (i.e. four different maternal groups present during each 

replicate), each individual taken from a separate holding environment to control for the 

effects of familiarity. As with previous experiments this allowed the role of kinship in driving 

social associations to be tested for directly whilst controlling for the known effects of 

familiarity (see Chapter III). Five replicate groups which were kin but unfamiliar with one 

another, were constructed and their social networks quantified over a period of two days 

(eight samples). The sampling protocol for this experiment was consistent with the overall 

methodology used throughout this thesis for defining association (see Chapter II). The null 

simulation model that was outlined in the section on assortment by familiarity (Chapter III) 

was also adopted here to test for statistical significance between kin and non-kin 

associations. Similarly, the observed test statistic used to test for assortment amongst kin 

was the value remaining after subtracting mean kin association from mean non-kin 

association. The null model contained 10,000 randomly generated networks against which 

the observed level of kin assortment was compared.  
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4.3.5.2 Kin and sex structuring 

Following replicated network treatments, a total of 50 juvenile sharks were entered into the 

largest aquarium available at the MBA (2321 l capacity, 2.6  1.8  0.5 m). This allowed the 

exploration of putative kin structuring on a much larger spatial scale in the event that small 

effect sizes were not detected in the small network experiments. This large network was 

restricted to the 50 individuals for which the VIE tag remained clearly distinguishable and 

estimates of sib-ship had been obtained through both kin reconstruction defined by allele 

sharing in COLONY and using Genalex to calculate continuous estimates of genetic 

relatedness. Furthermore, it provided the opportunity to address whether juvenile sex 

influenced social structure. In addition to the biological insight this provided, it also 

functioned to determine whether sex of the individuals needed to be controlled for in other 

laboratory experiments. This network contained the offspring from 12 of the 13 different 

mothers. The social network was constructed over 12 samples, during a four day period. To 

determine whether kin relatedness and sex played a role in structuring the social network 

of juvenile S. canicula, the association matrix was correlated against a two different 

matrices of relatedness using the quadratic assignment correlation procedure (QAP) in 

UCINET 6 (Borgatti et al. 2002). This statistical test is a modification of the mantel 

correlation that accounts for non-independence of data within a matrix. QAP analyses were 

run to determine correlation between matrices of association indices and dissimilarity 

matrices of estimates of their genetic relatedness calculated in both COLONY (kin 

reconstruction) and Genalex (quantitative genetic estimates of relatedness). A third and 

final QAP analysis was run to test for correlation between social partners and sex. A binary 

dissimilarity matrix was constructed whereby dyads of the same sex were assigned a 1 and 
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those of a different sex a 0. The observed correlation coefficients were tested against 

10,000 randomly generated trails to obtain values of significance. 

4.4 Results 

 

Neonate hatchlings had a male:female sex ratio of 1.14:1. The mean incubation period was 

177.7 days (range 128 - 226 days), which was negatively correlated with seawater tempera-

ture (Spearman rank correlation, n = 150, r = -0.547, p < 0.001). The mean LT of neonates 

was 103.6 mm (range; 90 - 117 mm) with no significant size differences between the sexes 

(Student’s t-test: t(148) = 0.263, p = 0.793). Mean LT and mass of neonate individuals were 

positively correlated with maternal measurements after removing the three females which 

did not lay any eggs at all (two tailed Pearson correlation; LT, n = 17, r = 0.507, p = 0.038; W, 

n = 17, r = 0.565, p = 0.018; Fig. 15). Interestingly, maternal LT was also positively correlated 

with arcsine transformed hatch success across the 17 individuals that laid eggs (two tailed 

Pearson correlation: n = 17, r = 0.573, p = 0.016). There was no influence of the extent of 

female multiple mating on hatch success (Linear regression, arcsine transformed, n = 13, r2 

= 0.178, p = 0.151). 
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Figure 15. Relationship between female LT and weight (W) and the mean LT and W of offspring at 

hatching. 

 

4.4.1 Genetic analyses 

MP was assessed for the 150 offspring of 13 females. The number of eggs analysed from 

each female ranged between 4 and 28. It was recognised that the number of eggs analysed 

has a potential influence over the power to detect MP, however, there was no correlation 

between the most likely number of sires contributing to individual female progeny array 

and quantity of eggs analysed per individual (Spearman rank correlation, n = 13, r = 0.399, p 

= 0.177), suggesting that the extent of MP observed was not merely a product of sampling 

protocol. 
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Pairwise analysis of sample collections gathered from Salcombe in 2008, and 

Whitsand Bay in 2008 and 2010 demonstrated no evidence of significant population 

structure; p > 0.05 in tests for genetic differentiation and FST. Therefore, homogeneity of 

allele frequencies was assumed and samples were pooled to obtain an estimate of allele 

frequencies in the source population. No scoring issues or null alleles were detected at the 

ten remaining markers. There was no evidence of significant linkage disequilibrium or 

deviation from Hardy-Weinberg equilibrium (see methods and Table A.2. in Appendix I), 

after sequential Bonferroni correction for multiple comparisons (at the p = 0.05 significance 

level the initial alpha value for tests of deviation from Hardy-Weinberg equilibrium = 0.005). 

Exclusion probabilities from GERUD for each locus (Table A.2. Appendix I) identified 

the four most informative markers (Scan02, Scan06, Scan14 and Scan16). The total 

probability using these loci was 0.985, which increased to 0.999 when all 10 loci were used. 

Using these four most informative loci to estimate the minimum number of sires using 

GERUD resulted in genetic polyandry being detected in 12 of the progeny arrays (92%). The 

probability of detection of multiple paternity (PrDM) in the polyandrous progeny arrays was 

generally high, varying between 78% and 100%, tending to improve as numbers of offspring 

and sires increased, but fell to approximately 63% in the monogamous progeny array (Table 

4). Analysis of the most likely number of sires incorporating all 10 loci using COLONY found 

evidence of MP in the same 12 progeny arrays. The number of sires estimated in GERUD 

and COLONY were consistent in 10 of the 13 progeny arrays, while COLONY tended to 

increase the numbers of sires contributing in 2 of the 13 cases. Sib-ship reconstruction in 

COLONY showed that patterns of paternal skew were quite variable. Analysis of the 49 sets 
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of paired eggs which were laid at the same time demonstrated that 22 sets were sired by 

different fathers. 

 

Table 4. Estimated number of sires in 13 progeny arrays of S. canicula, inferred using GERUD (3 

loci) and COLONY (10 loci) software. Eggs are laid by females in pairs, enabling the number of males 

contributing to each egg pair to be identified. PrDM is the probability of detecting multiple 

paternity. 

      GERUD    COLONY 

Female ID 

No. 
offspring 

genotyped 

No. egg 
pairs 

genotyped No. sires PrDM No. sires 

No. egg 

pairs sired 
by different 

males 

Paternal 

skew 

G0376 23 5 3 0.999 2 3 17:6 

G0377 16 6 3 0.999 3 2 8:7:1 

P0551 28 12 3 1.000 3 6 14:10:4 

Y0338 21 7 3 1.000 4 4 8:7:5:1 

B1801 5 1 1 0.838* 2 0 3:2 

B1802 6 2 2 0.938 2 2 4:2 

B1803 5 2 2 0.861 2 1 4:1 

B1805 12 5 1 0.628* 1 0 - 

P0552 8 3 2 0.958 3 3 3:3:2 

P0553 5 1 2 0.854 2 0 4:1 

R1851 4 1 2 0.776 2 0 2:2 

Y0336 6 1 3 0.986 3 0 3:2:1 

Y0337 11 3 2 0.952 2 1 8:3 

* For the monogamous progeny arrays the PrDM was determined for 2 sires, with one male contributing a 
single pup. 
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4.4.2 Behavioural analyses 

4.4.2.1 Kin assortment 

In four out of the five kin networks there was no evidence of kin assortment (p < 0.05, Table 

5) with combined p values revealing no significant effects of kinship (Stouffer’s test: n = 5, p 

= 0.244). One network, however, did show significant assortment (p = 0.04, Table 5). Mean 

associations between kin and those between non-kin were also compared to random and 

on further investigation this result appeared to be driven by a mean association index (AI) 

between non-kin that was significantly lower than random, producing a large difference 

between mean kin and non-kin association (i.e. the test statistic, see Table 5). 

 

Table 5. Statistical comparison of mean kin and non-kin group association index (AI). Levels of kin 

and non-kin association were compared statistically to random association (Prand) and the difference 

between these AI values was used as the statistic to test for significant assortment.  

 

 
Mean association index 

  

Network Kin Prand Non-kin Prand Difference P 

1 0.171 (0.07)  0.314 0.156 (0.11)  0.716 0.014 0.327 

2 0.146 (0.14)  0.055 0.101 (0.11)  0.955 0.045 0.040 

3 0.060 (0.06)  0.913 0.090 (0.09)  0.210 -0.031 0.887 

4 0.093 (0.10)  0.338 0.084 (0.13)  0.602 0.008 0.367 

5 0.112 (0.13)  0.501 0.102 (0.13)  0.937 0.010 0.412 

Standard deviation of kin and non-kin AI is given in parentheses.  
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Figure 16. Social network structure of 50 juvenile S. canicula. Node colour represents maternal half 

siblings (A) and sex of individual (B). In both networks node size represents the LT of the individual 

and weight of the edge represents strength of association (mean overall network AI = 0.033).  
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4.4.2.2 Kin and sex structuring 

With MP analysis estimates very high for this species (92%), only 15.6% of sibling dyads 

within the large network of 50 individuals, were likely to be full-sibling related. QAP 

analyses determined no correlation between social network structure and relatedness 

based on kin reconstruction estimates (Pearson’s r(49) = 0.012, p = 0.278, Fig. 16A). Using the 

more accurate measure of relatedness from the quantitative genetics approach, which 

provided continuous values of relatedness, there remained no correlation with social 

network structure (Pearson’s r(49) = 0.033, p = 0.067, Fig. 16A). Although the result was 

nearer to being significant the biological effect size was very small. Finally, the sex of the 

individual did also not significantly influence social network structure (Pearson’s r(49) = - 

0.009, p = 0.323, Fig. 16B). 

4.5 Discussion  

 

In this chapter the opportunities for kin-based associations and the extent to which kinship 

was important in structuring social networks, was examined. The first part of this study 

describes a high frequency of MP (92% of progeny arrays) across a sample of 13 female 

sharks which suggested that only 15.6% of the subsequent offspring were likely to be full -

sibling related. The social preferences amongst related individuals and kin structuring 

within a large-scale network were then examined using two different estimates of 

relatedness; kin reconstruction and a quantitative genetics approach. Behavioural 

experiments using the reared offspring of these females found little evidence for kin 

assortment or overall structuring of associations by either kin or sex. These results are 

consistent with the prediction that high MP increases genetic diversity between offspring, 
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reducing the inclusive fitness benefits of preferentially associating with kin. These results 

are discussed here in two separate sections to reflect the two parts to this study, the first 

addressing female reproductive strategy and the second, juvenile social behaviour. 

 

4.5.1 MP and female reproductive strategy 

S. canicula is the first oviparous shark in which genetic polyandry has been assessed. The 

results from the two separate analyses (GERUD and COLONY) were relatively consistent 

(Table 4) and the use of multiple approaches provided a more comprehensive view of MP 

(Sefc and Koblmüller 2009; Yue and Chang 2010). The only case where a single male sired all 

the offspring occurred when there was a moderate number of 12 offspring and even the 

smallest progeny array (n = 4) demonstrated evidence of multiple sires. Of the 12 

polyandrous progeny arrays half had one male siring at least 60% of the offspring 

suggesting a degree of male reproductive skew. It is also important to note the number of 

eggs genotyped per female (4-28) was relatively small compared to the reported fecundity 

of S. canicula (29-62 eggs per year; Ellis and Shackley 1997). This is related to the collection 

of females prior to the end of the breeding season, suggesting that in a single reproductive 

year a typical S. canicula may produce offspring from far more sires than indicated in this 

study. However, the results correspond well to previous work on viviparous sharks, where 

evidence of MP has been widespread (reviewed in Daly-Engel et al. 2010). The high levels of 

MP observed are comparable to those observed in other shark species, for example the  

lemon shark N. brevirostris (81-87%; Feldheim et al. 2004; Dibattista et al. 2008) and 

sandbar shark Carcharhinus plumbeus (85%; Portnoy et al. 2007). The results are also in 

accord with investigations of the thornback ray (Raja clavata), the only other oviparous 
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elasmobranch in which MP has been assessed, that found evidence of MP in all five groups 

of eggs analysed (Chevolot et al. 2007). 

The predominance of MP in S. canicula is consistent with many features of its 

reproductive biology, particularly its protracted breeding season (Ford 1921) and the 

potential for long-term sperm storage (Ellis and Shackley 1997). This forms an interesting 

contrast to recent investigations of MP in Squalus mitsukurii (Daly-Engel et al. 2010) and 

Squalus acanthias (Veríssimo et al. 2011), which have documented some of the lowest 

frequencies of MP in any shark species (11% and 17%, respectively). Both Squalus species 

have a structurally simple oviducal gland that may not allow long-term sperm storage 

(Hamlett et al. 2005) and a protracted asynchronous reproductive cycle which may have 

little quiescent period between pregnancies (Daly-Engel et al. 2010). This may limit the 

potential for multiple matings to occur before fertilization takes place and may also 

facilitate more effective male avoidance strategies by females (Daly-Engel et al. 2010; 

Veríssimo et al. 2011). 

In larger coastal sharks such as the lemon and sandbar shark, high levels of polyandry 

have been documented (Feldheim et al. 2004; Portnoy et al. 2007). Since these species have 

low dispersal potential and a high degree of philopatry, MP may function to increase 

genetic diversity of broods and decrease sibling competition for resources (Chapman et al. 

2004; Daly-Engel et al. 2007). Mark-recapture and acoustic telemetry studies of S. canicula 

suggest limited dispersal and high levels of site philopatry (Sims et al. 2001; Rodríguez-

Cabello et al. 2004; Sims et al. 2006; see also Chapter VII), which is consistent with this 

hypothesis. However, broad scale studies of individual movements and assessment of 

migration rates with molecular markers have yet to be undertaken. Moreover, it is unclear 
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whether genetic variation between siblings has the potential to lead to long-term ecological 

benefits for offspring.  

The failure to identify any indirect benefits to female sharks (Dibattista et al. 2008) 

has meant that convenience polyandry, where females mate with multiple males as a 

method of avoiding/reducing harassment from males, may be the most appropriate 

explanation for MP (Daly-Engel et al. 2007; Portnoy et al. 2007; Dibattista et al. 2008). It is 

well documented that sexual segregation in sharks is common (Wearmouth and Sims 2008) 

and this is often attributed to the male mating strategy which is typically aggressive (Carrier 

et al. 2004; Whitney et al. 2004). A significant literature concerning the behaviour of S. 

canicula has been generated, much of which may be interpreted in light of convenience 

polyandry as an explanation for MP. The primary requisite for convenience polyandry to 

develop is that the costs associated with resistance outweigh the costs of mating (Lee and 

Hays 2004; Dibattista et al. 2008). Direct observation of S. canicula has demonstrated that 

courtship and copulation is extended and may involve harassment and aggression with 

multiple males in pursuit of a female (Dodd 1983). Furthermore, sexual dimorphism has 

been shown in mouth and dental morphology, with males developing longer, narrower 

mouths and longer teeth to aid pectoral biting during copulation (Ellis and Shackley 1995; 

Crooks 2011). Due to the potentially negative impact of multiple mating on female fitness, 

unisex refuging behaviour by females has been observed in this species and is likely to serve 

in part as a male avoidance strategy (Sims 2003; Wearmouth et al. 2012). Aggressive mating 

in other sharks has already been observed and involves the biting of fins and flank, where 

serious injury to the females can result (Carrier et al. 2004). The observation that multiple 

males harass lone female S. canicula may suggest cooperative behaviour between males to 
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induce unwilling females to copulate (e.g. mobbing), another behaviour that has previously 

been noted in sharks (Pratt and Carrier 2001; Whitney et al. 2004). This means that the 

costs of resisting mating for female catsharks could be high, potentially favouring 

convenience polyandry. The result of male aggression and female resistance may lead to 

the development of sexually antagonistic co-evolution (Holland and Rice 1998; Chapman et 

al. 2003) with sexual segregation (including bathymetric separation, Ford 1921; Steven 

1932; Sims et al. 2001) and female refuging in S. canicula (Sims 2005; Wearmouth and Sims 

2008) reflecting mechanisms to avoid or resist mating. Whilst these inferences remain 

tentative, the small spotted catshark provides a tractable model in which to begin 

investigation of shark reproductive systems, particularly as successful observation has been 

made of the species both in the wild (Sims et al. 2001) and the laboratory (Kimber et al. 

2009; Jacoby et al. 2010). The protracted breeding season and potential for long-term 

sperm storage could also render them particularly useful for studies of sperm precedence 

and competition, which have yet to be investigated in sharks.  

In this study approximately half of the 49 sets of paired eggs analysed were sired by 

different fathers. This suggests that during each oviposition cycle there is a relatively even 

chance that eggs in opposing oviducts will be fertilised by the same father. It has been 

shown that S. canicula has a single ovary with ova that are released in pairs, each ova 

proceeds independently down a separate oviduct, where fertilisation is thought to occur 

within the oviducal gland (Metten 1939). This biological trait has implications for the degree 

of half- and full-sibling relatedness between offspring from the same female, which will 

ultimately influence the level of selection on kin association in this species, as discussed in 

the next section. In elasmobranch species with paired female reproductive organs, sperm 
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deposition in the oviducts may be independent, meaning that the male’s clasper must to be 

inserted into each oviduct separately (Pratt and Carrier 2005). If a single clasper is inserted 

during mating then at least two matings would be required to fertilize eggs in both oviducts, 

suggesting multiple mating may be common. However, accounts suggest S. canicula may 

insert both claspers during copulation (Leigh-Sharpe 1926), which could also explain the 

occurrence of paired eggs sired by the same father. 

 

4.5.2 Social grouping and genetic relatedness 

Kin recognition and discrimination in gregarious fishes appears to be demonstrable under 

controlled experimental conditions (Olsén et al. 1998; Gerlach and Lysiak 2006) but remains 

more uncertain under wild conditions with evidence for kin structuring in some species (e.g. 

Fraser et al. 2005) but not others (e.g. Croft et al. 2012). The costs and benefits of 

associating with kin are discussed in the introduction to this chapter and are highly variable 

for different species, age classes and under different ecological and social scenarios (Mateo 

2004). Within the elasmobranchs, there is also uncertainty, with the only study considering 

kin structuring in shark aggregations showing year on year differences (Guttridge et al. 

2011). Whilst the results of this current study do show one social group demonstrating 

significant assortment, overall there is little evidence of kin structuring within S. canicula 

juveniles at either the small or large group scale using either estimates of relatedness. Kin 

discrimination can be of adaptive importance in both cooperative and non-cooperative 

animals for avoiding inbreeding within a population (Hatchwell 2010; Mateo 2010). In 

systems where parental or alloparental care is common or where lek mating systems or 

mating coalitions occur, kin selection appears relatively widespread amongst vertebrates 

(see Hatchwell 2010 for review). A component of kin selection theory relies on relatively 
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high frequencies of shared genes within the population through female monogamy and 

association or cooperation between close relatives (Hamilton 1964). With no parental care 

in S. canicula and the high levels of female multiple mating reported here, genetic diversity 

is likely to be high between individuals and therefore it is perhaps unsurprising that no 

evidence of fine-scale genetic structuring was found within these shark groups. It is 

important to emphasize here that failure to detect any direct link between relatedness and 

social attraction can’t entirely rule out kin selection in S. canicula. Indeed, selection may be 

more subtle than group resting behaviour and thus might go undetected using the current 

analyses. Equally, sex appeared not to influence grouping behaviour but might also drive 

behavioural strategy (e.g. dispersal) from an early age perhaps in response to 

environmental features over longer temporal scales (Litvinov 2006).     

Finally, data gathered on the incubation rates and neonate dimensions at hatching 

revealed relationships between female and neonate body size and female body size and 

hatch success, with larger females’ eggs more likely to survive to hatching and developing 

into larger offspring. This may serve to counter an overall reduction in egg production 

during senescence, however further research would be required to test this. There was no 

relationship found between the extent of multiple mating observed in each female and 

subsequent standardised hatch success. This result most likely reflects the oviparous mating 

system in this species in which all maternal investment occurs during egg production, after 

which other environmental factors and predation probably determine hatch success. 
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4.5.3 Conclusion 

This study combines genetic analyses of multiple paternity and social network analyses of 

kin association in order to better understand the link between female reproductive strategy 

in S. canicula and the social interactions of her offspring. MP was found to be high in this 

model species, consistent with many aspects of its reproductive biology, including a 

protracted breeding season and potential for sperm storage. This result is potentially a 

consequence of coercive mating by males, a hypothesis that will be discussed again in a 

subsequent chapter (Chapter VII). Neither kin relatedness nor sex were found to influence 

social network structure, where associations appeared to be all but random suggesting that 

female multiple mating leads to low levels of offspring relatedness, negating the 

requirement for strong kin selection within the population. 

This and previous chapters in this thesis have examined the influence of social 

environment and genetic relatedness on grouping behaviour in S. canicula,  revealing some 

of the mechanisms that underpin patterns of association in this species. How the ecological 

environment of these juvenile sharks influences association has yet to be investigated, but 

will be addressed in the next chapter. Furthermore, social dynamics and individual network 

position are explored in greater detail with a view to testing individual consistencies in 

social behaviour across context. 

 



  

 
 
 
 
 
 
 
 

Chapter V. 

The effect of habitat complexity on the 

social behaviour of juvenile sharks 
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5.1 Abstract 

 

The ecological and social environments into which individuals are born can greatly influence 

behavioural strategy during the early stages of an animal’s life. In particular the degree of 

complexity of a habitat can alter perceived predation risk by providing a refuge for 

predators and prey. Work on shoaling teleost fish has demonstrated that the complexity of 

the habitat can have a major effect on patterns of shoaling behaviour, a body of work which 

has provided insights into the mechanisms and functions underpinning social behaviour in 

this taxonomic group. In contrast, no previous work has examined the effect of habitat 

complexity on the aggregation behaviour of sharks. In the current study the ecological 

environment experienced by small shark groups was manipulated whilst changes in 

aggregation behaviour were monitored. Moreover the degree to which individuals show 

consistent differences in social association under different ecological conditions was 

investigated. Specifically this experimental study used replicate groups of benthic, small 

spotted catsharks (Scyliorhinus canicula) to test for consistent individual differences in 

social network position across three different habitat types that varied in their structural 

complexity. Juvenile S. canicula showed consistency in their ranked social network position 

despite evidence that more complex structures induced the formation of a greater number 

of groups. To my knowledge, this is the first study to suggest that sharks possess consistent 

‘personality’ traits through time and across contexts. Furthermore, it also contributes to the 

current discussion surrounding the use of social network position as a meaningful 

descriptor of animal personality. 

 



David Jacoby  Ph.D Thesis 

 

- 127 - 
 

5.2 Introduction 

 

Animals obtain information from a wide variety of sources which feedback to influence 

subsequent behavioural decisions (Cahan et al. 2002). In many species, environmental 

features can be a strong determinant of whether or not an animal chooses to associate with 

conspecifics (Krause and Ruxton 2002; Orpwood et al. 2008; Edenbrow et al. 2011). For 

example, when living under the risk of predation, fish may associate with other group 

mates as a shoal and/or occupying areas containing complex habitat structures such as 

rock, coral or algal structures. Associating with group mates can reduce an individuals’ 

perception of risk from predation (Pitcher et al. 1988; Brown et al. 2006) due to 

mechanisms associated with the selfish herd hypothesis (Hamilton 1971) and 

confusion/dilution effects (reviewed in Krause and Ruxton 2002). Alternatively, complex 

habitats may simply provide cover under which both predators and prey can hide. The 

complex relationship between social behaviour and habitat can thus have profound 

influence at the individual level, for example, through the ways in which animals acclimate 

to novel environments (Pinter-Wollman et al. 2009) or make decisions as to whether to join 

or leave a group (Krause and Ruxton 2002; see also Chapter I for more detail). These 

behavioural strategies can also determine gene flow within a population (Natoli et al. 2005; 

Andrews et al. 2010), information transfer between conspecifics (Darden et al. 2008) or 

dictate the growth and development of individuals, ultimately influencing the structure of 

fish communities (Allouche and Gaudin 2001). Understanding how the ecological 

environment shapes patterns of social interactions and the mechanisms underpinning 

population and individual differences in these responses is thus of great importance.  



David Jacoby  Ph.D Thesis 

 

- 128 - 
 

The structural complexity of habitat has been shown to influence in profound ways 

the grouping behaviour of teleost fishes, particularly of those under threat from a predator 

(Orpwood et al. 2008) or those engaging in courtship or sexual behaviour (Hibler and Houde 

2006). Orpwood et al. (2008) for example, demonstrated that European minnows (Phoxinus 

phoxinus), in the presence of a predator, increased their shoal size in structurally simple 

habitats only, choosing instead to reduce their rate of movement in more structurally 

complex environments. These strategies may be intuitive for prey species attempting to 

avoid active predators, as predator foraging success is reduced in complex habitat but may 

make them more susceptible to ambush predators also using these complex environments 

to remain hidden (Warfe and Barmuta 2004). The influence of habitat complexity on the 

individual social interactions in fish, whether under risk of predation or not, has received 

considerably less attention in the literature. Recent work by Edenbrow et al. (2011), 

however, suggests that individual social interactions might actually be fairly resilient to 

changes in habitat complexity. 

Juvenile sharks of small benthic species such as S. canicula, used throughout this 

thesis, are also likely to be susceptible to predation by larger conspecific and heterospecific 

predators. Consequently, individuals are often born or hatch in areas of structural 

complexity such as mangrove habitat or rocky substrate (Simpfendorfer and Milward 1993; 

Carraro and Gladstone 2006). They can remain in and around these areas for a considerable 

time (Chapman et al. 2009); a strategy adopted to counter their slow growth rates. Within 

nursery areas, by definition, individual juvenile sharks repeatedly use the same locations 

across years (Heupel et al. 2007) and as a result aggregation and social grouping can occur 

(e.g. Guttridge et al. 2011). Despite burgeoning evidence that sharks are capable of 
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‘socialising’ in a non-random manner (see Chapter I for review, see also Chapter III), there 

remains little information on the behavioural strategies adopted by juvenile elasmobranchs 

for surviving the early stages of development (see Guttridge et al. 2012a for an exception). 

Shark social networks have been described in both laboratory and wild studies (e.g. Jacoby 

et al. 2010; Guttridge et al. 2011; Mourier et al. 2012), yet the degree to which social 

behaviour in sharks might be repeatable across different ecological contexts remains 

unexplored.  

It is now well documented that across taxonomic groups individuals can show 

consistent differences in specific behaviours such as aggressiveness, boldness and general 

activity (Dall et al. 2004; Sih et al. 2004; Bell et al. 2009). Such behavioural differences are 

often referred to as animal personalities which can be broadly defined as a suite of 

correlated behaviours displayed within or across contexts (Sih et al. 2004) that are 

characterised by consistent individual differences through time (Dall et al. 2004; Cote and 

Clobert 2007). Personality traits such as boldness, aggression and activity can have 

substantial effects on both an individuals’ gregariousness and how individuals make social 

decisions under different environmental conditions. For example, in three-spined 

sticklebacks (Gasterosteus aculeatus) and guppies (Poecilia reticulata)  the boldness of an 

individual is known to be an important determinant of its position within a social network 

(Pike et al. 2008; Croft et al. 2009). Animals demonstrating different personality traits are 

also likely to mediate and maintain the structure of a social network. Under patchy food 

distributions, for instance, highly exploratory individuals in populations of European shore 

crabs (Carcinus maenas) were found to play an important role in connecting otherwise 

poorly connected individuals, whilst crabs exhibiting less exploration (low exploratory) 
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formed stable subgroups (Tanner and Jackson 2012). There is now a considerable body of 

research exploring the role of behavioural syndromes in teleost fishes, with notable 

progress made towards linking individual differences in gene expression pathways to 

consistent behavioural variation (see Conrad et al. 2011 for review). Despite this progress, 

there remains very little work considering individual consistency in social network position 

under different ecological environments.  

Manipulation of animal groups under controlled conditions allows repeated exposure 

of social groups to different ecological environments and the subsequent network 

structures can then be compared. Consistency of social network position might then be 

tested for across context indicating inter-individual differences in sociality. To date, 

considerable research into the mechanisms underpinning the fine-scale social structure and 

individual social network position has been conducted using model, freshwater teleost 

fishes (e.g. Croft et al. 2004; Croft et al. 2005; Pike et al. 2008; Kelley et al. 2011) or global 

network structure in marine mammals (e.g. Lusseau 2003; Lusseau et al. 2006; Frére et al. 

2010). It is only recently that chondrichthyans, with their very different, K selected life- 

history traits compared to teleost fishes, have begun to attract the attention of network 

practitioners wanting to study their grouping behaviour (Jacoby et al. 2010; Guttridge et al. 

2011; Mourier et al. 2012). 

This chapter addresses how a changing environment influences aggregation behav-

iour and social network structure in a model shark species. S. canicula are oviparous, 

benthic elasmobranchs found in abundance in UK and Irish coastal waters, where this 

species has been extensively studied (Sims et al. 2001, 2006; Chapter VI ; Wearmouth et al. 

2012). Neonate S. canicula hatch from egg cases that are laid on macroalgae, rocky 
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substrata and other structurally complex marine features. The behavioural strategies these 

juvenile sharks subsequently exhibit to survive, as with most benthic elasmobranch species, 

remains a mystery, although non-random social interaction between individuals familiar to 

one another appears to drive aggregation behaviour (see Chapter III). Building upon 

previous experimental chapters that discuss the social and genetic mechanisms dictating 

aggregation behaviour in juvenile S. canicula, this study tests specifically for individual 

personality defined by consistency in social network position across habitats of increasing 

structural complexity. Habitat was manipulated experimentally to reflect more natural 

surroundings likely to be experienced by these juvenile sharks whilst replicated social 

groups were monitored for fine-scale changes in social structure. In accordance with 

widespread research into animal personalities, it was expected that individual sharks would 

show some degree of consistency in their social behaviour (i.e. their relative network 

positions). It was also predicted however, that within more complex environments 

individuals would be drawn to occupy areas that might offer protection instead of 

remaining out in the open, thus increasing the level of aggregation at these locations. Such 

refuging behaviour is commonly observed in teleost fishes as an antipredator strategy 

(Krause et al. 2000b). To my knowledge, this is the first study to test directly for individual 

consistency of behavioural traits in elasmobranchs. 
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5.3 Methods 

 

5.3.1 Experimental sharks 

The group resting behaviour of juvenile (< 1 yr) S. canicula was used to assess the influence 

of habitat complexity on the aggregation and social behaviour of young sharks. Juvenile 

sharks were reared in the Marine Biological Association Laboratory, Plymouth, U.K. from 

eggs laid by wild females caught locally at Whitsand Bay, Cornwall, UK (see Chapters II and 

IV). The experiment was conducted between August and September 2011 on juveniles 

which were approximately 8 – 10 months old (n = 100) with a mean total length (LT ± SD) of 

179.7 ± 27.4 mm and a mean weight of 17.98 ± 7.6 g. Size-matched individuals were 

selected from large holding aquaria (858 l capacity, 1.65 x 0.80 x 0.65 m) before being 

tagged for individual identification using visible implant elastomer tags (VIE; Northwest 

Marine Technology, WA, USA) as per previous chapters. Once tagged, sharks were 

distributed across five smaller holding aquaria (149 l capacity, 1.22 x 0.61 x 0.20 m, 

temperature: 17.0 oC), with 20 individuals per aquaria where they were allowed to recover 

for > 10 days. As the sex of the individual did not appear to influence association between 

juveniles (Chapter IV) sex was chosen randomly from a stock sex ratio of ~1:1. The 

husbandry of experimental sharks, including feeding schedule and light cycle, can be found 

in Chapter II. 

 

5.3.2 Experimental design 

A repeated measures design was used to assess the effects of habitat on gregariousness 

and social interactions between juvenile sharks. Each group of 10 individuals, of which 
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there were 10 replicates, were transferred from the recovery aquaria where they would 

have familiarised with one another (see Chapter III) to the large experimental arenas (858 l 

capacity, 1.65 x 0.80 x 0.65 m). Four experimental groups at a time were run concordantly 

for two days during which aggregation behaviour and activity rates were examined 

periodically. Social networks were constructed from scan samples of associations taken at 

two hourly intervals between 08:00 and 18:00 h (6 samples per day). Individuals were 

deemed to be associating if they were within one body length of one another (see Chapter 

II and III for more detail).  During the 12 samples, data were gathered on group size, 

number of groups, the proportion of individuals active and the participants of each group 

for social network measures. Following data collection all individuals were returned to their 

specific holding aquaria.  

To determine whether environment influenced how the juvenile sharks associated, all 

10 groups were subject to three habitat treatments which differed in their level of 

structural complexity: 

1) Gravel – each experimental aquaria was given a natural, medium gravel substrate 

(size range diameter: 8-16 mm) spread evenly throughout the area. This was 

defined as a simple habitat. 

2) Stones – each experimental aquaria contained three discrete clusters of large 

stones (~18 x 9 x 10 cm) always in the same location and orientation constituting 

sites 1, 2 and 3. (NB. Stone ‘structures’ were sufficiently large for several groups 

of individuals to form independently of one another at each cluster). This was 

defined as a complex habitat. 



David Jacoby  Ph.D Thesis 

 

- 134 - 
 

3) Mixed – each experimental aquaria contained both of the above habitat types. 

This was defined as a combination of simple and complex habitats. More 

information is given in figure 17. 

 

Little is known about the type of habitat favoured by juvenile S. canicula in the wild, 

however, based on knowledge of the structures upon which egg cases are deposited, these 

treatments were designed to reproduce some of the habitats which are likely to be 

experienced by young sharks of this species. The subsequent ordering of these treatments 

was randomised for each group in this repeated measures design to control for any 

potential order effects. Each trial was then conducted as described above. During data 

collection, the structures around which individuals were aggregating (in the Stones and 

Mixed treatments only) were also recorded to enable preferences for specific locations to 

be assessed. 
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Figure 17. Schematic diagram illustrating the three experimental stone structures (S1, S2 and S3). 

Photographs show juvenile sharks aggregating during the simple gravel treatment (bottom left) and 

the complex stones treatment (bottom right). Arrows indicate the flow circulation of  the water.  

 

5.3.3 Statistical analysis 

To test for effects of environment on aggregation behaviour across habitats of increasing 

complexity a multivariate, repeated measures general linear model (GLM) was used. The 

dependent variables of group size, group number and activity were entered into the model, 

with an independent variable of treatment. Repeated, within-subject contrasts, applying 

the Bonferroni correction for pairwise comparisons, were used to determine the relative 

effects of treatment on behaviour. As per Briffa et al. (2008), effect size estimates (η2) were 
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also calculated to determine the proportion of variation in the dependent variables that 

were explained by the independent variable. This estimate was then compared to effect 

size estimates from analyses of association data (see below). Finally, in treatments that 

contained complex structures (Stones and Mixed) a Pearson’s chi-squared analysis was 

conducted to test for significant preferences for a particular site location. 

5.3.3.1 Network analysis 

Group membership of individuals marked with VIE tags was recorded during each scan 

sample. Weighted social networks were then constructed for the duration of each 

experiment by accumulating data on partner associations during resting behaviour for each 

of the 12 sampling periods. Using the Simple Ratio Index (SRI; Cairns and Schwager 1987), 

all dyadic pairings (two associating individuals) were assigned a weighted value between 0 

and 1 representing the strength of association between these individuals. A SRI closer to 0 

indicates that individuals were rarely/never seen associating, where as a SRI of 1 means 

individuals were never seen apart. A matrix of association from the SRI was then 

constructed for each of the 10 groups under each habitat treatment. Individual node-based 

metrics, derived from matrices of association, were calculated and included strength, the 

sum of an individual’s association indices with all other individuals in the group; reach, an 

indirect measure of connectedness that gauges the proportion of individuals that are 

connected to the node of interest via one, two, three links etc, and clustering coefficient, 

which is an indication of the role an individual plays in interconnecting groups and 

communities based on neighbour connectivity. To test for consistency in social behaviour, 

the strength of each individual’s network position was first ranked before being tested for 

concordance across treatments using Kendall’s coefficient of concordance (W). For each of 
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the 10 groups W was calculated, before a permutation test was used to determine 

significance as individual ranks were non-independent of one another (Croft et al. 2011). 

The permutation test, conducted in Poptools (Hood 2010), reshuffled individual ranks 

20,000 times providing a distribution against which observed values for concordance in 

strength were compared. The 10 individual significance values were then combined using 

Stouffer’s method as per Chapter III. These analyses were adopted to explore the level of 

behavioural consistency in the social interactions of juvenile S. canicula. Briffa et al. (2008) 

discuss how a value for W also represents a scaled effect size estimate and therefore a 

mean value for W was then directly compared to η2 from previous analyses to determine 

the relative strength of behavioural plasticity and consistency in this species. Unless 

otherwise stated, all statistical analyses were conducted in PASW Statistics 18 (IBM Corp., 

Somers, NY, USA) and network analyses in SOCPROG 2.4 (Whitehead 2009). 

5.4 Results 

 

5.4.1 Aggregation behaviour 

With the assumption of sphericity met for all three treatments (p > 0.05), the multivariate, 

repeated measures GLM revealed that there was a significant main effect of habitat type on 

aggregation behaviour (F(6,32) = 3.239, p = 0.013). Further exploration showed that there 

were significant effects of habitat on the number of groups (F(2,18) = 10.939, p < 0.001) but 

not on the group size (F(2,18) = 1.089, p = 0.358) or proportion of active individuals (F(2,18) = 

1.150, p = 0.339). Interestingly, group sizes remained virtually constant across the three 

treatments (Fig. 18). Analysis of contrasts revealed a significant increase in mean group 

number between the Gravel (simple) and Stones (complex) habitat treatments (p = 0.005, 
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Fig. 18) and a subsequent significant decrease between the Stones and the Mixed 

(simple/complex combination) treatments (p = 0.023, Fig. 18). As such the three 

dimensionally ‘complex’ stone structures appeared to encourage aggregation tendencies in 

these juvenile sharks whilst the gravel substrate appeared to have a dispersive influence. 

Figure 18. Interaction graph (± SE) of the number of active individuals (solid line), the group size 

(dashed line) and the number of groups (dotted line) during the three habitat manipulation 

experiments. * Denotes significant differences at the p < 0.05 level. 
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Structure 

Should aggregation in and around stone structures occur due to a shared requirement for a 

resource, an even distribution of groups across the three discrete clusters of stones would 

be expected. A Pearson’s chi-squared analysis was used to test for deviation from this 

expected distribution. During both the Stones and the Mixed habitat treatments there was 

clear deviation from the expected distribution with site 3 being favoured under both 

conditions (Stones: 2 = 140.621, df = 18, p < 0.001; Mixed: 2 = 117.030, df = 18, p < 0.001, 

Fig. 19). 

 

 

 

 

 

 

 

 

Figure 19. Mean number of individuals (± SE) associated with each of the three discrete stone 

clusters. Both the Stones (white bars) and Mixed (grey bars) treatments differed significantly from 

the expected distribution (dashed line). 
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5.4.2 Social behaviour 

Descriptive analyses of the social network data revealed little variation between the mean 

network metrics across the three different habitats (Fig. 20). Significant concordance was 

found in strength of individual social network position across the three treatments 

(Stouffer’s test: n = 10, P < 0.001) with a mean concordance of W = 0.464, although there 

was relatively high variation between groups (range: 0.300 – 0.731). This variation is likely 

due to the small number of individuals in each experimental group (n = 10) resulting in a 

fairly high random mean value for W within the null model. Overall however, this result 

indicated that individuals of high social connectivity in one type of habitat remained highly 

connected in subsequent habitat treatments despite the randomisation of the order in 

which treatments were presented. 

 

5.4.3 Plasticity and consistency in behaviour 

Scaled effect size estimates were calculated for the plasticity observed in juvenile 

aggregation behaviour (η2 = 0.158), which proved lower than the effect size for social 

concordance across habitats (W = 0.464) as per the methods outlined in Briffa et al. (2008). 

This result indicated that whilst juvenile sharks appear to significantly adapt their aggrega-

tion tendencies depending upon the type of habitat available, there is a stronger effect 

dictating the relative levels of social connectivity each individual commands, which appear 

highly consistent across these different habitats. 
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Figure 20. Mean social network metrics across habitat treatments. Mean strength, reach and 

clustering coefficient were calculated for the Gravel (T1), Stones (T2) and Mixed (T3) treatments.  
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5.5 Discussion 

 

It has been shown through experimentation using teleost fishes that the ecological 

environment experienced by individuals influences the social interactions of gregarious 

species through the direct (Croft et al. 2006a; Orpwood et al. 2008) and indirect effects of 

predation (Croft et al. 2003). While predation risk was not tested for specifically in this 

study, gregarious behaviour that likely serves as an antipredator strategy in juvenile S. 

canicula was explored under different habitat environments, to determine the level of 

individual consistency in social behaviour across context (otherwise known as a personality 

trait). Groups of sharks were manipulated experimentally to experience multiple habitat 

types of varying structural complexity. As predicted aggregation of these sharks was 

significantly influenced by habitat whereby the number of groups significantly increased 

during the treatment containing the stone structures (Stones), suggesting at least some 

evidence of behavioural plasticity. Furthermore, of the three discrete stone clusters, one 

(S3) was always preferentially sought by individuals attempting to aggregate. Despite 

relatively high variation between replicates, significant consistency in the strength of 

individual social network position was found across the three habitat treatments. This is the 

first indication, of animal personality traits being found within predatory elasmobranchs. In 

addition, the effect size estimates showed that consistency in sociality was a stronger driver 

of behavioural strategy than plasticity in aggregation behaviour. 

By exposing replicated experimental groups of sharks to multiple environments, the 

complex interaction between habitat and social environment can begin to be explored. The 

presence of a uniform layer of gravel in both the Gravel and Mixed treatments, for example, 
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appeared to reduce aggregation tendency perhaps as individuals were better 

colour/contrast matched with the substrate. The skin colouration of S. canicula was 

observed to adopt a lighter or darker shade dependent upon the colour of the aquaria 

background (DMPJ Pers. obs.). There is a suggestion from the results of the aggregation 

analyses that the presence of the stone structures in the arena served, to some extent, to 

drive aggregation behaviour in these juveniles. However, most individuals preferentially 

sought the same structure around which to aggregate and indeed maintained relative social 

network positions whilst doing so. This indicates that given the choice, juvenile S. canicula 

opt to utilise refuging habitat but would rather do so with other conspecifics. Indeed, by 

aggregating at three-dimensionally complex habitat features individuals are likely to benefit 

from both the dilution of risk offered by grouping with phenotypically similar conspecifics 

(Krause and Godin 1994) and a reduction in predator success in structural ly complex 

environments (Warfe and Barmuta 2004). This appeared to be borne out in this study 

where the Stones treatment induced the highest number of groups. Interestingly, group 

size was not affected and this was potentially due to the way in which aggregation was 

quantified. For simplicity, individuals were deemed to be in association if they were 

situated within one body length of the centre point of another individual (Franks et al. 

2010). Using this type of sampling it was assumed that individual sharks use visual cues to 

determine where and with whom to associate. Given the important role of olfaction in 

social recognition in teleost fishes (Ward et al. 2007), it is probable that odour cues also 

play a role in structuring elasmobranch groups. This could prove an interesting subject for 

future research but in the context of the current study might explain the preferential 

attachment of small isolated groups to the same site across both treatments (Stones and 

Mixed). It is possible that a strong olfactory signal was drawing these groups to aggregate at 
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the same location but that the large stone clusters created a physical and visual barrier 

between groups potentially explaining why group size was not influenced by habitat. 

The discovery of highly repeatable personality traits in animals is currently receiving 

considerable attention in the behavioural ecology literature (Sih et al. 2004; Bell et al. 2009; 

Krause et al. 2010; Webster and Ward 2010; Briffa and Greenaway 2011; Conrad et al. 

2011). As discussed in previous chapters (Chapter III specifically) there is now burgeoning 

evidence to suggest that some elasmobranch species demonstrate non-random social 

interactions in both the laboratory (Jacoby et al. 2010; Chapter III) and the field (Guttridge 

et al. 2011; Mourier et al. 2012). However, individual consistency in shark behaviour has 

never been addressed, despite the need to better understand and predict the response of 

species at risk from habitat disturbance and other anthropogenic influences (Robbins et al. 

2006). Perhaps predictably, given the mounting evidence for repeatable personality traits in 

other taxa (Dall et al. 2004; Sih et al. 2004; Dingemanse et al. 2010), this study revealed 

consistent individual differences in social network position through time and across habitats 

of differing structural complexity. Social and non-social measures of behavioural consis-

tency have been widely recorded in teleost fishes (see Conrad et al. 2011 for review) but 

relatively few of these studies have specifically tested for consistency under differing levels 

of habitat complexity. Recently however, Edenbrow et al. (2011) found that the social 

network structure of two isolated guppy populations was not significantly influenced by 

habitat complexity, despite being significantly different from one another due to the 

variation in predation risk associated with their source geographic locations. The results 

from Edenbrow et al. (2011) are therefore consistent with the current study suggesting that 

individuals possess consistently different levels of sociality under changing environmental 
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contexts. In the present study these individual network positions (ranked by strength of 

association) are actually consistent relative to others in the group.  

Non-random social preferences influence the social structure and aggregation 

tendencies of a wide variety of animals across a range of taxa (Krause and Ruxton 2002; 

Croft et al. 2008). Until recently, social behaviour in sharks was almost exclusively 

anecdotal, but as discussed in Chapters I and III is now beginning to be quantified in a 

variety of species. Numerous environmental features, such as tidal cycle, depth, water 

temperature and light level are often cited as significant drivers of aggregation behaviour in 

sharks (Economakis and Lobel 1998; Hight and Lowe 2007; Powter and Gladstone 2009) and 

it is probable that these will all vary considerably in nearshore environments where juvenile 

sharks are normally studied. Indeed, slow growing elasmobranchs often require complex 

habitat structures such as mangroves and rocky openings (crevices, caves) which provide 

protection in the form of cover from larger marine predators (Yokota and Lessa 2006). As 

shown here, permanent environmental features appear to be important influences on the 

aggregation behaviour of juvenile sharks suggesting antipredator motivation in this species 

as well, although further research would be required to test this specifically.  

By occupying coastal nursery areas juvenile sharks are more likely to be influenced by 

human activity, so despite strong evidence that inshore environments offer ideal habitat for 

small and juvenile shark species, there comes a need to better manage these areas from 

inshore fishing activities and development for an ever growing global population (Pauly et 

al. 2002; Knip et al. 2010). Thus, developing a clear understanding of the ways in which 

habitat influences the tendency for juvenile sharks to aggregate and indeed interact 
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socially, is of great importance to the implementation of future conservation initiatives and 

this study serves to highlight the need for further research in this direction. 

In conclusion, inshore habitats play a particularly important role in the survival and 

development of many species of shark (Yokota and Lessa 2006; Heupel et al. 2007; Knip et 

al. 2010). Although considerable attention has been paid to exploring home ranging 

behaviour and space use within these nursery habitats (e.g. Morrissey and Gruber 1993; 

Heupel et al. 2004; Heupel and Simpfendorfer 2005a,b), it is important to address, as here, 

the influence of changing environmental features on the social associations of aggregations 

of juvenile sharks. Consistency in social preference, coupled with a degree of plasticity in 

aggregation tendency under different habitat types, perhaps paints a more complex 

ecological picture than originally thought. However, greater knowledge of the behavioural 

strategies adopted by juvenile sharks for surviving the early stages of development will 

surely contribute positively towards improved conservation efforts, particularly for 

threatened or endangered species. 

This chapter, along with the two previous chapters, addresses the mechanisms and 

functions behind grouping behaviour in S. canicula using controlled and replicated captive 

experimentation. This concludes the laboratory component of the thesis with the next two 

chapters focusing on wild catshark behaviour from data gathered by passive telemetry 

techniques. As such, the laboratory experiments provide context for some of the patterns 

of behaviour observed in the wild population. 

 



  

 
 
 
 
 
 
 
 

Chapter VI. 

Developing a deeper understanding of 

animal movements and spatial dynamics 

through novel application of network 

analyses 
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6.1 Abstract 

 

Determining how animals move within their environment is fundamental knowledge that 

contributes to effective management and conservation. Continuous ‘round-the-clock’ 

animal movement data is frequently gathered using biotelemetry technology, providing 

discrete data packages on the presence-absence of animals at known locations through 

time. Current analyses of such data do not generally account for the interconnectivity of 

locations as animals move between them and consequently do not integrate graphically or 

statistically a temporal component to spatial changes. This study describes the novel 

application of network analyses to electronic tag data whereby nodes represent locations, 

and edges the movements of individuals between locations. The aim of this chapter is to 

demonstrate some of the descriptive and quantitative approaches for determining how an 

animal’s movement interconnects home range habitats. Telemetry data from arrays of 

recorders provide movement data of individual animals, and as examples of the method 

proposed the movements of two shark species, the small spotted catshark (Scyliorhinus 

canicula) and the Caribbean reef shark (Carcharhinus perezi) are examined. In doing so, 

both local and global network properties are considered from an animal movement 

perspective as are the simulated effects of node removal as a proxy for habitat disturbance. 

Comparative visual representations of two S. canicula movement networks suggest, for 

example, potential differences in space use. Multiple regression quadratic assignment 

procedure (MRQAP) showed that habitat was a significant predictor of movement 

behaviour. Null modelling of C. perezi movement data, corrected for the spatial restriction 

of static nodes, demonstrated a significant, non-random distribution of directed move-
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ments among sites. Additionally, the connectivity of this animal’s movement network was 

significantly reduced through targeted disruption of a site of high centrality but not through 

disruption of a randomly selected site. Network theory is a well established theoretical 

framework and its integration into the fast developing field of animal movement and 

telemetry has the potential to yield significant advances to how we interpret animal space 

use from electronically recorded data. This technique has potentially wide application in 

animal behaviour and ecology but may also inform the management of habitat harbouring 

threatened or endangered species via the simulation, modelling and intuitive visualisation 

of animal movement. 

6.2 Introduction 

 

Understanding how and why animals move and migrate is fundamental to the effective 

management and conservation of wild animal populations. The spatial and temporal 

structure of movement cycles are based on evolutionarily successful behavioural decisions 

in response to numerous physical, biological and environmental stimuli (Patterson et al. 

2008; Sims 2010). As human impacts on natural habitats become more widespread, 

understanding the cyclical trends involved in movement and the driving forces behind them 

are vital to the identification and potential mitigation of anthropogenic disruption 

(Southwood and Henderson 2000).  

There are acute difficulties associated with observing and recording data for highly 

mobile and wide-ranging species in their natural habitats. As such, ecologists  are 

increasingly relying on animal-borne electronic tags designed to store and in some cases 
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transmit data relating to an animal’s movement, speed, direction or environment (Rutz and 

Hays 2009). In recent years, advances in biologging and telemetry techniques have 

enhanced considerably our understanding of space use in a variety of animals from a broad 

range of environments (Cooke 2008). Ecologists now rely on such technology to estimate 

population density, home ranges and identify localised movement patterns. Radio 

telemetry, for example, has been used to track terrestrial animals including sugar gliders 

(Petaurus breviceps: Quin et al. 1992), jaguars (Panthera onca: Soisalo and Cavalcanti 2006) 

and mice (Apodemus flavicollis: Perkins et al. 2009), but also freshwater fish (McCleave et 

al. 1978). However, the frequencies used in radio telemetry are insufficient to track fish 

within a marine environment (Sims 2010). Consequently static spatial arrays of acoustic 

recorders are frequently used to monitor the short and long-term movements of a wide 

variety of marine taxa including elasmobranchs (Heupel and Simpfendorfer 2005a,b), 

crustaceans (Freire and González-Gurriarán 1998) and teleost fishes (Anras et al. 1997). 

Electronic data-logging (archival) tags, satellite-linked archival tags and Global Positioning 

System (GPS) tags are also used regularly to track large predatory fish that roam across vast 

oceanic distances, experiencing considerable changes in both temperature and depth 

(Brunnschweiler et al. 2009; Queiroz et al. 2010). Equally, large terrestrial predators are 

tracked using motion-sensitive, camera trapping techniques that are being employed to 

estimate population density and study the visitation patterns on regularly traversed routes 

in remote places, such as the Brazilian Pantanal (Soisalo and Cavalcanti 2006). Such 

advances in technology can provide ‘round-the-clock’ monitoring of individuals and it is not 

unusual for this type of dataset to contain tens of thousands of individual data points 

(Fancy et al. 1989; Heupel et al. 2010). These data however, often share a generic feature, 
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namely a time series of presence-absence data with each individual’s time stamp and 

location creating a single data point.  

The size and complexity of telemetry datasets can be challenging to visualise, analyse 

and interpret. In virtually all contemporary analyses (for review see Sims 2010), presence-

absence data at known locations are viewed as separate entities, the abundance and 

frequency of which can be correlated to biotic or abiotic variables. Descriptive analyses 

such as frequency distributions of detections and multiple tag presence-absence graphs 

offer a useful approach for exploring common patterns within a population. The most 

frequent examples of these types of analyses are found in the marine environment where 

static array telemetry is widely used to track coastal marine predators (Dawson and Starr 

2009; Speed et al. 2011). Basic inferential analyses include the generation of temporally and 

spatially structured residency indices which can be empirically compared (Abecasis and 

Erzini 2008; O’Toole et al. 2011). A more complex method for defining space utilisation and 

home ranges of animals is kernel utilisation distribution (KUD), widely used in both marine 

and terrestrial ecology. For example, home range estimates for white-nosed coatis (Nasua 

narica) in Arizona, US, were calculated for both individual solitary males and whole troops 

using a fixed-kernel density estimator with a smoothing factor which was then compared to 

the minimum convex polygons (MCPs) from previous studies (Hass 2002). The result of such 

analyses is a graphical depiction of the likelihood of an individual being found in a given 

area at a given time period, thus providing information on ‘core areas’ (see Dawson and 

Starr 2009; Speed et al. 2011 for further examples). These types of analyses offer powerful 

insights into the movements and habitat use of animals; however there is still a wealth of 

information held within these large datasets which, to the best of my knowledge, is not yet 
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being fully exploited. Further development and refinement of analysis techniques is 

required to not only identify core areas using presence and absence data, but also to 

identify, quantify and compare empirically linkages and movements between core areas, 

for example.  

For some time, ecologists have advocated the use of graph theory for explaining 

metapopulation structure and the impact of landscape connectivity on conservation (Urban 

and Keitt 2001). Graph theory considers the local and global structure of networks 

constructed from pairwise interactions of connected elements in a graphic format using 

nodes linked by one or a series of edges (see Materials and Methods for more detail). More 

recently, a desire to better understand how the internet or transport routes are connected 

has given rise to the exploration of anthropogenic spatial network structures (Gastner and 

Newman 2006; Kaluza et al. 2010). There has been some exploration of biological spatial 

networks, for example the spatial network topography of both freshwater ponds and 

roosting trees interconnected by amphibians and bats has been examined (Fortuna et al. 

2006, 2009). However, these studies do not look at individual animal movement from 

automated electronic equipment. They do however, provide new insight into the 

importance and connectivity of specific habitat features on the aggregation and disease 

transfer of the animals moving between them. Individual-based telemetry data presents an 

opportunity to utilise graph theory and enhance the potential for hypothesis-driven, 

telemetry-based field studies. This is particularly important because the frequency at which 

an animal or a group of animals occur at a given location does not necessarily underlie the 

ways in which animals move between locations. Here, an integrative and holistic approach 

that accounts for the connectivity of locations is proposed that has the potential to 
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significantly improve our understanding and interpretation of animal movement and 

habitat use. As such we might begin to use electronic tag data to address a number of 

important hypotheses regarding the movement of an individual or group of animals (see 

Table 6 for examples). 

 

Table 6. Example hypotheses (H) that could be addressed using network analysis of movement 

data obtained from animal biotelemetry data.  

  H1 Animals demonstrate repeatable movement patterns/show site fidelity  

H2 
Movements and space use differ significantly between time of day/year or 

between sex/age class 

H3 
Environmental variables can be used to predict movement between areas or 

general movement patterns 

H4 Habitat disturbance at key locations will impact animal movement  

 

From its early development in human sociology, social network analysis (SNA) has 

now become a fast growing ecological discipline adapted to study animal interactions and 

the formation of group related behaviours (Croft et al. 2008). Broadly applicable to any 

complex, interconnected system, network analysis has been used to study hyperlinkage on 

the World Wide Web (Park 2003), scientific collaboration networks (Barrat et al. 2004), 

power distribution within the national grid (Watts and Strogatz 1998) and a host of 

biological systems from protein interactions in yeast cells (Rives and Galitski 2003) to 

shoaling behaviour in fish (Croft et al. 2005). What appears most striking about this broad 

analytical approach to date is that unlike in human sociology which has employed SNA to 

study a variety of indirect human interactions (e.g. Song et al. 2010), network analyses of 
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non-human vertebrates remains almost exclusively grounded in the assessment of social 

connections, whether it be grooming (Lehmann and Dunbar 2009), shoaling (Krause et al. 

2000a) or vocal communication networks (Fichtel and Manser 2010). There seems great 

potential then, to amalgamate these two apparently disparate fields of animal movement 

analysis and network analysis, in order to explore the interconnectivity of habitat or 

resources via the animals which move freely between them (Urban and Keitt 2001; Fortuna 

et al. 2006).  

The aim of this chapter is to encourage an interdisciplinary approach to the analysis of 

animal movement and tracking data. The potential application of network analyses to 

improving the visualisation and statistical analyses of presence-absence data gathered by 

the wide variety of telemetry devices currently in use is demonstrated. This accessible 

approach is then demonstrated using two distinct telemetry datasets of shark movements 

within two separate static acoustic arrays in temperate and tropical ecosystems. The 

movement tracks within and between individuals are then compared before applying null 

modelling and node disruption simulation techniques to determine space use and 

vulnerability of the network to the loss of nodes (habitat patches). Furthermore, the 

application of this technique is discussed in the context of hypothesis -driven animal 

telemetry and the future management and conservation strategies of a wide variety of 

terrestrial and aquatic taxa.  
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6.3 Materials and methods 

 

In an attempt to illustrate the potential benefits of using network analyses to analyse, 

visualise and interpret these vast and often disparate packets of data, two distinct datasets 

are interrogated from the marine environment where static array, acoustic telemetry is 

widely used (Sims 2010). The movements of two predatory shark species are investigated: 

S. canicula tracked within a small, deep-water acoustic array at Whitsand Bay, Cornwall, UK 

(Fig. 21) and C. perezi tracked using a large acoustic array (32 receivers) in the shallow 

waters off the coast of Cape Eleuthera, Bahamas (Fig. 22).  

 

Figure 21. Spatial layout and topography of an acoustic receiver array at Whitsand Bay, Cornwall, 

UK. The array contains six data-logging receivers where the dotted circles around each receiver 

indicate the approximate detection range. Topography is represented by multibeam sonar swaths 

with darker colours indicating rocky habitat. The continuous black line denotes the coastline. 
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Figure 22. Spatial layout of acoustic receivers within an array situated off the coast of Cape 

Eleuthera, Bahamas. Circles represent receiver location and the size of the circle  represents the 

number of detections logged during the movements of a male C. perezi tracked for 14 months.  

 

Methodological details of the capture, tagging and acoustic tracking of S. canicula is 

provided in the next chapter (Chapter VII) and in Appendix II: A.2 for the Caribbean reef 

shark dataset. The data here represent individual, unreplicated animal tracks which are 

used to demonstrate the specific application of this approach. These data have been 

selected to illustrate how network analyses account for the interconnectivity synonymous 

with telemetry data and furthermore how statistical analyses of these animal tracks can be 

explored in their entirety or in a restricted format enabling specific hypothesis testing. For 
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ecological insight into S. canicula movements using this methodological approach see 

Chapter VII. 

 

6.3.1 Working with network data 

Network theory relies on the notion that complex interconnected systems are made up of 

nodes connected by edges. Nodes may represent anything from individual organisms, 

physical locations or centres of information and may be dynamic or static within their 

environment. Edges, whether binary (0 or 1) or weighted relative to an index (continuous 

values between 0-1, see Chapter II), are equally variable and might encapsulate physical or 

emotional interactions or associations between network nodes (social networks), 

directional flow of information or disease, or the mobility of organisms between fixed 

locations. Nodes and edges are assimilated into a network of interconnected nodes (e.g. 

Fig. 4) from which a number of quantitative metrics can be calculated that can describe 

both local and global network structure. In particular, node-based metrics (local properties) 

can be used to describe the influence individual nodes (i) have on the overall network 

structure and are determined from the level of interaction one node has with any other 

node, either directly or via intermediaries. Unlike in previous chapters, in the present study 

an interaction (or edge) between two nodes constitutes the movement of an individual or 

group between two areas with the weighting of this movement edge relative to the 

frequency with which this directed movement is made by individuals. Common node and 

edge-based metrics are summarised below: 

Centrality – Measures of local centrality indicate a nodes’ importance directly via its level of 

connectedness. Degree (ki) for instance, is a local measure of the number of direct links or 
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edges attached to a node and therefore degree centrality gives an indication of the 

reachability of a node or location. Degree may be further refined to account for In-degree 

(ki
in) and Out-degree (ki

out) in order to explain entry and exit points or gateways to an area 

of interest or conservation concern. An area with a high degree centrality for example, 

would suggest strong site fidelity by wide ranging animals. In this instance animals may 

return from many different areas but always back to the same location, as described for the 

home ranges of Galápagos sealions (Zalophus wollebaeki; Wolf et al. 2007) for example.  

Betweenness – Betweenness (Bi) offers a property that can be measured for individual 

nodes or as a global mean and is based on the number of paths that pass through a specific 

node, from one node to another via the shortest path length. Transient or migratory species 

for example may divert to a specific habitat, such as a watering hole, en route to another 

location (Wolanski and Gereta 2001). These areas of high betweenness might provide 

access to a limited resource or be important for the social exchange of information and 

therefore are likely to promote aggregation (Krause and Ruxton 2002; Chapter I). Such 

localised node metrics may prove beneficial in assessing the relative importance of specific 

locations to the core movements of site faithful or territorial animals. 

Degree Distribution – Equally there are global properties of these movement networks, 

such as the degree distribution P(K) across all habitat locations, which reveal important 

structural components within the network. These can be used to model the possible effects 

of disturbance on the current space use of an animal (see Rhodes et al. 2006 for example). 

Average Path Length – Another global property worth considering is the average path 

length (L) between all nodes. This metric provides a measure of how easily, or indeed likely, 
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an animal moves between locations on average and is useful for comparing networks 

between individuals or age classes. 

Density – Finally, Edge density (E) represents the proportion (or percentage) of actual edges 

present, out of the total number of edges possible in a given network (E = 1). This measure 

is likely to inform analyses of random and non-random space use in animals. 

 

6.3.2 Data processing 

The large amounts of data produced from biotelemetry techniques can today be explored 

in spreadsheet or database programs for a variety of statistical analyses. Modern programs 

offer a range of functionality and algorithms for sorting, sampling and randomising data and 

it is relatively straight forward to automate searches or run queries within the data to pick 

out interactions or movements of different animals between receivers or locations. 

Spreadsheets or simple text files of interaction data can then be fed directly into one of 

several programs developed specifically for analysing interaction or association data. In this 

study SOCPROG, a MATLAB based program designed for analysing social structures in 

animal groups (Whitehead 2009) and UCINET (Borgatti et al. 2002) are used, both of which 

offer a comprehensive set of network analysis tools (see Appendix II: A.2.2 for links to 

programs and manuals). These programs were used to manipulate the data into full 

matrices of directed shark movement interactions between receivers within their 

respective arrays, upon which all further analyses were conducted (see Appendix II: A.2.3 

for example matrices). Once the data is entered into a program, there are a number of 

considerations to bear in mind when creating a movement interaction matrix:  
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Absolute or Relative Edge Weighting – The matrix can either comprise absolute values, 

where weighted edges represent a total count of movements between two nodes or a 

relative proportion of the number of times a movement is made between node A and node 

B, divided by the total number of movement edges in the network (see A.2.3 for further 

information). Absolute interaction data (hereafter AID) and relative interaction data (RID) 

are likely to produce very different movement networks as RID controls for the time spent 

within the monitored area. However, AID can provide a useful insight into temporal space 

use in animals. Both RID and AID, each containing directed movements, are used in the 

following analyses in order to illustrate the potential uses of count and proportional data 

for biologically meaningful exploration. 

Sampling rate – When an interaction measure relates to a physical movement, we are 

primarily working with dyadic pairings (two locations and an edge between them), in the 

form of directed movements between one node and another. Therefore, each sample will 

simply relate to each movement step made between a pair of locations. Weighted and 

directed movements are considered in this paper. 

Filtering/restriction – It is at this stage in the data preparation that a network/matrix can 

be easily filtered or restricted using various column headings in the raw data file in order to 

consider only certain aspects of the dataset. This might include restricting a network to 

purely immediate movements between locations, by filtering at an edge duration (Et) of ≤ 1 

hr or 30 min for example. Additionally, temporal restrictions can be placed on the data to 

consider specific seasonal movements or alternatively tagged animals might be categorised 

for quantitative comparison of movement networks between classes. 
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6.3.3 Network visualisation 

Suppose the data now comprise a complete or filtered matrix format, visual exploration of 

the data is highly recommended. This can be achieved in both SOCPROG and NETDRAW, the 

latter being a visualisation component of UCINET, by simply loading the file containing the 

interaction matrix. Furthermore, a list of node-based properties, often referred to as 

‘attributes’, can be entered parallel to the interaction matrix. Node attributes within a 

movement network, for example, might include habitat type, canopy cover, water depth or 

number of animals present. Node size and colour can be altered in accordance with these 

attribute data to illustrate detection frequency, sex or specific geographic variables. 

Additionally, visual filtering of edge weight in some movement networks (e.g. NETDRAW 

allows the switching on and off of nodes and edges) might reveal clear distinction between 

home ranges and exploratory movement behaviour. Network visualisations can then be laid 

out in a number of different ways based on the structural properties of the network in 

question (see Fig. 22). Equally useful however is the ease with which nodes in these 

programs can be moved around or referenced to specific locations or environmental 

features, facilitating the overlay of a network on a map using mapping tools such as GIS. 

Alternatively, movement networks might not require spatial reference, in which case there 

are a number of functions such as multidimensional scaling or spring embedding that will 

aid visual representation of networks based on edge weights and measures of centrality. As 

such, network analyses offer a vast and intuitive array of visual manipulation techniques 

which are extremely useful for informing further quantitative analyses.  
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Model visualisation 1. The AID for the annual movement of two example S. canicula 

individuals (9114, male) and (9127, female) were drawn up into comparative network 

visualisations using NETDRAW. Node size was manipulated to reflect the residency times 

throughout the year based on the frequency of detections at each acoustic monitor (Fig. 

23). 

Model visualisation 2. The Cape Eleuthera array represents a dynamic system of 32 

receivers. The annual space use of a juvenile male reef shark (0.89 m LT) represented as RID 

is given in figure 24 and includes a spring embedded visualisation of the network (Fig. 24A). 

Node colour was then manipulated to indicate the core areas or home ranges of this animal 

during the first and last 7 months of its total track (Fig. 24B and 24C) using the centrality 

metric described above (Ki).  

 

Figure 23. Movement networks of a male and a female S. canicula tracked in Whitsand Bay during 

2010. Networks represent absolute interaction data (total counts) of movements betwee n receiver 

locations (i.e. greater edge weight shows more frequent interactions). Node size indicates detection 

frequency. Circles around receivers indicate approximate detection range.  
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Figure 24. The weighted, < 1hr filtered track of an individual C. 

perezi. The one hour filter was chosen based on average swimming 

speed of this species and the average distance between receivers in 

the array. Relative interaction data (RID) for this individual is 

represented without spatial reference using spring embedding and 

node repulsion (A) and then with spatial reference during the first 

(B) and last (C) 7 months of the acoustic track in order to 

demonstrate changes in space use through time. Node colouration 

represents degree (k) and ranges between 0.57 (high centrality) 

and 0.00 (no centrality). 
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6.3.4 Statistical analyses and null modelling 

Model analysis 1. Calculation of node-based metrics were carried out in UCINET using the 

‘Network > Centrality > Degree/Betweenness’ functions, which are a small subset of an 

extensive range of analyses designed to calculate different structural properties within 

network data. Some of these analyses, not presented here, are also likely to prove suitable 

for analysing interaction data on animal movements.  

Node-based metrics, of betweenness (Bi) and directed In- and Out-degree (ki) were 

calculated and compared between the male and female (RID) catshark movements (Fig. 23) 

to illustrate how replication of movement tracks between different sexes might yield insight 

into behavioural strategies. Network measures are summarised in Table 7. 

 

Table 7. Comparative summary of the node-based metrics betweenness, in degree and out degree 

for the male and female S. canicula throughout 2010. Male and female sharks made intermittent 

use of the habitats covered by the acoustic array for 277 and 317 days respectively. Values 

represent network analyses of RID with AID given in parentheses. 

 Male (9114) Female (9127) 

Receiver Bi kiin kiout Bi kiin kiout 

1 10 0.28 (17) 0.30 (18) 5.5 0.45 (84) 0.47 (86) 

2 10 0.40 (24) 0.40 (24) 2 0.10 (19) 0.09 (17) 

3 7 0.23 (14) 0.18 (11) 1.5 0.32 (59) 0.35 (65) 

4 0 0.02 (1) 0.05 (3) 0 0.03 (6) 0.01 (2) 

5 0 0.00 (0) 0.017 (1) 2 0.07 (13) 0.07 (13) 

6 0 0.067 (4) 0.05 (3) 0 0.02 (4) 0.01 (2) 

Mean 4.50 0.17 (10) 0.17 (10) 1.83 0.17 (31) 0.17 (31) 

Network 
Centralisation (%) 

19.77 22.40 
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Model analysis 2. The inherent nature of network data rules out the use of many traditional 

statistical analyses due to the violation of the common assumption of independent data 

points. As such, current statistical approaches largely rely on generating null network 

populations by randomly permuting various aspects of the dataset (Croft et al. 2011). The 

observed network structure is then compared to the distribution of a large number of 

randomly permuted networks generating a P value of significance (see previous chapters 

for examples). Clearly, general biological conclusions about species specific movements also 

require multiple individual tracks. Incorporated within the network programs discussed 

above are a number of other statistical analyses designed to handle non-independent, 

matrix data. Multiple regression quadratic assignment procedures (MRQAP) are designed 

for permuting multiple linear regression coefficients of data in square matrix format 

(Dekker et al. 2007). These techniques have been successfully employed in studies of non-

human (yellow-bellied marmots, Marmota flaviventris; Wey and Blumstein 2010) and 

human social networks (Harrison et al. 2011) for regressing age, relatedness and 

cooperative input against social network structure. 

Using the double Dekker semi-partialling procedure built in to UCINET, MRQAP was 

used to determine the environmental variables linked to individual directed catshark 

movements within the acoustic array. Environmental data attributed to each of the six 

acoustic receivers were converted into similarity matrices using the ‘Data > Attribute to 

matrix’ function whereby absolute differences between receivers yielded positive values of 

the distance between the attribute scores of a pair of nodes (or locations). The attributes 

included were (1) inshore or offshore receiver location, (2) mean depth of the area within 

detection range of each receiver, and (3) a habitat complexity score based upon averaging 
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arbitrary, but consistent values of rugosity and habitat substrate. These similarity matrices 

were then regressed against the RID on the annual, direct movements (< 1 hr) and space 

use of the two catsharks throughout 2010.  

Model analysis 3. There are several methods for carrying out statistical analyses of network 

data using null modelling and randomisation of real movement data that can be interpreted 

intuitively from a movement analysis perspective. Comparing some structural property of 

the movement network, such as mean density (D), centrality (C) or path length (L) to a suite 

of random networks is a useful method for determining whether an animal is using an area 

in a random manner. This is likely to prove useful when combined with the above 

regression analyses, for testing specific hypotheses (see Table 6). There are however, a 

number of ways in which interaction matrices can be permuted to create random networks 

and these might differ from how some networks of social interaction are randomised 

(Whitehead et al. 2005; Croft et al. 2011). Given that the network nodes are spatially 

restricted in telemetric movement networks (i.e. direct movements between one pair of 

nodes is more likely than another because they are nearer one another) it would be unwise 

to permute either nodes or edges in the random networks without accounting for this 

spatial bias. Therefore, the random networks need to preserve aspects of the most likely 

spatial arrangement of the network structure.  

To determine whether the model Caribbean reef shark showed random use of the 

acoustic array, the variance in degree (ki) for the <1 hr filtered AID was calculated for the 

observed track disregarding any nodes which were not visited by this individual (i.e. thos e 

nodes not connected in Fig. 24). This observed value was compared to the frequency 

distribution of the same test statistic calculated on a series of permuted (randomised 
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networks). In order to preserve spatial structure in the data, observed individual movement 

events (n = 624), which contributed to overall edge weighting, were permuted to create 

replicated (weighted) movements from the raw data. Reassignment of these individual 

directed movements during each permutation, were constrained to only directional edges 

between pairs of locations which occurred in the empirical movement network (see Fig. 24). 

The permutation was done using a Monte Carlo simulation in POPTOOLS (Hood 2010) 

creating a distribution of 10,000 random networks against which variance in degree (ki) of 

the empirical data was compared to generate a P value. This provided a conservative test, 

based only on the known movements from the observed data, with which to determine 

whether the frequencies of movement between specific receivers were likely to have 

occurred under random movement.    

Model analysis 4. It is probable that if an animal is demonstrating non-random space use of 

an area over extended periods of time, then there are attributes associated with those 

areas that are favourable to that animal during its current phase of development, whether 

it is protection, food availability or appropriate temperature ranges. It is useful then to 

attempt to predict how an animals’ movement might be impacted by disturbances in 

habitat at different locations. The disruption of nodes in a movement network (i.e. removal 

of edges connected to a node) might serve to simulate the impact that habitat destruction 

is likely to have on an animal’s space use. Thus this can be used to model the effects of 

natural and anthropogenic disturbance on animal movements, particularly among animals 

with high levels of site attached behaviour. Consequently, this technique has the potential 

to be used for impact assessment and strategic conservation measures by determining how 

likely an animal or group of animals is to disperse from an area if one or several nodes 
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become unavailable (Rhodes et al. 2006). However, it does not account for the potential for 

animals to adapt to such disturbances.  

The ecological basis for this type of ‘knock out’ analysis is perhaps most suitable for 

movement between more isolated and diverse habitat locations and as such the relatively 

small-scale C. perezi movement track presented here, does not necessarily offer a real 

world example where a knock out is expected to have population consequences. It does, 

however, serve an illustrative purpose, indicating the potential use of this approach to 

conservation measures whilst also highlighting the importance of considering 

interconnectivity in telemetry data as compared to analyses of static individual locations. 

Using the full, < 1hr filtered, RID interaction network, edge betweenness (Be) was calculated 

between nodes in a matrix format and compared before and after the targeted disruption 

of a node with a characteristically high centrality (9b) and that of a randomly generated 

node (9a). Matrices of Be for the targeted and random node-disrupted networks were 

compared to Be from the full movement network to determine whether network 

connectedness was significantly impacted. This was achieved using the ‘Network>Compare 

densities’ function in UCINET. Statistical tests were one-tailed as we would expect 

connectedness to reduce to some extent with the removal of any movement edges. 

Random sub-sampling (20,000 bootstrap samples) of the network provided a way of 

estimating variance within these tests. 
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6.4 Results 

 

6.4.1 Small spotted catshark dataset 

Model visualisation and model analysis 1. Comparative descriptive analyses of the example, 

unreplicated male and female S. canicula movement data reveal distinct differences in 

habitat use and residency times within the area under acoustic observation (Fig. 23). Node 

size and edge weight, representative of detection frequency and frequency of movement 

interactions (AID) respectively, suggest that this particular female is utilising the area to a 

greater extent than the male. Individual node-based metrics support this idea (Table 7), 

revealing greater overall network centralisation or density (E) in the female movements 

(female: 22.40%, male: 19.77%), but interestingly, a higher mean betweenness centrality in 

the male network (female: 1.83, male: 4.50). This value of B for the male shark track 

appears to be heavily influenced by exclusive and persistent movements along the inshore 

half of the array. Even at this scale, using model data, there is apparent segregation in space 

use and movement between locations as evidenced by the stark differences in degree (k) at 

node 2 (Table 7).  

Model analysis 2. Using more quantitative analyses, relative interaction data (RID) on the 

directed movements of the male and female catsharks were regressed against the 

environmental attributes of each of the six receiver stations in order to address the 

potential influence of habitat type on shark behaviour. Attribute similarity matrices were 

entered into a multiple regression quadratic assignment procedure (MRQAP) which was run 

against individual movement networks. The regression coefficients individually were non-

significant predictors of either movement track. As a model however, the difference 
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between the edges in terms of habitat similarity, can be used to predict the strength of the 

movements made by both the example female (R2 = 0.181, P = 0.018) and the male shark 

(R2 = 0.166, P = 0.036), perhaps with a suggestion that in these cases habitat type is a 

stronger determinant of the female’s behavioural strategy. 

 

6.4.2 Caribbean reef shark dataset 

Model visualisation 2. Using a single shark track from a much larger, more dynamic telemetric 

dataset, a number of other animal movement and space-use analyses are explored from a 

network perspective. The RID for a Caribbean reef shark (C. perezi) track has been visually 

represented in several different ways (Fig. 24) which can be used interchangeably 

depending upon the type of data exploration required. Figure 22, shows the spatial 

arrangement of the array with the detection frequencies for each of the receivers overlaid 

on top. Spring embedding of the network (Fig. 24A) disregards the spatial arrangement of 

the receivers, but demonstrates the centrality of some locations over others based upon 

individual node-based metrics. These visualisations are easily manipulated to mirror the 

exact spatial arrangement of the array (Fig. 24B, 24C) and further insight is gained by 

representing receiver attributes across nodes. Visual analyses of the movement patterns of 

this juvenile shark, between the first and last seven months of tracking, illustrate interesting 

changes in space use and home range of this animal throughout time and ontogeny.     

Model analysis 3. Null modelling, which preserved the spatial network structure, was used to 

create a frequency distribution of the variance of ki across 10,000 random networks. 

Significance values were produced from direct comparison of the observed data to this 

frequency distribution. The variance distribution of edge weighting amongst the observed 
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shark movement network was significantly higher than would be expected from random 

space use (P < 0.001).  

Model analysis 4. The targeted node disruption (i = 9b) had the effect of significantly 

reducing network connectedness (Paired sample t test; t(31) = 1.904, p = 0.044), whereas 

assigning a random node for disruption (i = 9a), despite being adjacent to the targeted 

node, appeared not to impact connectedness significantly and, thus, the animal’s 

movement pattern (Paired sample t test; t(31) = 0.675, p = 0.210). Interestingly, both nodes 

had a similar number of detections suggesting detection frequencies, often relied upon 

quite heavily in more traditional analyses of telemetry data, are not necessarily indicative of 

the underlying movement network of an individual. Standard error for this analysis was 

calculated using 20,000 bootstrap samples and the results are summarised in Table 8.  

 

Table 8. Statistical comparison of edge betweenness (Be) for targeted and random node removal. 

This was calculated by comparing a measure of connectedness between the full Caribbean reef 

shark RID movement track (14 months) and the same track with the simulated random and targeted 

disruption of one node. Standard error (SE) estimates were produced from 20000 bootst rap 

samples. 

Network 
Node 

Removed 
E E-Esim Detections (n) p* 

Full  - 1.207 0.000 - - 

Random 9a 1.129 0.079 462 0.210 

Targeted 9b 0.754 0.454 550 0.044 

 

* Values indicate one tailed significance tests as mean Be is expected to reduce with the removal 
of edges. 
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6.5 Discussion 

 

This study examines the novel use of network analyses to understand and interpret animal 

movement and space use gathered via passive electronic tagging equipment. Traditional 

analyses of animal biotelemetry data appear largely to ignore the connectivity between 

areas preferring instead to evaluate presence-absence data in a non-dynamic, static format. 

Given that biologging and biotelemetry techniques are currently undergoing rapid 

development (Rutz and Hays 2009) there is a need to address this connectivity in relation to 

how tagged animals are moving within and between these data collection points (Urban 

and Keitt 2001). The conversion of data into a movement network/matrix format provides 

edge-based data to complement static node telemetry time stamps. This allows researchers 

to capture both the spatial and temporal dynamics associated with animal movement in a 

holistic analysis of what are often very large, complex datasets. 

Static array acoustic telemetry data were used to illustrate some of the many 

approaches offered by network analyses to this type of data. The handling and sorting of 

raw data, followed by the visual exploration of animal tracks is discussed and examples 

given (Figs. 23 and 24). A range of statistical analyses which can be conducted on matrix 

data are also described allowing comparison of individual tracks and environmental 

variables or null modelling and simulated predictions of movement under different 

scenarios. These tools offer greater flexibility to identify movement patterns associated 

with habitat use and furthermore, can help to model the space use shifts in the event of 

critical habitat loss. It is important to emphasise here that the use of these analyses for 

studying and comparing behaviours across multiple individuals (i.e. replicating movement 
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tracks) is certainly encouraged in order to draw general conclusions about how species are 

using an area.  

 

6.5.1 Summary of visual and statistical approaches 

The unreplicated movements and space use of a benthic shark S. canicula, a species for 

which the biology, physiology and ecology have been the subject of wide research (Ellis and 

Shackley 1997; Sims 2003; Jacoby et al. 2010), were assessed within a deep-water acoustic 

array. The movement tracks of the two example S. canicula reveal obvious differences in 

the temporal space use within a relatively small area of an open coastal bay. MRQAP 

analyses, at least in the case of these individuals, suggest that habitat features are 

significant predictors of an individual’s movement, a finding which is supported by short-

term continuous tracking and underwater surveys of this species (Sims et al. 2001). Further 

exploration of individual node-based metrics of each of the six receivers (Table 7) reveals 

high male betweenness, suggesting a roaming strategy in comparison to what is likely a 

refuging (philopatric) strategy in the female; such behaviour has also been documented 

from observational studies (Sims 2003). These node-based metrics on directed movements 

might also be used to explore the entry and exit points of an open water array such as this. 

Replication of male and female movement tracks and the implications for differential 

behavioural strategies between the sexes in this species is addressed in Chapter VII. 

By contrast, data collected on the comparatively wide ranging behaviour of a larger 

species of coastal shark, C. perezi revealed that detection frequency can be a deceptive and 

inaccurate predictor of an animal’s underlying movement strategy (i.e. differences in edge 

betweenness impact between random and targeted node disruption despite similar 
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detection rate, Table 8). This is an important result given the largely static nature of current 

analyses of electronic tag data. Spring embedding and other network visualisation is 

explored (Fig. 24) and node manipulation is used to demonstrate differences in home range 

between the first and second half of the movement track, as this male shark grew and its 

movement became more orientated towards the coastal shelf. On land, radio telemetry has 

also been used to explain sex differences and seasonal changes in home ranging behaviour 

in terrestrial mammals such as the Eurasian lynx (Lynx lynx; Herfindal et al. 2005) or the 

Sichuan snub-nosed monkey (Rhinopithecus roxellana; Li et al. 2000); as such, there is now 

the potential to analyse such data with some of the statistical approaches outlined in this 

study. 

Null modelling of C. perezi movements demonstrated that this animal was not using 

the area in a random manner favouring instead to move between several well connected 

locations (receivers). Furthermore the likelihood for dispersal is significantly greater if one 

of these few highly interconnected nodes becomes impacted beyond use. This result does 

not account for adaptation to disturbance and perhaps needs to be explored in greater 

detail given the nature of this particular acoustic array and the likelihood of individual node 

disturbance at such a small scale. It does however, provide support for the differential 

influence of specific areas within an animal’s home range movements . The techniques 

applied here on movement data could be extended to include assessments of disturbance 

in other systems. For example, Amstrup and Gardner (1994) use radio tracking of 

individuals to assess the effects of industrial development and increased hunting on the 

temporal and spatial distribution of polar bear (Ursus maritimus) denning sites. In a more 

recent study, Rhodes et al. (2006) explored the robustness and fragility of white-striped 
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freetail bat (Tadarida australis) roosting networks from targeted and random node 

removal. These types of simulations, as shown here, can be used to predict the impact of 

habitat disturbance on individual behaviour and overall community space use by 

anticipating displacement and susceptibility to dispersal, thus indicating priority habitat for 

conservation (Rhodes et al. 2006).  

 

6.5.2 Analysis accessibility 

Currently there are a variety of programs which can be used to determine the movement of 

animals from static telemetry data. Descriptive and quantitative analyses for these data 

were carried out across different programs using different platforms, which highlights a 

need to consolidate ideas and analyses for this type of data into a single more holistic 

program. Current developers of network programs make it particularly easy to download 

and use their software and manuals (Borgatti et al. 2002; Whitehead 2009; A.2.2) providing 

all the necessary tools needed for the non-specialist to conduct these types of analyses. An 

appreciation of these types of analytical approaches might, in addition, be useful during the 

planning stages of an experiment and could perhaps help to refine the hypotheses leading a 

telemetry-based study of animal movement.  

 

6.5.3 Future developments 

The field of movement ecology has seen the development of rapid, convergent approaches 

to the study of animal movement. Using a wide range of animal-borne electronic tags is one 

way in which to condense these species-specific movement differences into simplified 
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presence-absence data, GPS locations and the environmental variables associated with 

these tracks. Radio tracks of mountain lions (Felis concolor), for example  were analysed to 

determine movement ‘signatures’ revealing specific types of behaviour when hunting, 

feeding or mating (Beier et al. 1995). Equally, within the marine environment, smart 

positioning and temperature logging tags (SPOT tags) are used to track large marine 

predators that surface relatively frequently (Sims 2010) and have been used to explore 

niche expansion in salmon sharks (Lamna ditropis; Weng et al. 2005). Alternatively, small 

injectable radio frequency ID tags or passive integrated transponder (PIT) tags, can be used 

to track the movements of very small birds, mammals and amphibians. Pyrenean brook 

salamanders (Calotriton asper), for instance, have been successfully tagged with PIT tags in 

order to enhance the efficiency of determining individuals at different habitat locations 

(Cucherousset et al. 2008). How animal tracks are interpreted remains open to debate 

(Cooke 2008), however the need to visualise better and statistically analyse the spatial and 

temporal relationship inherent in animal movement remains a key barrier in movement 

ecology. Incorporating the interconnectivity of habitat locations into such analyses using 

node and edge-based metrics as here is likely to prove beneficial to the study of movement 

of many terrestrial and marine organisms. Furthermore, with the burgeoning development 

of animal social network analysis (Croft et al. 2008) there seems great potential to explore 

the role of biological spatial networks and movement analyses, in the context of animal 

social networks. 
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6.6 Conclusion 

 

Exploring the spatial and temporal dynamics of the ways in which animals move is a 

particular challenge. With availability of ‘round-the-clock’ tracking of animals using 

sophisticated biotelemetry technology, we now have the capacity to gain a real insight into 

the behaviour and stimuli influencing an animal’s movement patterns and habitat use. It is 

suggested here that the analysis of this data currently requires greater consideration of 

how temporal dynamics interact with spatial parameters. The use of visually intuitive 

network representations and statistical analyses which account for the interconnectivity of 

habitat locations is one way to achieve this goal. This study demonstrates how well 

established network analysis techniques can be manipulated to explore electronic tag 

movement data. Actual acoustic data from shark movements are used as a test bed along 

with suggestions of how best to clean and filter the data into a biologically meaningful 

format. Specific analyses were chosen to indicate the possible ecological, conservation and 

management benefits of this approach, whilst attempting to highlight the potentially broad 

appeal of these techniques to different species and types of study. These techniques are 

now used in greater detail to address specific ecological questions in the next chapter. 



  

 
 
 
 
 
 
 
 

Chapter VII. 

Revealing sexual relationships: predicting 

spatio-temporal dynamics in a 

behaviourally cryptic species 
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7.1 Abstract 

 

For a variety of behaviourally cryptic species there remains little information about the 

timing and location of key life-history stages and yet this has important implications for 

their conservation. For sexually segregated species in particular, the ability to predict the 

temporal and spatial patterning of these species, in situ, is likely to be of significant 

ecological importance. This chapter tests an approach based on network theory, in 

conjunction with long-term monitoring of individual movements, to identify previously 

unknown aspects of the spatial dynamics of a sexually segregating shark species, the small 

spotted catshark (Scyliorhinus canicula). High levels of site fidelity to an inshore, coastal 

location monitored revealed diel and seasonal trends as well as periods of synchronicity in 

the presence of both sexes. Dynamic network analyses, adopted from the social sciences 

and used here to explore movement, demonstrate that male behaviour significantly 

predicts female use of complex habitat. Furthermore, comparison of movement networks 

between the sexes reveal that during the springtime months of March – May, the different 

sexes show statistically similar patterns of movement and co-occur in space and time more 

than at any other periods of the year. Interpreting movement patterns and co-occurrences 

from long-term, continuous telemetry data in threatened species could provide potentially 

valuable information towards the implementation of ‘closed’ areas designed to protect 

species during periods of reproductive importance. 
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7.2 Introduction 

 

Sharks, like many other marine predators, often exhibit complex population dynamics that 

are difficult to study due to the inaccessible environments in which they inhabit and the 

spatial scales over which they occur. Importantly, for many species of shark, there remains 

a significant scarcity of data on the occurrence of important life history stages, although 

many studies speculate (e.g. Jorgensen et al. 2009), for example where and when mating 

occurs and the location and timing of parturition. Furthermore, slow growth rates and low 

fecundity combine with species-specific behavioural traits, such as aggregation, site 

philopatry and behavioural thermoregulation, making sharks particularly vulnerable to 

overfishing (Speed et al. 2010; Barnett et al. 2011; Queiroz et al. 2012; see also Chapter I). 

One particular behavioural trait which can often further obscure this picture is the spatial, 

temporal and/or social separation of the two sexes, otherwise known as sexual segregation. 

 A widespread characteristic of many elasmobranchs (Wearmouth and Sims 2008), 

sexual segregation is common in species that show sexual dimorphism with respect to body 

size such as the scalloped hammerhead (Sphyrna lewini; Klimley 1987), shortfin mako 

(Isurus oxyrinchus; Mucientes et al. 2009) and blue sharks (Prionace glauca; Litvinov 2006), 

but is also found in species that are sexually monomorphic in body size such as the small 

spotted catshark (S. canicula; Sims et al. 2001). The different mechanisms likely to influence 

sexual segregation in elasmobranchs are similar to those established for terrestrial 

vertebrates, such as ungulates, upon which much of the early mechanistic research was first 

conducted (Ruckstuhl and Neuhaus 2002; Ruskstuhl and Clutton-Brock 2005). For marine 

species, the predation risk hypothesis (1), the forage selection hypothesis (2), the activity 
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budget hypothesis (3) and the thermal niche-fecundity hypothesis (4) are all reviewed 

extensively by Wearmouth and Sims (2008), with (5) the social factors hypothesis 

thoroughly explored and empirically tested in a species-specific study by Wearmouth et al. 

(2012). To briefly summarise, these hypotheses can be used to explain how (1) asymmetry 

in reproductive investment can enhance the predation risk of the sexes disproportionately 

leading to sex differences in habitat use; (2) sex differences in body size can drive sexual 

segregation due to differential dietary requirements needed for somatic growth; (3) activity 

budgets between sexes are likely to vary as a function of body size potentially leading to 

fission of sexes moving at different speeds driving social sexual segregation and (4) in order 

to maximise life-time reproductive success, female ectotherms (such as many shark species) 

will occupy thermal environments sub-optimal to males, again leading to spatial separation. 

Finally, social factors (5) such as sexual harassment of one sex by the other is likely also to 

contribute to sexual segregation (Darden and Croft 2008) due to the differential costs and 

reproductive pay-off associated with multiple mating events that ultimately promote 

different behavioural strategies (see Wearmouth and Sims 2008; Wearmouth et al. 2012 for 

a review of these hypotheses). With sexual segregation common in elasmobranchs 

(Wearmouth and Sims 2008) there is increasing need to understand the temporal and 

spatial dynamics of the two sexes, especially periods when synchronicity is more 

pronounced than segregation and hence of putative reproductive importance for example. 

Yet there remains multiple logistic and analytical challenges to achieving this information.    

Determining periods of temporal synchronicity is notoriously difficult in wide ranging 

marine species, even more so in species that demonstrate sexual segregation. This very 

trait, in fact, renders sharks even more susceptible to anthropogenic drivers of population 
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decline putting the onus on researchers to better understand the spatial and temporal 

elements associated with reproductive behaviour in elasmobranchs. Differential 

exploitation of the sexes is particularly detrimental to elasmobranchs that are characterised 

by K selected life-history traits such as low fecundity and slow growth to maturity (Sims 

2008: Mucientes et al. 2009). Dwindling shark stocks are a global concern with management 

efforts to reduce overexploitation often lagging considerably behind the measures that are 

required (Godin and Worm 2010). The implementation of marine protected areas (MPAs) 

have been shown to increase the abundance and activity, through reduced anthropogenic 

disturbance, of some shark species that show high levels of site fidelity to coastal locations 

(Garla et al. 2006). Furthermore, there are now calls to implement high seas MPAs around 

areas of high productivity, such as oceanographic fronts, known to attract large pelagic 

sharks and other ecologically and economically valuable predators (Malakoff 2004; Queiroz 

et al. 2012). These MPAs, however, need not necessarily be a permanent fixture but might 

rather operate during periods known for frequent visitation of these species (Heupel and 

Simpfendorfer 2005b). Consequently, estimating the timing and location of periods where 

behaviour becomes synchronised, particularly in sexually segregated or endangered shark 

populations, becomes of great importance to conservation. It is also probable that 

environmental variables are, to some extent, likely to influence how and when sexual 

segregation occurs. Currently, electronic tagging of coastal and pelagic shark species is 

beginning to facilitate significant progress towards this endeavour (Sims 2010).  

The rapid development of electronic tags and biotelemetry techniques are continuing 

to enhance our understanding of the movements, residency patterns and social interactions 

of wide ranging animals (Rutz and Hayes 2009; Krause et al. 2011) and this progress has 
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always been widely embraced by the elasmobranch research community since these 

species are very difficult to study in their natural environment (Sims 2010). Furthermore, 

new, interdisciplinary analyses are now available that simplify the notoriously large 

telemetry data sets, enabling general principles to be explored across multiple species and 

spatial scales (Sims et al. 2008) or that account for the interconnectivity of habitats as 

individuals move between them (Chapter VI). The acoustic tracking of coastal sharks is now 

commonplace, providing important data on the round-the-clock movements and home 

ranging behaviour of site-attached sharks (Heupel et al. 2006; Andrews et al. 2009; Barnett 

et al. 2011; Knip et al. 2011). As discussed in Chapter VI, acoustic receivers record the 

presence of individually tagged sharks in both space and time. This apparently simple 

presence/absence data, however, can harbour a wealth of information about the 

behavioural strategies adopted by the tagged sharks, particularly when those data are 

considered in a dynamic format to account for movement behaviour and individual co-

occurrences. Using a hypothesis driven approach to the analyses of such data is likely to 

reveal important behavioural signatures within the acoustic data (Dowd and Joy 2011) that 

might be useful for informing management and policy decisions.   

Using data collected by acoustic telemetry techniques the aim of this study was to 

explore the influence of environmental and social factors on movement and define periods 

of temporally and spatially synchronised behaviour in a sexually segregated species, S. 

canicula. A common resident of shallow coastal habitat around the UK, this species is a 

small oviparous elasmobranch and a model species for physiological, ecological and 

behavioural research (e.g. Ballard et al. 1993; Sims 2003; Kimber et al. 2009). Female S. 

canicula refuge in single sex communities in shallow water openings in rocky substrata (e.g. 
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caves or large crevices) as a result of harassment by males seeking multiple mating 

opportunities (Jacoby et al. 2010; Wearmouth et al. 2012). As discussed at length in Chapter 

IV, these females can mate year round, are capable of storing sperm for long periods (see 

Griffiths et al. 2012) and as a result have a protracted egg-laying season. In this chapter 

analyses of static acoustic monitoring of detection frequencies of individually-tagged S. 

canicula were combined with dynamic analyses of movement interactions and individual 

co-occurrences (a weighted proxy for social interactions) in an attempt to predict patterns 

of synchronicity in behaviour. Predicting the timing and location of these patterns, in 

concert with the ecological variables driving them, may add new insight to the population 

dynamics of sexually segregated and other behaviourally cryptic elasmobranch species. This 

information might also prove useful for informing conservation strategies through the use 

of seasonally implemented MPAs. 

7.3 Materials and methods 

 

7.3.1 Study area 

Whitsand Bay is an open embayment area in Cornwall, on the South West coast of the UK 

(50o 19.549 N, 4o 15.246 W, Fig. 21, Chapter VI). The bay is approximately 5.5 km wide 

containing two large shipwrecks, the James Eagan Lane and HMS Scylla, both of which 

provide complex habitat for fish to live in and around. The substrate consists of large areas 

of sand and gravel interspersed with rocky habitat which provides ideal refuging habitat for 

S. canicula. Whilst low intensity, commercial trawling does occur sporadically, fishing 

activity is mainly restricted to close inshore (< 15 m deep, where sharks to be tagged were 

captured) or considerably further offshore due to the unsuitable substrate and diving 
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activities operating on and around the wrecks. Advertised, monetary rewards were offered 

to local fisherman that catch fish tagged with Marine Biological Association tags, acoustic or 

otherwise, ensuring relatively high return rates for recaptured fish. 

 

7.3.2 Acoustic equipment and tagging procedure 

Sharks were tracked using six acoustic receivers mounted at the top of 2-m-high seabed 

‘landers’ (Fig. 25) in an acoustic array situated approximately 1.5 km offshore and covering 

an area of 1.5 km2 (Fig. 21). The landers were deployed at depths ranging from 14 – 25 m 

including all of the above described habitat types. A total of 47 S. canicula (31 ♀, 16 ♂) 

were tagged with V9 coded transmitters (VEMCO, Halifax, Nova Scotia) and released into 

the non-overlapping, acoustic array consisting of six VR3-UWM (underwater modem) 

receivers (VEMCO, Halifax, Nova Scotia). Sharks were tagged and released in stages in an 

attempt to produce year-on-year replication. In January 2010, 15 female and four male 

sharks were released followed by a further 16 females and four males in January 2011. A 

priori hypotheses about how the different sexes were likely to use this area led to a strong 

female bias, given their propensity to spend time refuging in shallow water, rocky substrata 

to avoid male conspecifics (Sims et al. 2001; Sims 2003). In June 2011, however, the 

decision was taken to increase the number of male sharks by adding a further eight to the 

acoustic array based on prolonged residency patterns in some of the previously released 

males. It was also expected that refuging behaviour, unless out in the open, was likely to 

significantly reduce the ability of the receivers to detect the transmitters. Therefore, for the 

females particularly, detections were more likely to be an indication of the sharks moving or 

at least being out in the open away from openings in rocky substrata. Sharks trawled from 
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inside the acoustic array were transferred to the MBA laboratory for surgical implantation 

of the V9 transmitters (see details of tagging and tracking below). 

 

 

 

 

 

 

 

 

 

 

Figure 25. Seabed landers housing acoustic tracking equipment. One of six landers deployed in a 

relatively deep water acoustic array. This image shows the acoustic receiver (in red below the 

buoys) and the acoustic release device (also red, to the right side of the receiver). Photograph 

courtesy of the MBA. 

 

Individual sharks were anaesthetised prior to surgery using benzocaine solution (1g of 

ethyl p-aminobenzoate in 100 ml of 70% ethanol) before a small incision (<15 mm) was 

made on the ventral surface (offset from the ventral midline) midway along the trunk, 

between the base of the pectoral and pelvic fins. The transmitter (28 mm) was then 
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inserted into the peritoneum and the incision was closed with one silk braided, non-

absorbable and two coated vicryl, absorbable sutures (MidMeds, Waltham Abbey, UK). 

Each shark was also tagged externally with a Floy T-bar anchor tag for identification and 

recapture. All fish were recovered from the anaesthesia in clean, aerated water where they 

were held into a current to irrigate the gills. Individuals were monitored for several days 

before being returned to the wild at the location of capture. Furthermore, tagged sharks 

that were subsequently caught and returned to the MBA, of which there were four, 

indicated that the incision healed well leaving nothing but a small pink line indicating where 

the acoustic tag was inserted. This procedure, as with all other procedures conducted 

during this project, were approved by the MBA Ethical Review Committee, licensed by the 

UK Home Office under the Animals (Scientific Procedures) Act 1986 and carried out by 

licensed personnel.  

Acoustic transmitters implanted in the sharks were set to emit randomly a coded 

pulse (at 69 kHz) at a nominal delay of anytime between 180 and 360 seconds (to reduce 

the chance of any two tag’s signals ‘colliding’ at a detector), giving a minimum battery life of 

over 400 days. Sharks occurring anywhere (in the open) within approximately 300 m of any 

one of the six receivers when this pulse was emitted, would then be logged with an 

individual identification, a time and a date stamp. These presence/absence data comprised 

the raw data logs which were periodically downloaded, every four to six months, via a 

surface modem aboard the MBA research vessel, MBA Sepia. 
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7.3.3 Tag detection range testing 

The radius at which VR3 receivers are able to detect a pulse from a transmitter is 

dependent on a number of factors including environmental features and output strength of 

the tag. As such, the range of detection for each receiver was tested using a test tag 

suspended 2 metres below the hull of the research vessel; this tag was preset to emit a 

pulse every 10 s. Range testing occurred during a flood tide along a predetermined path 

whereby the vessel was allowed to drift from 500 m on one side of the receiver to 500 m on 

the opposite side, as close to the GPS location for each receiver as possible. GPS locations of 

the boat position were taken concurrently with transmitter pulses which were recorded by 

the receiver in question and the data subsequently downloaded and compared. Detection 

frequencies were then calculated based on the number of minutes the boat spent within a 

specified range bin and the number of test tag detections recorded by the receiver of 

interest. This was replicated for each of the six receivers and a mean detection frequency 

calculated. A nonlinear regression was used to determine that a three parameter model 

(Gompertz model) which predicts a sigmoidal trend in the detection range, was the model 

which best fit the data (R2 = 0.861 Fig. 26). 
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Figure 26. Range testing of acoustic receivers. A three parameter model [b1*exp(–b2*exp(-b3*x))] 

best explained the sigmoidal relationship between the mean number of detections per minute and 

distance. In the model, b represents three different parameter estimates and x is the independent 

variable of distance. This relationship predicts a value of approximately 275 m as the upper distance 

estimate within which acoustic pings are reliably detected (arrow).  

 

7.3.4 Data management 

Following a download, the raw telemetry data were imported into a Microsoft Access 

database. During the import, data were adjusted to correct for clock drift between the PC 

clock used to download the data and the receiver clock, which varied between each 

receiver from a minimum of 0.34 (receiver 6) to a maximum of 1.35 (Receiver 4) seconds 

per day (mean = 0.78 s/d). In addition, the import program also highlighted the false 

positive detections which can result from two or more tags emitting pulses at exactly the 

same time at the same receiver or from background acoustic ‘pollution’ which occurs at the 

same frequency as the transmitters (69 kHz). False positive detections are likely to produce 

a tag ‘ping’ number outside of those which have been deployed on actual fish and are thus 
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often easy to isolate. The chance of a spurious ‘ping’ number actually replicating a number 

of a tagged fish is very remote even with relatively high numbers of tags within the area. A 

total of 51 false positive detections were isolated in a multi-species dataset containing 

170,951 detections, less than 0.03%. Finally, Whitsand Bay has been extensively surveyed 

using multibeam and side-scan sonar (see Fig. 21, Chapter VI) providing topographic data 

which was not only used to plan the positioning of the receivers but also provided data for 

the analysis of the animal tracks themselves (see Data analysis). Year round, environmental 

data, including sea surface temperature (SST), wave height, wind speed and direction were 

also obtained from an environmental monitoring station situated on a buoy in a 

neighbouring bay (Looe Bay Channel Coastal Observatory). 

 

7.3.5 Data analysis 

Both static and dynamic information held within acoustic telemetry data was explored here 

using a combination of more traditional analyses of presence/absence data and also the 

application of network analyses, outlined in Chapter VI, to consider movements made by 

these tracked sharks between receiver stations. In addition, co-occurrences of individuals in 

space and time were analysed using social network analysis (SNA) in an attempt to address 

the influence of social strategy on space use. This amalgamation of descriptive and 

statistical approaches is introduced conceptually in Chapter I (Fig. 5) and is then explored in 

greater detail in Chapter VI.  

7.3.5.1 Static analyses – presence/absence 

The frequency and abundance of acoustic detections were assessed for diel and seasonal 

trends using an actogram to determine the degree and longevity of site fidelity within the 
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population. Temporal trends were then considered in relation to SST data obtained from 

the Looe Bay Channel Coastal Observatory buoy. Furthermore, data on male and female 

detections were pooled across multiple individuals allowing general hypotheses about 

differential sexual strategies to be explored. Home ranging behaviour was plotted using 

kernel density estimates in ArcGIS 10 and these were subsequently compared to analyses of 

movement interaction networks to assess the reliability of static analyses for understanding 

shark movements (see Dynamic analyses).  

7.3.5.2 Dynamic analyses – movement behaviour 

Static analyses of detection frequencies do not necessarily capture dynamic behaviours 

such as short-term, repeated movements. Therefore, to understand the degree of site 

fidelity in males and females, dynamic network analyses of movement interactions were 

undertaken using the methodology described in Chapter VI, whereby nodes in the network 

represent receivers and edges the movement of individuals between receivers . Matrices 

containing values of relative interaction data (RID) – a relative proportion of the number of 

times a movement is made between locations divided by the total number of movement 

edges – were constructed from pooled male (n = 16) and female (n = 31) shark tracks. The 

weighted networks described only the direct (< 1 hr) movements of individuals between 

receiver locations. 

In an attempt to understand the mechanisms driving male and female strategies in 

the wild, the pooled movement matrices were regressed against a number of biotic and 

abiotic predictor variables using a multiple regression quadratic assignment procedure 

(MRQAP). This permutation procedure, similar to node-label permutation conducted in 

previous chapters, was used to test whether differences in similarity of environmental 
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variables at each of the six locations, were significant predictors of movement behaviour. 

The fixed environmental variables were outlined in Chapter VI and included mean depth of 

the receivers, distance from shore and a habitat complexity score derived from knowledge 

of the substrate and available refuging habitat around each receiver. These variables were 

then converted into matrices of similarity before they were regressed against the male and 

female movement networks. The models were then rerun to include the movement 

matrices for the opposite sex as a biotic or social predictor variable. 

Given the time period over which data was collected and the degree of site fidelity 

exhibited by this species, the analysis of shark movement data were restricted to specific 

seasonal movements (Spring: Mar-May, Summer: Jun-Aug, Autumn: Sep-Nov and Winter: 

Dec-Feb) based on sea surface temperatures. The edge density (E) of the movement 

networks were then compared between male and female sharks for each season using a 

paired samples t-test on bootstrapped estimates of standard error. The null hypothesis for 

this test, which was conducted in UCINET (Borgatti et al. 1999), was that the mean tie 

strength between receiver locations was the same for both sexes. 

7.3.5.3 Co-occurrence networks 

The acoustic equipment used in this study was not designed to measure direct social 

interactions or association between individual sharks due to the broad field of detection. 

However, by tagging a relatively high number of sharks that are known to show site 

attached behaviour (Wearmouth and Sims 2008), co-occurrences in space and time could 

still be explored as proxies for potential interactions or associations. A co-occurrence 

reflected an instance where two or more individuals were detected within one hour of one 

another at the same location and was deemed an estimation of the opportunity for social 
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association to take place, rather than direct measures. These individuals might have 

occurred anywhere within a 550 m diameter of the acoustic receiver and in an attempt to 

overcome this, dyadic pairs co-occurring at the same location and the same time, were 

assigned an index weighting (Iw) based on the number of times the pairing occurred 

together in total and over a period of how long (Equation 3). 

Equation 3:  Iw =   
 

       
   

where x is the number of detections in which a pair of sharks were recorded together in the same 

group,  T represents the time of co-occurrence on the receiver and y is a constant for the time of the 

last co-occurrence between the pair.  

This weighting was then implemented in the calculation of the half weight index (HWI, 

Chapter II) using SOCPROG 2.4 (Whitehead 2009). Pairs of individuals were assigned a HWI 

value creating a matrix of co-occurrence. In the calculation of HWI, dyads or groups that co-

occurred most frequently and over the longest periods of time were given the most (or 

strongest) weighting. It was presumed that these pairs of individuals were most likely to be 

in actual close proximity to one another. It is recognised that this simple weighting might 

require some modification to ensure that identical weights are not obtained for different 

ratios of association to duration data (see chapter discussion for more on this). It is included 

here, however, in an attempt to control the potential bias associated with the spatial scale 

over which co-occurrences might occur. SNA were used to construct co-occurrence 

networks excluding any dyads that co-occurred on the day of release. By restricting the 

matrices, season trends in co-occurrences were explored for an indication of putative 

mating behaviour. 
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7.4 Results 

 

7.4.1 Static analyses 

Of the 47 sharks released into the acoustic array in Whitsand Bay (Fig. 21) and tracked 

during this two year study, the individual detection frequencies ranged from zero to 8221 in 

the females (Mean ± SE: 736.87 ± 335.88) and zero to 17,133 in the males (Mean ± SE: 

2043.00 ± 1074.51). Summary details of the sharks tracked during a two year period are 

provided in Table 9. Despite nearly twice as many female S. canicula released, male sharks 

recorded approximately three times as many detections across the six receivers indicating 

males spent more time in open habitat where successful detections were more likely. On 

average males also showed a greater number of movements between receiver locations 

(U(45) = 154.50, z = -2.12, p = 0.035, Fig. 27) suggesting more of a roaming strategy this sex. 

There were similarities, however, in the maximum period of residency between the sexes 

with a female shark still being detected after 757 days (Mean ± SE: 188.35 ± 43.02) and a 

male after 745 days (Mean ± SE: 225.75 ± 54.90). These detection frequencies indicate that 

both sexes show high site fidelity to this area and, as predicted, results here suggest that 

females were probably not detected because they refuge in rocky substrata, which masks 

acoustic transmissions leading to a considerably lower relative number of detections (Fig. 

27). 
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Table 9. Summary of the sharks tagged and tracked at Whitsand Bay, Cornwall, UK.  

Shark Individual Sex Release date Last detection 

Days 

at 
liberty 

No. of 

detections 

Movements 

between 
receivers 

1 9126 M 27-Jan-2010 27-Jun-2010 77 72 10 

2 9115 F 27-Jan-2010 08-Mar-2011 405 85 5 

3 9118 F 27-Jan-2010 23-Feb-2010 27 153 10 

4 9119 F 27-Jan-2010 09-Sep-2010 225 513 25 

5 9121 F 27-Jan-2010 27-Jan-2010 0 4 1 

6 9122 F 27-Jan-2010 27-Jan-2010 0 5 1 

7 9123 F 27-Jan-2010 16-Oct-2010 262 8221 101 

8 9125 F 27-Jan-2010 11-Aug-2010 196 29 7 

9 9129 F 27-Jan-2010 23-Feb-2012 757 2769 184 

10 9131 F 27-Jan-2010 09-Jan-2012 712 2133 165 

11 9132 F 27-Jan-2010 24-Dec-2011 696 241 27 

12 9133 F 27-Jan-2010 27-Jan-2010 0 3 0 

13 9136 F 27-Jan-2010 21-Mar-2010 53 82 3 

14 9113 M 10-Feb-2010 16-May-2010 95 358 17 

15 9114 M 10-Feb-2010 06-Nov-2011 605 2609 179 

16 9117 M 10-Feb-2010 25-Feb-2012 745 567 62 

17 9127 F 10-Feb-2010 12-Jan-2012 701 1849 143 

18 9128 F 10-Feb-2010 - 0 0 0 

19 9130 F 10-Feb-2010 20-Nov-2010 271 90 16 

20 9391 M 03-Feb-2011 29-Feb-2012 391 17133 940 

21 9394 M 03-Feb-2011 31-Aug-2011 184 1077 39 

22 9396 M 03-Feb-2011 28-Feb-2012 390 28 3 

23 9397 M 03-Feb-2011 - 0 0 0 

24 9398 F 03-Feb-2011 03-Feb-2011 0 4 0 

25 9399 F 03-Feb-2011 29-Mar-2011 0 1 0 

26 9400 F 03-Feb-2011 04-Mar-2011 29 35 3 

27 9401 F 03-Feb-2011 07-Nov-2011 277 6175 325 
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Table 9 cont.  
    

28 9402 F 03-Feb-2011 17-Apr-2011 73 45 16 

29 9403 F 03-Feb-2011 29-Mar-2011 54 47 8 

30 9404 F 03-Feb-2011 13-Feb-2012 375 62 15 

31 9405 F 03-Feb-2011 03-Feb-2011 0 14 0 

32 9406 F 03-Feb-2011 09-Apr-2011 65 64 5 

33 9407 F 03-Feb-2011 02-Apr-2011 58 110 20 

34 9169 F 03-Feb-2011 05-Aug-2011 183 6 0 

35 9170 F 03-Feb-2011 - 0 0 0 

36 9171 F 03-Feb-2011 14-Nov-2011 284 38 11 

37 9172 F 03-Feb-2011 19-Jun-2011 136 59 9 

38 9173 F 03-Feb-2011 03-Feb-2011 0 3 0 

39 9174 F 03-Feb-2011 03-Feb-2011 0 3 0 

40 9175 M 07-Jun-2011 13-Dec-2011 189 85 8 

41 9176 M 07-Jun-2011 29-Nov-2011 3 27 2 

42 9177 M 07-Jun-2011 28-Feb-2012 266 5269 327 

43 9179 M 07-Jun-2011 19-Oct-2011 134 3518 332 

44 9180 M 07-Jun-2011 07-Jun-2011 0 3 0 

45 9182 M 07-Jun-2011 28-Feb-2012 266 1066 115 

46 9183 M 07-Jun-2011 12-Jun-2011 5 85 25 

47 9187 M 07-Jun-2011 24-Feb-2012 262 791 63 
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Figure 27. Mean number of movements (± SE) made between receivers for male and female 

sharks. These movements influence the mean number of detections between sexes  (inset) as 

females were not likely detected when in their refuges. 

To investigate the diel and seasonal trends between the sexes all detections from January 

2010 to March 2012 were plotted as an actogram for both male (n = 32 688) and female (n 

= 22 843) sharks in relation to SST data (Fig. 28). Strong signals within the detection plots 

for the females reveal apparent crepuscular movements to and from refuges which 

consistently track the increasing day length and SST during the summer months (Fig. 28A). 

This is evident by the upper and lower curves which form ‘circles’ of detections that 

correspond to the increase and decrease of light levels and temperature (albeit lagged 

slightly) during the course of the year (Fig. 28A). Males, however, were detected regularly 

throughout daylight and night time hours (Fig. 28B). Interestingly both female and male 

sharks were detected relatively infrequently during the winter months (Nov – Feb) when 

SSTs were at their lowest. Once these temperatures began to rise (approximately March), 

detection frequencies became abundant with surprising synchronicity between the sexes 
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(Fig. 28). This is an indication that both SST and intersexual behaviour impose substantial 

influence on movement and residency in this species, something that was explored in 

greater detail in subsequent sections (see Dynamic analyses). 

Figure 28. Actogram of female (A) and male (B) diel and seasonal detections in relation to sea 

surface temperatures (SST). Black circles represent individual detections and the red line, values of 

SST. Grey areas approximate hours of darkness with arrows above the plots informing when tagged 

sharks were released into the array.  
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7.4.2 Dynamic analyses 

Movement networks, overlaid on kernel density (KD) plots, revealed interesting insight into 

the differential strategies adopted by female and male S. canicula (Fig. 29). Female 

detections and thus KD home range estimates were most abundant at receiver 1, followed 

by receiver 2. Female movements were strongly biased to the inshore locations (receivers 1, 

2 and 3), however, they appeared to move between all receivers suggesting greater 

residency to the area as a whole (Fig. 29A). Conversely, the detection frequencies of the 

male sharks suggest residency that was restricted to receiver 2. The male movement 

network, however, describes very high levels of patrolling behaviour between receivers 1 

and 2, the area in which the females occur most frequently, a behaviour that is not 

identified by the kernel density plot (Fig. 29B). This demonstrates the differential 

information captured by static and dynamic analyses of acoustic telemetry data.  

The results of the MRQAP analyses are explained here in the text and summarised in 

Table 10. As a model, the environmental data which included depth, inshore/offshore 

location and a measure of habitat complexity, proved a significant predictor of both female 

and male movement, despite relatively low r2 values (Female & Male: p < 0.05). Individually, 

however, none of these environment parameters were significant predictors of movement. 

Results from previous research (Sims et al. 2001) in conjunction with the static and 

descriptive analyses from this data suggested that male behaviour might strongly influence 

female behaviour and vice versa. As such, the model was re-run to include the movement 

interaction matrix of the opposite sex (see Table 10). 
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Figure 29. Kernel density (KD) plots overlaid with movement interaction networks. Red KD areas 

indicate periods of prolonged residency whilst the size of the network nodes illustrates the 

detection frequencies for female (A) and male (B) sharks. Network edges show the abundance  of 

movements between locations. 
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As predicted, these social explanatory variables substantially increased the amount of 

variation accounted for by the model, indicated by increased r2 values (Female & Male: p 

<0.01). Female and male movements individually were significant predictors of intersexual 

movement behaviour, however, when male movements were included in the female 

model, habitat complexity also became a significant predictor, a result not reciprocated for 

the male model (Table 10). This result is consistent with the literature describing the female 

necessity to refuge away from male sharks which are likely to harass them for mating 

opportunities (Wearmouth and Sims 2008; Jacoby et al. 2010).  

Table 10. Summary of MRQAP analyses predicting shark movements from environmental and 

social data. Overall fit of the model and the significance of individual explanatory variables are 

given. 

 
R2 R2

adj P Parameters P 

Model 1 - F movements 0.197 0.138 0.045 Habitat complexity  0.409 

    
Distance from shore 0.949 

    
Mean depth 0.389 

Model 2 - M movements 0.187 0.127 0.044 Habitat complexity  0.260 

    
Distance from shore 0.316 

    
Mean depth 0.269 

Model 3 - F movements 
(inc. M)  

0.693 0.658 0.007 Habitat complexity  0.039 

    
Distance from shore 0.077 

    
Mean depth 0.088 

    
Male movement 0.011 

Model 4 - M movements 

(inc. F) 
0.689 0.653 0.002 Habitat complexity  0.062 

    
Distance from shore 0.188 

    
Mean depth 0.103 

    
Female movement 0.009 
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The temporal influence of sexual segregation was then explored by comparing the 

network density (E) of the seasonal movements of these sharks between the sexes. A 

bootstrap approach to the paired sample t-test was run using 10,000 sub-samples to 

estimate standard error. This two-tailed test revealed significant differences in male and 

female movements across all seasons except spring (t-test: Spring – t(14) = - 0.851, p = 0.326; 

Summer – t(14) = 2.637, p = 0.013; Autumn – t(14) = 2.014, p = 0.042; Winter – t(14) = - 3.326, p 

= 0.002). Thus, the null hypothesis for the same mean tie strength between the sexes was 

accepted for the Spring months only (Mar – May), where movements made by female and 

male S. canicula appear more synchronised.  

 

7.4.3 Co-occurrence networks 

To allow comparison to the previous analyses, weighted networks of co-occurrences were 

divided into seasons to investigate the influence of time of year on putative social 

interactions. In accordance with the movement data, female sharks appeared more 

integrated in the co-occurrence network during the spring months and seem to become 

increasingly less so towards the end of the year (Fig. 30). During this time, females co-

occurred in greater numbers with both male and female conspecifics highlighting potential 

periods when mating behaviour, perhaps as a result of convenience polyandry or increased 

female receptivity, are more likely to occur. Acoustic co-occurrences must be interpreted 

with caution for the reasons already stated, however, with evidence from both spatial and 

temporal analyses of movement and social data, there is a strong case implicating this 

seasonal window as important in the life-history of this sexually segregated species. 
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Figure 30. Seasonal networks of co-occurrences in wild S. canicula. Here nodes represent individual 

sharks and edges their associations inferred from co-occurrences at the receivers. Female (red) and 

male (blue) co-occurrences were derived from weighting the half-weight index (edge weight) based 

on the frequency and duration of co-occurrences at specific locations. Node size represents the size 

of the individual when it was released. n values represent the number of co-occurences within 

season. 
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7.5 Discussion 

 

Determining periods of synchronicity and the environmental drivers of these patterns in 

behaviourally cryptic, sexually segregating species is of significant ecological importance. 

For many species of elasmobranch sexual segregation is common (Wearmouth and Sims 

2008) and yet knowledge of when the sexes are most likely to encounter one another often 

remains elusive even for species that are of global conservation concern (Martin 2007; 

Mucientes et al. 2009). Here, a tractable, model species of elasmobranch, S. canicula was 

tracked within an array of acoustic receivers in an open embayment off the South West 

coast of the UK. Differential use of habitat by the two sexes was considered in relation to 

localised environmental data in order to explore for the first time in an open coast 

environment, the mechanisms driving segregation in a species known to sexually segregate 

from observations made in an enclosed marine lough (Sims et al. 2001; Wearmouth et al. 

2012). Analyses of static detection frequencies revealed strong crepuscular movements in 

female sharks and site philopatric behaviour in both sexes that appeared strongly coupled 

with sea surface temperatures. Network analyses of movement and individual co-

occurrences defined clear synchronicity in the behaviour of both sexes during the months 

of March, April and May in stark contrast to marked segregation during the rest of the year. 

These types of analyses attempt to encapsulate both the temporal and spatial information 

contained within acoustic telemetry data that can often be overlooked (see Chapter VI). 

The relatively small acoustic array used in this study was limited in spatial range, 

covering an area of just 1.5 km2. Situated within an open embayment there were large 

amounts of habitat deemed suitable for this species found outside the area under acoustic 
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surveillance. Despite this both male and female S. canicula showed remarkably high levels 

of site attached behaviour consistent with other demersal elasmobranchs that share similar 

life history traits (Hight and Lowe 2007; Powter and Gladstone 2009). The present study 

showed spatial and temporal trends in detection frequency suggesting preferential 

locations or home ranges, particularly in the inshore areas, with an apparent influence of 

sea surface temperature (SST) and light levels on the presence and absence of these sharks. 

Light level and daily fluctuations in temperature have also been linked to aggregation 

behaviour in other larger species of elasmobranch, such as the grey reef shark 

(Carcharhinus amblyrhynchos; Economakis and Lobel 1998). Additionally, the longevity of 

the acoustic tracks in this study confirm some of the behavioural trends discussed in 

previous acoustic research on this species conducted over shorter time periods (Sims et al. 

2001). Female S. canicula, for example, are most likely to leave their refuges at dawn and 

dusk (Wearmouth et al. 2012) and strong crepuscular signals, year-on-year as here, appear 

to support this (Fig. 28).  

By employing a networks approach to analyse movement behaviour in this study (as 

described in Chapter VI), the interconnectivity of areas containing different habitat were 

considered complimentary to static analyses of detection frequencies. Movement networks 

overlaid on kernel density plots revealed that directed movements of males, which are 

substantially more numerous than female movements, were largely restricted to patrolling 

the inshore locations around receivers 1 and 2. These areas were where most of the female 

detections occurred (i.e. when they were entering and leaving their refuges), thus 

supporting recent research validating male harassment as the main driver of sexual 

segregation in this species (Jacoby et al. 2010; Wearmouth et al. 2012).  
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In species demonstrating site fidelity it is expected that certain habitat features, such 

as bottom substrate (Powter and Gladstone 2009) or abundance of temporally distributed 

prey (Barnett et al. 2011), play an important role in mediating a continued return to specific 

habitat. It is less obvious, however, how habitat then influences the movement of 

individuals once they return. MRQAP analyses, run on the pooled movement networks for 

both female and male sharks, showed that together the environmental parameters were 

significant predictors of movement in both sexes. The amount of variance explained 

increased substantially, however, when the movement networks of the opposite sex were 

included in each of the respective models. Furthermore, habitat complexity alone was a 

significant predictor of female but not male movement networks, confirming previous 

suggestions that harassment by male sharks is persistent enough to drive females to use 

refuges as an avoidance strategy (Sims et al. 2001; Sims 2003). This finding is also consistent 

with some freshwater systems where female Trinidadian guppies (Poecilia reticulata) alter 

their habitat use by occupying deeper, more risky habitat due to very high levels of male 

sexual harassment (Darden and Croft 2008).  

Despite marked sexual segregation reinforced by intersexual harassment, there are 

likely to be occasions where female sharks are more receptive to male mating attempts, 

even if this behaviour is driven by convenience polyandry as is suggested in Chapter IV. 

Although it is not possible to determine whether breeding events have taken place in the 

wild, periods of temporal and spatial synchronicity are perhaps indicative of when breeding 

behaviour is likely to occur. It is important, therefore, to be able to predict this synchro-

nisation, especially for species under significant anthropogenic pressure (Mucientes et al. 

2009; Sims 2008). Partitioning the data into seasons showed that all networks were 
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significantly different from one another apart from the movements made during the 

months March, April and May. This finding was the first indication advocating springtime as 

a period when the two sexes demonstrate statistically similar behavioural patterns. In 

other, more wide-ranging elasmobranch species such as the white shark (Carcharodon 

carcharias) spring and summer months are proposed to be times when sharks move 

offshore to mate, although no firm evidence of mating has yet been obtained (Weng et al. 

2007). 

In an attempt to substantiate this time period as being important in the reproductive 

strategy of S. canicula, the weighted co-occurrences of individuals were calculated for 

sharks that occurred at the same location within ≤ 1 hr of each other. These co-occurrences 

did not necessarily denote associative behaviour, but rather the potential for association to 

take place and hence the weighting of the data to account for the duration and the 

frequency of these co-occurrences through time. Social network analyses of these co-

occurrences reiterated the spring months as a period when female and male sharks co-

occurred much more frequently together in a network that was well mixed (Fig. 28). More 

single- and mixed-sex ties were apparent in spring in comparison to all the other seasons 

where female occurrences barely register (i.e. there are very few red nodes in summer, 

autumn and winter). This implies that during the months of Mar – May, not only were the 

sexes moving in similar ways but that they were also co-occurring in space and time. In 

more northern latitudes, aggregations of salmon sharks (Lamna ditropis) and blue sharks 

(Prionace glauca) occur later in the year during summer months (Williams et al. 2010) 

suggesting that, as in this study, temperature might indeed be a driver of reproductive 

behaviour. It is well known, in fact, that temperature cues regulate reproductive behaviour 
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in many species of fish through its influence on the endocrine system and thus egg/sperm 

production (Van Der Kraak and Pankhurst 1997). Interestingly, Garnier et al. (1999) found 

that sperm reserves in male S. canicula peaked from March – May, the period in which 

synchronised behaviour was found in this study. Behaviourally, it is possible that this period 

marks a ‘season’ when male sharks are more aggressive or persistent in their harassment 

and are either more successful in their mating attempts or the females allow more mating 

due to the energetic expense of avoidance/resistance (Dodd 1983). 

Finally, as suggested during the methods section of this chapter, there remains room 

for improving the calculation of the index weighting and perhaps incorporating this 

temporal component directly into the HWI. Lagged association rates (Whitehead 2008) 

were calculated for all inter- and intrasexual co-occurrences in this study but due to high 

variation in dyadic longevity, this did not provide a meaningful estimate for weighting the 

inferred associations. Model data with known association parameters would be required to 

validate the index and work on this is already underway but was not complete at the time 

of thesis completion. 

 

7.6 Conclusion 

 

Knowledge of how habitat features influence the movements of site faithful elasmobranchs 

and how this impacts sexual segregation is extremely important, particularly for threatened 

or endangered species. Management strategies, designed to reduce localised fishing 

mortality and enhance population recovery must also consider, where possible, the timing 
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and location of important life-history stages of populations, such as nursery area and 

mating or pupping grounds, particularly if such behaviour is restricted to specific seasons. 

This study employed long-term acoustic telemetry of an elasmobranch species common to 

UK coastal waters, to answer these more broadly applicable questions. Static and dynamic 

analyses showed that abiotic features of these animals’ environments were significant 

predictors of their movement, particularly in the females that are driven to use refuges in 

order to avoid male harassment. Furthermore, a period of synchronised behaviour between 

the sexes was highlighted between the months of March through to May in which females 

were more likely to appear outside of these refuges, co-occurring with male sharks during a 

period that coincided with seasonal increases in sea surface temperatures. These types of 

hypothesis-driven analyses could potentially prove extremely useful in the implementation 

of seasonal marine protected areas to protect more threatened species during periods most 

pertinent to their reproductive behavioural strategies. 
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Chondrichthyans are an extremely successful, highly diverse group of marine vertebrate 

taxa. Due to the inaccessible nature of much of our oceans and the vast ranging behaviour 

of many species belonging to this class, they are often extremely difficult to study. 

Consequently there remain many unanswered questions regarding much of their natural 

behaviour, home ranges, mating and feeding grounds and life-history traits. Many 

elasmobranchs for example, are known to aggregate in small and large groups, a behaviour 

that can often exacerbate their vulnerability to fishing pressure (Roberts and Sargant 2008; 

Mucientes et al. 2009). The aim of this thesis was twofold. Firstly, I was interested in 

exploring how and why sharks aggregate, looking specifically at the structure, mechanisms 

and functions of group living in sharks and a comprehensive review of the research already 

conducted on this is provided in Chapter I. With this as a foundation, I then wanted to 

understand how these mechanistic drivers of aggregation might influence the localised 

movements of multiple sharks tracked in the wild using electronic tags. As a broad 

analytical framework that is both rapidly developing and widely used, social network 

analysis (SNA) provided a vehicle for me to address both aspects of this thesis. Network 

theory facilitates the analysis of large, complex, interrelational systems allowing us to 

determine groups and subgroups within our data (Newman 2006) and it is now widely used 

to explore animal social networks (Croft et al. 2008; Wey et al. 2008; Krause et al. 2009). 

Throughout this thesis network analysis is used to explore shark social preferences under 

different social and ecological contexts. This approach is also adopted to try and better 

understand how habitat features are connected by wild sharks that swim between them in 

an attempt to encourage more of a predictive approach to analysis of shark tracking data. 

The key findings from applying this approach are listed and discussed in more detail in the 

next section.   
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8.1 Major findings 

 

Throughout this thesis I have alluded to the complexity surrounding the social and 

reproductive biology of the small spotted catshark (Scyliorhinus canicula) as a model 

elasmobranch. This species is oviporous, occurring across a range of depths (5 – 400 m); it 

shows distinct sexual segregation at a diel scale due to strong social factors (male 

harassment) and is reproductively active for a large majority of the year (Ellis and Shackley 

1997; Wearmouth et al. 2012). In addition, S. canicula are behaviourally cryptic with 

females refuging in rocky substrata (i.e. crevices, caves) and both sexes (and juveniles) 

demonstrating long periods of inactivity on a daily basis (Sims et al. 1993, 2001, 2006). 

These aspects of their behavioural ecology not only made them a challenging species to 

study but also provided many interesting questions regarding the mechanisms and 

functions of their behaviour, some of which are addressed in this thesis. 

 

8.1.1 Social preferences 

One of main results in this thesis is that juvenile, benthic S. canicula are capable of showing 

associative, non-random preferences when aggregating with conspecifics and that this 

pattern is driven by familiarity of group mates but not relatedness. Social recognition has 

been shown to confer numerous benefits in teleost fishes (Ward et al. 2007; Ward et al . 

2009) and indeed in terrestrial animals (Mateo 2004). It was demonstrated in Chapter III 

that juvenile S. canicula were capable of recognising familiar conspecifics and that non-

random social structuring developed where individuals were familiar with one another. 

Interestingly, these results were detectable at the level of the group whereby the number 
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of groups increased along with the mean association index of social attraction, however, it 

was not detectable at the level of the individual with mixed results for the analysis of 

assortment by familiarity. Population level effects of familiarity have been documented in 

guppies (Poecilia reticulata) that use social facilitation to enhance foraging ability (Swaney 

et al. 2001), although this species are known to be able to distinguish conspecifics 

individually and in the case of the females use this knowledge to influence male harassment 

behaviour (e.g. Brask et al. 2012). Knowledge of how familiarity influences social behaviour 

in S. canicula, however, is interesting in the context of a previous study. Jacoby et al. (2010) 

demonstrate that socially peripheral adult female S. canicula are more susceptible to social 

disruption by both male and novel female conspecifics. This suggests perhaps that 

familiarity might also play a part in structuring adult aggregations and further research 

would be useful to confirm this, particularly as determining familiarity effects on adult 

sharks of many other species, would be logistically very difficult. 

 

8.1.2 Reproductive strategy, relatedness and assortment 

Evidence that social recognition exists in this species demonstrates that active partner 

preferences help to structure social networks with interesting implications for the 

exploration of other mechanisms. No evidence of kin structuring was found in juvenile 

sharks that are known to hatch in close physical and temporal proximity to one another, 

often from the same mother. These results, outlined in Chapter IV, imply that perhaps there 

is low selection acting upon kin association in this species possibly in response to the high 

levels of female polyandry (in 92% of females) resulting in increased genetic diversity 

between offspring sired by multiple males. Tracking of adult male and female sharks in the 
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wild (Chapter VII) provides context to these results, offering interesting insight into long-

term, intersexual behavioural patterns. Male harassment as a driver of sexual segregation 

has been demonstrated previously in this species (Jacoby et al. 2010; Wearmouth et al. 

2012) as has segregation in movement patterns between the sexes (Sims et al. 2001, 2006). 

Until now, however, it was not known fully, the extent to which this impacted female 

reproductive strategy and the subsequent strategy of her offspring. Mobbing behaviour of 

females by males has certainly been hypothesised in this species (Dodd 1983) and 

witnessed in others (Pratt and Carrier 2001; Whitney et al. 2004) and co-occurrences in the 

wild might support this theory. During summer and autumn particularly, there was 

evidence of a single female that was well contacted to multiple males (Fig. 30), whereas all 

other strong co-occurrence ties are within sex (i.e. consistent with segregation during those 

periods). These tagged sharks are, of course, just a subsample of the population and it is 

likely that tagged individuals are interacting with non-tagged individuals both inside and 

outside the range of the acoustic receivers. Given the high residency patterns of both male 

and female sharks though, this does appear to support this hypothesis, especially given the 

extremely small number of male – female co-occurrences observed during at least three 

quarters of the year. 

 

8.1.3 Environmental influence on social behaviour 

The social environment is just one factor that influences the ways in which animals group. 

The ecological environment and the degree of structural complexity of the surrounding 

habitat are also important factors influencing grouping behaviour particularly in the context 

of perceived predation risk in small or vulnerable fish (Orpwood et al. 2008). When 
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considered in the context of male behaviour, habitat complexity alone actually proved to be 

a significant predictor of adult female movement behaviour of those individuals tracked in 

the wild (Chapter VII). However, the influence of habitat on behaviour was addressed at a 

much finer scale in the laboratory using juveniles (Chapter V). The number of individuals 

forming groups increased within more complex environments and decreased when a gravel 

substrate provided what appeared to be an opportunity to camouflage. This plasticity to 

environmental conditions appears consistent with some teleost fish, such as brown trout 

(Salmo trutta), that change behavioural strategy under different ecological conditions and 

during different seasons (Heggenes et al. 1993). Despite this degree of plasticity in overall 

grouping behaviour, at the individual level, juvenile S. canicula were able to maintain 

consistent social network positions across each of the three habitat treatments. 

This expression of consistent individual differences through time and across context, 

often referred to as a personality trait, is the first indication of personality in 

elasmobranchs. It is perhaps not a surprising result given the taxonomic breadth of 

organisms for which repeatable behaviours have already been quantified (e.g. Rhesus 

macaques, Macaca mulatta: Stevenson-Hinde et al. 1980; domestic dogs, Canis familiaris: 

Svartberg and Forkman 2002; beadlet anemones, Actinia equine: Briffa and Greenaway 

2011; teleost fishes: Conrad et al. 2011). It is hypothesised throughout that grouping 

behaviour in these juvenile sharks is, in part, driven by the antipredator benefits of 

associating with phenotypically similar conspecifics. Unfortunately, due to ethical licensing 

constraints the influence of predation risk on grouping could not be directly tested during 

this thesis, but is rather inferred from other experimentation. These experiments, 

particularly the study manipulating habitat (Chapter V), suggests an antipredator strategy 
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and under such conditions consistency in network position, particularly for those well 

connected to one another, might enable individuals to be more resilient to perturbation or 

attack (Chivers et al. 1995; see also Jacoby et al. 2010, for example, which addresses 

harassment not predation). Furthermore, behavioural consistency is likely to be adaptive 

for survival in a highly dynamic coastal environment where juvenile S. canicula hatch from 

their egg cases. 

 

8.1.4 Network analyses of movement 

This thesis demonstrates that network analysis can enhance our understanding of animal 

biotelemetry data by incorporating the interconnectivity of habitats that the animals move 

between, allowing specific hypotheses to be tested about how these animals are utilising 

their environment. The methodology developed in Chapter VI and applied in Chapter VII 

attempts to demonstrate the different aspects of wild shark behaviour that can be 

illuminated through dynamic analyses of passive tracking data. Indeed these analyses 

helped to reveal that wild S. canicula, known to be highly sexually segregated, show periods 

of behavioural synchronicity during the springtime months of March, April and May, 

conducting statistically similar movement behaviours and showing greater levels of mixed-

sex co-occurrences than at any other time of year. Male patrolling of female refuging 

locations, supportive of male harassment behaviour (Wearmouth et al. 2012), is apparent in 

the wild movement networks but not when analysing detection frequencies in a static 

format. Complex networks of movement are relatively common in research on human 

mobility (e.g. Song et al. 2010) and in some instances might have important consequences 

for the global economy (Porter 2000) or the spread of invasive species (Kaluza et al. 2010). 
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Likewise, knowledge of animal movement can be an important prerequisite for 

understanding and predicting population dynamics (Morales et al. 2010). As demonstrated 

in Chapter VII, network analysis of animal movement between fixed locations can offer a 

powerful predictive tool in determining, for example, periods of synchronicity and possibly 

reproduction in behaviourally cryptic species or the extent to which environmental features 

influence habitat use.  

First and foremost, these findings advance our understanding of the life-history of S. 

canicula by determining some of the mechanisms and/or functions driving their aggregation 

behaviour and movement ecology. Beyond this, this well studied species offers a tractable 

model with which to address questions relating to other elasmobranchs of a similar life-

history (Sims 2003), many of which have received considerable less attention in the 

literature than the larger carcharhinid species. Studies linking reproductive mode and 

behavioural strategy, as here, are directly comparable to other species of benthic 

elasmobranch that show similar intersexual behaviours and spatial segregation (Pratt and 

Carrier 2001). Furthermore there are hypotheses tested in this thesis that regard the 

importance of both individual and group-level behaviours, explored in a social network 

context, that make for an interesting comparison with similar studies on teleost fishes (e.g. 

the development and maintenance of familiarity); although many of these hypotheses 

require further experimentation to fully determine the mechanisms behind the patterns of 

social interaction (see Future research directions). Finally, in the last few years, several 

studies have quantified elasmobranch social networks (Jacoby et al. 2010;  Guttridge et al. 

2011; Mourier et al. 2012) contributing to the vast array of organisms for which social 

networks have been described (Croft et al. 2008). Further investigation of predatory shark 
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social networks, particularly in the wild, will no doubt reveal important ecological conse-

quences, not least for the trophic ecology of their respective food webs (Heithaus et al. 

2008, 2009). 

8.2 Conservation implications 

 

Throughout this thesis reference is made to the conservation implications of the work being 

conducted. It is important to reiterate, however, that Scyliorhinus canicula, as a model 

shark species is widely distributed and relatively abundant in UK waters. The International 

Union for Conservation of Nature (IUCN) declare that population trends are stable and list 

this species as least concern on their Red List of Threatened Species. During the course of 

this research I have therefore been fortunate enough to be able to obtain and rear 

sufficient numbers of individuals (all of which were released post-experiment) to allow 

rigorous hypothesis testing with statistically powerful replication. Logistically, this would 

not have been possible of course using an endangered or threatened species of 

elasmobranch. Increasing our understanding of the biology of relatively abundant species 

will likely prove informative in the management and conservation of those species under 

much greater ecological threat. Throughout this thesis the individual ecological benefits 

that elasmobranchs might gain by aggregating or forming social groups are discussed at 

length and in doing so, I have attempted to provide an overview of how and where social 

network analyses are likely to contribute to the field of shark behavioural ecology. It is 

important here to also address the anthropogenic-driven costs associated with grouping 

behaviour in elasmobranchs and explore how some of the implications of this body of work 

might be applicable in a wider conservation context. 
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Anthropogenic influences impose costs at the population level (i.e. fishing pressure 

and habitat destruction) that are likely to be exacerbated by behavioural mechanisms such 

as grouping/schooling behaviour, sexual segregation and site philopatry (Wearmouth and 

Sims 2008; Mucientes et al. 2009). Sharks pose a particularly interesting and indeed 

worrying model for examining these costs, especially given their K selected life-history traits 

and the fact that many species occupy an apex position within their ecological niche and, 

thus, their ability to influence processes at lower trophic levels (Heithaus et al. 2008). By 

repeatedly aggregating en masse at specific locations, at specific times, slow-growing 

elasmobranchs make themselves particularly vulnerable to overfishing (Mucientes et al. 

2009). Now, with modern and efficient fishing equipment, countries where shark landings 

represent a major economic advantage can substantially increase their catch per unit effort 

through simple targeted fishing practices and knowledge of these ecological events. One 

example of this is the basking shark (Cetorhinus maximus) fishery at Achill Island, Co. Mayo, 

Republic of Ireland where 12,360 sharks were landed between 1947 and 1975 (Sims 2008). 

Of these total reported landings, 75% were caught between 1950 and 1956 with mean 

catch per year being reduced from 1323 individuals to just 60 by 1962 – 1975. Basking 

sharks have long gestation periods (between 1 and 2 years) and show particularly low 

fecundity even among elasmobranchs. It is proposed that one explanation for this dramatic 

reduction in this north-eastern Atlantic population is that a large majority of the sharks 

taken were probably mature adult females engaging in seasonal coastal aggregation 

behaviour (Sims et al. 2000; Sims 2008). This putative differential exploitation of the sexes is 

pertinent when we consider that females of some pelagic shark species seek shallow 

inshore waters during parturition (Feldheim et al. 2002; Hueter et al. 2005), potentially 

enhancing encounter rates with fishing vessels. Furthermore, it highlights the urge for more 
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detailed research on the composition of shark aggregations and for evaluation of minimum 

group size thresholds at which reproduction will remain viable within a population, 

particularly for short-term mating aggregations in more solitary species.  

In fisheries where sharks are apparently not the principal target species, such as 

pelagic longline fisheries (for tunas and billfish), the tendency for pelagic shark species to 

school can increase elasmobranch bycatch, further inflating mortality rates (Gilman et al. 

2008). Worldwide declines in shark populations and the ecological consequences of these 

declines have been reported widely (Myers and Worm 2003; Worm et al. 2006; Myers et al. 

2007; Heithaus et al. 2008; Ferretti et al. 2010). One consideration to help stem these 

trends must be conservation and management strategies that address these behaviourally 

mediated increases in fisheries mortality and as discussed in Chapter VII, consideration of 

seasonal or temporary marine protected areas designed to safeguard habitat locations 

during periods of reproductive importance. With philopatric behaviour being such a 

prevalent characteristic among elasmobranch populations, there are now calls for shark 

fisheries to incorporate spatially structured management strategies which account for the 

degree of site philopatry of the respective target species (Hueter et al. 2005; Robbins et al. 

2006; Knip et al. 2010). Furthermore, detailed analyses of aggregation events and individual 

and collective movement networks that aid the prediction of diel and seasonal space use 

should also be considered in future management policies (Mucientes et al. 2009; Chapters 

VI and VII).  

A second implication for elasmobranch grouping behaviour is an increase in 

popularity among people wishing to dive with sharks and rays with a concomitant surge in 

ecotourism operations around the world. In parts of the world where elasmobranchs were 
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once prized for their meat and fins, communities are now adjusting their focus to conserve 

these species and their aggregation sites. Ecotourist ventures seek to utilise local 

knowledge of ecological events, such as periodic grouping, in offering experiences 

interacting with animals that would otherwise be targeted for food or fins. Whether 

tourism offers a sufficient economic alternative to fishing for some communities is still open 

to debate (Topelko and Dearden 2005), and is to a large extent dictated by culture-driven 

consumer demand, particularly within the far eastern markets where shark products are 

prized as delicacies and for medicinal purposes. From a conservation perspective, ecotourist 

ventures appear important in the publicity of threatened elasmobranch species at a global 

level. Furthermore, under the correct management, ecotourist operators may also provide 

an invaluable source of temporal data on the nature of shark aggregations that may inform 

future conservation initiatives (Theberge and Dearden 2006) and scientific research. 

A wide variety of elasmobranch species utilise coastal, nearshore environments either 

periodically to feed or mate or year-round as a nursery habitat (Heupel et al. 2007; 

Chapman et al. 2009; Knip et al. 2010). These environments not only experience major 

fluctuations in temperature, salinity, depth, turbidity and flow rate (Mann 2000) but are 

also highly susceptible to anthropogenic perturbation such as intense fishing activities and 

habitat alteration (Castilla 1999). The ecological benefits (and costs) individual sharks incur 

from recognising and associating with familiar group mates are frequently discussed 

throughout this thesis. In the wild, it seems plausible that within such a dynamic and often 

heavily impacted environment, behavioural consistency, shown to be a strong driver of 

shark behavioural strategy in Chapter V, provides a mechanism for small and developing 

sharks to withstand considerable changes to their habitat which might otherwise negatively 
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impact their reproductive success. It would be extremely interesting to test for repeatability 

of behaviour under natural, more fluctuating environments. Examination of plasticity and 

consistency in shark behaviour however, even under laboratory conditions, is likely to 

become an important aspect of elasmobranch conservation by determining the extent to 

which sharks can adapt or are resilient to disturbance. Indeed in Chapter VI, node removal 

analyses attempt to address this by quantifying the resilience of movement networks to 

simulated disturbance. 

8.3 Future research directions 

 

Reviewing the literature on shark aggregation, which contributed towards the general 

introduction of this thesis (Chapter I), highlighted for me the need to include more rigorous 

hypothesis testing of how and why sharks group in the ways they do. A strong descriptive 

component to studies of grouping prevails (see Chapter I) although there are recent notable 

exceptions suggesting a change in this trend (e.g. Guttridge et al. 2011; Mourier et al. 2012; 

Jirik and Lowe 2012). The thesis attempts to address this change, indicating where possible, 

further research that might be conducted to enhance our understanding of the motivation 

and mechanisms behind grouping behaviour in elasmobranchs. Fortunately, technological 

advances of tags and tracking equipment provide increasing opportunities in this endeavour 

(Holland et al. 2009; Guttridge et al. 2010; Krause et al. 2011, Rutz et al. 2012). This section 

will discuss ideas and thoughts that I would like to have expanded on during this research 

had it not been for time or logistical constraints. 
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8.3.1 Experimentation 

Laboratory experimentation comprises a large component of this thesis and allowed 

hypotheses to be tested using small, replicated groups of S. canicula. During each of the 

three separate experiments (Chapters III, IV and V) it was apparent that there were high 

levels of behavioural variation at both the group level and between individuals within 

groups. This, to some extent, reduced the effect size of the results and therefore it would 

have been interesting to consider the effects of experimental group size on non-random 

social preferences and the ability to detect these. This, of course, would have required 

larger experimental arenas, more juvenile sharks or lower numbers of replication so the 

decision was taken to concentrate efforts elsewhere. Equally, quantifying association based 

on group resting behaviour made it particularly difficult to design experiments that 

specifically tested the mechanisms behind social recognition in S. canicula. Binary choice 

experiments were initially conducted to determine the time taken for familiarity to develop, 

adopting methods frequently used in studies on teleost fishes (e.g. Griffiths and Magurran 

1997; Darden et al. 2009). Due to the length of time devoted to resting behaviour in this 

species, however, this methodology proved impractical. Other, more mobile elasmobranch 

species such as the lemon shark (Negaprion brevirostris) are more amenable to this type of 

experimentation (see Guttridge et al. 2009a) and would likely prove interesting candidates 

for investigating the role of vision and olfaction on social recognition in sharks (Gardiner et 

al. 2012).  

The finding of repeatable social network positions across context (Chapter V) really 

opens up a wealth of opportunity for further experimental investigation. How the balance 

between consistent and plastic phenotypes is expressed throughout ontogeny in 
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elasmobranchs would be a logical progression for this work. The intriguing dynamics 

between individual behavioural consistency and age, for example, were recently explored 

by Edenbrow and Croft (2011) who used the mangrove killifish (Kryptolebias marmoratus), 

a model clonal vertebrate, to show that the expression of behavioural type became more 

pronounced towards sexual maturity, after which it was expressed less. The ease with 

which S. canicula can be hatched and reared in the laboratory, make this shark an ideal 

candidate to address this question in future studies. It is also noteworthy to mention here 

that across studies of animal personality there appears to be significant variation in the 

analyses adopted to test statistically for consistency and repeatability in behaviour (Lessells 

and Boag 1987; Cote and Clobert 2007; Stamps et al. 2012) with many adopting a form of 

linear mixed-effects model (e.g. Wilson et al . 2011). Within these studies behaviours 

contributing to personality types are generally behaviours that can be quantified in isolation 

for each individual (e.g. testing for boldness in teleost fishes by dropping a weight into a 

tank to simulate a predatory bird attack) thus providing independent data points to test for 

repeatability. Quantifying personality based on consistent individual social behaviour, 

however, is a new endeavour. As such, the statistical analysis for determining repeatability 

in social network position will likely be open to debate due to the non-independent nature 

of network metrics. As with other analyses of network data, permutation tests and null 

models will no doubt prove useful (Croft et al. 2011). Analyses of interrelational, social 

network data continue to develop in an attempt to both reduce subjectivity in sampling 

protocol (Haddadi et al. 2011) and fully account for the non-orthogonal nature of network 

data (Croft et al. 2011) and some of these developments will now be discussed. 



David Jacoby  Ph.D Thesis 

 

- 225 - 
 

8.3.2 Analytical developments 

There is currently a variety of network software available reflecting the broad application of 

these types of analyses and it is hoped that this thesis goes someway to demonstrating the 

versatility of this analytical approach. A small number of statistical analyses developed for 

analysing social networks were adapted to study animal movement in Chapter VI, however, 

this is just a small subset of the techniques that are available. Clearly further research is 

required to fully determine the extent to which social network analyses might be 

incorporated into studies of movement behaviour particularly in light of the fact that 

network edges can not only be weighted based on the frequency of movement between 

locations, but also can contain temporal information (i.e. it takes an animal a certain 

amount of time to travel from one node to another). For the purposes of the present study 

this temporal component was simply used to filter out indirect movements but it is 

expected that the durations associated with individual edges might perhaps become 

incorporated into the statistical analyses as discussed below. 

Up until now, the temporal dynamics of animal social networks, that is the time scale 

or number of samples over which a network is condensed, have been largely overlooked 

and yet the topology of a network can change over multiple temporal scales (Blonder et al. 

2012). The result is a static network which suggests constancy in network structure 

throughout the period of sampling, whereas in reality this represents a relative equilibrium 

around which fluctuations in the network structure occur. Recent work, suggests that these 

fluctuations might harbour interesting temporal information about the nature of 

associations within the population (Blonder and Dornhaus 2011; Blonder et al. 2012) and 

might also prove useful for determining a statistically-derived sampling protocol (Haddadi 
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et al. 2011). Thus the integration of time-ordered networks into behavioural ecology will 

surely enhance our understanding of the duration and ordering of network connectivity 

that can often be critical in directed networks or networks tracking the flow of resources or 

information (Sumpter 2006; Sih et al. 2009). Such analytical developments offer an exciting 

prospect for the future of animal social network research and will no doubt facilitate 

progress towards answering some of the questions outlined in this section. 

8.4 Conclusion 

 

This thesis advocates the use of network analyses to test specific hypotheses about how 

and why social grouping occurs within a model species of elasmobranch, Scyliorhinus 

canicula. Familiarity appeared to structure social associations between individuals that 

were able to maintain these network positions under different ecological contexts. Kin 

relatedness did not influence network structure likely due to increased genetic diversity 

between offspring caused by the highest level of female polyandry yet observed in a shark. 

Despite strong sexual segregation, due to male sexual harassment and a protracted 

breeding season in this species, periods of behavioural synchronicity in the wild implicate 

the spring months of March, April and May as a period that is of potential reproductive 

importance.   

Widespread legal and illegal fishing practices and ever expanding anthropogenic use 

of the marine environment have fuelled growing concern over the conservation status of 

many shark species globally (Baum et al. 2003; Ferretti et al. 2010). Consequently, there is 

an increasingly urgent need to better understand both the movements and space use and 
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also the behavioural strategies adopted by these predators to survive. The mechanisms 

underpinning one such strategy, namely the aggregation and social grouping of individuals, 

are receiving burgeoning attention in the literature. Coupled with current rapid develop-

ment of electronic tagging technology and advances in broad analytical frameworks such as 

social network analyses (SNA), we are beginning to address the predictability of these 

behaviours which is likely to prove critical for the conservation of these animals in the 

future. 
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Appendix I 

 

This appendix contains additional information relating to female reproductive success, 

descriptive detail about offspring and complimentary explanation of genetic analyses of the 

study outlined in Chapter IV. 

 

Table A.1.  Gestation and egg hatch success sorted by maternal clutch. 

Egg Maternity Date (laid) Date Hatch 

Gestation 

Period 

(days) 

Sex 
Length 

(mm) 

Weight 

(g) 

Successful 

DNA 

Extraction 

57 B1801 01/02/2010 - 
    

N 

59 B1801 02/02/2010 - 
    

N 

87 B1801 15/02/2010 16/08/2010 182 M 107 3.49 Y 

88 B1801 15/02/2010 16/08/2010 182 F 103 3.24 Y 

113 B1801 01/03/2010 - 
    

N 

114 B1801 01/03/2010 25/08/2010 177 M 103 3.39 Y 

170 B1801 05/04/2010 13/09/2010 161 F 99 2.99 Y 

192 B1801 05/05/2010 24/09/2010 142 M 101 3.32 Y 

         
45 B1802 28/01/2010 12/08/2010 196 M 105 3.55 Y 

46 B1802 28/01/2010 18/08/2010 202 F 108 3.69 Y 

65 B1802 06/02/2010 21/08/2010 196 M 112 4.03 Y 

66 B1802 06/02/2010 - 
    

N 

94 B1802 18/02/2010 26/08/2010 189 F 107 3.77 Y 

95 B1802 19/02/2010 24/08/2010 186 M 106 3.97 Y 

183 B1802 28/04/2010 27/09/2010 152 M 102 3.62 Y 

         
71 B1803 06/02/2010 19/08/2010 194 F 103 3.57 Y 

135 B1803 11/03/2010 31/08/2010 173 F 102 3.64 Y 

136 B1803 11/03/2010 03/09/2010 176 M 105 3.67 Y 

188 B1803 04/05/2010 27/09/2010 146 F 105 3.60 Y 

189 B1803 04/05/2010 23/09/2010 142 M 105 3.66 Y 

203 B1803 10/05/2010 - 
    

N 

         
83 B1805 15/02/2010 19/08/2010 185 F 98 3.53 Y 



David Jacoby  Ph.D Thesis 

 

- 272 - 
 

84 B1805 15/02/2010 19/08/2010 185 M 100 3.43 Y 

109 B1805 25/02/2010 26/08/2010 182 M 101 3.76 Y 

110 B1805 25/02/2010 26/08/2010 182 F 101 3.83 Y 

127 B1805 10/03/2010 01/09/2010 175 M 102 3.92 Y 

128 B1805 10/03/2010 31/08/2010 174 M 103 3.94 Y 

153 B1805 22/03/2010 07/09/2010 169 M 102 4.01 N 

154 B1805 22/03/2010 - 
    

N 

166 B1805 02/04/2010 10/09/2010 161 F 103 3.93 Y 

167 B1805 02/04/2010 08/09/2010 159 M 103 3.88 Y 

173 B1805 13/04/2010 15/09/2010 155 M 103 3.97 Y 

185 B1805 30/04/2010 - 
    

N 

186 B1805 30/04/2010 23/09/2010 146 F 103 4.07 Y 

200 B1805 10/05/2010 28/09/2010 141 F 102 3.91 Y 

201 B1805 10/05/2010 03/10/2010 146 M 107 3.95 Y 

         
51 G0376 29/01/2010 20/08/2010 203 F 100 3.83 Y 

58 G0376 01/02/2010 17/08/2010 197 F 103 4.09 Y 

77 G0376 09/02/2010 - 
    

N 

80 G0376 11/02/2010 22/08/2010 192 M 105 3.65 Y 

97 G0376 19/02/2010 26/08/2010 188 F 100 3.93 Y 

102 G0376 23/02/2010 26/08/2010 184 F 101 3.87 Y 

123 G0376 03/03/2010 31/08/2010 181 F 105 4.28 Y 

124 G0376 05/03/2010 31/08/2010 179 M 105 3.72 N 

138 G0376 15/03/2010 30/08/2010 168 M 99 3.78 Y 

139 G0376 15/03/2010 03/09/2010 172 F 102 3.77 Y 

157 G0376 23/03/2010 06/09/2010 167 F 105 3.84 Y 

160 G0376 25/03/2010 07/09/2010 166 M 100 3.65 Y 

174 G0376 13/04/2010 13/09/2010 153 M 102 3.88 Y 

179 G0376 20/04/2010 14/09/2010 147 F 102 3.72 Y 

180 G0376 20/04/2010 21/09/2010 154 F 107 3.94 Y 

194 G0376 05/05/2010 - 
    

N 

195 G0376 05/05/2010 24/09/2010 142 M 104 3.83 Y 

210 G0376 15/05/2010 29/09/2010 137 M 101 3.88 Y 

211 G0376 15/05/2010 04/10/2010 142 F 97 3.59 Y 

212 G0376 17/05/2010 01/10/2010 137 M 99 3.88 Y 

213 G0376 17/05/2010 29/09/2010 135 M 102 3.86 Y 

216 G0376 24/05/2010 05/10/2010 134 M 105 3.78 Y 

217 G0376 24/05/2010 06/10/2010 135 F 103 3.67 Y 

222 G0376 01/06/2010 11/10/2010 132 F 101 3.50 Y 

223 G0376 01/06/2010 13/10/2010 134 M 100 3.79 Y 

230 G0376 09/06/2010 - 
    

N 
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231 G0376 09/06/2010 18/10/2010 131 F 99 3.60 Y 

         
44 G0377 28/01/2010 - 

    
N 

52 G0377 29/01/2010 - 
    

N 

64 G0377 06/02/2010 17/08/2010 192 M 100 3.13 Y 

72 G0377 08/02/2010 18/08/2010 191 F 99 3.16 Y 

89 G0377 16/02/2010 18/08/2010 183 M 100 2.98 Y 

90 G0377 16/02/2010 19/08/2010 184 M 100 3.22 Y 

115 G0377 01/03/2010 - 
    

N 

116 G0377 01/03/2010 23/08/2010 175 F 98 3.06 Y 

129 G0377 10/03/2010 30/08/2010 173 M 100 3.13 Y 

130 G0377 10/03/2010 30/08/2010 173 M 100 3.09 Y 

155 G0377 22/03/2010 03/09/2010 165 M 99 3.08 Y 

156 G0377 22/03/2010 03/09/2010 165 F 100 3.10 Y 

163 G0377 30/03/2010 06/09/2010 160 F 96 3.02 Y 

164 G0377 30/03/2010 06/09/2010 160 M 100 3.12 Y 

198 G0377 05/05/2010 - 
    

N 

199 G0377 05/05/2010 - 
    

N 

206 G0377 13/05/2010 24/09/2010 134 M 94 3.01 Y 

207 G0377 13/05/2010 29/09/2010 139 M 96 2.96 Y 

218 G0377 24/05/2010 29/09/2010 128 M 96 2.91 Y 

219 G0377 24/05/2010 30/09/2010 129 F 96 2.97 Y 

224 G0377 01/06/2010 11/10/2010 132 M 96 2.90 N 

225 G0377 01/06/2010 - 
    

N 

232 G0377 15/06/2010 - 
    

N 

233 G0377 15/06/2010 25/10/2010 132 F 100 3.02 Y 

         
25 P0551 21/01/2010 19/08/2010 210 F 107 4.30 Y 

26 P0551 21/01/2010 - 
    

Y 

39 P0551 27/01/2010 19/08/2010 204 M 116 4.28 Y 

41 P0551 27/01/2010 20/08/2010 205 F 110 4.27 Y 

67 P0551 06/02/2010 19/08/2010 194 F 115 4.04 Y 

68 P0551 06/02/2010 24/08/2010 199 F 105 4.27 Y 

85 P0551 15/02/2010 20/08/2010 186 F 
  

Y 

86 P0551 15/02/2010 - 
    

N 

100 P0551 23/02/2010 29/08/2010 187 F 117 4.16 Y 

101 P0551 23/02/2010 29/08/2010 187 M 112 4.32 Y 

119 P0551 02/03/2010 29/08/2010 180 F 110 4.41 Y 

120 P0551 02/03/2010 01/09/2010 183 F 108 4.15 Y 

133 P0551 11/03/2010 07/09/2010 180 F 109 4.12 Y 

134 P0551 11/03/2010 31/08/2010 173 M 110 4.19 Y 
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149 P0551 20/03/2010 08/09/2010 172 M 110 4.25 Y 

150 P0551 20/03/2010 10/09/2010 174 M 115 4.22 Y 

161 P0551 29/03/2010 09/09/2010 164 F 110 4.18 Y 

162 P0551 29/03/2010 09/09/2010 164 M 111 4.12 Y 

171 P0551 13/04/2010 17/09/2010 157 M 107 4.10 Y 

172 P0551 13/04/2010 17/09/2010 157 M 111 4.17 Y 

181 P0551 25/04/2010 24/09/2010 152 F 113 4.31 Y 

182 P0551 25/04/2010 29/09/2010 157 M 106 4.08 Y 

196 P0551 05/05/2010 28/09/2010 146 M 106 4.11 Y 

197 P0551 05/05/2010 29/09/2010 147 F 106 4.17 Y 

204 P0551 10/05/2010 01/10/2010 144 M 110 3.93 Y 

205 P0551 10/05/2010 30/09/2010 143 F 108 3.91 Y 

214 P0551 18/05/2010 - 
    

N 

215 P0551 18/05/2010 06/10/2010 141 F 105 3.83 Y 

220 P0551 28/05/2010 - 
    

N 

221 P0551 28/05/2010 - 
    

N 

228 P0551 07/06/2010 20/10/2010 135 M 102 3.54 Y 

229 P0551 07/06/2010 18/10/2010 133 F 107 3.77 Y 

         
28 P0552 23/01/2010 16/08/2010 205 M 110 3.67 Y 

29 P0552 23/01/2010 16/08/2010 205 F 106 3.66 Y 

61 P0552 04/02/2010 18/08/2010 195 M 106 3.78 Y 

62 P0552 04/02/2010 17/08/2010 194 F 103 3.56 Y 

91 P0552 18/02/2010 22/08/2010 185 M 103 3.26 N 

92 P0552 18/02/2010 - 
    

N 

158 P0552 23/03/2010 07/09/2010 168 M 100 3.47 Y 

159 P0552 23/03/2010 06/09/2010 167 F 104 3.33 Y 

177 P0552 14/04/2010 14/09/2010 153 M 99 3.23 Y 

190 P0552 04/05/2010 - 
    

N 

191 P0552 04/05/2010 21/09/2010 140 F 100 3.07 Y 

         
40 P0553 27/01/2010 20/08/2010 205 F 104 3.77 Y 

69 P0553 06/02/2010 16/08/2010 191 M 100 3.89 Y 

70 P0553 06/02/2010 22/08/2010 197 M 110 3.87 Y 

140 P0553 15/03/2010 06/09/2010 175 F 107 4.09 Y 

141 P0553 15/03/2010 - 
    

N 

193 P0553 05/05/2010 28/09/2010 146 M 106 3.75 Y 

         
42 R1851 28/01/2010 13/08/2010 197 M 100 3.34 Y 

43 R1851 28/01/2010 13/08/2010 197 M 99 3.37 Y 

73 R1851 08/02/2010 18/08/2010 191 M 104 3.27 Y 
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74 R1851 08/02/2010 19/08/2010 192 M 102 3.53 Y 

96 R1851 19/02/2010 23/08/2010 185 F 102 3.38 N 

99 R1851 23/02/2010 24/08/2010 182 M 102 3.38 N 

         
4 Y0336 15/12/2009 29/07/2010 226 F 108 3.3705 N 

5 Y0336 18/12/2009 26/07/2010 220 F 109 3.2849 N 

10 Y0336 04/01/2010 04/08/2010 212 M 100 3.1672 Y 

16 Y0336 14/01/2010 - 
    

N 

17 Y0336 14/01/2010 - 
    

N 

49 Y0336 29/01/2010 - 
    

N 

50 Y0336 29/01/2010 - 
    

N 

53 Y0336 31/01/2010 - 
    

N 

54 Y0336 31/01/2010 - 
    

N 

60 Y0336 02/02/2010 23/08/2010 202 F 106 3.63 Y 

93 Y0336 18/02/2010 - 
    

N 

98 Y0336 23/02/2010 - 
    

N 

103 Y0336 23/02/2010 25/08/2010 183 F 102 3.32 Y 

104 Y0336 23/02/2010 22/08/2010 180 M 106 3.49 Y 

131 Y0336 10/03/2010 - 
    

N 

132 Y0336 10/03/2010 30/08/2010 173 F 101 3.39 Y 

148 Y0336 20/03/2010 31/08/2010 164 M 110 3.66 Y 

         
3 Y0337 15/12/2009 26/07/2010 223 F 106 3.1993 Y 

9 Y0337 02/01/2010 04/08/2010 214 F 107 3.4775 Y 

11 Y0337 08/01/2010 - 
    

N 

12 Y0337 08/01/2010 - 
    

N 

18 Y0337 18/01/2010 - 
    

N 

30 Y0337 25/01/2010 24/08/2010 211 M 106 3.35 Y 

31 Y0337 25/01/2010 21/08/2010 208 M 110 3.79 Y 

63 Y0337 04/02/2010 20/08/2010 197 F 106 3.71 Y 

81 Y0337 12/02/2010 26/08/2010 195 M 107 3.58 Y 

82 Y0337 12/02/2010 24/08/2010 193 F 105 3.58 N 

105 Y0337 23/02/2010 24/08/2010 182 M 101 3.65 N 

106 Y0337 23/02/2010 27/08/2010 185 M 106 3.84 Y 

121 Y0337 03/03/2010 - 
    

N 

122 Y0337 03/03/2010 03/09/2010 184 F 105 3.73 Y 

142 Y0337 15/03/2010 06/09/2010 175 M 106 3.54 Y 

143 Y0337 15/03/2010 03/09/2010 172 M 108 3.85 Y 

151 Y0337 22/03/2010 10/09/2010 172 F 106 3.67 Y 

         
1 Y0338 15/12/2009 20/07/2010 217 M 98 3.7985 Y 
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2 Y0338 15/12/2009 29/07/2010 226 M 111 3.6808 Y 

6 Y0338 18/12/2009 29/07/2010 223 M 107 3.4882 Y 

7 Y0338 02/01/2010 03/08/2010 213 F 101 3.531 Y 

8 Y0338 02/01/2010 02/08/2010 212 M 108 3.7343 Y 

13 Y0338 11/01/2010 04/08/2010 205 F 101 3.4026 N 

14 Y0338 11/01/2010 09/08/2010 210 M 103 3.317 N 

15 Y0338 11/01/2010 10/08/2010 211 M 105 3.3063 N 

19 Y0338 20/01/2010 12/08/2010 204 F 103 3.31 Y 

20 Y0338 20/01/2010 11/08/2010 203 M 100 3.43 Y 

55 Y0338 31/01/2010 12/08/2010 193 F 98 3.43 Y 

56 Y0338 31/01/2010 15/08/2010 196 M 103 3.28 Y 

75 Y0338 09/02/2010 24/08/2010 196 M 102 3.49 Y 

76 Y0338 09/02/2010 23/08/2010 195 M 111 3.42 Y 

107 Y0338 23/02/2010 - 
    

N 

108 Y0338 23/02/2010 26/08/2010 184 M 97 3.39 Y 

125 Y0338 05/03/2010 - 
    

N 

126 Y0338 05/03/2010 02/09/2010 181 M 100 3.35 Y 

144 Y0338 15/03/2010 02/09/2010 171 F 97 3.27 Y 

145 Y0338 15/03/2010 - 
    

N 

168 Y0338 02/04/2010 11/09/2010 162 F 101 3.21 Y 

169 Y0338 02/04/2010 10/09/2010 161 F 94 3.16 Y 

175 Y0338 13/04/2010 13/09/2010 153 M 99 3.35 Y 

176 Y0338 13/04/2010 13/09/2010 153 F 95 3.11 Y 

208 Y0338 15/05/2010 - 
    

N 

209 Y0338 15/05/2010 - 
    

N 

226 Y0338 01/06/2010 11/10/2010 132 M 100 3.23 Y 

227 Y0338 01/06/2010 - 
    

N 

234 Y0338 18/06/2010 15/10/2010 119 F 92 2.80 Y 

235 Y0338 18/06/2010 18/10/2010 122 M 98 3.07 Y 
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Figure A.1. Summary of the egg laying consistency of 13 female S. canicula.  
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A1.1 Genotyping techniques 

Genomic DNA was isolated from S. canicula using the Wizard technique (Promega Madison, 

WI). Ten microsatellite loci; Scan02, Scan03, Scan05, Scan06, Scan09, Scan12, Scan13, 

Scan14, Scan15 and Scan16 (Griffiths et al. 2011), were amplified according to the 

manufacturer’s instructions with the QUIAGEN multiplex polymerase chain reaction (PCR) 

kit (QIAGEN, Valencia, CA). Briefly, PCRs were carried out in 10μl reaction volumes 

containing: 1 μl 1/50 diluted genomic DNA, 1 μl of a primer mix containing all primers at an 

equal 2 μM concentration, 5 μl PCR master mix and 3 μl RNase-free water. The reactions 

were performed in a PTC-200 Peltier thermocycler with an initial denaturation for 15 min at 

95°C, followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 60°C for 3 min, 

and extension at 72°C for 60 s, before a final extension step of 72°C for 10 min. Products 

were labelled with fluorescent HEX, TET or FAM primers following Griffiths et al.  (2011). 

Allele sizes were determined using a MegaBace 1000 DNA sequencer, a 550 bp size 

standard and Fragment Profiler v1.2 (GEHealthcare). 

 

A1.2 Source population sampling 

To check for significant differences in allele frequencies between these sample collections, 

pairwise FST values were generated in Arlequin (Excoffier et al. 2005) and genic tests of 

differentiation were carried out in Genepop (Rousset 2008). Powermarker (Lui and Muse 

2005) was used to calculate observed and expected heterozygosity and Genepop was used 

to test for linkage disequilibrium (LD) and conformity to expectations of Hardy-Weinberg 

equilibrium (HWE). Microchecker (Van Oosterhout et al. 2004) was also used to check for 
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scoring issues and the presence of null alleles. Sequential Bonferroni corrections (Rice 1989) 

were applied when appropriate. 

Table A.2. Characteristics of S. canicula microsatellite loci in the source population. Ni = number of 

individuals scored, Na = numbers of alleles, HE = expected heterozygosity, HO = observed 

heterozygosity, PHW = p-value of the test for HWE and EP = exclusion probability. 

 

Locus Label Ni Na HE HO PHW EP 

Scan02 TET 76 9 0.786 0.790 0.685 0.609 

Scan03 FAM 74 8 0.594 0.541 0.492 0.390 

Scan05 TET 75 7 0.613 0.653 0.463 0.374 

Scan06 FAM 75 9 0.799 0.827 0.737 0.621 

Scan09 HEX 76 3 0.088 0.092 1.000 0.047 

Scan12 FAM 77 6 0.613 0.653 0.224 0.441 

Scan13 HEX 75 8 0.555 0.573 0.202 0.328 

Scan14 TET 71 11 0.839 0.831 0.015 0.690 

Scan15 FAM 74 9 0.772 0.716 0.242 0.573 

Scan16 HEX 73 7 0.821 0.808 0.884 0.664 
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Appendix II 

 

A.2 Caribbean reef shark array, Cape Eleuthera, Bahamas 

A.2.1 Design and data collection 

Data on the movements of Caribbean reef sharks (Carcharhinus perezi), which comprise 

part of the collaborative study conducted in Chapter VI, were collected by Edd Brooks of the 

Cape Eleuthera Institute (CEI), The Bahamas and the University of Plymouth, UK. The 

methods for the acoustic tracking of these sharks are outlined below. 

This study was conducted between 18th June 2009 and 05th August 2010, off the coast 

of Eleuthera, The Bahamas (24.54° N 76.12° W, Fig. 20). C. perezi were captured using 

midwater longlines consisting of a 500 m mainline with approximately 35-45 baited 

gangions approximately 3.5 m long, ending in a 16/0 circle hook. Gangions were equally 

spaced 8-10 m along the mainline and supported by buoys every six hooks. Each longline 

was soaked for approximately 90 minutes. Only sharks that were hooked cleanly in the 

corner of the jaw, that have no obvious external trauma, and that are not visibly exhausted, 

were selected for transmitter deployment. Candidate sharks were inverted alongside the 

boat until the onset of tonic immobility (Henningsen 1994). A small 4 cm incision was made 

~8 cm anterior to the origin of the pelvic fins and offset from the ventral midline. Prior to 

inserting the transmitter, all surgery and suture material was bathed in 5% iodine solution. 

The transmitters were inserted into the peritoneal cavity and the incision closed with 3 -6 

interrupted dissolving nylon monofilament sutures (Ethicon PDS II, Sommerville, NJ). All 

research was carried out under research permits MAF/FIS/17 and MAF/FIS/34 issued by the 

Bahamian Department of Marine Resources and in accordance with CEI animal care 
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protocols developed within the guidelines of the Association for the Study of Animal 

Behaviour and the Animal Behaviour Society (Rollin & Kessel 1998). 

Acoustic transmitters of three different types (8 x V16 Location Only Tags, 3 x V16TP 

Depth and Temperature Tags, 15 x V9 Accelerometer Tags) have been deployed on 

Caribbean reef sharks off Cape Eleuthera and have been tracked using an array of acoustic 

hydrophones for over eighteen months. Eleven of the 27 transmitters are VEMCO V16 

(VEMCO, Halifax, Nova Scotia) transmitters, which will still be active for another seven 

years. The array of 32 VEMCO VR2 acoustic hydrophones was deployed in a non-

overlapping grid on 6th June 2009 (Fig. 20). Preliminary analysis of the data has revealed 

that this more structured array has proven more effective for analysis of temporal patterns 

in activity space, fine scale movements, and habitat association. 
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A.2.2 Useful links to social network analysis software 

Programs for the analysis of animal social structure (SOCPROG) – Developed by Hal 

Whitehead 

- For programme download and manual see http://whitelab.biology.dal.ca/ 

- Citation: Whitehead, H. (2009) SOCPROG programs: analysing animal social 

structures. Behavioral Ecology and Sociobiology, 63, 765-778. 

 

UCINET/NETDRAW – Developed by Steve Borgatti, Martin Everett and Lin Freeman and 

distributed by Analytic Technologies 

- Programme download at http://www.analytictech.com/ucinet/download.htm 

- Citation UCINET: Borgatti, S. P., Everett, M. G. & Freeman, L. C. (2002) UCINET 6 For 

Windows: Software for Social Network Analysis. Analytic Technologies, Harvard. 

- Citation NETDRAW: Borgatti, S. P. (2002) NetDraw: Graph Visualization Software. 

Analytic Technologies, Harvard. 

- Online textbook based on UCINET and written by Robert Hanneman and Mark 

Riddle can be found at http://www.faculty.ucr.edu/~hanneman/nettext/ 

For further information on preparing and using data in these and other network-related 

programs refer to Croft et al. (2008), Whitehead (2008), Whitehead (2009) and Borgatti et 

al. (2009). 

http://whitelab.biology.dal.ca/
http://www.analytictech.com/ucinet/download.htm
http://www.faculty.ucr.edu/~hanneman/nettext/
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A.2.3 Movement interaction matrices 

 

AID 1 2 3 4 5 6 

1 0 14 57 4 10 1 

2 15 0 2 0 0 0 

3 58 2 0 2 1 2 

4 0 1 0 0 1 0 

5 10 2 0 0 0 1 

6 1 0 0 0 1 0 

 

Absolute interaction data (AID) matrix for the asymmetric movement of female catshark 9127 

between six locations/acoustic receivers in the UK. Data has been filtered to only include direct 

movement edges of ≤ 1 hr.  

 

RID 1 2 3 4 5 6 

1 0.000 0.076 0.308 0.022 0.054 0.005 

2 0.081 0.000 0.011 0.000 0.000 0.000 

3 0.314 0.011 0.000 0.011 0.005 0.011 

4 0.000 0.005 0.000 0.000 0.005 0.000 

5 0.054 0.011 0.000 0.000 0.000 0.005 

6 0.005 0.000 0.000 0.000 0.005 0.000 

 

Proportional, relative interaction data (RID) matrix converted from the above count data by simply 

dividing each value by the total number of movement interactions across the entire network (n = 

185). Again data was filtered to only include direct movement edges of ≤ 1 hr.  

 


